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xiii

My purpose in writing this book was to provide a clear, accessible treatment of discrete 
mathematics for students majoring or minoring in computer science, mathematics, math-
ematics education, and engineering. The goal of the book is to lay the mathematical foun-
dation for computer science courses such as data structures, algorithms, relational database 
theory, automata theory and formal languages, compiler design, and cryptography, and for 
mathematics courses such as linear and abstract algebra, combinatorics, probability, logic 
and set theory, and number theory. By combining discussion of theory and practice, I have 
tried to show that mathematics has engaging and important applications as well as being 
interesting and beautiful in its own right.

A good background in algebra is the only prerequisite; the course may be taken by stu-
dents either before or after a course in calculus. Previous editions of the book have been 
used successfully by students at hundreds of institutions in North and South America, 
Europe, the Middle East, Asia, and Australia.

Recent curricular recommendations from the Institute for Electrical and Electronic 
Engineers Computer Society (IEEE-CS) and the Association for Computing Machinery 
(ACM) include discrete mathematics as the largest portion of “core knowledge” for com-
puter science students and state that students should take at least a one-semester course in 
the subject as part of their first-year studies, with a two-semester course preferred when 
possible. This book includes the topics recommended by those organizations and can be 
used effectively for either a one-semester or a two-semester course.

At one time, most of the topics in discrete mathematics were taught only to upper-level 
undergraduates. Discovering how to present these topics in ways that can be understood by 
first- and second-year students was the major and most interesting challenge of writing this 
book. The presentation was developed over a long period of experimentation during which 
my students were in many ways my teachers. Their questions, comments, and written work 
showed me what concepts and techniques caused them difficulty, and their reaction to my 
exposition showed me what worked to build their understanding and to encourage their 
interest. Many of the changes in this edition have resulted from continuing interaction with 
students.

Themes of a Discrete Mathematics Course
Discrete mathematics describes processes that consist of a sequence of individual steps. 
This contrasts with calculus, which describes processes that change in a continuous fash-
ion. Whereas the ideas of calculus were fundamental to the science and technology of the 
industrial revolution, the ideas of discrete mathematics underlie the science and technol-
ogy of the computer age. The main themes of a first course in discrete mathematics are 
logic and proof, induction and recursion, discrete structures, combinatorics and discrete 
probability, algorithms and their analysis, and applications and modeling.

PreFace
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xiv  PrefACe

Logic and Proof Probably the most important goal of a first course in discrete mathemat-
ics is to help students develop the ability to think abstractly. This means learning to use 
logically valid forms of argument and avoid common logical errors, appreciating what it 
means to reason from definitions, knowing how to use both direct and indirect arguments 
to derive new results from those already known to be true, and being able to work with 
symbolic representations as if they were concrete objects.

induction and recursion An exciting development of recent years has been the increased 
appreciation for the power and beauty of “recursive thinking.” To think recursively means 
to address a problem by assuming that similar problems of a smaller nature have already 
been solved and figuring out how to put those solutions together to solve the larger prob-
lem. Such thinking is widely used in the analysis of algorithms, where recurrence relations 
that result from recursive thinking often give rise to formulas that are verified by math-
ematical induction.

discrete structures Discrete mathematical structures are the abstract structures that de-
scribe, categorize, and reveal the underlying relationships among discrete mathematical 
objects. Those studied in this book are the sets of integers and rational numbers, general 
sets, Boolean algebras, functions, relations, graphs and trees, formal languages and regular 
expressions, and finite-state automata.

combinatorics and discrete Probability Combinatorics is the mathematics of count-
ing and arranging objects, and probability is the study of laws concerning the measure-
ment of random or chance events. Discrete probability focuses on situations involving 
discrete sets of objects, such as finding the likelihood of obtaining a certain number of 
heads when an unbiased coin is tossed a certain number of times. Skill in using combina-
torics and probability is needed in almost every discipline where mathematics is applied, 
from economics to biology, to computer science, to chemistry and physics, to business 
management.

algorithms and their analysis The word algorithm was largely unknown in the middle 
of the twentieth century, yet now it is one of the first words encountered in the study of 
computer science. To solve a problem on a computer, it is necessary to find an algorithm, or 
step-by-step sequence of instructions, for the computer to follow. Designing an algorithm 
requires an understanding of the mathematics underlying the problem to be solved. Deter-
mining whether or not an algorithm is correct requires a sophisticated use of mathematical 
induction. Calculating the amount of time or memory space the algorithm will need in 
order to compare it to other algorithms that produce the same output requires knowledge 
of combinatorics, recurrence relations, functions, and O-, V-, and Q-notations.

applications and modeling Mathematical topics are best understood when they are seen 
in a variety of contexts and used to solve problems in a broad range of applied situations. 
One of the profound lessons of mathematics is that the same mathematical model can be 
used to solve problems in situations that appear superficially to be totally dissimilar. A goal 
of this book is to show students the extraordinary practical utility of some very abstract 
mathematical ideas.

Special Features of This Book
mathematical reasoning The feature that most distinguishes this book from other dis-
crete mathematics texts is that it teaches—explicitly but in a way that is accessible to 
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PrefACe  xv

first- and second-year college and university students—the unspoken logic and reason-
ing that underlie mathematical thought. For many years I taught an intensively interactive 
transition-to-abstract-mathematics course to mathematics and computer science majors. 
This experience showed me that while it is possible to teach the majority of students to 
understand and construct straightforward mathematical arguments, the obstacles to doing 
so cannot be passed over lightly. To be successful, a text for such a course must address 
students’ difficulties with logic and language directly and at some length. It must also 
include enough concrete examples and exercises to enable students to develop the mental 
models needed to conceptualize more abstract problems. The treatment of logic and proof 
in this book blends common sense and rigor in a way that explains the essentials, yet avoids 
overloading students with formal detail.

spiral approach to concept development A number of concepts in this book appear in 
increasingly more sophisticated forms in successive chapters to help students develop the 
ability to deal effectively with increasing levels of abstraction. For example, by the time 
students encounter the relatively advanced mathematics of Fermat’s little theorem in Sec-
tion 8.4, they have been introduced to the logic of mathematical discourse in Chapters 1, 
2, and 3, learned the basic methods of proof and the concepts of mod and div in Chapter 
4, explored mod and div as functions in Chapter 7, and become familiar with equivalence 
relations in Sections 8.2 and 8.3. This approach builds in useful review and develops math-
ematical maturity in natural stages.

support for the student Students at colleges and universities inevitably have to learn a 
great deal on their own. Though it is often frustrating, learning to learn through self-study 
is a crucial step toward eventual success in a professional career. This book has a number 
of features to facilitate students’ transition to independent learning. 

Worked Examples
The book contains over 500 worked examples, which are written using a problem-
solution format and are keyed in type and in difficulty to the exercises. Many solutions 
for the proof problems are developed in two stages: first a discussion of how one might 
come to think of the proof or disproof and then a summary of the solution, which is 
enclosed in a box. This format allows students to read the problem and skip imme-
diately to the summary, if they wish, only going back to the discussion if they have 
trouble understanding the summary. The format also saves time for students who are 
rereading the text in preparation for an examination.

Marginal Notes and Test Yourself Questions
Notes about issues of particular importance and cautionary comments to help students 
avoid common mistakes are included in the margins throughout the book. Questions 
designed to focus attention on the main ideas of each section are located between the 
text and the exercises. For convenience, the questions use a fill-in-the-blank format, 
and the answers are found immediately after the exercises.

Exercises
The book contains almost 2600 exercises. The sets at the end of each section have 
been designed so that students with widely varying backgrounds and ability levels will 
find some exercises they can be sure to do successfully and also some exercises that 
will challenge them.

Solutions for Exercises
To provide adequate feedback for students between class sessions, Appendix B con-
tains at least one, and often several, complete solutions for every type of exercise 
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in the book. A blue exercise number indicates that there is a solution in Appendix 
B; the letter H is added for a solution that is less than complete. When two or more 
exercises use the same solution strategy, there is a full solution for the first and ei-
ther another full solution or a partial solution for later ones. Exercises with several 
parts often have an answer and/or hint for one or more of the parts to help students 
determine whether they are on track so that they can make adjustments if needed.

Students are strongly urged not to consult solutions until they have tried their best 
to answer questions on their own. Once they have done so, however, comparing their 
answers with those given can lead to significantly improved understanding. There are 
also plenty of exercises without solutions to help students learn to grapple with math-
ematical problems in a realistic environment.

Reference Features 
Many students have written me to say that the book helped them succeed in their ad-
vanced courses. One even wrote that he had used one edition so extensively that it had 
fallen apart, and he actually went out and bought a copy of the next edition, which he 
was continuing to use in a master’s program. Figures and tables are included where 
doing so would help readers to a better understanding. In most, a second color is used 
to highlight meaning. My rationale for screening statements of definitions and theo-
rems, for putting titles on exercises, and for giving the meanings of symbols and a list 
of reference formulas in the endpapers is to make it easier for students to use this book 
for review in a current course and as a reference in later ones.   

support for the instructor I have received a great deal of valuable feedback from in-
structors who have used previous editions of this book. Many aspects of the book have 
been improved through their suggestions. In addition to the following items, there is ad-
ditional instructor support on the book’s website, described later in the preface. 

Exercises
The large variety of exercises at all levels of difficulty allows instructors great free-
dom to tailor a course to the abilities of their students. Exercises with solutions in 
the back of the book have numbers in blue, and those whose solutions are given 
in a separate Student Solutions Manual and Study Guide have numbers that are a 
multiple of three. There are exercises of every type in the book that have no answer 
in either location so that instructors can assign whatever mixture they prefer of 
exercises with and without answers. The ample number of exercises of all kinds 
gives instructors a significant choice of problems to use for review assignments and 
exams. Instructors are invited to use the many exercises stated as questions rather 
than in “prove that” form to stimulate class discussion on the role of proof and coun-
terexample in problem solving.

Flexible Sections
Most sections are divided into subsections so that an instructor can choose to cover 
certain subsections only and either omit the rest or leave them for students to study on 
their own. The division into subsections also makes it easier for instructors to break 
up sections if they wish to spend more than one day on them.

Presentation of Proof Methods
It is inevitable that most of the proofs and disproofs in this book will seem easy to 
instructors. Many students, however, find them difficult. In showing students how 
to discover and construct proofs and disproofs, I have tried to describe the kinds of 
approaches that mathematicians use when confronting challenging problems in their 
own research.
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Complete Instructor Solutions
Complete instructor solutions to all exercises are available to anyone teaching a course 
from this book. They are available through the Instructor’s Companion Website.

Highlights of the Fifth Edition
The changes made for this edition are based on suggestions from colleagues and other 
long-time users of previous editions, on continuing interactions with my students, and on 
developments within the evolving fields of computer science and mathematics.

Reorganization
●● In response to instructor requests to move the introduction of certain topics ear-

lier in the book, Section 1.2 now includes a definition and examples of strings. 
In addition, a new Section 1.4 contains definitions and examples of graphs and 
includes an introduction to graph coloring and the four-color theorem.

●● The handshake theorem and its applications have been moved from Chapter 10 to 
Section 4.9. This gives students an early experience of using direct and indirect 
proof in a novel setting and was made possible because the elements of graph 
theory are now introduced in Chapter 1.

Improved Pedagogy
●● The exposition has been reexamined throughout and carefully revised as needed.
●● Exercises have been added for topics where students seemed to need addi-

tional practice, and they have been modified, as needed, to address student 
difficulties.

●● Additional hints and full answers have been incorporated into Appendix B to 
give students more help for difficult topics.

●● The introductory material in Chapter 4 was made more accessible by being di-
vided into two sections. The first introduces basic concepts about proof and dis-
proof in the context of elementary number theory, and the second adds examples 
and advice for writing proofs.

Logic and Applications
●● Discussion was added about the role of bound variables and scope in mathemati-

cal writing and computer programming.
●● The section on two’s complements was significantly simplified.
●● Language for expressing universal quantifiers was revised to provide a clearer 

basis for the idea of the generic particular in mathematical proof.
●● The material on Boolean algebras was expanded.

Proof and Applications
●● A greater variety of examples and exercises for number theory and set theory 

proofs is now included.
●● The directions for writing proofs and the discussion of common mistakes have 

been revised and expanded in response to interaction with students.
●● Discussion of historical background and recent mathematical results has been 

augmented.
●● Material was added on using cryptographic hash functions to secure the trans-

mission of digital data and on using cryptography to authenticate the sender of a 
transmitted message.

Induction and Recursion
●● The sections on ordinary and strong mathematical induction were reorganized 

and expanded to increase the emphasis on applications.
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●● In the section on recursive definitions, the format used for proofs by structural 
induction was revised to parallel the format used for proofs by ordinary and 
strong mathematical induction. The set of examples and exercises illustrating 
recursive definitions and structural induction was significantly increased. The 
recursive definition for the set of strings over a finite set and for the length of a 
string were revised, and structural induction proofs for fundamental string prop-
erties are now included.

Graph Theory and the Analysis of Algorithm Efficiency
●● Instructors who wish to give their students an early experience of graph theory 

can now do so by combining the introduction to graphs in Chapter 1 with the 
handshake theorem in Chapter 4.

●● There is a new subsection on binary search trees in Chapter 10.
●● The discussion of O-, V-, and Q-notations was significantly simplified.
●● Many exercises on algorithm efficiency were added or revised to make the con-

cepts more accessible.

Student Resources
The Student Companion Website for this book includes:

●● A general orientation for each chapter
●● Review materials for each chapter
●● Proof tips
●● A link to the author’s personal website, which contains errata information and links 

for interactive animations, tutorials, and other discrete mathematics resources on the 
Internet

Instructor’s Resources
login.cengage.com

The Instructor’s Companion Website for this book contains:
●● Suggestions for how to approach the material of each chapter
●● The Complete Instructor’s Solutions Manual
●● Ideas for projects and writing assignments
●● Review materials to share with students
●● Lecture Note PowerPoint slides
●● Images from the book
●● A test bank of questions for exams and quizzes
●● Migration guide from 4th to 5th edition

Additional resources for the book are available at http://condor.depaul.edu/sepp.

WebAssign
www.webassign.com

WebAssign from Cengage Discrete Mathematics with Applications, Fifth Edition, is an 
online homework system, which instructors can choose to pair with the book. For stu-
dents, it offers tutorial help in solving exercises, including review of relevant material, 
short instructional videos, and instant feedback on how they are doing. For instructors, it 
offers the ability to create customized homework sets, most of which are graded automati-
cally and produce results directly into an online grade roster. Real-time access to their 
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students’ performance makes it possible for instructors to adjust the presentation of mate-
rial on an ongoing basis.

Student Solutions Manual and Study Guide
(ISBN: 978-0-357-03520-7)

In writing this book, I hoped that the exposition in the text, the worked examples, and the 
exercise solutions would provide all that a student would need to successfully master the 
material of the course. I continue to believe that any student who understands the solutions 
for all the exercises with complete solutions in Appendix B will have achieved an excellent 
command of the subject. Nonetheless, in response to requests for supplementary materials, 
I developed the Student Solutions Manual and Study Guide, available separately from the 
book, which contains complete solutions for all the exercises whose numbers are a multiple 
of 3. The guide also includes alternative explanations for some of the concepts and review 
questions for each chapter.

Organization
This book may be used effectively for a one- or two-semester course. Chapters contain 
core sections, sections covering optional mathematical material, and sections covering 
optional applications. Instructors have the flexibility to choose whatever mixture will 
best serve the needs of their students. The following table shows a division of the sections 
into categories.

Chapter Core Sections
Sections Containing Optional 

Mathematical Material
Sections Containing Optional 

Computer Science Applications

1 1.1–1.3 1.4 1.4

2 2.1–2.3 2.5 2.4, 2.5

3 3.1–3.4 3.3 3.3

4 4.1–4.5, 4.7 4.6, 4.8, 4.9 4.10

5 5.1, 5.2, 5.6, 5.7 5.3, 5.4, 5.8 5.1, 5.5, 5.9

6 6.1 6.2–6.4 6.1, 6.4

7 7.1, 7.2 7.3, 7.4 7.1, 7.2, 7.4

8 8.1–8.3 8.4, 8.5 8.4, 8.5

9 9.1–9.4 9.5–9.9 9.3

10 10.1, 10.4 10.2, 10.3, 10.5 10.1, 10.4–10.6

11 11.1, 11.2 11.4 11.3, 11.5

12 12.1, 12.2 12.3 12.1–12.3

The following tree diagram shows, approximately, how the chapters of this book depend 
on each other. Chapters on different branches of the tree are sufficiently inde pendent that 
instructors need to make at most minor adjustments if they skip chapters, or sections of 
chapters, but follow paths along branches of the tree.

In most cases, covering only the core sections of the chapters is adequate preparation 
for moving down the tree.
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1

Therefore O students study mathematics and do not build  
without foundations. —Leonardo da Vinci (1452–1519)

The aim of this book is to introduce you to a mathematical way of thinking that can serve 
you in a wide variety of situations. Often when you start work on a mathematical prob-
lem, you may have only a vague sense of how to proceed. You may begin by looking at 
examples, drawing pictures, playing around with notation, rereading the problem to focus 
on more of its details, and so forth. The closer you get to a solution, however, the more 
your thinking has to crystallize. And the more you need to understand, the more you need 
language that expresses mathematical ideas clearly, precisely, and unambiguously.

This chapter will introduce you to some of the special language that is a foundation 
for much mathematical thought, the language of variables, sets, relations, and functions. 
Think of the chapter like the exercises you would do before an important sporting event. 
Its goal is to warm up your mental muscles so that you can do your best.

Variables
A variable is sometimes thought of as a mathematical “John Doe” because you can use it 
as a placeholder when you want to talk about something but either (1) you imagine that it 
has one or more values but you don’t know what they are, or (2) you want whatever you 
say about it to be equally true for all elements in a given set, and so you don’t want to be 
restricted to considering only a particular, concrete value for it. To illustrate the first use, 
consider asking

Is there a number with the following property: doubling it and adding 3 
gives the same result as squaring it?

In this sentence you can introduce a variable to replace the potentially ambiguous 
word “it”:

Is there a number x with the property that 2x13 5 x2?

The advantage of using a variable is that it allows you to give a temporary name to what 
you are seeking so that you can perform concrete computations with it to help discover its 
possible values. To emphasize the role of the variable as a placeholder, you might write the 
following:

Is there a number n with the property that 2? n13 5  n2?

The emptiness of the box can help you imagine filling it in with a variety of different val-
ues, some of which might make the two sides equal and others of which might not.

1.1

Chapter 1 SPEAKING 
MATHEMATICALLY
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2  CHAPTEr 1 SPEAKING MATHEMATICALLY

In this sense, a variable in a computer program is similar to a mathematical variable 
because it creates a location in computer memory (either actual or virtual) into which 
values can be placed.

To illustrate the second use of variables, consider the statement 

No matter what number might be chosen, if it is greater than 2, then its 
square is greater than 4.

In this case introducing a variable to give a temporary name to the (arbitrary) number you 
might choose enables you to maintain the generality of the statement, and replacing all in-
stances of the word “it” by the name of the variable ensures that possible ambiguity is avoided:

No matter what number n might be chosen, if n is greater than 2, then 
n2 is greater than 4.

Writing Sentences Using Variables

Use variables to rewrite the following sentences more formally.

a. Are there numbers with the property that the sum of their squares equals the square of 
their sum?

b. Given any real number, its square is nonnegative.

Solution
a. Are there numbers a and b with the property that a2 1b2 5 (a1b)2?
  Or: Are there numbers a and b such that a2 1b2 5 (a1b)2?
  Or: Do there exist any numbers a and b such that a2 1b2 5 (a1b)2?

b. Given any real number r, r2 is nonnegative.
  Or: For any real number r, r2 $ 0.
  Or: For every real number r, r2 $ 0. ■

Some Important Kinds of Mathematical Statements
Three of the most important kinds of sentences in mathematics are universal statements, 
conditional statements, and existential statements:

Example 1.1.1

Note In part (a) the 
answer is yes. For  
instance, a 5 1 and b 5 0  
would work. Can you 
think of other numbers 
that would also work?

A universal statement says that a certain property is true for all elements in a set. 
(For example: All positive numbers are greater than zero.)

A conditional statement says that if one thing is true then some other thing also 
has to be true. (For example: If 378 is divisible by 18, then 378 is divisible by 6.)

Given a property that may or may not be true, an existential statement says that 
there is at least one thing for which the property is true. (For example: There is a 
prime number that is even.)

In later sections we will define each kind of statement carefully and discuss all of them 
in detail. The aim here is for you to realize that combinations of these statements can be 
expressed in a variety of different ways. One way uses ordinary, everyday language and 
another expresses the statement using one or more variables. The exercises are designed to 
help you start becoming comfortable in translating from one way to another.
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1.1 VArIAbLES  3

Universal Conditional Statements
Universal statements contain some variation of the words “for every” and conditional 
statements contain versions of the words “if-then.” A universal conditional statement is 
a statement that is both universal and conditional. Here is an example:

For every animal a, if a is a dog, then a is a mammal.

One of the most important facts about universal conditional statements is that they can be 
rewritten in ways that make them appear to be purely universal or purely conditional. For 
example, the previous statement can be rewritten in a way that makes its conditional nature 
explicit but its universal nature implicit:

If a is a dog, then a is a mammal.

Or: If an animal is a dog, then the animal is a mammal.

The statement can also be expressed so as to make its universal nature explicit and its 
conditional nature implicit:

For every dog a, a is a mammal.
Or: All dogs are mammals.

The crucial point is that the ability to translate among various ways of expressing univer-
sal conditional statements is enormously useful for doing mathematics and many parts of 
computer science.

rewriting a Universal Conditional Statement

Fill in the blanks to rewrite the following statement:

For every real number x, if x is nonzero then x2 is positive.

a. If a real number is nonzero, then its square .

b. For every nonzero real number x, .

c. If x , then .

d. The square of any nonzero real number is .

e. All nonzero real numbers have .

Solution
a. is positive

b. x2 is positive

c. is a nonzero real number; x2 is positive

d. positive

e. positive squares (or: squares that are positive) ■

Universal Existential Statements
A universal existential statement is a statement that is universal because its first part says 
that a certain property is true for all objects of a given type, and it is existential because its 
second part asserts the existence of something. For example:

Every real number has an additive inverse.

Example 1.1.2

Note If you introduce x 
in the first part of the sen-
tence, be sure to include it 
in the second part of the 
sentence.

Note For a number b to 
be an additive inverse for 
a number a means that  
a1b 5 0.
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4  CHAPTEr 1 SPEAKING MATHEMATICALLY

In this statement the property “has an additive inverse” applies universally to all real num-
bers. “Has an additive inverse” asserts the existence of something—an additive inverse—
for each real number. However, the nature of the additive inverse depends on the real 
number; different real numbers have different additive inverses. Knowing that an additive 
inverse is a real number, you can rewrite this statement in several ways, some less formal 
and some more formal:*

All real numbers have additive inverses.
Or: For every real number r, there is an additive inverse for r.
Or:  For every real number r, there is a real number s such that s is an 

additive inverse for r.

Introducing names for the variables simplifies references in further discussion. For in-
stance, after the third version of the statement you might go on to write: When r is positive, 
s is negative, when r is negative, s is positive, and when r is zero, s is also zero.

One of the most important reasons for using variables in mathematics is that it gives you 
the ability to refer to quantities unambiguously throughout a lengthy mathematical argu-
ment, while not restricting you to consider only specific values for them.

rewriting a Universal Existential Statement

Fill in the blanks to rewrite the following statement: Every pot has a lid.

a. All pots .

b. For every pot P, there is .

c. For every pot P, there is a lid L such that .

Solution
a. have lids

b. a lid for P

c. L is a lid for P ■

Existential Universal Statements
An existential universal statement is a statement that is existential because its first part 
asserts that a certain object exists and is universal because its second part says that the 
object satisfies a certain property for all things of a certain kind. For example:

There is a positive integer that is less than or equal to every positive integer.

This statement is true because the number one is a positive integer, and it satisfies the 
property of being less than or equal to every positive integer. We can rewrite the statement 
in several ways, some less formal and some more formal:

Some positive integer is less than or equal to every positive integer.
Or:  There is a positive integer m that is less than or equal to every 

positive integer.
Or:  There is a positive integer m such that every positive integer is 

greater than or equal to m.
Or:  There is a positive integer m with the property that for every 

positive integer n, m # n.

*A conditional could be used to help express this statement, but we postpone the additional complexity to a 
later chapter.

Example 1.1.3
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rewriting an Existential Universal Statement

Fill in the blanks to rewrite the following statement in three different ways:

There is a person in my class who is at least as old as every person in 
my class.

a. Some  is at least as old as .

b. There is a person p in my class such that p is .

c. There is a person p in my class with the property that for every person q in my class, 
p is .

Solution
a. person in my class; every person in my class

b. at least as old as every person in my class

c. at least as old as q ■

Some of the most important mathematical concepts, such as the definition of limit of a 
sequence, can only be defined using phrases that are universal, existential, and conditional, 
and they require the use of all three phrases “for every,” “there is,” and “if-then.” For 
example, if a1, a2, a3, Á is a sequence of real numbers, saying that

the limit of an as n approaches infinity is L

means that

for every positive real number «, there is an integer N such that 
for every integer n, if n . N then 2« , an 2L , «.

Example 1.1.4

1. A universal statement asserts that a certain property 
is  for .

2. A conditional statement asserts that if one  
thing  then some other thing .

3. Given a property that may or may not be true, 
an existential statement asserts that  for 
which the property is true.

TEST YoUrSELf 
answers to test Yourself questions are located at the end of each section.

ExErCISE SET 1.1 
Appendix B contains either full or partial solutions to all exercises with blue numbers. When the solution is not complete, 
the exercise number has an “H” next to it. A “*” next to an exercise number signals that the exercise is more challenging 
than usual. Be careful not to get into the habit of turning to the solutions too quickly. Make every effort to work exercises 
on your own before checking your answers. See the Preface for additional sources of assistance and further study.

In each of 1–6, fill in the blanks using a variable or variables 
to rewrite the given statement.

1. Is there a real number whose square is 21?
a. Is there a real number x such that ?
b. Does there exist  such that x2 5 21?

2. Is there an integer that has a remainder of 2 when 
it is divided by 5 and a remainder of 3 when it is 
divided by 6?

a. Is there an integer n such that n has ?
b. Does there exist  such that if n is divided 

by 5 the remainder is 2 and if ?

Note: There are integers with this property. Can you 
think of one?

3. Given any two distinct real numbers, there is a 
real number in between them.
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6  CHAPTEr 1 SPEAKING MATHEMATICALLY

a. Given any two distinct real numbers a and b, 
there is a real number c such that c is .

b. For any two ,  such that c is  
between a and b.

4. Given any real number, there is a real number that 
is greater.
a. Given any real number r, there is  s such 

that s is .
b. For any ,  such that s . r.

5. The reciprocal of any positive real number is positive.
a. Given any positive real number r, the reciprocal 

of .
b. For any real number r, if r is , then .
c. If a real number r , then .

6. The cube root of any negative real number is 
negative.
a. Given any negative real number s, the cube 

root of .
b. For any real number s, if s is , then .
c. If a real number s , then .

7. Rewrite the following statements less formally, 
without using variables. Determine, as best as you 
can, whether the statements are true or false.
a. There are real numbers u and v with the prop-

erty that u1v , u2v.
b. There is a real number x such that x2 , x.
c. For every positive integer n, n2 $ n.
d. For all real numbers a and b, ua1b u # ua u1 ub u.

In each of 8–13, fill in the blanks to rewrite the given 
statement.

8. For every object J, if J is a square then J has four 
sides.
a. All squares .
b. Every square .

c. If an object is a square, then it .
d. If J , then J .
e. For every square J, .

9. For every equation E, if E is quadratic then E has 
at most two real solutions.
a. All quadratic equations .
b. Every quadratic equation .
c. If an equation is quadratic, then it .
d. If E , then E .
e. For every quadratic equation E, .

10. Every nonzero real number has a reciprocal.
a. All nonzero real numbers .
b. For every nonzero real number r, there is 

 for r.
c. For every nonzero real number r, there is a real 

number s such that .

11. Every positive number has a positive square root.
a. All positive numbers .
b. For every positive number e, there is  for e.
c. For every positive number e, there is a positive 

number r such that .

12. There is a real number whose product with every 
number leaves the number unchanged.
a. Some  has the property that its .
b. There is a real number r such that the product 

of r .
c. There is a real number r with the property that 

for every real number s, .

13. There is a real number whose product with every 
real number equals zero.
a. Some  has the property that its .
b. There is a real number a such that the product 

of a .
c. There is a real number a with the property that 

for every real number b, .

ANSWErS for TEST YoUrSELf  
1. true; all elements of a set 2. is true; also has to be true 3. there is at least one thing

The Language of Sets
Á when we attempt to express in mathematical symbols a condition proposed in 
words. First, we must understand thoroughly the condition. Second, we must be 
familiar with the forms of mathematical expression. —George Polyá (1887–1985)

Use of the word set as a formal mathematical term was introduced in 1879 by Georg 
Cantor (1845–1918). For most mathematical purposes we can think of a set intuitively, as 

1.2
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1.2 THE LANGuAGE of SETS  7

Cantor did, simply as a collection of elements. For instance, if C is the set of all countries 
that are currently in the United Nations, then the United States is an element of C, and if I 
is the set of all integers from 1 to 100, then the number 57 is an element of I.

Set-roster Notation

If S is a set, the notation x [ S means that x is an element of S. The notation x  S  
means that x is not an element of S. A set may be specified using the set-roster 
notation by writing all of its elements between braces. For example, {1, 2, 3} denotes 
the set whose elements are 1, 2, and 3. A variation of the notation is sometimes used 
to describe a very large set, as when we write {1, 2, 3, Á , 100} to refer to the set of 
all integers from 1 to 100. A similar notation can also describe an infinite set, as when 
we write {1, 2, 3, Á } to refer to the set of all positive integers. (The symbol Á is 
called an ellipsis and is read “and so forth.”)

The axiom of extension says that a set is completely determined by what its elements 
are—not the order in which they might be listed or the fact that some elements might be 
listed more than once.

Using the Set-roster Notation

a. Let A 5 {1, 2, 3}, B 5 {3, 1, 2}, and C 5 {1, 1, 2, 3, 3, 3}. What are the elements of 
A, B, and C? How are A, B, and C related?

b. Is {0} 5  0?

c. How many elements are in the set {1, {1}}?

d. For each nonnegative integer n, let Un 5 {n, 2n}. Find U1, U2, and U0.

Solution
a. A, B, and C have exactly the same three elements: 1, 2, and 3. Therefore, A, B, and C 

are simply different ways to represent the same set.

b. {0} Þ 0 because {0} is a set with one element, namely 0, whereas 0 is just the symbol 
that represents the number zero.

c. The set {1, {1}} has two elements: 1 and the set whose only element is 1.

d. U1 5 {1, 21}, U2 5 {2, 22}, U0 5 {0, 20} 5 {0, 0} 5 {0}. ■

Certain sets of numbers are so frequently referred to that they are given special sym-
bolic names. These are summarized in the following table.

Symbol Set

R the set of all real numbers

Z the set of all integers

Q the set of all rational numbers, or quotients of integers

Addition of a superscript 1 or 2 or the letters nonneg indicates that only the positive or 
negative or nonnegative elements of the set, respectively, are to be included. Thus R1 
denotes the set of positive real numbers, and Znonneg refers to the set of nonnegative 
integers: 0, 1, 2, 3, 4, and so forth. Some authors refer to the set of nonnegative integers 
as the set of natural numbers and denote it as N. Other authors call only the positive 

Example 1.2.1

Note The Z is the first 
letter of the German word 
for integers, Zahlen. It 
stands for the set of all 
integers and should not 
be used as a shorthand for 
the word integer.

 When the Symbols R, 
Q, and Z are handwrit-
ten, they appear as R, Q, 
and Z .
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8  CHAPTEr 1 SPEAKING MATHEMATICALLY

integers natural numbers. To prevent confusion, we simply avoid using the phrase natural 
numbers in this book.

The set of real numbers is usually pictured as the set of all points on a line, as shown 
below. The number 0 corresponds to a middle point, called the origin. A unit of distance is 
marked off, and each point to the right of the origin corresponds to a positive real number 
found by computing its distance from the origin. Each point to the left of the origin cor-
responds to a negative real number, which is denoted by computing its distance from the 
origin and putting a minus sign in front of the resulting number. The set of real numbers is 
therefore divided into three parts: the set of positive real numbers, the set of negative real 
numbers, and the number 0. Note that 0 is neither positive nor negative. Labels are given 
for a few real numbers corresponding to points on the line shown below.

–3 –2 –1 0 1 2 3

13
4

1
3

2.6–0.8–Î3 Î25
2

–

The real number line is called continuous because it is imagined to have no holes. The 
set of integers corresponds to a collection of points located at fixed intervals along the real 
number line. Thus every integer is a real number, and because the integers are all sepa-
rated from each other, the set of integers is called discrete. The name discrete mathematics 
comes from the distinction between continuous and discrete mathematical objects.

Another way to specify a set uses what is called the set-builder notation.

Set-Builder Notation

Let S denote a set and let P(x) be a property that elements of S may or may not satisfy. 
We may define a new set to be the set of all elements x in S such that P(x) is true. 
We denote this set as follows:

{x [ S  u   P  (x)}

the set of all such that
Q a

Note We read the left-
hand brace as “the set of 
all” and the vertical line 
as “such that.” In all oth-
er mathematical contexts, 
however, we do not use 
a vertical line to denote 
the words “such that”; we 
abbreviate “such that” as 
“s. t.” or “s. th.” or “·]·.”

Occasionally we will write {x u  P  (x)} without being specific about where the element x 
comes from. It turns out that unrestricted use of this notation can lead to genuine contradic-
tions in set theory. We will discuss one of these in Section 6.4 and will be careful to use this 
notation purely as a convenience in cases where the set S could be specified if necessary.

Using the Set-Builder Notation

Given that R denotes the set of all real numbers, Z the set of all integers, and Z1 the set of 
all positive integers, describe each of the following sets.

a. {x [ R u 22 , x , 5}

b. {x [ Z u 22 , x , 5}

c. {x [ Z1 u 22 , x , 5}

Solution
a. {x [ R u 22 , x , 5} is the open interval of real numbers (strictly) between 22 and 

5. It is pictured as follows:

–2–3 –1 0 1 2 3 4 5 6 7 8

Example 1.2.2
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1.2 THE LANGuAGE of SETS  9

b. {x [ Z u 22 , x , 5} is the set of all integers (strictly) between 22 and 5. It is equal 
to the set {21, 0, 1, 2, 3, 4}.

c. Since all the integers in Z1 are positive, {x [ Z1 u 22 , x , 5} 5 {1, 2, 3, 4}. ■

Subsets
A basic relation between sets is that of subset.

Definition

If A and B are sets, then A is called a subset of B, written A  B, if, and only if, every 
element of A is also an element of B.

Symbolically:

A # B means that for every element x, if x [ A then x [ B.

The phrases A is contained in B and B contains A are alternative ways of saying that 
A is a subset of B.

It follows from the definition of subset that for a set A not to be a subset of a set B means 
that there is at least one element of A that is not an element of B. Symbolically:

A Ü B means that there is at least one element x such that x [ A and x Ó B.

Definition

Let A and B be sets. A is a proper subset of B if, and only if, every element of A is 
in B but there is at least one element of B that is not in A.

Subsets

Let A 5 Z1, B 5 {n [ Z u 0 # n # 100}, and C 5 {100, 200, 300, 400, 500}. Evaluate 
the truth and falsity of each of the following statements.

a. B # A

b. C is a proper subset of A

c. C and B have at least one element in common

d. C # B

e. C # C

Solution

a. False. Zero is not a positive integer. Thus zero is in B but zero is not in A, and so B Ü A.

b. True. Each element in C is a positive integer and, hence, is in A, but there are elements 
in A that are not in C. For instance, 1 is in A and not in C.

c. True. For example, 100 is in both C and B.

d. False. For example, 200 is in C but not in B.

e. True. Every element in C is in C. In general, the definition of subset implies that all 
sets are subsets of themselves. ■

Example 1.2.3
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10  CHAPTEr 1 SPEAKING MATHEMATICALLY

Distinction between  and 

Which of the following are true statements?

a. 2 [ {1, 2, 3} b. {2} [ {1, 2, 3} c. 2 # {1, 2, 3}

d. {2} # {1, 2, 3} e. {2} # {{1}, {2}} f. {2} [ {{1}, {2}}

Solution Only (a), (d), and (f) are true.
For (b) to be true, the set {1, 2, 3} would have to contain the element {2}. But the only 

elements of {1, 2, 3} are 1, 2, and 3, and 2 is not equal to {2}. Hence (b) is false.
For (c) to be true, the number 2 would have to be a set and every element in the set 2 

would have to be an element of {1, 2, 3}. This is not the case, so (c) is false.
For (e) to be true, every element in the set containing only the number 2 would have to 

be an element of the set whose elements are {1} and {2}. But 2 is not equal to either {1} or 
{2}, and so (e) is false. ■

Cartesian Products
With the introduction of Georg Cantor’s set theory in the late nineteenth century, it 
began to seem possible to put mathematics on a firm logical foundation by developing 
all of its various branches from set theory and logic alone. A major stumbling block was 
how to use sets to define an ordered pair because the definition of a set is unaffected 
by the order in which its elements are listed. For example, {a, b} and {b, a} represent 
the same set, whereas in an ordered pair we want to be able to indicate which element 
comes first.

In 1914 crucial breakthroughs were made by Norbert Wiener (1894–1964), a young 
American who had recently received his Ph.D. from Harvard, and the German mathemati-
cian Felix Hausdorff (1868–1942). Both gave definitions showing that an ordered pair can 
be defined as a certain type of set, but both definitions were somewhat awkward. Finally, 
in 1921, the Polish mathematician Kazimierz Kuratowski (1896–1980) published the fol-
lowing definition, which has since become standard. It says that an ordered pair is a set of 
the form

{{a}, {a, b}}.

This set has elements, {a} and {a, b}. If a Þ b, then the two sets are distinct and a is in both 
sets whereas b is not. This allows us to distinguish between a and b and say that a is the 
first element of the ordered pair and b is the second element of the pair. If a 5 b, then we 
can simply say that a is both the first and the second element of the pair. In this case the set 
that defines the ordered pair becomes {{a}, {a, a}}, which equals {{a}}.

However, it was only long after ordered pairs had been used extensively in mathematics 
that mathematicians realized that it was possible to define them entirely in terms of sets, 
and, in any case, the set notation would be cumbersome to use on a regular basis. The usual 
notation for ordered pairs refers to {{a}, {a, b}} more simply as (a, b).

Example 1.2.4

Kazimierz Kuratowski 
(1896–1980)

Ar
ch
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Notation

Given elements a and b, the symbol (a, b) denotes the ordered pair consisting of 
a and b together with the specification that a is the first element of the pair and b 
is the second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if, 
a 5 c and b 5 d. Symbolically:

(a, b) 5 (c, d) means that a 5 c and b 5 d.
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1.2 THE LANGuAGE of SETS  11

ordered Pairs

a. Is (1, 2) 5 (2, 1)?

b. Is _3, 5
10+ 5 _Ï9, 12+?

c. What is the first element of (1, 1)?

Solution
a. No. By definition of equality of ordered pairs,

(1, 2) 5 (2, 1) if, and only if, 1 5 2 and 2 5 1.

But 1 Þ 2, and so the ordered pairs are not equal.

b. Yes. By definition of equality of ordered pairs,

S3, 
5

10D5SÏ9, 
1

2D if, and only if, 3 5 Ï9 and 
5

10
5

1

2
.

Because these equations are both true, the ordered pairs are equal.

c.  In the ordered pair (1, 1), the first and the second elements are both 1. ■

The notation for an ordered n-tuple generalizes the notation for an ordered pair to a set 
with any finite number of elements. It also takes both order and multiplicity into account.

Example 1.2.5

Definition

Let n be a positive integer and let x1, x2, Á , xn be (not necessarily distinct) ele-
ments. The ordered n-tuple, (x1, x2, . . . , xn), consists of x1, x2, Á , xn together with 
the ordering: first x1, then x2, and so forth up to xn. An ordered 2-tuple is called an 
ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (x1, x2, Á , xn) and (y1, y2, Á , yn) are equal if, and only 
if, x1 5 y

1
, x2 5 y2, Á , and xn 5 yn.

Symbolically:

(x1, x2, Á , xn) 5 (y1, y2, Á , yn) 3 x1 5 y1, x2 5 y2, Á , xn 5 yn.

ordered n-tuples

a. Is (1, 2, 3, 4) 5 (1, 2, 4, 3)?

b. Is _3, (22)2, 12+ 5 _Ï9, 4, 36+?
Solution
a. No. By definition of equality of ordered 4-tuples,

(1, 2, 3, 4) 5 (1, 2, 4, 3) 3  1 5 1, 2 5 2, 3 5 4, and 4 5 3

But 3 Þ 4, and so the ordered 4-tuples are not equal.

b. Yes. By definition of equality of ordered triples,

S3, (22)2, 
1

2D 5 SÏ9, 4, 
3

6D 3 3 5 Ï9 and (22)2 5 4 and 
1

2
5

3

6
.

  Because these equations are all true, the two ordered triples are equal.  ■

Example 1.2.6
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12  CHAPTEr 1 SPEAKING MATHEMATICALLY

Cartesian Products

Let A 5 {x, y}, B 5 {1, 2, 3}, and C 5 {a, b}.
a. Find A 3 B.

b. Find B 3 A.

c. Find A 3 A.

d. How many elements are in A 3 B, B 3 A, and A 3 A?

e. Find (A 3 B) 3 C

f. Find A 3 B 3 C

g. Let R denote the set of all real numbers. Describe R 3 R.

Solution
a. A 3 B 5 {(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, 3)}

b. B 3 A 5 {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}

c. A 3 A 5 {(x, x), (x, y), (y, x), (y, y)}

d. A 3 B has 6 elements. Note that this is the number of elements in A times the number 
of elements in B. B 3 A has 6 elements, the number of elements in B times the num-
ber of elements in A. A 3 A has 4 elements, the number of elements in A times the 
number of elements in A.

e. The Cartesian product of A and B is a set, so it may be used as one of the sets making 
up another Cartesian product. This is the case for (A 3 B) 3 C.

(A 3 B) 3 C 5 {(u, v)uu [ A 3 B and v [ C} by definition of Cartesian product

 5 {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),

((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),

((y, 1), b), ((y, 2), b), ((y, 3), b)}

f. The Cartesian product A 3 B 3 C is superficially similar to but is not quite the same 
mathematical object as (A 3 B) 3 C. (A 3 B) 3 C is a set of ordered pairs of which 
one element is itself an ordered pair, whereas A 3 B 3 C is a set of ordered triples. By 
definition of Cartesian product,

Example 1.2.7

Note This is why it 
makes sense to call a  
Cartesian product a 
product!

Definition

Given sets A1, A2, Á , An, the Cartesian product of A1, A2, Á , An, denoted  
A1 3 A2 3 Á 3 An, is the set of all ordered n-tuples (a1, a2, Á , an) where a1 [ A1,
a2 [ A2, Á , an [ An.

Symbolically:

A1 3 A2 3 Á 3 An 5 {(a1, a2, Á , an) u a1 [ A1, a2 [ A2, Á , an [ An}.

In particular,

A1 3 A2 5 {(a1, a2) u  a1 [ A1 and a2 [ A2}

is the Cartesian product of A1 and A2.
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1.2 THE LANGuAGE of SETS  13

A 3 B 3 C 5 {(u, v, w) u u [ A, v [ B, and w [ Cj

  5 {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a), (y, 3, a), (x, 1, b),

(x, 2, b), (x, 3, b), (y, 1, b), (y, 2, b), (y, 3, b)}.

g. R 3 R is the set of all ordered pairs (x, y) where both x and y are real numbers. If 
horizontal and vertical axes are drawn on a plane and a unit length is marked off, then 
each ordered pair in R 3 R corresponds to a unique point in the plane, with the first 
and second elements of the pair indicating, respectively, the horizontal and vertical 
positions of the point. The term Cartesian plane is often used to refer to a plane with 
this coordinate system, as illustrated in Figure 1.2.1.

 fIGUrE 1.2.1 A Cartesian Plane ■

x

y

1

1

2

3

–2–3–4 –1
–1

–2

–3

2

(1, –2)(–2, –2)

(–3, 2)

(2, 1)

3 4

Another notation, which is important in both mathematics and computer science, denotes 
objects called strings.*

Definition

Let n be a positive integer. Given a finite set A, a string of length n over A is an or-
dered n-tuple of elements of A written without parentheses or commas. The elements 
of A are called the characters of the string. The null string over A is defined to be 
the “string” with no characters. It is often denoted l and is said to have length 0. If 
A 5 {0, 1}, then a string over A is called a bit string.

Strings

Let A 5 {a, b}. List all the strings of length 3 over A with at least two characters that are 
the same.

Solution

aab, aba, baa, aaa, bba, bab, abb, bbb

In computer programming it is important to distinguish among different kinds of data 
structures and to respect the notations that are used for them. Similarly in mathematics, it 
is important to distinguish among, say, {a, b, c}, {{a, b}, c}, (a, b, c), (a, (b, c)), abc, and so 
forth, because these are all significantly different objects. ■

Example 1.2.8

*A more formal definition of string, using recursion, is given in Section 5.9.
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14  CHAPTEr 1 SPEAKING MATHEMATICALLY

1. Which of the following sets are equal?

A 5 {a, b, c, d} B 5 {d, e, a, c}

C 5 {d, b, a, c}  D 5 {a, a, d, e, c, e}

2. Write in words how to read each of the following 
out loud.
a. {x [ R1 u 0 , x , 1}
b. {x [ R u x # 0 or x $ 1}
c. {n [ Z u n is a factor of 6}
d. {n [ Z1 u n is a factor of 6}

3. a. Is 4 5 {4}?
b. How many elements are in the set {3, 4, 3, 5}?
c. How many elements are in the set {1, {1}, {1, {1}}}?

 4. a. Is 2 [ {2}?
b. How many elements are in the set {2, 2, 2, 2}?
c. How many elements are in the set {0, {0}}?
d. Is {0} [ {{0}, {1}}?
e. Is 0 [ {{0}, {1}}?

 5. Which of the following sets are equal?

A 5 {0, 1, 2}

B 5 {x [ R u 21 # x , 3}

C 5 {x [ R u 21 , x , 3}

D 5 {x [ Z u 21 , x , 3}

E 5 {x [ Z1 u 21 , x , 3}

 6. For each integer n, let Tn 5 {n, n2}. How many  
elements are in each of T2, T23, T1, and T0? Justify 
your answers.

 7. Use the set-roster notation to indicate the elements 
in each of the following sets.
a. S 5 {n [ Z u n 5 (21)k, for some integer k}.
b. T 5 {m [ Z u m 5 11 (21)i, for some integer i}.

c. U 5 {r [ Z u 2 # r # 22}
d. V 5 {s [ Z u s . 2 or s , 3}
e. W 5 {t [ Z u 1 , t , 23}
f. X 5 {u [ Z u u # 4 or u $ 1}

 8. Let A 5 {c, d, f, g}, B 5 { f, j}, and C 5 {d, g}. 
Answer each of the following questions. Give 
reasons for your answers.

a. Is B # A?

b. Is C # A?

c. Is C # C?
d. Is C a proper subset of A?

 9. a. Is 3 [ {1, 2, 3}?
b. Is 1 # {1}?
c. Is {2} [ {1, 2}?
d. Is {3} [ {1, {2}, {3}}?
e. Is 1 [ {1}?
f. Is {2} # {1, {2}, {3}}?
g. Is {1} # {1, 2}?
h. Is 1 [ {{1}, 2}?
i. Is {1} # {1, {2}}?
j. Is {1} # {1}?

 10. a. Is ((22)2, 222) 5 (222, (22)2)?
b. Is (5, 25) 5 (25, 5)?
c. Is (8 2 9,Ï3 21) 5 (21, 21)?
d. Is _ 22

24, (22)3+ 5 _  36, 28+?

 11. Let A 5 {w, x, y, z} and B 5 {a, b}. Use the set-
roster notation to write each of the following sets, and 
indicate the number of elements that are in each set.
a. A 3 B
b. B 3 A
c. A 3 A
d. B 3 B

H

H

1. When the elements of a set are given using the 
set-roster notation, the order in which they are 
listed .

2. The symbol R denotes .

3. The symbol Z denotes .

4. The symbol Q denotes .

5. The notation {x k P(x)} is read .

6. For a set A to be a subset of a set B means that 
.

7. Given sets A and B, the Cartesian product A 3 B
is .

8. Given sets A, B, and C, the Cartesian product 
A 3 B 3 C is .

9. A string of length n over a set S is an ordered n-tuple 
of elements of S, written without  or .

TEST YoUrSELf  

ExErCISE SET 1.2 
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1.3 THE LANGuAGE of rELATIoNS ANd fuNCTIoNS  15

 12. Let S 5 {2, 4, 6} and T 5 {1, 3, 5}. Use the set-
roster notation to write each of the following sets, and 
indicate the number of elements that are in each set.
a. S 3 T
b. T 3 S
c. S 3 S
d. T 3 T

 13. Let A 5 {1, 2, 3}, B 5 {u}, and C 5 {m, n}. Find 
each of the following sets.
a. A 3 (B 3 C)
b. (A 3 B) 3 C
c. A 3 B 3 C

 14. Let R 5 {a}, S 5 {x, y}, and T 5 {p, q, r}. Find 
each of the following sets.
a. R 3 (S 3 T)
b. (R 3 S) 3 T
c. R 3 S 3 T

 15. Let S 5 {0, 1}. List all the strings of length 4 over 
S that contain three or more 0’s.

 16. Let T 5 {x, y}. List all the strings of length 5 over 
T that have exactly one y.

1. does not matter 2. the set of all real numbers 3. the set 
of all integers 4. the set of all rational numbers 5. the set 
of all x such that P(x)  6. every element in A is an element 

in B 7. the set of all ordered pairs (a, b) where a is in A and 
b is in B 8. the set of ordered triples of the form (a, b, c) 
where a [ A, b [ B, and c [ C 9. parentheses; commas

ANSWErS for TEST YoUrSELf 

The Language of relations and functions
Mathematics is a language. —Josiah Willard Gibbs (1839–1903)

There are many kinds of relationships in the world. For instance, we say that two people 
are related by blood if they share a common ancestor and that they are related by marriage 
if one shares a common ancestor with the spouse of the other. We also speak of the rela-
tionship between student and teacher, between people who work for the same employer, 
and between people who share a common ethnic background.

Similarly, the objects of mathematics may be related in various ways. A set A may 
be said to be related to a set B if A is a subset of B, or if A is not a subset of B, or if A 
and B have at least one element in common. A number x may be said to be related to a 
number y if x , y, or if x is a factor of y, or if x2 1y2 5 1. Two identifiers in a computer 
program may be said to be related if they have the same first eight characters, or if the 
same memory location is used to store their values when the program is executed. And 
the list could go on!

Let A 5 {0, 1, 2} and B 5 {1, 2, 3} and let us say that an element x in A is related to an 
element y in B if, and only if, x is less than y. Let us use the notation x R y as a shorthand 
for the sentence “x is related to y.” Then

0 R 1 since 0 , 1,

0 R 2 since 0 , 2,

0 R 3 since 0 , 3,

1 R 2 since 1 , 2,

1 R 3 since 1 , 3, and

2 R 3 since 2 , 3.

1.3
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16  CHAPTEr 1 SPEAKING MATHEMATICALLY

On the other hand, if the notation x R y represents the sentence “x is not related to y,” then

1 R 1 since 1 ñ 1,

2 R 1 since 2 ñ 1, and

2 R 2 since 2 ñ 2.

Recall that the Cartesian product of A and B, A 3 B, consists of all ordered pairs whose 
first element is in A and whose second element is in B:

A 3 B 5 {(x, y) u x [ A and y [ B}.

In this case,

A 3 B 5  h(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)j.

The elements of some ordered pairs in A 3 B are related, whereas the elements of other 
ordered pairs are not. Consider the set of all ordered pairs in A 3 B whose elements are 
related

h(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)j.

Observe that knowing which ordered pairs lie in this set is equivalent to knowing which 
elements are related to which. The relation itself can therefore be thought of as the totality of 
ordered pairs whose elements are related by the given condition. The formal mathematical 
definition of relation, based on this idea, was introduced by the American mathematician 
and logician C. S. Peirce in the nineteenth century.

Definition

Let A and B be sets. A relation R from A to B is a subset of A 3 B. Given an ordered 
pair (x, y) in A 3 B, x is related to y by R, written x R y, if, and only if, (x, y) is in R. 
The set A is called the domain of R and the set B is called its co-domain.

The notation for a relation R may be written symbolically as follows:

x R y means that (x, y) [ R.

The notation x R y means that x is not related to y by R:

x R y means that (x, y) Ó R.

A relation as a Subset

Let A 5 {1, 2} and B 5 {1, 2, 3} and define a relation R from A to B as follows: Given any 
(x, y) [ A 3 B,

(x, y) [ R  means that  
x 2 y

2
 is an integer.

a. State explicitly which ordered pairs are in A 3 B and which are in R.

b. Is 1 R 3? Is 2 R 3? Is 2 R 2?

c. What are the domain and co-domain of R?

Solution
a. A 3 B 5 {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. To determine explicitly the compo-

sition of R, examine each ordered pair in A 3 B to see whether its elements satisfy the 
defining condition for R.

Example 1.3.1
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1.3 THE LANGuAGE of rELATIoNS ANd fuNCTIoNS  17

(1, 1) [ R because 1 2 1
2 5

0
2 5 0, which is an integer.

(1, 2) Ó R because 1 2 2
2 5

21
2 , which is not an integer.

(1, 3) [ R because 1 2 3
2 5

22
2 5 21, which is an integer.

(2, 1) Ó R because 2 2 1
2 5

1
2, which is not an integer.

(2, 2) [ R because 2 2 2
2 5

0
2 5 0, which is an integer.

(2, 3) Ó R because 2 2 3
2 5

21
2 , which is not an integer.

  Thus

R 5 {(1, 1), (1, 3), (2, 2)}

b. Yes, 1 R 3 because (1, 3) [ R.
  No, 2 R 3 because (2, 3) Ó R.
  Yes, 2 R 2 because (2, 2) [ R.

c. The domain of R is {1, 2} and the co-domain is {1, 2, 3}. ■

The Circle relation

Define a relation C from R to R as follows: For any (x, y) [ R 3 R,

(x, y) [ C means that x2 1y2 5 1.

a. Is (1, 0) [ C? Is (0, 0) [ C? Is _21
2, Ï

3
2+ [ C? Is 22 C 0? Is 0 C (21)? Is 1 C 1?

b. What are the domain and co-domain of C?

c. Draw a graph for C by plotting the points of C in the Cartesian plane.

Solution
a. Yes, (1, 0) [ C because 12 102 5 1.
  No, (0, 0) Ó C because 02 102 5 0 Þ 1.

  Yes, _21
2, Ï3

2+ [ C because _21
2+2 1 _Ï3

2 +2 5
1
4 1

3
4 5 1.

  No, 22 C 0 because (22)2 102 5 4 Þ 1.
  Yes, 0 C (21) because 02 1 (21)2 5 1.
  No, 1 C 1 because 12 112 5 2 Þ 1.

b. The domain and co-domain of C are both R, the set of all real numbers.

c.  

x

y

x2 + y2 = 1

1–1

Example 1.3.2

■
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18  CHAPTEr 1 SPEAKING MATHEMATICALLY

Arrow Diagram of a Relation
Suppose R is a relation from a set A to a set B. The arrow diagram for R is obtained as 
follows:

1. Represent the elements of A as points in one region and the elements of B as points in 
another region.

2. For each x in A and y in B, draw an arrow from x to y if, and only if, x is related to y by 
R. Symbolically:

Draw an arrow from x to y

if, and only if, x R y

if, and only if, (x,  y) [ R.

Arrow Diagrams of relations

Let A 5 {1, 2, 3} and B 5 {1, 2, 3} and define relations S and T from A to B as follows: 

For every (x, y) [ A 3 B,

(x, y) [ S means that x , y   S is a “less than” relation.

T 5 {(2, 1), (2, 5)}.

Draw arrow diagrams for S and T.

Solution

1

2

3

S
1

3

5

1

2

3

T
1

3

5

These example relations illustrate that it is possible to have several arrows coming out 
of the same element of A pointing in different directions. Also, it is quite possible to have 
an element of A that does not have an arrow coming out of it. ■

Functions
In Section 1.2 we showed that ordered pairs can be defined in terms of sets and we defined 
Cartesian products in terms of ordered pairs. In this section we introduced relations as subsets 
of Cartesian products. Thus we can now define functions in a way that depends only on the 
concept of set. Although this definition is not obviously related to the way we usually work 
with functions in mathematics, it is satisfying from a theoretical point of view, and computer 
scientists like it because it is particularly well suited for operating with functions on a computer.

Example 1.3.3

Definition

A function F from a set A to a set B is a relation with domain A and co-domain B 
that satisfies the following two properties:

1. For every element x in A, there is an element y in B such that (x, y) [ F.

2. For all elements x in A and y and z in B,

if (x, y) [ F and (x, z) [ F, then y 5 z.
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1.3 THE LANGuAGE of rELATIoNS ANd fuNCTIoNS  19

Properties (1) and (2) can be stated less formally as follows: A relation F from A to B is 
a function if, and only if:

1. Every element of A is the first element of an ordered pair of F.

2. No two distinct ordered pairs in F have the same first element.

In most mathematical situations we think of a function as sending elements from one 
set, the domain, to elements of another set, the co-domain. Because of the definition of 
function, each element in the domain corresponds to one and only one element of the 
co-domain.

More precisely, if F is a function from a set A to a set B, then given any element x in A, 
property (1) from the function definition guarantees that there is at least one element of B 
that is related to x by F and property (2) guarantees that there is at most one such element. 
This makes it possible to give the element that corresponds to x a special name.

function Notation

If A and B are sets and F is a function from A to B, then given any element x in A, the 
unique element in B that is related to x by F is denoted F(x), which is read “F of x.”

functions and relations on finite Sets

Let A 5 {2, 4, 6} and B 5 {1, 3, 5}. Which of the relations R, S, and T defined below are 
functions from A to B?

a. R 5 {(2, 5), (4, 1), (4, 3), (6, 5)}

b. For every (x, y) [ A 3 B, (x, y) [ S means that y 5 x11.

c. T is defined by the arrow diagram

B

1

3

5

A

2

4

6

Solution
a. R is not a function because it does not satisfy property (2). The ordered pairs (4, 1) 

and (4, 3) have the same first element but different second elements. You can see this 
graphically if you draw the arrow diagram for R. There are two arrows coming out of 
4: One points to 1 and the other points to 3.

BR

1

3

5

A

2

4

6

b. S is not a function because it does not satisfy property (1). It is not true that every 
element of A is the first element of an ordered pair in S. For example, 6 [ A but there 
is no y in B such that y 5 611 5 7. You can also see this graphically by drawing the 
arrow diagram for S.

Example 1.3.4
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20  Chapter 1 SPEAKING MATHEMATICALLY

BS

1

3

5

A

2

4

6

c. T is a function: Each element in {2, 4, 6} is related to some element in {1, 3, 5}, and no 
element in {2, 4, 6} is related to more than one element in {1, 3, 5}. When these proper-
ties are stated in terms of the arrow diagram, they become (1) there is an arrow coming 
out of each element of the domain, and (2) no element of the domain has more than one 
arrow coming out of it. So you can write T(2) 5 5,  T(4) 5 1, and T(6) 5 1. ■

Functions and relations on Sets of Strings

Let A 5 {a, b} and let S be the set of all strings over A.

a. Define a relation L from S to Znonneg as follows: For every string s in S and for every 
nonnegative integer n,

(s, n) [ L means that the length of s is n.

  Observe that L is a function because every string in S has one and only one length. 
Find L(abaaba) and L(bbb).

b. Define a relation C from S to S as follows: For all strings s and t in S,

(s, t) [ C means that t 5 as,

  where as is the string obtained by appending a on the left of the characters in s. (C is 
called concatenation by a on the left.) Observe that C is a function because every 
string in S consists entirely of a’s and b’s and adding an additional a on the left creates 
a new strong that also consists of a’s and b’s and thus is also in S. Find C(abaaba) and 
C(bbb).

Solution
a. L(abaaba) 5 6 and L(bbb) 5 3

b. C(abaaba) 5 aabaaba and C(bbb) 5 abbb ■

Function Machines
Another useful way to think of a function is as a machine. Suppose f is a function from X to 
Y and an input x of X is given. Imagine f to be a machine that processes x in a certain way 
to produce the output f(x). This is illustrated in Figure 1.3.1.

example 1.3.5

Note In part (c),  
T(4) 5 T(6). This illustrates 
the fact that although no 
element of the domain of a 
function can be related to 
more than one element of 
the co-domain, several ele-
ments in the domain can be 
related to the same element 
in the co-domain.

Figure 1.3.1

function machine

Input
x

f (x) Output
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1.3 THE LANGuAGE of rELATIoNS ANd fuNCTIoNS  21

functions Defined by formulas

The squaring function f from R to R is defined by the formula f(x) 5 x2 for every real 
number x. This means that no matter what real number input is substituted for x, the output 
of f will be the square of that number. This idea can be represented by writing f (n) 5 n2. 
In other words, f sends each real number x to x2, or, symbolically, f : x S x2. Note that the 
variable x is a dummy variable; any other symbol could replace it, as long as the replace-
ment is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) 5 n11. Thus, no mat-
ter what integer is substituted for n, the output of g will be that number plus 1: g(n) 5 n11. In 
other words, g sends each integer n to n11, or, symbolically, g: n S n11.

An example of a constant function is the function h from Q to Z defined by the for-
mula h(r) 5 2 for all rational numbers r. This function sends each rational number r to 2. 
In other words, no matter what the input, the output is always 2: h(n) 5 2 or h: r S 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.

Example 1.3.6

 fIGUrE 1.3.2 ■

squaring
function

x

f (x) = x2

(a)

successor
function

n

g(n) = n + 1

(b)

constant
function

r

h(r) = 2

(c)

A function is an entity in its own right. It can be thought of as a certain relationship 
between sets or as an input/output machine that operates according to a certain rule. This 
is the reason why a function is generally denoted by a single symbol or string of symbols, 
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation. 
Specifically, if f and g are functions from a set A to a set B, then

f 5 {(x, y) [ A 3 B u y 5 f (x)} and g 5 {(x, y) [ A 3 B u y 5 g(x)}.

It follows that

f equals g, written f 5 g, if, and only if, f(x) 5 g(x) for all x in A.

Equality of functions

Define functions f and g from R to R by the following formulas:

f(x) 5 u x u for every x [ R.

g(x) 5 Ïx2 for every x [ R.

Does f 5 g?

Solution
Yes. Because the absolute value of any real number equals the square root of its square, 
u x u 5 Ïx2 for all x [ R. Hence f 5 g. ■

Example 1.3.7
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22  CHAPTEr 1 SPEAKING MATHEMATICALLY

1. Given sets A and B, a relation from A to B is .

2. A function F from A to B is a relation from A to B 
that satisfies the following two properties:
a. for every element x of A, there is .

b. for all elements x in A and y and z in B, if 
 then .

3. If F is a function from A to B and x is an element 
of A, then F(x) is .

TEST YoUrSELf 

ExErCISE SET 1.3 
1. Let A 5 {2, 3, 4} and B 5 {6, 8, 10} and define 

a relation R from A to B as follows: For every  
(x, y) [ A 3 B,

(x, y) [ R means that y

x
 is an integer.

a. Is 4 R 6? Is 4 R 8? Is (3, 8) [ R? Is (2, 10) [ R?
b. Write R as a set of ordered pairs.
c. Write the domain and co-domain of R.
d. Draw an arrow diagram for R.

2. Let C 5 D 5 {23, 22, 21, 1, 2, 3} and define 
a relation S from C to D as follows: For every  
(x, y) [ C 3 D,

(x, y) [ S means that 1
x 2 1

y is an integer.

a. Is 2 S 2? Is 21 S 21? Is (3, 3) [ S?  

Is (3, 23) [ S?
b. Write S as a set of ordered pairs.
c. Write the domain and co-domain of S.
d. Draw an arrow diagram for S.

3. Let E 5 {1, 2, 3} and F 5 {22, 21, 0} and define 
a relation T from E to F as follows: For every  
(x, y) [ E 3 F,

(x, y) [ T means that x 2 y
3  is an integer.

a. Is 3 T 0? Is 1 T (21)? Is (2, 21) [ T?  
Is (3, 22) [ T?

b. Write T as a set of ordered pairs.
c. Write the domain and co-domain of T.
d. Draw an arrow diagram for T.

4. Let G 5 {22, 0, 2} and H 5 {4, 6, 8} and define a 
relation V from G to H as follows: For every  
(x, y) [ G 3 H,

(x, y) [ V means that x 2 y
4  is an integer.

a. Is 2 V 6? Is (22) V (8)? Is (0, 6) [ V?  

Is (2, 4) [ V?
b. Write V as a set of ordered pairs.

c. Write the domain and co-domain of V.
d. Draw an arrow diagram for V.

5. Define a relation S from R to R as follows: 

For every (x, y) [ R 3 R,

(x, y) [ S means that x $ y. 
a. Is (2, 1) [ S? Is (2, 2) [ S? Is 2 S 3?  

Is (21) S (22)?
b. Draw the graph of S in the Cartesian plane.

6. Define a relation R from R to R as follows: 

For every (x, y) [ R 3 R,

(x, y) [ R means that y 5 x2.

a. Is (2, 4) [ R? Is (4, 2) [ R? Is (23) R 9?  
Is 9 R (23)?

b. Draw the graph of R in the Cartesian plane.

7. Let A 5 {4, 5, 6} and B 5 {5, 6, 7} and define 
relations R, S, and T from A to B as follows: 
For every (x, y) [ A 3 B:

(x, y) [ R means that x $ y.

(x, y) [ S means that x 2 y
2  is an integer.

T 5 h(4, 7), (6, 5), (6, 7)j.
a. Draw arrow diagrams for R, S, and T.
b. Indicate whether any of the relations R, S, and 

T are functions.

8. Let A 5 {2, 4} and B 5 {1, 3, 5} and define rela-
tions U, V, and W from A to B as follows: 

For every (x, y) [ A 3 B:

(x, y) [ U means that y 2 x . 2.

(x, y) [ V means that y21 5
x
2.

W 5 h(2, 5), (4, 1), (2, 3)j.

a. Draw arrow diagrams for U, V, and W.
b. Indicate whether any of the relations U, V, and 

W are functions.
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1.3 THE LANGuAGE of rELATIoNS ANd fuNCTIoNS  23

9. a. Find all functions from {0, 1} to {1}.
b. Find two relations from {0, 1} to {1} that are 

not functions.

10. Find four relations from {a, b} to {x, y} that are 
not functions from {a, b} to {x, y}.

11. Let A 5 {0, 1, 2} and let S be the set of all strings 
over A. Define a relation L from S to Znonneg as 
follows: For every string s in S and every nonnega-
tive integer n,

(s, n) [ L means that the length of s is n.

Then L is a function because every string in S has 
one and only one length. Find L(0201) and L(12).

12. Let A 5 {x, y} and let S be the set of all strings 
over A. Define a relation C from S to S as follows: 
For all strings s and t in S,

(s, t) [ C means that t 5 ys.

Then C is a function because every string in S 
consists entirely of x’s and y’s and adding an ad-
ditional y on the left creates a single new string 
that consists of x’s and y’s and is, therefore, also in 
S. Find C(x) and C(yyxyx).

13. Let A 5 {21, 0, 1} and B 5 {t, u, v, w}. Define a 
function F: A S B by the following arrow diagram:

B

t

u

v

w

A

–1

0

1

a. Write the domain and co-domain of F.
b. Find F(21), F(0), and F(1).

14. Let C 5 {1, 2, 3, 4} and D 5 {a, b, c, d}. Define 
a function G: C S D by the following arrow 
diagram:

a

b

c

d

1

2

3

4

a. Write the domain and co-domain of G.
b. Find G(1), G(2), G(3), and G(4).

15. Let X 5 {2, 4, 5} and Y 5 {1, 2, 4, 6}. Which of 
the following arrow diagrams determine functions 
from X to Y?

a. Y

6

X

2

2

1

4
4

5

b. Y

6

X

2

2

1

4
4

5

c. Y

1

2

4

6

X

2

4

5

d. 

2

1

4

6

2

4

5

YX

e. 

2

1

4

6

2

4

5

YX

16. Let f be the squaring function defined in Example 
1.3.6. Find f (21), f (0), and f  _12+.

17. Let g be the successor function defined in  
Example 1.3.6. Find g(21000), g(0), and g(999).

18. Let h be the constant function defined in  
Example 1.3.6. Find h_212

5 +, h_01+, and h_ 9
17+.

19. Define functions f and g from R to R by the fol-
lowing formulas: For every x [ R,

f (x) 5 2x and g(x) 5
2x3 12x

x2 11
.

Does f 5 g? Explain.

20. Define functions H and K from R to R by the fol-

lowing formulas: For every x [ R,

H(x) 5 (x22)2 and K(x) 5 (x21)(x23)11.

Does H 5 K? Explain.
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24  CHAPTEr 1 SPEAKING MATHEMATICALLY

The Language of Graphs
The whole of mathematics consists in the organization of a series of aids to the 
imagination in the process of reasoning. —Alfred North Whitehead, 1861–1947

Imagine an organization that wants to set up teams of three to work on some projects. 
In order to maximize the number of people on each team who had previous experience 
working together successfully, the director asked the members to provide names of their 
previous partners. This information is displayed below both in a table and in a diagram.

1.4

1. a subset of the Cartesian product A 3 B 2. a. an element 
y of B such that (x, y) [ F (i.e., such that x is related to y by F) 

b. (x, y) [ F and (x, z) [ F; y 5 z 3. the unique element of B 
that is related to x by F

ANSWErS for TEST YoUrSELf 

Ana

Bev

Cai

Dan

EdFlo

Gia

Hal

Ira

Name Previous Partners

Ana Dan, Flo

Bev Cai, Flo, Hal

Cai Bev, Flo

Dan Ana, Ed

Ed Dan, Hal

Flo Cai, Bev, Ana

Gia Hal

Hal Gia, Ed, Bev, Ira

Ira Hal

From the diagram, it is easy to see that Bev, Cai, and Flo are a group of three previous 
partners, and so it would be reasonable for them to form one of these teams. The drawing 
below shows the result when these three names are removed from the diagram.

Ana

Dan

Ed

Gia

Hal

Ira

This drawing shows that placing Hal on the same team as Ed would leave Gia and Ira on 
a team where they would not have a previous partner. However, if Hal is placed on a team 
with Gia and Ira, then the remaining team would consist of Ana, Dan, and Ed, and every-
one on both teams would be working with a previous partner.

Drawings such as these are illustrations of a structure known as a graph. The dots are 
called vertices (plural of vertex) and the line segments joining vertices are called edges. As 
you can see from the first drawing, it is possible for two edges to cross at a point that is not 
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1.4 THE LANGuAGE of GrAPHS  25

a vertex. Note also that the type of graph described here is quite different from the “graph 
of an equation” or the “graph of a function.”

In general, a graph consists of a set of vertices and a set of edges connecting various 
pairs of vertices. The edges may be straight or curved and should either connect one vertex 
to another or a vertex to itself, as shown below.

Parallel edges Isolated vertex

Loop

e3

e1

e2 e4

e6

e5

�2

�4

�1

�3

�5

�7

�6

Definition

A graph G consists of two finite sets: a nonempty set V(G) of vertices and a set E(G) 
of edges, where each edge is associated with a set consisting of either one or two 
vertices called its endpoints. The correspondence from edges to endpoints is called 
the edge-endpoint function.

An edge with just one endpoint is called a loop, and two or more distinct edges 
with the same set of endpoints are said to be parallel. An edge is said to connect 
its endpoints; two vertices that are connected by an edge are called adjacent; and a 
vertex that is an endpoint of a loop is said to be adjacent to itself.

An edge is said to be incident on each of its endpoints, and two edges incident 
on the same endpoint are called adjacent. A vertex on which no edges are incident 
is called isolated.

Graphs have pictorial representations in which the vertices are represented by dots and 
the edges by line segments. A given pictorial representation uniquely determines a graph.

Terminology

Consider the following graph:

Example 1.4.1

e3
e2

e4

e6

e5

e7

e1

�1

�2 �3

�4

�6

�5

In this drawing, the vertices are labeled with v’s and the edges with e’s. When an edge 
connects a vertex to itself (as e5 does), it is called a loop. When two edges connect the same 
pair of vertices (as e2 and e3 do), they are said to be parallel. It is quite possible for a vertex 
to be unconnected by an edge to any other vertex in the graph (as �5 is), and in that case the 
vertex is said to be isolated. The formal definition of a graph follows.
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26  CHAPTEr 1 SPEAKING MATHEMATICALLY

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint function.

b. Find all edges that are incident on y1, all vertices that are adjacent to y1, all edges that 
are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to them-
selves, and all isolated vertices.

Solution
a. vertex set 5 {y1, y2, y3, y4, y5, y6} 

edge set 5 {e1, e2, e3, e4, e5, e6, e7} 
edge-endpoint function:

Edge Endpoints

e1 {y1, y2}

e2 {y1, y3}

e3 {y1, y3}

e4 {y2, y3}

e5 {y5, y6}

e6 {y5}

e7 {y6}

b. e1, e2, and e3 are incident on y1. 
y2 and y3 are adjacent to y1. 
e2, e3, and e4 are adjacent to e1. 
e6 and e7 are loops. 
e2 and e3 are parallel. 
y5 and y6 are adjacent to themselves. 
y4 is an isolated vertex.  ■

Although a given pictorial representation uniquely determines a graph, a given graph may 
have more than one pictorial representation. Such things as the lengths or curvatures of 
the edges and the relative position of the vertices on the page may vary from one pictorial 
representation to another.

Drawing More Than one Picture for a Graph

Consider the graph specified as follows:

vertex set 5 {y1, y2, y3, y4}

edge set 5 {e1, e2, e3, e4}

edge-endpoint function:

Edge Endpoints

e1 {y1, y3}

e2 {y2, y4}

e3 {y2, y4}

e4 {y3}

Example 1.4.2

Note The isolated vertex 
y4 does not appear in the 
table. Although each edge 
of a graph must have ei-
ther one or two endpoints, 
a vertex need not be an 
endpoint of an edge.

94193_ch01_ptg01.indd   26 12/11/18   3:41 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1.4 THE LANGuAGE of GrAPHS  27

Both drawings (a) and (b) shown below are pictorial representations of this graph.

 e4

e1

e2
e2

e4

e3 e1

e3

�3

�2 �4

�1

�2 �1

�3

�4

(a) (b)

 

■

Labeling Drawings to Show They represent the Same Graph

Consider the two drawings shown in Figure 1.4.1. Label vertices and edges in such a way 
that both drawings represent the same graph.

Example 1.4.3

Solution Imagine putting one end of a piece of string at the top vertex of Figure 1.4.1(a) 
(call this vertex y1), then laying the string to the next adjacent vertex on the lower right (call 
this vertex y2), then laying it to the next adjacent vertex on the upper left (y3), and so forth, 
returning finally to the top vertex y1. Call the first edge e1, the second e2, and so forth, as 
shown below.

(a) (b)

fIGUrE 1.4.1

e3
e1

e4
e2

e5

�3 �4

�5 �2

�1

Now imagine picking up the piece of string, together with its labels, and repositioning it 
as follows:

e3

e1

e4 e2

�4

�1

�5 �2

�3

e5
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28  CHAPTEr 1 SPEAKING MATHEMATICALLY

This is the same as Figure 1.4.1(b), so both drawings represent the graph with vertex set 
{y1, y2, y3, y4, y5}, edge set {e1, e2, e3, e4, e5}, and edge-endpoint function as follows:

Edge Endpoints

e1 {y1, y2}

e2 {y2, y3}

e3 {y3, y4}

e4 {y4, y5}

e5 {y5, y1}

 
■

Examples of Graphs
Graphs are a powerful problem-solving tool because they enable us to represent a complex 
situation with a single image that can be analyzed both visually and with the aid of a com-
puter. A few examples follow, and others are included in the exercises.

Using a Graph to represent a Network

Telephone, electric power, gas pipeline, and air transport systems can all be represented 
by graphs, as can computer networks—from small local area networks to the global In-
ternet system that connects millions of computers worldwide. Questions that arise in the 
design of such systems involve choosing connecting edges to minimize cost, optimize a 
certain type of service, and so forth. A typical network, called a hub-and-spoke model, 
is shown below.

Example 1.4.4

Using a Graph to represent the World Wide Web

The World Wide Web, or Web, is a system of interlinked documents, or webpages, 
contained on the Internet. Users employing Web browsers, such as Internet Explorer, 
Chrome, Safari, and Firefox, can move quickly from one webpage to another by click-
ing on hyperlinks, which use versions of software called hypertext transfer protocols 
(HTTPs). Individuals and individual companies create the pages, which they transmit 
to servers that contain software capable of delivering them to those who request them 
through a Web browser. Because the amount of information currently on the Web is so 
vast, search engines, such as Google, Yahoo, and Bing, have algorithms for finding in-
formation very efficiently.

The following picture shows a minute fraction of the hyperlink connections on the  
Internet that radiate in and out from the Wikipedia main page.

Example 1.4.5

Boston

New York

Washington

Chicago
Denver

San Francisco

Los Angeles

■
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1.4 THE LANGuAGE of GrAPHS  29

A directed graph is like an (undirected) graph except that each edge is associated with an 
ordered pair of vertices rather than a set of vertices. Thus each edge of a directed graph can 
be drawn as an arrow going from the first vertex to the second vertex of the ordered pair.

Using a Graph to represent Knowledge

In many applications of artificial intelligence, a knowledge base of information is collected 
and represented inside a computer. Because of the way the knowledge is represented and 
because of the properties that govern the artificial intelligence program, the computer is 
not limited to retrieving data in the same form as it was entered; it can also derive new facts 
from the knowledge base by using certain built-in rules of inference. For example, from the 
knowledge that the Los Angeles Times is a big-city daily and that a big-city daily contains 
national news, an artificial intelligence program could infer that the Los Angeles Times 

Example 1.4.6

Definition

A directed graph, or digraph, consists of two finite sets: a nonempty set V(G) of 
vertices and a set D(G) of directed edges, where each is associated with an ordered 
pair of vertices called its endpoints. If edge e is associated with the pair (y, w) of 
vertices, then e is said to be the (directed) edge from y to w.

Note Each directed 
graph has an associated 
ordinary (undirected) 
graph, which is obtained 
by ignoring the directions 
of the edges.

■
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30  CHAPTEr 1 SPEAKING MATHEMATICALLY

contains national news. The directed graph shown in Figure 1.4.2 is a pictorial representa-
tion for a simplified knowledge base about periodical publications.

According to this knowledge base, what paper finish does the New York Times use?

Paper
made-of Periodical contains

is-ais-a

is-ais-ais-a

is-a

is-a

Printed
writing

Sports
Illustrated

instance-of
Sports
magazine

Motor Trend
instance-of

Newspaper

Big-city
daily

contains

Suburban
weekly

Scholarly
journal

Scientific
journal

Literary
journal

instance-of
in

sta
nc

e-
of

instance-of

Poetry
Magazine

Los Angeles
Times

New York
Times

contains
contains

contains

National
news

Local
news

Sports
news

Glossy

paper-finish

paper-finish

Matte

Long
words

fIGUrE 1.4.2

Solution The arrow going from New York Times to big-city daily (labeled “instance-
of”) shows that the New York Times is a big-city daily. The arrow going from big-city 
daily to newspaper (labeled “is-a”) shows that a big-city daily is a newspaper. The arrow 
going from newspaper to matte (labeled “paper-finish”) indicates that the paper finish on a 
newspaper is matte. Hence it can be inferred that the paper finish on the New York Times 
is matte. ■

Using a Graph to Solve a Problem: Vegetarians and Cannibals

The following is a variation of a famous puzzle often used as an example in the study of 
artificial intelligence. It concerns an island on which all the people are of one of two types, 
either vegetarians or cannibals. Initially, two vegetarians and two cannibals are on the left 
bank of a river. With them is a boat that can hold a maximum of two people. The aim of 
the puzzle is to find a way to transport all the vegetarians and cannibals to the right bank of 
the river. What makes this difficult is that at no time can the number of cannibals on either 
bank outnumber the number of vegetarians. Otherwise, disaster befalls the vegetarians!

Solution A systematic way to approach this problem is to introduce a notation that can 
indicate all possible arrangements of vegetarians, cannibals, and the boat on the banks of 
the river. For example, you could write (yyc / Bc) to indicate that there are two vegetarians 
and one cannibal on the left bank and one cannibal and the boat on the right bank. Then 
(yyccB /) would indicate the initial position in which both vegetarians, both cannibals, and 
the boat are on the left bank of the river. The aim of the puzzle is to figure out a sequence 
of moves to reach the position (/ Byycc) in which both vegetarians, both cannibals, and the 
boat are on the right bank of the river.

Construct a graph whose vertices are the various arrangements that can be reached in a 
sequence of legal moves starting from the initial position. Connect vertex x to vertex y if it 
is possible to reach vertex y in one legal move from vertex x. For instance, from the initial 

Example 1.4.7
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1.4 THE LANGuAGE of GrAPHS  31

position there are four legal moves: one vegetarian and one cannibal can take the boat to the 
right bank; two cannibals can take the boat to the right bank; one cannibal can take the boat 
to the right bank; or two vegetarians can take the boat to the right bank. You can show these 
by drawing edges connecting vertex (yyccB /) to vertices (yc / Byc), (yy / Bcc), (yyc / Bc), and 
(cc / Byy). (It might seem natural to draw directed edges rather than undirected edges from 
one vertex to another. The rationale for drawing undirected edges is that each legal move is 
reversible.) From the position (yc / Byc), the only legal moves are to go back to (yyccB /) or 
to go to (yycB / c). You can also show these by drawing in edges. Continue this process until 
finally you reach (/ Byycc). From Figure 1.4.3 it is apparent that one successful sequence of 
moves is (yyccB /) S (yc / Byc) S (yycB / c) S (c / Byyc) S (ccB / yy) S(/ Byycc).

 fIGUrE 1.4.3 ■

�c / B�c

�� / Bcc

��ccB /

��c / Bc

cc / B��

��cB / c c / B��c / B��cc

ccB / ��

�cB / �c

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained 
from the drawing of a graph by counting how many end segments of edges are incident on 
the vertex. This is illustrated below.

Definition

Let G be a graph and y a vertex of G. The degree of v, denoted deg(v), equals the 
number of edges that are incident on y, with an edge that is a loop counted twice.

The degree of this
vertex equals 5.

Degree of a Vertex

Find the degree of each vertex of the graph G shown below.

Example 1.4.8

�1

�2

�3

e1 e2

e3
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32  CHAPTEr 1 SPEAKING MATHEMATICALLY

Solution  deg(y1) 5 0 since no edge is incident on y1 (y1 is isolated).

deg(y2) 5 2 since both e1 and e2 are incident on y2.

deg(y3) 5  4 since e1 and e2 are incident on y3 and the loop e3 is also incident 
on y3 (and contributes 2 to the degree of y3). ■

Using a Graph to Color a Map

Imagine that the diagram shown below is a map with countries labeled A  –J. Show that you 
can color the map so that no two adjacent countries have the same color.

Example 1.4.9

A

B
C D

E

FG
H

J

I

Solution Notice that coloring the map does not depend on the sizes or shapes of the 
countries, but only on which countries are adjacent to which. So, to figure out a coloring, 
you can draw a graph, as shown below, where vertices represent countries and where edges 
are drawn between pairs of vertices that represent adjacent countries. Coloring the vertices 
of the graph will translate to coloring the countries on the map.

A

B

C
D

E

FG
HI

J

As you assign colors to vertices, a relatively efficient strategy is, at each stage, to focus on 
an uncolored vertex that has maximum degree, in other words that is connected to a maxi-
mum number of other uncolored vertices. If there is more than one such vertex, it does not 
matter which you choose because there are often several acceptable colorings for a given 
graph. For this graph, both C and H have maximum degree so you can choose one, say, C, 
and color it, say, blue. Now since A, F, I, and J are not connected to C, some of them may 
also be colored blue, and, because J is connected to a maximum number of others, you 
could start by coloring it blue. Then F is the only remaining vertex not connected to either 
C or J, so you can also color F blue. The drawing below shows the graph with vertices C, 
J, and F colored blue.

A

B

C
D

E

FG
HI

J
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1.4 THE LANGuAGE of GrAPHS  33

Since the vertices adjacent to C, J, and F cannot be colored blue, you can simplify the job 
of choosing additional colors by removing C, J, and F and the edges connecting them to 
adjacent vertices. The result is shown in Figure 1.4.4a.

A

B

D

E

G
HI

(a)

A

B

D

E

G
HI

(b)

 fIGUrE 1.4.4 

In the simplified graph again choose a vertex that has a maximum degree, namely H, and 
give it a second color, say, gray. Since A, D, and E are not connected to H, some of them 
may also be colored gray, and, because E is connected to a maximum number of these 
vertices, you could start by coloring E gray. Then A is not connected to E, and so you can 
also color A gray. This is shown in Figure 1.4.4b. The drawing below shows the original 
graph with vertices C, J, and F colored blue, vertices H, A, and E, colored gray, and the 
remaining vertices colored black. You can check that no two adjacent vertices have the 
same color.

A

B

C
D

E

FG
HI

J

Translating the graph coloring back to the original map gives the following picture in 
which no two adjacent countries have the same color.

The final map in Example 1.4.9 was drawn with three colors. Two colors are not enough 
because, for example, since B, C, and H are all adjacent to each other, different colors must 
be used for all three. The following drawing shows a map of part of Central Africa that 
requires four colors. Take a moment to try to assign colors to the different countries so that 
you see why three colors are not enough.

A

B
C D

E

FG
H

J

I

 ■
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34  CHAPTEr 1 SPEAKING MATHEMATICALLY

In the mid-1800s it was conjectured that any map, however complex, could be colored with 
just four colors with no two adjacent regions having the same color. The conjecture is now 
known as the four-color theorem because it was finally proved true in 1976 by Kenneth 
Appel and Wolfgang Haken, at the University of Illinois at Urbana-Champaign. They rep-
resented maps as graphs and used an innovative and controversial technique that combined 
mathematical deduction with computer examination of almost 2000 special cases.

In 1950 Edward Nelson, a university student, posed the following question: How many 
colors are needed to create a coloring for all the points in an ordinary (Euclidean) plane so 
that no two points separated by a unit distance have the same color? Nelson himself found 
that three colors are not enough, and a fellow student, John Isbell, developed an example 
showing that seven colors could be used. Thus the minimum number had to be 4, 5, or 6. 
Over the years a number of mathematicians tried to narrow the possibilities further, but it 
was not until 2018 that an English biologist and amateur mathematician, Aubrey de Grey, 
using a combination of ingenuity and computer calculations, created an example showing 
that four colors are not enough. As of the publication of this book, the complete answer to 
Nelson’s question is still unknown, but de Grey has now proved that it must be either 5 or 6.

It turns out that a variety of problems can be modeled by representing their features 
with a graph and solved by finding a coloring for the vertices of the graph. For example, 
scheduling committee meetings when members serve on more than one committee but the 
meetings must be held during a fixed number of time slots or scheduling final exams for a 
group of courses so that no student has more than two exams on any one day. See exercises 
16 and 17 at the end of this section for details about these.

Democratic Republic
of the Congo

Burundi

Tanzania

Uganda

Rwanda

1. A graph consists of two finite sets:   
and , where each edge is associated with a 
set consisting of .

2. A loop in a graph is .

3. Two distinct edges in a graph are parallel if, and 
only if, .

4. Two vertices are called adjacent if, and only 
if,  .

5. An edge is incident on .

6. Two edges incident on the same endpoint 
are  .

7. A vertex on which no edges are incident is .

8. In a directed graph, each edge is associated 
with  .

9. The degree of a vertex in a graph is ____.

TEST YoUrSELf
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1. 
�2

�1

�3

�4
e2

e3

e1

2. 

�2

�3

�1

�4
e2 e3

e4 e5
e1

In 3 and 4, draw pictures of the specified graphs.

3. Graph G has vertex set {y1, y2, y3, y4, y5} and edge 
set {e1, e2, e3, e4}, with edge-endpoint function as 
follows:

Edge Endpoints

e1 {y1, y2}

e2 {y1, y2}

e3 {y2, y3}

e4 {y2}

4. Graph H has vertex set {y1, y2, y3, y4, y5} and edge 
set {e1, e2, e3, e4} with edge-endpoint function as 
follows:

Edge Endpoints

e1 {y1}

e2 {y2, y3}

e3 {y2, y3}

e4 {y1, y5}

In 5–7, show that the two drawings represent the same 
graph by labeling the vertices and edges of the right-hand 
drawing to correspond to those of the left-hand drawing.

5. 

�2
�1 �3

�4�5�6

e7 e6
e5

e2

e3

e4e1

6. �1

�4

� 2

� 3

e2

e3e4

e1

7. 

�1

�2

�7

�3

�5

�4

�6

e2

e1 e3

e5
e7 e6

e8 e4

e9

For each of the graphs in 8 and 9:
 (i) Find all edges that are incident on y1.
 (ii) Find all vertices that are adjacent to y3.
 (iii) Find all edges that are adjacent to e1.
 (iv) Find all loops.
 (v) Find all parallel edges.
 (vi) Find all isolated vertices.
 (vii) Find the degree of y3.

8. �1

�5 �4

�3

�2
�6

e2

e3

e8

e9
e7

e5e4

e6

e1

e10

9. 

�2
�1

�3
�5

�4

e2

e4

e5
e7

e3

e6

e1

10. Use the graph of Example 1.4.6 to determine
a. whether Sports Illustrated contains printed 

writing;
b. whether Poetry Magazine contains long words.

11. Find three other winning sequences of moves for 
the vegetarians and the cannibals in Example 1.4.7.

12. Another famous puzzle used as an example in the 
study of artificial intelligence seems first to have (a) (b)

(a) (b)

(a) (b)

ExErCISE SET 1.4 
In 1 and 2, graphs are represented by drawings. Define each graph formally by specifying its vertex set, its edge set, and a 
table giving the edge-endpoint function.
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36  CHAPTEr 1 SPEAKING MATHEMATICALLY

appeared in a collection of problems, Problems for 
the Quickening of the Mind, which was compiled 
about A.D. 775. It involves a wolf, a goat, a bag of 
cabbage, and a ferryman. From an initial posi-
tion on the left bank of a river, the ferryman is to 
transport the wolf, the goat, and the cabbage to 
the right bank. The difficulty is that the ferry-
man’s boat is only big enough for him to transport 
one object at a time, other than himself. Yet, for 
obvious reasons, the wolf cannot be left alone with 
the goat, and the goat cannot be left alone with the 
cabbage. How should the ferryman proceed?

13. Solve the vegetarians-and-cannibals puzzle for the 
case where there are three vegetarians and three 
cannibals to be transported from one side of a 
river to the other.

14. Two jugs A and B have capacities of 3 quarts and 
5 quarts, respectively. Can you use the jugs to 
measure out exactly 1 quart of water, while obey-
ing the following restrictions? You may fill either 
jug to capacity from a water tap; you may empty 
the contents of either jug into a drain; and you 
may pour water from either jug into the other.

15. Imagine that the diagram shown below is a map 
with countries labeled a–g. Is it possible to color 
the map with only three colors so that no two 
adjacent countries have the same color? To answer 
this question, follow the procedure suggested by 
Example 1.4.9. Draw and analyze a graph in which 
each country is represented by a vertex and two 
vertices are connected by an edge if, and only if, 
the countries share a common border.

a b c

d
e

g
f

16. In this exercise a graph is used to help solve a 
scheduling problem. Twelve faculty members in 

a mathematics department serve on the following 
committees:

Undergraduate Education: Tenner, Peterson, 
Kashina, Degras

Graduate Education: Hu, Ramsey, Degras, Bergen

Colloquium: Carroll, Drupieski, Au-Yeung

Library: Ugarcovici, Tenner, Carroll

Hiring: Hu, Drupieski, Ramsey, Peterson

Personnel: Ramsey, Wang, Ugarcovici

The committees must all meet during the first 
week of classes, but there are only three time slots 
available. Find a schedule that will allow all fac-
ulty members to attend the meetings of all com-
mittees on which they serve. To do this, represent 
each committee as the vertex of a graph, and draw 
an edge between two vertices if the two commit-
tees have a common member. Find a way to color 
the vertices using only three colors so that no two 
committees have the same color, and explain how 
to use the result to schedule the meetings.

17. A department wants to schedule final exams so 
that no student has more than one exam on any 
given day. The vertices of the graph below show 
the courses that are being taken by more than one 
student, with an edge connecting two vertices if 
there is a student in both courses. Find a way to 
color the vertices of the graph with only four col-
ors so that no two adjacent vertices have the same 
color and explain how to use the result to schedule 
the final exams.

MCS101 MCS102

MCS110

MCS120MCS130
MCS135

MCS100

H

H

1. a finite, nonempty set of vertices; a finite set of edges; 
one or two vertices called its endpoints 2. an edge with 
a single endpoint 3. they have the same set of endpoints  
4. they are connected by an edge 5. each of its endpoints  

6. adjacent 7. isolated 8. an ordered pair of vertices 
called its endpoints 9. the number of edges that are 
incident on the vertex, with an edge that is a loop  
counted twice

ANSWErS for TEST YoUrSELf  
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The first great treatises on logic were written by the Greek philosopher Aristotle. They 
were a collection of rules for deductive reasoning that were intended to serve as a basis 
for the study of every branch of knowledge. In the seventeenth century, the German 
philosopher and mathematician Gottfried Leibniz conceived the idea of using symbols 
to mechanize the process of deductive reasoning in much the same way that algebraic 
notation had mechanized the process of reasoning about numbers and their relationships. 
Leibniz’s idea was realized in the nineteenth century by the English mathematicians 
George Boole and Augustus De Morgan, who founded the modern subject of symbolic 
logic. With research continuing to the present day, symbolic logic has provided, among 
other things, the theoretical basis for many areas of computer science such as digital logic 
circuit design (see Sections 2.4 and 2.5), relational database theory (see Section  8.1), 
automata theory and computability (see Section 7.4 and Chapter 12), and artificial intel-
ligence (see Sections 3.3, 10.1, and 10.5).

Logical Form and Logical Equivalence
Logic is a science of the necessary laws of thought, without which no employment 
of the understanding and the reason takes place. —Immanuel Kant, 1785

An argument is a sequence of statements aimed at demonstrating the truth of an assertion. 
The assertion at the end of the sequence is called the conclusion, and the preceding state-
ments are called premises. To have confidence in the conclusion that you draw from an 
argument, you must be sure that the premises are acceptable on their own merits or follow 
from other statements that are known to be true.

In logic, the form of an argument is distinguished from its content. Logical analysis 
won’t help you determine the intrinsic merit of an argument’s content, but it will help 
you analyze an argument’s form to determine whether the truth of the conclusion follows 
necessarily from the truth of the premises. For this reason logic is sometimes defined as 
the science of necessary inference or the science of reasoning.

Consider the following two arguments. They have very different content but their logi-
cal form is the same. To help make this clear, we use letters like p, q, and r to represent 
component sentences; we let the expression “not p” refer to the sentence “It is not the case 
that p”; and we let the symbol [ stand for the word “therefore.”

Argument 1 

If the bell rings or the flag drops, then the race is over.

[ If the race is not over, then the bell hasn’t rung and the flag hasn’t dropped.

2.1

p q r

CHAPTER 2 THE LOGIC OF COMPOUND 
STATEMENTS

M
oh

am
ed

 O
sa

m
a/

Al
am

y 
St

oc
k 

Ph
ot

o

Aristotle  
(384 b.c.–322 b.c.)

not r not p not q

$'%'& $'%'& $'%'&

$''%''& $''%''& $''%''&

94193_ch02_ptg01.indd   37 12/11/18   3:44 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



38  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Argument 2 

If x 5 2 or x 5 22, then x2 5 4.

[ If x2 Þ 4, then x Þ 2 and x Þ 22.

The common form of the arguments is

If p or q, then r.

[ If not r, then not p and not q.

In exercise 10 in Section 2.3 you will show that this form of argument is valid in the sense 
that if its assumptions are true, then its conclusion must also be true.

Identifying Logical Form

Fill in the blanks below so that argument (b) has the same form as argument (a). Then rep-
resent the common form of the arguments using letters to stand for component sentences.

a. If Jane is a math major or Jane is a computer science major, then Jane will take 
Math 150.
Jane is a computer science major.
Therefore, Jane will take Math 150.

b. If logic is easy or  , then  .
I will study hard.
Therefore, I will get an A in this course.

Solution
1. I (will) study hard.

2. I will get an A in this course.

Common form: If p or q, then r.
q.
Therefore, r. ■

Statements
Most of the definitions of formal logic have been developed so that they agree with the 
natural or intuitive logic used by people who have been educated to think clearly and use 
language carefully. The differences that exist between formal and intuitive logic are neces-
sary to avoid ambiguity and obtain consistency.

In any mathematical theory, new terms are defined by using those that have been 
previously defined. However, this process has to start somewhere. A few initial terms 
necessarily remain undefined. In logic, the words sentence, true, and false are the initial 
undefined terms.

q rp

not r not qnot p 555

Example 2.1.1

(1) (2 )

6

Definition

A statement (or proposition) is a sentence that is true or false but not both.

For example, “Two plus two equals four” and “Two plus two equals five” are both state-
ments, the first because it is true and the second because it is false. On the other hand, the 
truth or falsity of

x2 12 5 11

6 6
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2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  39

depends on the value of x. For some values of x, it is true (x 5 3 and x 5 23), whereas for 
other values it is false. Similarly, the truth or falsity of

x1y . 0

depends on the values of x and y. For instance, when x 5 21 and y 5 2 it is true, whereas 
when x 5 21 and y 5 1 it is false. In Section 3.1 we will discuss ways to transform sen-
tences of these forms into statements.

Compound Statements
We now introduce three symbols that are used to build more complicated logical expres-
sions out of simpler ones. The symbol , denotes not, ` denotes and, and ~ denotes or. 
Given a statement p, the sentence “,p” is read “not p” or “It is not the case that p.” In some 
computer languages the symbol ¬ is used in place of ,. Given another statement q, the 
sentence “p ` q” is read “p and q.” The sentence “p ~ q” is read “p or q.”

In expressions that include the symbol , as well as ` or ~, the order of opera-
tions specifies that , is performed first. For instance, ,p ` q 5 (,p) ` q. In logical 
expressions, as in ordinary algebraic expressions, the order of operations can be over-
ridden through the use of parentheses. Thus ,(p ` q) represents the negation of the 
conjunction of p and q. In this, as in most treatments of logic, the symbols ` and ~ are 
considered coequal in order of operation, and an expression such as p ` q ~ r is con-
sidered ambiguous. This expression must be written as either (p ` q) ~ r or p ` (q ~ r) 
to have meaning.

A variety of English words translate into logic as `, ~, or ,. For instance, the word 
but translates the same as and when it links two independent clauses, as in “Jim is tall 
but he is not heavy.” Generally, the word but is used in place of and when the part of 
the sentence that follows is, in some way, unexpected. Another example involves the 
words neither-nor. When Shakespeare wrote, “Neither a borrower nor a lender be,” he 
meant, “Do not be a borrower and do not be a lender.” So if p and q are statements, 
then

Note ,p means “not p”
p ` q means “p and q”
p ~ q means “p or q”

p but q  means  p and q

neither p nor q  means  ,p and ,q.

Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically, letting h 5 “It is hot” and s 5 “It is 
sunny.”

a. It is not hot but it is sunny.

b. It is neither hot nor sunny.

Solution
a. The given sentence is equivalent to “It is not hot and it is sunny,” which can be written 

symbolically as ,h ` s.

b. To say it is neither hot nor sunny means that it is not hot and it is not sunny. Therefore, 
the given sentence can be written symbolically as ,h ` ,s.  ■

Example 2.1.2
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40  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

The notation for inequalities involves and and or statements. For instance, if x, a, and b are 
particular real numbers, then

x # a means x , a or x 5 a

a # x # b means a # x and x # b.

Note that the inequality 2 # x # 1 is not satisfied by any real numbers because

Note The point of speci-
fying x, a, and b to be 
particular real numbers 
is to ensure that sentences 
such as “x , a” and  
“x $ b” are either true or 
false and hence that they 
are statements.

Note Think of negation 
like this:

The negation of a 
statement is a state-
ment that exactly ex-
presses what it would 
mean for the statement 
to be false.

Definition

If p is a statement variable, the negation of p is “not p” or “It is not the case that p” 
and is denoted ,p. It has opposite truth value from p: if p is true, ,p is false; if p is 
false, ,p is true.

The truth values for negation are summarized in a truth table.

Truth Table for ,p

p ,p

T F

F T

In ordinary language the sentence “It is hot and it is sunny” is understood to be true 
when both conditions—being hot and being sunny—are satisfied. If it is hot but not 
sunny, or sunny but not hot, or neither hot nor sunny, the sentence is understood to be 

2 # x # 1  means  2 # x  and  x # 1,

and this is false no matter what number x happens to be.

And, Or, and Inequalities

Suppose x is a particular real number. Let p, q, and r symbolize “0 , x,” “x , 3,” and “x 5 3,”  
respectively. Write the following inequalities symbolically:

a. x # 3 b. 0 , x , 3 c. 0 , x # 3

Solution
a. q ~ r b. p ` q c. p ` (q ~ r)  ■

Truth Values
In Examples 2.1.2 and 2.1.3 we built compound sentences out of component statements 
and the terms not, and, and or. If such sentences are to be statements, however, they must 
have well-defined truth values—they must be either true or false. We now define such 
compound sentences as statements by specifying their truth values in terms of the state-
ments that compose them.

Example 2.1.3
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2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  41

false. The formal definition of truth values for an and statement agrees with this gen-
eral understanding.

Definition

If p and q are statement variables, the conjunction of p and q is “p and q,” denoted 
p ` q. It is true when, and only when, both p and q are true. If either p or q is false, 
or if both are false, p ` q is false.

Note The only way for 
an and statement to be 
true is for both compo-
nents to be true. So in 
the truth table for an and 
statement the first row is 
the only row with a T.

Note The statement  
“2 # 2” means that 2 is 
less than 2 or 2 equals 2. 
It is true because 2 5 2.

Definition

If p and q are statement variables, the disjunction of p and q is “p or q,” denoted 
p ~ q. It is true when either p is true, or q is true, or both p and q are true; it is false 
only when both p and q are false.

The truth values for conjunction can also be summarized in a truth table. The table is 
obtained by considering the four possible combinations of truth values for p and q. Each 
combination is displayed in one row of the table; the corresponding truth value for the whole 
statement is placed in the right-most column of that row. Note that the only row containing 
a T is the first one because an and statement is true only when both components are true.

Truth Table for p ` q

p q p ` q 

T T T

T F F

F T F

F F F

The order of truth values for p and q in the table above is TT, TF, FT, FF. It is not abso-
lutely necessary to write the truth values in this order, although it is customary to do so. So 
please use this order for all truth tables involving two statement variables. Example 2.1.5 
shows the standard order for truth tables that involve three statement variables.

In the case of disjunction—statements of the form “p or q”—intuitive logic offers two 
alternative interpretations. In ordinary language or is sometimes used in an exclusive sense 
(p or q but not both) and sometimes in an inclusive sense (p or q or both). A waiter who says 
you may have “coffee, tea, or milk” uses the word or in an exclusive sense: Extra payment 
is generally required if you want more than one beverage. On the other hand, a waiter who 
offers “cream or sugar” uses the word or in an inclusive sense: You are entitled to both 
cream and sugar if you wish to have them.

Mathematicians and logicians avoid possible ambiguity about the meaning of the word 
or by understanding it to mean the inclusive “and/or.” The symbol ~ comes from the Latin 
word vel, which means or in its inclusive sense. To express the exclusive or, the phrase p 
or q but not both is used.
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42  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Here is the truth table for disjunction:

Truth Table for p ~ q

p q p ~ q

T T T

T F T

F T T

F F F

Evaluating the Truth of More General Compound Statements
Now that truth values have been assigned to ,p, p ` q, and p ~ q, consider the question of 
assigning truth values to more complicated expressions such as ,p ~ q, (p ~ q) ` ,(p ` q), 
and (p ` q) ~ r. Such expressions are called statement forms (or propositional forms). 
The close relationship between statement forms and Boolean expressions is discussed in 
Section 2.4.

Note The only way for 
an or statement to be false 
is for both components to 
be false. So in the truth 
table for an or statement 
the last row is the only 
row with an F.

Note Java, C, and C11 
use the following  
notations:

, !

` &&

~ | | Definition

A statement form (or propositional form) is an expression made up of statement 
variables (such as p, q, and r) and logical connectives (such as ,, `, and ~) that 
becomes a statement when actual statements are substituted for the component state-
ment variables. The truth table for a given statement form displays the truth values 
that correspond to all possible combinations of truth values for its component state-
ment variables.

To compute the truth values for a statement form, follow rules similar to those used 
to evaluate algebraic expressions. For each combination of truth values for the statement 
variables, first evaluate the expressions within the innermost parentheses, then evaluate 
the expressions within the next innermost set of parentheses, and so forth, until you have 
the truth values for the complete expression.

Truth Table for Exclusive Or

Construct the truth table for the statement form (p ~ q) ` ,(p ` q). Note that when or is 
used in its exclusive sense, the statement “p or q” means “p or q but not both” or “p or q and 
not both p and q,” which translates into symbols as (p ~ q) ` ,(p ` q).

Solution Set up columns labeled p, q, p ~ q, p ` q, ,(p ` q), and (p ~ q) ` ,(p ` q). 
Fill in the p and q columns with all the logically possible combinations of T’s and F’s. 
Then use the truth tables for ~ and ` to fill in the p ~ q and p ` q columns with the ap-
propriate truth values. Next fill in the ,(p ` q) column by taking the opposites of the truth 
values for p ` q. For example, the entry for ,(p ` q) in the first row is F because in the 
first row the truth value of p ` q is T. Finally, fill in the (p ~ q) ` ,(p ` q) column by con-
sidering the truth values for an and statement together with the truth values for p ~ q and 
,(p ` q). Since an and statement is true only when both components are true and since 
rows 2 and 3 are the only two rows where both p ~ q and ,(p ` q) are true, put T in rows 
2 and 3 and F in the remaining rows.

Example 2.1.4

Note Exclusive or is 
often symbolized as  
p % q or p XOR q.

94193_ch02_ptg01.indd   42 12/11/18   3:44 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  43

Truth Table for Exclusive Or: (p ~ q) ` ,(p ` q)

p q p ~ q p ` q ,(p ` q) (p ~ q) ` ,(p ` q)

T T T T F F

T F T F T T

F T T F T T

F F F F T F

 
■

Truth Table for (p `  q) ~ ~r

Construct a truth table for the statement form (p ` q) ~ ,r.

Solution Make columns headed p, q, r, p ` q, ,r, and (p ` q) ~ ,r. Enter the eight logi-
cally possible combinations of truth values for p, q, and r in the three left-most columns. 
Then fill in the truth values for p ` q and for ,r. Complete the table by considering the 
truth values for (p ` q) and for ,r and the definition of an or statement. Since an or state-
ment is false only when both components are false, the only rows in which the entry is F 
are the third, fifth, and seventh rows because those are the only rows in which the expres-
sions p ` q and ,r are both false. The entry for all the other rows is T.

p q r p ` q ,r (p ` q) ~ ,r 

T T T T F T

T T F T T T

T F T F F F

T F F F T T

F T T F F F

F T F F T T

F F T F F F

F F F F T T
 

■

The essential point about assigning truth values to compound statements is that it allows 
you—using logic alone—to judge the truth of a compound statement on the basis of your 
knowledge of the truth of its component parts. Logic does not help you determine the truth 
or falsity of the component statements. Rather, logic helps link these separate pieces of 
information together into a coherent whole.

Logical Equivalence
The statements

6 is greater than 2 and 2 is less than 6

are two different ways of saying the same thing. Why? Because of the definition of the 
phrases greater than and less than. By contrast, although the statements

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark 

Example 2.1.5

Note To fill out a truth 
table for an and state-
ment, first put a T in each 
row where both com-
ponents are true; then 
put an F in each of the 
remaining rows.

Note To fill out a truth 
table for an or statement, 
first put an F in each row 
where both components 
are false; then put a T in 
each of the remaining 
rows.
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44  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

are also two different ways of saying the same thing, the reason has nothing to do with 
the definition of the words. It has to do with the logical form of the statements. Any two 
statements whose logical forms are related in the same way as (1) and (2) would either 
both be true or both be false. You can see this by examining the following truth table, 
where the statement variables p and q are substituted for the component statements “Dogs 
bark” and “Cats meow,” respectively. The table shows that for each combination of truth 
values for p and q, p ` q is true when, and only when, q ` p is true. In such a case, the 
statement forms are called logically equivalent, and we say that (1) and (2) are logically 
equivalent statements.

p q p ` q q ` p

T T T T

T F F F

F T F F

F F F F

p ` q and q ` p always 
have the same truth 
values, so they are 
logically equivalent

cc

Definition

Two statement forms are called logically equivalent if, and only if, they have iden-
tical truth values for each possible substitution of statements for their statement 
variables. The logical equivalence of statement forms P and Q is denoted by writing 
P ; Q.

Two statements are called logically equivalent if, and only if, they have logi-
cally equivalent forms when identical component statement variables are used to 
replace identical component statements.

Double Negative Property: ,(, p) ; p

Construct a truth table to show that the negation of the negation of a statement is logically 
equivalent to the statement, annotating the table with a sentence of explanation.

Example 2.1.6

Testing Whether Two Statement Forms P and Q Are Logically Equivalent

1. Construct a truth table with one column for the truth values of P and another 
column for the truth values of Q.

2. Check each combination of truth values of the statement variables to see whether 
the truth value of P is the same as the truth value of Q.

a. If in each row the truth value of P is the same as the truth value of Q, then P 
and Q are logically equivalent.

b. If in some row P has a different truth value from Q, then P and Q are not logi-
cally equivalent.
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2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  45

Solution

p ,p ,(,p)

T F T

F T F

p and ,(,p) always have 
the same truth values, so they 
are logically equivalent

  ■

There are two ways to show that statement forms P and Q are not logically equivalent. 
As indicated previously, one is to use a truth table to find rows for which their truth values 
differ. The other way is to find concrete statements for each of the two forms, one of which 
is true and the other of which is false. The next example illustrates both of these ways.

Showing Nonequivalence

Show that the statement forms ,(p ` q) and ,p ` ,q are not logically equivalent.

Solution
a. This method uses a truth table annotated with a sentence of explanation.

p q ,p ,q p ` q ,(p ` q) , p ` ,q

T T F F T F F

T F F T F T ? F

F T T F F T ? F

F F T T F T T

,(p ` q) and ,p ` ,q have 
different truth values in rows 2 and 3, 
so they are not logically equivalent

b. This method uses an example to show that ,(p ` q) and ,p ` ,q are not logically 
equivalent. Let p be the statement “0 , 1” and let q be the statement “1 , 0.” Then

,(p ` q) is “It is not the case that both 0 , 1 and 1 , 0,”

which is true. On the other hand,

,p ` ,q is “0 ñ 1 and 1 ñ 0,”

which is false. This example shows that there are concrete statements you can substi-
tute for p and q to make one of the statement forms true and the other false. Therefore, 
the statement forms are not logically equivalent.  ■

Negations of And and Or: De Morgan’s Laws

For the statement “John is tall and Jim is redheaded” to be true, both components must be 
true. So for the statement to be false, one or both components must be false. Thus the nega-
tion can be written as “John is not tall or Jim is not redheaded.” In general, the negation 

Example 2.1.7

cc

Example 2.1.8

cc
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46  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

of the conjunction of two statements is logically equivalent to the disjunction of their ne-
gations. That is, statements of the forms ,(p ` q) and ,p ~ ,q are logically equivalent. 
Check this using truth tables.

Solution

p q , p ,q p ` q ,(p ` q) , p ~ ,q

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

,(p ` q) and ,p ~ ,q always 
have the same truth values, so they 
are logically equivalent

Symbolically,

,(p ` q) ; ,p ~ ,q.

In the exercises at the end of this section you are asked to show the analogous law that 
the negation of the disjunction of two statements is logically equivalent to the conjunction 
of their negations:

 
,(p ~ q) ; ,p ` ,q.

 

■

The two logical equivalences of Example 2.1.8 are known as De Morgan’s laws of 
logic in honor of Augustus De Morgan, who was the first to state them in formal math-
ematical terms.

cc

Augustus De Morgan 
(1806–1871)

Pa
ul

 F
ea

rn
/A

la
m

y 
St

oc
k 

Ph
ot

o

De Morgan’s Laws

The negation of an and statement is logically equivalent to the or statement in which 
each component is negated.

The negation of an or statement is logically equivalent to the and statement in 
which each component is negated.

Applying De Morgan’s Laws

Write negations for each of the following statements:

a. John is 6 feet tall and he weighs at least 200 pounds.

b. The bus was late or Tom’s watch was slow.

Solution
a. John is not 6 feet tall or he weighs less than 200 pounds.

b. The bus was not late and Tom’s watch was not slow.

Since the statement “neither p nor q” means the same as “,p and ,q,” an alternative  
answer for (b) is “Neither was the bus late nor was Tom’s watch slow.”  ■

Example 2.1.9
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2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  47

If x is a particular real number, saying that x is not less than 2 (x ñ 2) means that x does 
not lie to the left of 2 on the number line. This is equivalent to saying that either x 5 2 or 
x lies to the right of 2 on the number line (x 5 2 or x . 2). Hence, 

x ñ 2 is equivalent to x $ 2.

Pictorially,

–2 –1 0 1 2 3 4 5

If x ñ 2, then x lies
in the shaded region.

Similarly,

x ò 2 is equivalent to x # 2,

x Ü 2 is equivalent to x . 2, and

x à 2 is equivalent to x , 2.

Inequalities and De Morgan’s Laws

Use De Morgan’s laws to write the negation of 21 , x # 4.

Solution The given statement is equivalent to

21 , x and x # 4.

By De Morgan’s laws, the negation is

21 ñ x or x Ü 4,

which is equivalent to

21 $ x or x . 4.

Pictorially, if 21 $ x or x . 4, then x lies in the shaded region of the number line, as 
shown below.

  
–2 –1 0 1 2 3 4 5 6

 ■

De Morgan’s laws are frequently used in writing computer programs. For instance, sup-
pose you want your program to delete all files modified outside a certain range of dates, 
say from date 1 through date 2 inclusive. You would use the fact that

,(date1 # file_modification_date # date2)

is equivalent to

( file_modification_date , date1) or (date2 , file_modification_date).

A Cautionary Example

According to De Morgan’s laws, the negation of

p: Jim is tall and Jim is thin

is ,p: Jim is not tall or Jim is not thin

because the negation of an and statement is the or statement in which the two components 
are negated.

Example 2.1.10

!
Caution! The negation of 
21 , x # 4 is not  
21 ñ x Ü 4. It is also not 
21 $ x . 4.

Example 2.1.11
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48  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Unfortunately, a potentially confusing aspect of the English language can arise 
when you are taking negations of this kind. Note that statement p can be written more 
compactly as

p9: Jim is tall and thin.

When it is so written, another way to negate it is

,(p9): Jim is not tall and thin.

But in this form the negation looks like an and statement. Doesn’t that violate De Morgan’s 
laws?

Actually no violation occurs. The reason is that in formal logic the words and and or 
are allowed only between complete statements, not between sentence fragments. So when 
you apply De Morgan’s laws, you must have complete statements on either side of each and 
and on either side of each or.  ■

Tautologies and Contradictions
It has been said that all of mathematics reduces to tautologies. Although this is formally 
true, most working mathematicians think of their subject as having substance as well as 
form. Nonetheless, an intuitive grasp of basic logical tautologies is part of the equipment 
of anyone who reasons with mathematics.

!
Caution! Although the 
laws of logic are extremely 
useful, they should be 
used as an aid to think-
ing, not as a mechanical 
substitute for it.

Definition

A tautology is a statement form that is always true regardless of the truth values of 
the individual statements substituted for its statement variables. A statement whose 
form is a tautology is a tautological statement.

A contradication is a statement form that is always false regardless of the truth 
values of the individual statements substituted for its statement variables. A state-
ment whose form is a contradiction is a contradictory statement.

According to this definition, the truth of a tautological statement and the falsity of a 
contradictory statement are due to the logical structure of the statements themselves and 
are independent of the meanings of the statements.

Tautologies and Contradictions

Show that the statement form p ~ ,p is a tautology and that the statement form p ` ,p is 
a contradiction.

Solution

p ,p p ~ ,p p ` ,p 

T F T F

F T T F

c c
all T’s, so all F’s, so 
p ~ ,p is p ` ,p is a 
a tautology contradiction ■

Example 2.1.12

94193_ch02_ptg01.indd   48 12/11/18   3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  49

Logical Equivalence Involving Tautologies and Contradictions

If t is a tautology and c is a contradiction, show that p ` t ; p and p ` c ; c.

Solution

p t p ` t p c p ` c 

T T T T F F

F T F F F F

same truth same truth 
values, so values, so 
p ` t ; p p ` c ; c ■ 

Summary of Logical Equivalences
Knowledge of logically equivalent statements is very useful for constructing arguments. 
It often happens that it is difficult to see how a conclusion follows from one form of a 
statement, whereas it is easy to see how it follows from a logically equivalent form of 
the statement. A number of logical equivalences are summarized in Theorem 2.1.1 for 
future reference.

Example 2.1.13

cc cc

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences 
hold.

1. Commutative laws: p ` q ; q ` p p ~ q ; q ~ p

2. Associative laws: (p ` q) ` r ; p ` (q ` r) (p ~ q) ~ r ; p ~ (q ~ r)

3. Distributive laws: p ` (q ~ r) ; (p ` q) ~ (p ` r) p ~ (q ` r) ; (p ~ q) ` (p ~ r)

4. Identity laws: p ` t ; p p ~ c ; p

5. Negation laws: p ~ ,p ; t p ` ,p ; c

6. Double negative law: ,(,p) ; p

7. Idempotent laws: p ` p ; p p ~ p ; p

8. Universal bound laws: p ~ t ; t p ` c ; c

9. De Morgan’s laws: ,(p ` q) ; ,p ~ ,q ,(p ~ q) ; ,p ` ,q

10. Absorption laws: p ~ (p ` q) ; p p ` (p ~ q) ; p

11. Negations of t and c: ,t ; c ,c ; t

The proofs of laws 4 and 6, the first parts of laws 1 and 5, and the second part of law 9 
have already been given as examples in the text. Proofs of the other parts of the theorem 
are left as exercises. In fact, it can be shown that the first five laws of Theorem 2.1.1 form 
a core from which the other laws can be derived. The first five laws are the axioms for a 
mathematical structure known as a Boolean algebra, which is discussed in Section 6.4.
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50  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

The equivalences of Theorem 2.1.1 are general laws of thought that occur in all areas of 
human endeavor. They can also be used in a formal way to rewrite complicated statement 
forms more simply.

Simplifying Statement Forms

Use Theorem 2.1.1 to verify the logical equivalence

,(,p ` q) ` (p ~ q) ; p.

Solution Use the laws of Theorem 2.1.1 to replace sections of the statement form on 
the left by logically equivalent expressions. Each time you do this, you obtain a logically 
equivalent statement form. Continue making replacements until you obtain the statement 
form on the right.

,(,p ` q) ` (p ~ q) ; (,(,p) ~ ,q) ` (p ~ q) by De Morgan’s laws

; (p ~ ,q) ` (p ~ q) by the double negative law

; (p ~ (,q ` q) by the distributive law

; p ~ (q ` ,q) by the commutative law for `

; p ~ c by the negation law

; p by the identity law ■

Skill in simplifying statement forms is useful in constructing logically efficient computer 
programs and in designing digital logic circuits.

Although the properties in Theorem 2.1.1 can be used to prove the logical equivalence 
of two statement forms, they cannot be used to prove that statement forms are not logically 
equivalent. On the other hand, truth tables can always be used to determine both equiva-
lence and nonequivalence, and truth tables are easy to program on a computer. When 
truth tables are used, however, checking for equivalence always requires 2n steps, where 
n is the number of variables. Sometimes you can quickly see that two statement forms are 
equivalent by Theorem 2.1.1, whereas it would take quite a bit of calculating to show their 
equivalence using truth tables. For instance, it follows immediately from the associative 
law for ` that p ` (,q ` ,r) ; (p ` ,q) ` ,r, whereas a truth table verification requires 
constructing a table with eight rows.

Example 2.1.14

1. An and statement is true when, and only when, 
both components are .

2. An or statement is false when, and only when, 
both components are .

3. Two statement forms are logically equivalent 
when, and only when, they always have .

4. De Morgan’s laws say (1) that the negation of an 
and statement is logically equivalent to the  

statement in which each component is , and 
(2) that the negation of an or statement is logically 
equivalent to the  statement in which each 
component is .

5. A tautology is a statement that is always .

6. A contradiction is a statement that is always 
.

TEST YOURSELF 
Answers to Test Yourself questions are located at the end of each section.
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2.1 LOGICAL FOrM AND LOGICAL EqUIvALENCE  51

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.

In each of 1–4 represent the common form of each argu-
ment using letters to stand for component sentences, and 
fill in the blanks so that the argument in part (b) has the 
same logical form as the argument in part (a).

1. a.  If all integers are rational, then the number 1 
is rational.
All integers are rational.
Therefore, the number 1 is rational.

b. If all algebraic expressions can be written in 
prefix notation, then .

.
Therefore, (a12b)(a2 2b) can be written in 
prefix notation.

2. a.  If all computer programs contain errors, then 
this program contains an error.
This program does not contain an error.
Therefore, it is not the case that all computer 
programs contain errors.

b. If , then .
2 is not odd.
Therefore, it is not the case that all prime  
numbers are odd.

3. a. This number is even or this number is odd.
This number is not even.
Therefore, this number is odd.

b.  or logic is confusing.
My mind is not shot.
Therefore, .

4. a.  If the program syntax is faulty, then the com-
puter will generate an error message.
If the computer generates an error message, 
then the program will not run.
Therefore, if the program syntax is faulty, then 
the program will not run.

b. If this simple graph , then it is complete.
If this graph , then any two of its verti-
ces can be joined by a path.
Therefore, if this simple graph has 4 vertices 
and 6 edges, then .

5. Indicate which of the following sentences are 
statements.
a. 1,024 is the smallest four-digit number that is a 

perfect square.
b. She is a mathematics major.

c. 128 5 26

d. x 5 26

Write the statements in 6–9 in symbolic form using the 
symbols ,, ~, and ` and the indicated letters to represent 
component statements.

6. Let s 5 “stocks are increasing” and i 5 “interest 
rates are steady.”
a. Stocks are increasing but interest rates are steady.
b. Neither are stocks increasing nor are interest 

rates steady.

7. Juan is a math major but not a computer science 
major. (m 5 “Juan is a math major,” c 5 “Juan is a 
computer science major”)

8. Let h 5 “John is healthy,” w 5 “John is wealthy,” 
and s 5 “John is wise.”
a. John is healthy and wealthy but not wise.
b. John is not wealthy but he is healthy and wise.
c. John is neither healthy, wealthy, nor wise.
d. John is neither wealthy nor wise, but he is healthy.
e. John is wealthy, but he is not both healthy and wise.

9. Let p 5 “x . 5,” q 5 “x 5 5,” and r 5 “10 . x.”
a. x $ 5
b. 10 . x . 5
c. 10 . x $ 5

10. Let p be the statement “DATAENDFLAG is off,” 
q the statement “ERROR equals 0,” and r the 
statement “SUM is less than 1,000.” Express the 
following sentences in symbolic notation.
a. DATAENDFLAG is off, ERROR equals 0, and 

SUM is less than 1,000.
b. DATAENDFLAG is off but ERROR is not 

equal to 0.
c. DATAENDFLAG is off; however, ERROR is 

not 0 or SUM is greater than or equal to 1,000.
d. DATAENDFLAG is on and ERROR equals 0 

but SUM is greater than or equal to 1,000.
e. Either DATAENDFLAG is on or it is the case 

that both ERROR equals 0 and SUM is less 
than 1,000.

11. In the following sentence, is the word or used in 
its inclusive or exclusive sense? A team wins the 
playoffs if it wins two games in a row or a total of 
three games.

ExERCISE SET 2.1* 
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52  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Write truth tables for the statement forms in 12–15.

12. ,p ` q 13. ,(p ` q) ~ ( p ~ q)

14. p ` (q ` r) 15. p ` (,q ~ r)

Determine whether the statement forms in 16–24 are 
logically equivalent. In each case, construct a truth table 
and include a sentence justifying your answer. Your sen-
tence should show that you understand the meaning of 
logical equivalence.

16. p ~ (p ` q) and p

17. ,(p ` q) and ,p ` ,q

18. p ~ t and t

19. p ` t and p

20. p ` c and p ~ c

21. (p ` q) ` r and p ` (q ` r)

22. p ` (q ~ r) and (p ` q) ~ (p ` r)

23. (p ` q) ~ r and p ` (q ~ r)

24. (p ~ q) ~ (p ` r) and (p ~ q) ` r

Use De Morgan’s laws to write negations for the state-
ments in 25–30.

25. Hal is a math major and Hal’s sister is a computer 
science major.

26. Sam is an orange belt and Kate is a red belt.

27. The connector is loose or the machine is 
 unplugged.

28. The train is late or my watch is fast.

29. This computer program has a logical error in the 
first ten lines or it is being run with an incomplete 
data set.

30. The dollar is at an all-time high and the stock 
market is at a record low.

31. Let s be a string of length 2 with characters from 
{0, 1, 2}, and define statements a, b, c, and d as 
follows:

a 5 “the first character of s is 0”

b 5 “the first character of s is 1”

c 5 “the second character of s is 1”

d 5 “the second character of s is 2”.

Describe the set of all strings for which each of 
the following is true.

a. (a ~ b) ` (c ~ d)

b. (,(a ~ b)) ` (c ~ d)

c. ((,a) ~ b) ` (c ~ (,d))

Assume x is a particular real number and use De Morgan’s 
laws to write negations for the statements in 32–37.

32. 22 , x , 7 33. 210 , x , 2

34. x , 2 or x . 5 35. x # 21 or x . 1

36. 1 . x $ 23 37. 0 . x $ 27

In 38 and 39, imagine that num_orders and num_instock 
are particular values, such as might occur during execu-
tion of a computer program. Write negations for the 
following statements.

38. (num_orders . 100 and num_instock # 500) or 
num_instock , 200

39. (num_orders , 50 and num_instock . 300) or  
(50 # num_orders , 75 and num_instock . 500)

Use truth tables to establish which of the statement 
forms in 40–43 are tautologies and which are  
contradictions.

40. (p ` q) ~ (,p ~ (p ` ,q))

41. (p ` ,q) ` (,p ~ q)

42. ((,p ` q) ` (q ` r)) ` ,q

43. (,p ~ q) ~ (p ` ,q)

44. Recall that a , x , b means that a , x and  
x , b. Also a # b means that a , b or a 5 b.  
Find all real numbers that satisfy the following 
inequalities.
a. 2 , x # 0 b. 1 # x , 21

45. Determine whether the statements in (a) and (b) 
are logically equivalent.
a. Bob is both a math and computer science 

major and Ann is a math major, but Ann is not 
both a math and computer science major.

b. It is not the case that both Bob and Ann are 
both math and computer science majors, 
but it is the case that Ann is a math major  
and Bob is both a math and computer 
science major.
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2.2 CONDITIONAL STATEMENTS  53

46. Let the symbol % denote exclusive or; so  
p % q ; (p ~ q) ` ,(p ` q). Hence the truth 
table for p % q is as follows:

p q p % q 

T T F

T F T

F T T

F F F

a. Find simpler statement forms that are logically 
equivalent to p % p and (p % p) % p.

b. Is (p % q) % r ; p % (q % r)? Justify your 
answer.

c. Is (p % q) ` r ; (p ` r) % (q ` r)? Justify 
your answer.

47. In logic and in standard English, a double negative 
is equivalent to a positive. There is one fairly com-
mon English usage in which a “double positive” is 
equivalent to a negative. What is it? Can you think 
of others?

In 48 and 49 below, a logical equivalence is derived from 
Theorem 2.1.1. Supply a reason for each step.

48. (p ` ,q) ~ (p ` q) ; p ` (,q ~ q) by (a) 

; p ` (q ~ ,q) by (b)

; p ` t by (c)

; p by (d)

Therefore, (p ` ,q) ~ (p ` q) ; p.

49. (p ~ ,q) ` (,p ~ ,q)

; (,q ~ p) ` (,q ~ ,p) by (a) 

; ,q ~ (p ` ,p) by (b)

; ,q ~ c by (c)
; ,q by (d)

Therefore, (p ~ ,q) ` (,p ~ ,q) ; ,q.

Use Theorem 2.1.1 to verify the logical equivalences in 
50–54. Supply a reason for each step.

50. (p ` ,q) ~ p ; p 51. p ` (,q ~ p) ; p

52. ,(p ~ ,q) ~ (,p ` ,q) ; ,p

53. ,((,p ` q) ~ (,p ` ,q)) ~ (p ` q) ; p

54. (p ` (,(,p ~ q))) ~ (p ` q) ; p

*

*

1. true 2. false 3. the same truth values 4. or; negated; and; negated 5. true 6. false

ANSWERS FOR TEST YOURSELF 

Conditional Statements
Á hypothetical reasoning implies the subordination of the real to the realm of the 
possible Á  —Jean Piaget, 1972

When you make a logical inference or deduction, you reason from a hypothesis to a con-
clusion. Your aim is to be able to say, “If such and such is known, then something or other 
must be the case.”

Let p and q be statements. A sentence of the form “If p then q” is denoted symbolically 
by “p S q”; p is called the hypothesis and q is called the conclusion. For instance, consider 
the following statement:

If 4,686 is divisible by 6, then 4,686 is divisible by 3

Such a sentence is called conditional because the truth of statement q is conditioned on the 
truth of statement p.

The notation p S q indicates that S is a connective, like ` or ~, which can be used 
to join statements to create new statements. To define p S q as a statement, therefore, 
we must specify the truth values for p S q as we specified truth values for p ` q and for  
p ~ q. As is the case with the other connectives, the formal definition of truth values  
for S (if-then) is based on its everyday, intuitive meaning. Consider an example.

2.2

hypothesis conclusion

i i
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54  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Suppose you go to interview for a job at a store and the owner of the 
store makes you the following promise:

If you show up for work Monday morning, then you will get the job.

Under what circumstances are you justified in saying the owner spoke 
falsely? That is, under what circumstances is the above sentence false? 
The answer is: You do show up for work Monday morning and you do 
not get the job.

After all, the owner’s promise only says you will get the job if a certain 
condition (showing up for work Monday morning) is met; it says noth-
ing about what will happen if the condition is not met. So if the condi-
tion is not met, you cannot in fairness say the promise is false regard-
less of whether or not you get the job.

The above example was intended to convince you that the only combination of circum-
stances in which you would call a conditional sentence false occurs when the hypothesis 
is true and the conclusion is false. In all other cases, you would not call the sentence false. 
This implies that the only row of the truth table for p S q that should be filled in with an 
F is the row where p is T and q is F. No other row should contain an F. But each row of a 
truth table must be filled in with either a T or an F. Thus all other rows of the truth table 
for p S q must be filled in with T’s.

Truth Table for p S q

p q p S q 

T T T

T F F

F T T

F F T

Definition

If p and q are statement variables, the conditional of q by p is “If p then q” or  
“p implies q” and is denoted p S q. It is false when p is true and q is false; other-
wise it is true. We call p the hypothesis (or antecedent) of the conditional and q the 
conclusion (or consequent).

A conditional statement that is true by virtue of the fact that its hypothesis is false is of-
ten called vacuously true or true by default. Thus the statement “If you show up for work 
Monday morning, then you will get the job” is vacuously true if you do not show up for 
work Monday morning. In general, when the “if” part of an if-then statement is false, the 
statement as a whole is said to be true, regardless of whether the conclusion is true or false.

A Conditional Statement with a False Hypothesis

Consider the statement

If 0 5 1 then 1 5 2.

As strange as it may seem, since the hypothesis of this statement is false, the statement 
as a whole is true.  ■

Example 2.2.1
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2.2 CONDITIONAL STATEMENTS  55

The philosopher Willard Van Orman Quine advises against using the phrase “p implies 
q” to mean “p S q” because the word implies suggests that q can be logically deduced 
from p and this is often not the case. Nonetheless, the phrase is used by many people, prob-
ably because it is a convenient replacement for the S symbol. And, of course, in many 
cases a conclusion can be deduced from a hypothesis, even when the hypothesis is false.

In expressions that include S as well as other logical operators such as `, ~, and ,, 
the order of operations is that S is performed last. Thus, according to the specification 

of order of operations in Section 2.1, , is performed first, then ` and ~, and finally S .

Truth Table for p ~ ,q S ,p 

Construct a truth table for the statement form p ~ ,q S ,p.

Solution By the order of operations given above, the following two expressions are 
equivalent: p ~ ,q S ,p and (p ~ (,q)) S (,p), and this order governs the construc-
tion of the truth table. First fill in the four possible combinations of truth values for p and 
q, and then enter the truth values for ,p and ,q using the definition of negation. Next fill 
in the p ~ ,q column using the definition of ~. Finally, fill in the p ~ ,q S ,p column 
using the definition of S. 

conclusion                  hypothesis

p q ,p ,q p ~ ,q p ~ ,q S ,p 

T T F F T F

T F F T T F

F T T F F T

F F T T T T

 
■

Logical Equivalences Involving S
Imagine that you are trying to solve a problem involving three statements: p, q, and r. Sup-
pose you know that the truth of r follows from the truth of p and also that the truth of r 
follows from the truth of q. Then no matter whether p or q is the case, the truth of r must 
follow. The division-into-cases method of analysis is based on this idea.

Division into Cases: Showing That p ~ q S r ; (p S  r) ` (q S r)

Use truth tables to show the logical equivalence of the statement forms p ~ q S r and  
(p S r) ` (q S r). Annotate the table with a sentence of explanation.

Solution First fill in the eight possible combinations of truth values for p, q, and r. Then 
fill in the columns for p ~ q, p S r, and q S r using the definitions of or and if-then. 
For instance, the p S r column has F’s in the second and fourth rows because these are 
the rows in which p is true and r is false. Next fill in the p ~ q S r column using the 
definition of if-then. The rows in which the hypothesis p ~ q is true and the conclusion r is 
false are the second, fourth, and sixth. So F’s go in these rows and T’s in all the others. The 
complete table shows that p ~ q S r and (p S r) ` (q S r) have the same truth values 
for each combination of truth values of p, q, and r. Hence the two statement forms are 
logically equivalent.

Example 2.2.2

s t

Example 2.2.3

Note For example, if you 
hypothesize that 0 5 1, 
then, by adding 1 to both 
sides of the equation, you 
can deduce that 1 5 2.

Note The only rows 
in which the hypothesis 
p ~ ,q is true and the 
conclusion ,p is false are 
the first and second rows. 
So you put F’s in those 
two rows and T’s in the 
other two rows.
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56  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

p q r p ~ q p S r q S r p ~ q S r (p S r) ` (q S r) 

T T T T T T T T

T T F T F F F F

T F T T T T T T

T F F T F T F F

F T T T T T T T

F T F T T F F F

F F T F T T T T

F F F F T T T T

p ~ q S r and (p S r) ` (q S r) 
always have the same truth values, 
so they are logically equivalent  ■

Representation of If-Then as Or
In exercise 13(a) at the end of this section you are asked to use truth tables to show that

p S q ; ,p ~ q.

The logical equivalence of “if p then q” and “not p or q” is occasionally used in every-
day speech. Here is one instance.

Application of the Equivalence between ,p ~ q and p S q

Rewrite the following statement in if-then form.

Either you get to work on time or you are fired.

Solution Let ~p be

You get to work on time.

and q be

You are fired.

Then the given statement is ,p ~ q. Also p is

You do not get to work on time.

So the equivalent if-then version, p S q, is

If you do not get to work on time, then you are fired.  ■

The Negation of a Conditional Statement
By definition, p S q is false if, and only if, its hypothesis, p, is true and its conclusion, q, 
is false. It follows that

The negation of “if p then q” is logically equivalent to “p and not q.”

Example 2.2.4

cc
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2.2 CONDITIONAL STATEMENTS  57

This can be restated symbolically as follows:

,(p S q) ; p ` ,q

To obtain this result you can also start from the logical equivalence p S q ; ,p ~ q. Take 
the negation of both sides to obtain

,( p S q) ; ,(,p ~ q)

; ,(,p) ` (,q) by De Morgan’s laws

; p ` ,q by the double negative law.

Yet another way to derive this result is to construct truth tables for ,(p S q) and for 
p ` ,q and to check that they have the same truth values. (See exercise 13(b) at the end 
of this section.)

Negations of If-Then Statements

Write negations for each of the following statements:

a. If my car is in the repair shop, then I cannot get to class.

b. If Sara lives in Athens, then she lives in Greece.

Solution

a. My car is in the repair shop and I can get to class.

b. Sara lives in Athens and she does not live in Greece. (Sara might live in Athens, 
Georgia; Athens, Ohio; or Athens, Wisconsin.)  ■

It is tempting to write the negation of an if-then statement as another if-then statement. 
Please resist that temptation!

The Contrapositive of a Conditional Statement
One of the most fundamental laws of logic is the equivalence between a conditional state-
ment and its contrapositive.

Example 2.2.5

!
Caution! Remember that 
the negation of an  
if-then statement does 
not start with the word if.

Definition

The contrapositive of a conditional statement of the form “If p then q” is

If ,q then ,p.

Symbolically,

The contrapositive of p S q is ,q S ,p.

The fact is that

A conditional statement is logically equivalent to its contrapositive.

You are asked to establish this equivalence in exercise 26 at the end of this section.
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58  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Writing the Contrapositive

Write each of the following statements in its equivalent contrapositive form:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. If Howard cannot swim to the island, then Howard cannot swim across the lake.

b. If tomorrow is not Monday, then today is not Easter.  ■

When you are trying to solve certain problems, you may find that the contrapositive 
form of a conditional statement is easier to work with than the original statement. Replac-
ing a statement by its contrapositive may give the extra push that helps you over the top 
in your search for a solution. This logical equivalence is also the basis for one of the most 
important laws of deduction, modus tollens (to be explained in Section 2.3), and for the 
contrapositive method of proof (to be explained in Section 4.7).

The Converse and Inverse of a Conditional Statement
The fact that a conditional statement and its contrapositive are logically equivalent is very 
important and has wide application. Two other variants of a conditional statement are not 
logically equivalent to the statement.

Example 2.2.6

Definition

Suppose a conditional statement of the form “If p then q” is given.

1. The converse is “If  q  then  p.”

2. The inverse is “If  ,p  then  ,q.”

Symbolically,

The converse of  p S q  is  q S p,

and

The inverse of  p S q  is  ,p S ,q.

Writing the Converse and the Inverse

Write the converse and inverse of each of the following statements:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. Converse: If Howard can swim to the island, then Howard can swim across the lake.

 Inverse:  If Howard cannot swim across the lake, then Howard cannot swim to 
the island.

b. Converse: If tomorrow is Monday, then today is Easter.

 Inverse: If today is not Easter, then tomorrow is not Monday.  ■

Example 2.2.7

!
Caution! Many people 
believe that if a condition-
al statement is true, then 
its converse and inverse 
must also be true. This is 
not correct! The converse 
might be true, but it does 
not have to be true.
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2.2 CONDITIONAL STATEMENTS  59

Note that while the statement “If today is Easter, then tomorrow is Monday” is always 
true, both its converse and inverse are false on every Sunday except Easter.

1. A conditional statement and its converse are not logically equivalent.

2. A conditional statement and its inverse are not logically equivalent.

3. The converse and the inverse of a conditional statement are logically equivalent 
to each other.

In exercises 24, 25, and 27 at the end of this section, you are asked to use truth tables 
to verify the statements in the box above. Note that the truth of statement 3 also follows 
from the observation that the inverse of a conditional statement is the contrapositive of 
its converse.

Only If and the Biconditional
To say “p only if q” means that p can take place only if q takes place also. That is, if 
q does not take place, then p cannot take place. Another way to say this is that if p 
occurs, then q must also occur (by the logical equivalence between a statement and its 
contrapositive).

Definition

If p and q are statements,

p only if q means “if not q then not p,”

or, equivalently,

“if p then q.” 

Converting Only If to If-Then

Rewrite the following statement in if-then form in two ways, one of which is the contra-
positive of the other.

John will break the world’s record for the mile run only if he runs the 
mile in under four minutes.

Solution Version 1:  If John does not run the mile in under four minutes, then he will 
not break the world’s record.

Version 2:  If John breaks the world’s record, then he will have run the mile 
in under four minutes.  ■

Note that it is possible for “p only if q” to be true at the same time that “p if q” is false. 
For instance, to say that John will break the world’s record only if he runs the mile in under 
four minutes does not mean that John will break the world’s record if he runs the mile in 
under four minutes. His time could be under four minutes but still not be fast enough to 
break the record.

Example 2.2.8

!
Caution! “p only if q” 
does not mean “p if q.”
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60  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

The biconditional has the following truth table:

Truth Table for p 4 q

p q p 4 q

T T T

T F F

F T F

F F T

In order of operations 4 is coequal with S . As with ` and ~ , the only way to indicate 
precedence between them is to use parentheses. The full hierarchy of operations for the 
five logical operators is shown below.

Definition

Given statement variables p and q, the biconditional of p and q is “p if, and only if, 
q” and is denoted p 4 q. It is true if both p and q have the same truth values and is 
false if p and q have opposite truth values. The words if and only if are sometimes 
abbreviated iff. 

Order of Operations for Logical Operators

1. , Evaluate negations first.

2. `, ~  Evaluate ` and ~ second. When both are present, parentheses may be 
needed.

3. S, 4  Evaluate S and 4 third. When both are present, parentheses may 
be needed.

According to the separate definitions of if and only if, saying “p if, and only if, q” should 
mean the same as saying both “p if q” and “p only if q.” The following annotated truth table 
shows that this is the case:

Truth Table Showing That p 4 q ; (p S q) ` (q S p)

p q p S q q S p p 4 q (p S q) ` (q S p) 

T T T T T T

T F F T F F

F T T F F F

F F T T T T

p 4 q and (p S q) ` (q S p) 
always have the same truth values, 
so they are logically equivalent 

cc
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2.2 CONDITIONAL STATEMENTS  61

If and Only If

Rewrite the following statement as a conjunction of two if-then statements:

This computer program is correct if, and only if, it produces correct 
answers for all possible sets of input data.

Solution  If this program is correct, then it produces the correct answers for all possible 
sets of input data; and if this program produces the correct answers for all possible sets of 
input data, then it is correct.  ■

Necessary and Sufficient Conditions
The phrases necessary condition and sufficient condition, as used in formal English, cor-
respond exactly to their definitions in logic.

Example 2.2.9

Definition

If r and s are statements:

r is a sufficient condition for s  means  “if r then s.”

r is a necessary condition for s means “if not r then not s.”

In other words, to say “r is a sufficient condition for s” means that the occurrence of r 
is sufficient to guarantee the occurrence of s. On the other hand, to say “r is a necessary 
condition for s” means that if r does not occur, then s cannot occur either:

The occurrence of r is necessary to obtain the occurrence of s. Note that 
because of the equivalence between a statement and its contrapositive,

r is a necessary condition for s also means “if s then r.”

Consequently,

r is a necessary and sufficient condition for s means “r if, and only if, s.”

Interpreting Necessary and Sufficient Conditions

Consider the statement “If John is eligible to vote, then he is at least 18 years old.” The 
truth of the condition “John is eligible to vote” is sufficient to ensure the truth of the condi-
tion “John is at least 18 years old.” In addition, the condition “John is at least 18 years old” 
is necessary for the condition “John is eligible to vote” to be true. If John were younger 
than 18, then he would not be eligible to vote.  ■

Converting a Sufficient Condition to If-Then Form

Rewrite the following statement in the form “If A then B”:

Pia’s birth on U.S. soil is a sufficient condition  
for her to be a U.S. citizen.

Solution If Pia was born on U.S. soil, then she is a U.S. citizen.  ■

Example 2.2.10

Example 2.2.11
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62  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Converting a Necessary Condition to If-Then Form

Use the contrapositive to rewrite the following statement in two ways:

George’s attaining age 35 is a necessary condition for his being presi-
dent of the United States.

Solution Version 1:  If George has not attained the age of 35, then he cannot be presi-
dent of the United States.

Version 2:  If George can be president of the United States, then he has  
attained the age of 35.  ■

Remarks
1. In logic, a hypothesis and conclusion are not required to have related subject matters.

In ordinary speech we never say things like “If computers are machines, then Babe 
Ruth was a baseball player” or “If 212 5 5, then Mickey Mouse is president of the 
United States.” We formulate a sentence like “If p then q” only if there is some connec-
tion of content between p and q.

In logic, however, the two parts of a conditional statement need not have related 
meanings. The reason? If there were such a requirement, who would enforce it? What 
one person perceives as two unrelated clauses may seem related to someone else. 
There would have to be a central arbiter to check each conditional sentence before 
anyone could use it, to be sure its clauses were in proper relation. This is impractical, 
to say the least!

Thus a statement like “if computers are machines, then Babe Ruth was a baseball 
player” is allowed, and it is even called true because both its hypothesis and its conclu-
sion are true. Similarly, the statement “If 212 5 5, then Mickey Mouse is president 
of the United States” is allowed and is called true because its hypothesis is false, even 
though doing so may seem ridiculous.

In mathematics it often happens that a carefully formulated definition that success-
fully covers the situations for which it was primarily intended is later seen to be satis-
fied by some extreme cases that the formulator did not have in mind. But those are the 
breaks, and it is important to get into the habit of exploring definitions fully to seek out 
and understand all their instances, even the unusual ones.

2. In informal language, simple conditionals are often used to mean biconditionals.
The formal statement “p if, and only if, q” is seldom used in ordinary language. 

Frequently, when people intend the biconditional they leave out either the and only if or 
the if and. That is, they say either “p if q” or “p only if q” when they really mean “p if, 
and only if, q.” For example, consider the statement “You will get dessert if, and only 
if, you eat your dinner.” Logically, this is equivalent to the conjunction of the following 
two statements.

Statement 1: If you eat your dinner, then you will get dessert.
Statement 2: You will get dessert only if you eat your dinner.

or
If you do not eat your dinner, then you will not get dessert.

Now how many parents in the history of the world have said to their children “You 
will get dessert if, and only if, you eat your dinner”? Not many! Most say either “If you 
eat your dinner, you will get dessert” (these take the positive approach—they empha-
size the reward) or “You will get dessert only if you eat your dinner” (these take the 

Example 2.2.12
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2.2 CONDITIONAL STATEMENTS  63

negative approach—they emphasize the punishment). Yet the parents who promise the 
reward intend to suggest the punishment as well, and those who threaten the punish-
ment will certainly give the reward if it is earned. Both sets of parents expect that their 
conditional statements will be interpreted as biconditionals.

Since we often (correctly) interpret conditional statements as biconditionals, it is 
not surprising that we may come to believe (mistakenly) that conditional statements are 
always logically equivalent to their inverses and converses. In formal settings, however, 
statements must have unambiguous interpretations. If-then statements can’t sometimes 
mean “if-then” and other times mean “if and only if.” When using language in math-
ematics, science, or other situations where precision is important, it is essential to inter-
pret if-then statements according to the formal definition and not to confuse them with 
their converses and inverses.

1. An if-then statement is false if, and only if, the hy-
pothesis is  and the conclusion is .

2. The negation of “if p then q” is .

3. The converse of “if p then q” is .

4. The contrapositive of “if p then q” is .

5. The inverse of “if p then q” is .

6. A conditional statement and its contrapositive 
are  .

7. A conditional statement and its converse are  
not  .

8. “R is a sufficient condition for S” means “if 
 then .”

9. “R is a necessary condition for S” means “if 
 then .”

10. “R only if S” means “if  then .”

TEST YOURSELF 

Rewrite the statements in 1–4 in if-then form.

1. This loop will repeat exactly N times if it does not 
contain a stop or a go to.

2. I am on time for work if I catch the 8:05 bus.

3. Freeze or I’ll shoot.

4. Fix my ceiling or I won’t pay my rent.

Construct truth tables for the statement forms in 5–11.

5. ,p ~ q S ,q 6. (p ~ q) ~ (,p ` q) S q

7. p ` ,q S r 8. ,p ~ q S r

9. p ` ,r 4 q ~ r 10. (p S r) 4 (q S r)

11. (p S (q S r)) 4 ((p ` q) S r)

12. Use the logical equivalence established in  
Example 2.2.3, p ~ q S r ; (p S r) ` (q S r), 

to rewrite the following statement. (Assume that x 
represents a fixed real number.)

If x . 2 or x , 22, then x 2 . 4.

13. Use truth tables to verify the following logical 
equivalences. Include a few words of explanation 
with your answers.
a. p S q ; ,p ~ q

b. ,(p S q) ; p ` ,q.

14. a.  Show that the following statement forms are all 
logically equivalent:

p S q ~ r, p ` ,q S r, and p ` ,r S q

b. Use the logical equivalences established in part 
(a) to rewrite the following sentence in two dif-
ferent ways. (Assume that n represents a fixed 
integer.)

If n is prime, then n is odd or n is 2.

H

ExERCISE SET 2.2 
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64  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

15. Determine whether the following statement forms 
are logically equivalent:

p S (q S r) and (p S q) S r

In 16 and 17, write each of the two statements in symbolic 
form and determine whether they are logically equiva-
lent. Include a truth table and a few words of explanation 
to show that you understand what it means for state-
ments to be logically equivalent.

16. If you paid full price, you didn’t buy it at Crown 
Books. You didn’t buy it at Crown Books or you 
paid full price.

17. If 2 is a factor of n and 3 is a factor of n, then 6 is 
a factor of n. 2 is not a factor of n or 3 is not a fac-
tor of n or 6 is a factor of n.

18. Write each of the following three statements in 
symbolic form and determine which pairs are 
logically equivalent. Include truth tables and a few 
words of explanation.

  If it walks like a duck and it talks like a duck, then 
it is a duck.

  Either it does not walk like a duck or it does not 
talk like a duck, or it is a duck.

  If it does not walk like a duck and it does not talk 
like a duck, then it is not a duck.

19. True or false? The negation of “If Sue is Luiz’s 
mother, then Ali is his cousin” is “If Sue is Luiz’s 
mother, then Ali is not his cousin.”

20. Write negations for each of the following state-
ments. (Assume that all variables represent fixed 
quantities or entities, as appropriate.)
a. If P is a square, then P is a rectangle.
b. If today is New Year’s Eve, then tomorrow is 

January.
c. If the decimal expansion of r is terminating, 

then r is rational.
d. If n is prime, then n is odd or n is 2.
e. If x is nonnegative, then x is positive or x is 0.
f. If Tom is Ann’s father, then Jim is her uncle 

and Sue is her aunt.
g. If n is divisible by 6, then n is divisible by 2 

and n is divisible by 3.

21. Suppose that p and q are statements so that  
p S q is false. Find the truth values of each of 
the following:
a. ,p S q   b. p ~ q  c. q S p

22. Write contrapositives for the statements of 
exercise 20.

23. Write the converse and inverse for each statement 
of exercise 20.

Use truth tables to establish the truth of each statement 
in 24–27.

24. A conditional statement is not logically equivalent 
to its converse.

25. A conditional statement is not logically equivalent 
to its inverse.

26. A conditional statement and its contrapositive are 
logically equivalent to each other.

27. The converse and inverse of a conditional state-
ment are logically equivalent to each other.

28. “Do you mean that you think you can find out the 
answer to it?” said the March Hare.

“Exactly so,” said Alice.
“Then you should say what you mean,” the 

March Hare went on.

“I do,” Alice hastily replied; “at least—at least 
I mean what I say—that’s the same thing, you 
know.”

“Not the same thing a bit!” said the Hatter. 
“Why, you might just as well say that ‘I see what I 
eat’ is the same thing as ‘I eat what I see’!”

—from “A Mad Tea-Party” in Alice in  
Wonderland, by Lewis Carroll

The Hatter is right. “I say what I mean” is not the 
same thing as “I mean what I say.” Rewrite each 
of these two sentences in if-then form and explain 
the logical relation between them. (This exercise is 
referred to in the introduction to Chapter 4.)

If statement forms P and Q are logically equivalent, then 
P 4 Q is a tautology. Conversely, if P 4 Q is a tautology, 
then P and Q are logically equivalent. Use 4 to convert 
each of the logical equivalences in 29–31 to a tautology. 
Then use a truth table to verify each tautology.

29. p S (q ~ r) ; (p ` ,q) S r

30. p ` (q ~ r) ; (p ` q) ~ (p ` r)

31. p S (q S r) ; (p ` q) S r

Rewrite each of the statements in 32 and 33 as a conjunc-
tion of two if-then statements.

32. This quadratic equation has two distinct real roots if, 
and only if, its discriminant is greater than zero.

H

H

H

94193_ch02_ptg01.indd   64 12/11/18   3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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33. This integer is even if, and only if, it equals twice 
some integer.

Rewrite the statements in 34 and 35 in if-then form in two 
ways, one of which is the contrapositive of the other. Use 
the formal definition of “only if.”

34. The Cubs will win the pennant only if they win 
tomorrow’s game.

35. Sam will be allowed on Signe’s racing boat only if 
he is an expert sailor.

36. Taking the long view on your education, you go to 
the Prestige Corporation and ask what you should 
do in college to be hired when you graduate. The 
personnel director replies that you will be hired 
only if you major in mathematics or computer sci-
ence, get a B average or better, and take account-
ing. You do, in fact, become a math major, get a 
B1 average, and take accounting. You return to 
Prestige Corporation, make a formal application, 
and are turned down. Did the personnel director 
lie to you?

Some programming languages use statements of the form 
“r unless s” to mean that as long as s does not happen, 
then r will happen. More formally:

Definition: If r and s are statements,

r unless s means if ,s then r.

In 37–39, rewrite the statements in if-then form.

37. Payment will be made on fifth unless a new hear-
ing is granted.

38. Ann will go unless it rains.

39. This door will not open unless a security code is 
entered.

Rewrite the statements in 40 and 41 in if-then form.

40. Catching the 8:05 bus is a sufficient condition for 
my being on time for work.

41. Having two 45° angles is a sufficient condition for 
this triangle to be a right triangle.

Use the contrapositive to rewrite the statements in 
42 and 43 in if-then form in two ways.

42. Being divisible by 3 is a necessary condition for 
this number to be divisible by 9.

43. Doing homework regularly is a necessary condi-
tion for Jim to pass the course.

Note that “a sufficient condition for s is r” means r 
is a sufficient condition for s and that “a necessary 
condition for s is r” means r is a necessary condition 
for s. Rewrite the statements in 44 and 45 in if-
then form.

44. A sufficient condition for Jon’s team to win 
the championship is that it win the rest of 
its games.

45. A necessary condition for this computer program 
to be correct is that it not produce error messages 
during translation.

46. “If compound X is boiling, then its temperature 
must be at least 150°C.” Assuming that this 
statement is true, which of the following must 
also be true?
a. If the temperature of compound X is at least 

150°C, then compound X is boiling.
b. If the temperature of compound X is less than 

150°C, then compound X is not boiling.
c. Compound X will boil only if its temperature 

is at least 150°C.
d. If compound X is not boiling, then its tempera-

ture is less than 150°C.
e. A necessary condition for compound X to boil 

is that its temperature be at least 150°C.
f. A sufficient condition for compound X to boil 

is that its temperature be at least 150°C.

In 47–50 (a) use the logical equivalences p S q ; ,p ~ q  
and p 4 q ; (,p ~ q) ` (,q ~ p) to rewrite the given 
statement forms without using the symbol S or 4, 
and (b) use the logical equivalence p ~ q ; ,(,p ` ,q) 
to rewrite each statement form using only ` and ,.

47. p ` ,q S r

48. p ~ ,q S r ~ q

49. (p S r) 4 (q S r)

50. (p S (q S r)) 4 ((p ` q) S r)

51. Given any statement form, is it possible to find a 

logically equivalent form that uses only , and `? 
Justify your answer.
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Definition

An argument is a sequence of statements, and an argument form is a sequence 
of statement forms. All statements in an argument and all statement forms in an 
argument form, except for the final one, are called premises (or assumptions or 
hypotheses). The final statement or statement form is called the conclusion. The 
symbol [, which is read “therefore,” is normally placed just before the conclusion.

To say that an argument form is valid means that no matter what particular 
statements are substituted for the statement variables in its premises, if the resulting 
premises are all true, then the conclusion is also true. To say that an argument is 
valid means that its form is valid.

The crucial fact about a valid argument is that the truth of its conclusion follows neces-
sarily or inescapably or by logical form alone from the truth of its premises. It is impos-
sible to have a valid argument with all true premises and a false conclusion. When an 
argument is valid and its premises are true, the truth of the conclusion is said to be inferred 

1. true; false 2. p ` ~q 3. if q then p 4. if ~q then ~p 5. if ~p then ~q 6. logically equivalent 7. logically equivalent 
8. R; S 9. S; R 10. R; S

AnswERs foR TEsT YouRsElf 

Valid and Invalid Arguments
“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it 
would be; but as it isn’t, it ain’t. That’s logic.” —Lewis Carroll, Through the Looking Glass

In mathematics and logic an argument is not a dispute. It is simply a sequence of state-
ments ending in a conclusion. In this section we show how to determine whether an ar-
gument is valid—that is, whether the conclusion follows necessarily from the preceding 
statements. We will show that this determination depends only on the form of an argu-
ment, not on its content.

It was shown in Section 2.1 that the logical form of an argument can be abstracted from 
its content. For example, the argument

If Socrates is a man, then Socrates is mortal.

Socrates is a man.

[ Socrates is mortal.

has the abstract form

If p then q

p

[ q

When considering the abstract form of an argument, think of p and q as variables for 
which statements may be substituted. An argument form is called valid if, and only if, 
whenever statements are substituted that make all the premises true, the conclusion is 
also true.

2.3
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2.3 vALID AND INvALID ArGUMENTS  67

Determining Validity or Invalidity

Determine whether the following argument form is valid or invalid by drawing a truth ta-
ble, indicating which columns represent the premises and which represent the conclusion, 
and annotating the table with a sentence of explanation. When you fill in the table, you 
only need to indicate the truth values for the conclusion in the rows where all the premises 
are true (the critical rows) because the truth values of the conclusion in the other rows are 
irrelevant to the validity or invalidity of the argument.

p S q ~ ,r

q S p ` r

[ p S r

Solution The truth table shows that even though there are several situations in which the 
premises and the conclusion are all true (rows 1, 7, and 8), there is one situation (row 4) 
where the premises are true and the conclusion is false.

Example 2.3.1

Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.
2. Construct a truth table showing the truth values of all the premises and the  

conclusion.
3. A row of the truth table in which all the premises are true is called a critical row. 

If there is a critical row in which the conclusion is false, then it is possible for an 
argument of the given form to have true premises and a false conclusion, and so 
the argument form is invalid. If the conclusion in every critical row is true, then 
the argument form is valid.

!
Caution! If at least one 
premise of an argument 
is false, then we have no 
information about the 
conclusion: It might be 
true or it might be false.

premises      conclusion

p q r ,r q ~ ,r p ` r p S q ~ ,r q S p ` r p S r 

T T T F T T T T T

T T F T T F T F

T F T F F T F T

T F F T T F T T F

F T T F T F T F

F T F T T F T F

F F T F F F T T T

F F F T T F T T T

i

This row shows that an 
argument of this form 
can have true premises 
and a false conclusion. 
Hence this form of 
argument is invalid.

■

or deduced from the truth of the premises. If a conclusion “ain’t necessarily so,” then it 
isn’t a valid deduction.
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68  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Modus Ponens and Modus Tollens
An argument form consisting of two premises and a conclusion is called a syllogism. 
The first and second premises are called the major premise and minor premise, re-
spectively. The most famous form of syllogism in logic is called modus ponens. It has 
the following form:

If p then q.
p

[ q

Here is an argument of this form:

If the sum of the digits of 371,487 is divisible by 3,  
then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3.

[ 371,487 is divisible by 3.

The term modus ponens is Latin meaning “method of affirming” (the conclusion is an 
affirmation). Long before you saw your first truth table, you were undoubtedly being con-
vinced by arguments of this form. Nevertheless, it is instructive to prove that modus po-
nens is a valid form of argument, if for no other reason than to confirm the agreement 
between the formal definition of validity and the intuitive concept. To do so, we construct 
a truth table for the premises and conclusion.

premises              conclusion

p q p S q p q 

d critical rowT T T T T

T F F T

F T T F

F F T F

The first row is the only one in which both premises are true, and the conclusion in that 
row is also true. Hence the argument form is valid.

Now consider another valid argument form called modus tollens. It has the following 
form:

If p then q.

,q

[ ,p

Here is an example of modus tollens:

If Zeus is human, then Zeus is mortal.

Zeus is not mortal.

[ Zeus is not human.

v
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2.3 vALID AND INvALID ArGUMENTS  69

An intuitive explanation for the validity of modus tollens uses proof by contradiction. 
It goes like this:

Suppose

(1) If Zeus is human, then Zeus is mortal; and

(2) Zeus is not mortal.

Must Zeus necessarily be nonhuman?

Yes!

Because, if Zeus were human, then by (1) he would be mortal.

But by (2) he is not mortal.

Hence, Zeus cannot be human.

Modus tollens is Latin meaning “method of denying” (the conclusion is a denial). The 
validity of modus tollens can be shown to follow from modus ponens together with the 
fact that a conditional statement is logically equivalent to its contrapositive. Or it can be 
established formally by using a truth table. (See exercise 13.)

Studies by cognitive psychologists have shown that although nearly 100% of college 
students have a solid, intuitive understanding of modus ponens, less than 60% are able 
to apply modus tollens correctly.* Yet in mathematical reasoning, modus tollens is used 
almost as often as modus ponens. Thus it is important to study the form of modus tollens 
carefully to learn to use it effectively.

Recognizing Modus Ponens and Modus Tollens

Use modus ponens or modus tollens to fill in the blanks of the following arguments so that 
they become valid inferences.

a. If there are more pigeons than there are pigeonholes, then at least two pigeons roost in 
the same hole.
There are more pigeons than there are pigeonholes.
[ .

b. If 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.
[ .

Solution

a. At least two pigeons roost in the same hole.  by modus ponens

b. 870,232 is not divisible by 6. by modus tollens ■

Additional Valid Argument Forms: Rules of Inference
A rule of inference is a form of argument that is valid. Thus modus ponens and modus 
tollens are both rules of inference. The following are additional examples of rules of infer-
ence that are frequently used in deductive reasoning.

Generalization

The following argument forms are valid:

a.  p b.  q
[ p ~ q  [ p ~ q

Example 2.3.2

Example 2.3.3

*Cognitive Psychology and Its Implications, 3d ed. by John R. Anderson (New York: Freeman, 1990), pp. 292–297.
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70  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

These argument forms are used for making generalizations. For instance, according to 
the first, if p is true, then, more generally, “p or q” is true for any other statement q. As an 
example, suppose you are given the job of counting the upperclassmen at your school. You 
ask what class Anton is in and are told he is a junior.

You reason as follows:

Anton is a junior.
[ (more generally) Anton is a junior or Anton is a senior.

Knowing that upperclassman means junior or senior, you add Anton to your list.  ■

Specialization

The following argument forms are valid:

a.  p ` q
[ p

b.  p ` q
 [ q

These argument forms are used for specializing. When classifying objects according to 
some property, you often know much more about them than whether they do or do not have 
that property. When this happens, you discard extraneous information as you concentrate 
on the particular property of interest.

For instance, suppose you are looking for a person who knows graph algorithms to work 
with you on a project. You discover that Ana knows both numerical analysis and graph 
algorithms. You reason as follows:

Ana knows numerical analysis and Ana knows graph algorithms.
[ (in particular) Ana knows graph algorithms.

Accordingly, you invite her to work with you on your project.  ■

Both generalization and specialization are used frequently in mathematics to tailor facts 
to fit into hypotheses of known theorems in order to draw further conclusions. Elimination, 
transitivity, and proof by division into cases are also widely used tools.

Elimination

The following argument forms are valid:

a.  p ~ q
,q
[ p

b.  p ~ q
,p
[ q

These argument forms say that when you have only two possibilities and you can rule 
one out, the other must be the case. For instance, suppose you know that for a particular 
number x,

x23 5 0 or x12 5 0.

If you also know that x is not negative, then x Þ 22, so

x12 Þ 0.

By elimination, you can then conclude that

 [ x23 5 0.  ■

Example 2.3.4

Example 2.3.5
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Transitivity

The following argument form is valid:

p S q

q S r

[ p S r

Many arguments in mathematics contain chains of if-then statements. From the fact that 
one statement implies a second and the second implies a third, you can conclude that the 
first statement implies the third. In the example below suppose n is a particular integer.

If n is divisible by 18, then n is divisible by 9.

If n is divisible by 9, then the sum of the digits of n is divisible by 9.

 [ If n is divisible by 18, then the sum of the digits of n is divisible by 9. ■

Proof by Division into Cases

The following argument form is valid:

p ~ q

p S r

q S r

[ r

It often happens that you know one thing or another is true. If you can show that in either case 
a certain conclusion follows, then this conclusion must also be true. For instance, suppose you 
know that x is a particular nonzero real number that is not zero. The trichotomy property of 
the real numbers says that any real number is positive, negative, or zero. Thus (by elimination) 
you know that x is positive or x is negative. You can deduce that x2 . 0 by arguing as follows:

x is positive or x is negative.

If x is positive, then x2 . 0.

If x is negative, then x2 . 0.

[ x2 . 0. ■

The rules of valid inference are used constantly in problem solving. Here is an example 
from everyday life.

Application: A More Complex Deduction

You are about to leave for class in the morning and discover that you don’t have your 
glasses. You know the following statements are true:

a. If I was reading my class notes in the kitchen, then my glasses are on the kitchen table.

b. If my glasses are on the kitchen table, then I saw them at breakfast.

c. I did not see my glasses at breakfast.

d. I was reading my class notes in the living room or I was reading my class notes in the 
kitchen.

e. If I was reading my class notes in the living room then my glasses are on the coffee table.

Where are the glasses?

Example 2.3.6

Example 2.3.7

Example 2.3.8
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Solution Let  RK 5 I was reading my class notes in the kitchen.

GK 5 My glasses are on the kitchen table.

SB 5 I saw my glasses at breakfast.

RL 5 I was reading my class notes in the living room.

GC 5 My glasses are on the coffee table.

Here is a sequence of steps you might use to reach the answer, together with the rules of 
inference that allow you to draw the conclusion of each step:

1.  RK S GK by (a)

 GK S SB by (b)

[ RK S SB by transitivity

2.  RK S SB by the conclusion of (1)

,SB by (c)

[ ,RK by modus tollens

3.  RL ~ RK by (d)

,RK by the conclusion of (2)

[ RL by elimination

4.  RL S GC by (e)

 RL by the conclusion of (3)

[ GC by modus ponens

Thus the glasses are on the coffee table.  ■

Fallacies
A fallacy is an error in reasoning that results in an invalid argument. Three common fal-
lacies are using ambiguous premises, and treating them as if they were unambiguous, 
circular reasoning (assuming what is to be proved without having derived it from the 
premises), and jumping to a conclusion (without adequate grounds). In this section we 
discuss two other fallacies, called converse error and inverse error, which give rise to 
arguments that superficially resemble those that are valid by modus ponens and modus 
tollens but are not, in fact, valid.

As in previous examples, you can show that an argument is invalid by constructing 
a truth table for the argument form and finding at least one critical row in which all the 
premises are true but the conclusion is false. Another way is to find an argument of the 
same form with true premises and a false conclusion.

For an argument to be valid, every argument of the same form whose premises are 
all true must have a true conclusion. It follows that for an argument to be invalid 
means that there is an argument of that form whose premises are all true and whose 
conclusion is false.
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Converse Error

Show that the following argument is invalid:

If Zeke is a cheater, then Zeke sits in the back row.

Zeke sits in the back row.

[ Zeke is a cheater.

Solution Many people recognize the invalidity of the above argument intuitively, rea-
soning something like this: The first premise gives information about Zeke if it is known 
he is a cheater. It doesn’t give any information about him if it is not already known that he 
is a cheater. One can certainly imagine a person who is not a cheater but happens to sit in 
the back row. Then if that person’s name is substituted for Zeke, the first premise is true by 
default and the second premise is also true but the conclusion is false.

The general form of the previous argument is as follows:

p S q

q

[ p

In exercise 12(a) at the end of this section you are asked to use a truth table to show that 
this form of argument is invalid. ■

The fallacy underlying this invalid argument form is called the converse error because 
the conclusion of the argument would follow from the premises if the premise p S q were 
replaced by its converse. Such a replacement is not allowed, however, because a conditional 
statement is not logically equivalent to its converse. Converse error is also known as the 
fallacy of affirming the consequent.

A related common reasoning error is shown in the next example.

Inverse Error

Consider the following argument:

If these two vertices are adjacent, then they do not have the same color.

These two vertices are not adjacent.

[ These two vertices have the same color.

Note that this argument has the following form:

p S q

,p

[ ,q

You are asked to give a truth table verification of the invalidity of this argument form in 
exercise 12(b) at the end of this section.

The fallacy underlying this invalid argument form is called the inverse error because 
the conclusion of the argument would follow from the premises if the premise p S q were 
replaced by its inverse. Such a replacement is not allowed, however, because a conditional 
statement is not logically equivalent to its inverse. Inverse error is also known as the fallacy 
of denying the antecedent.  ■

Example 2.3.9

Example 2.3.10

!
Caution! In logic, the 
words true and valid have 
very different meanings. A 
valid argument may have 
a false conclusion, and 
an invalid argument may 
have a true conclusion.
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Sometimes people lump together the ideas of validity and truth. If an argument seems 
valid, they accept the conclusion as true. And if an argument seems fishy (really a slang 
expression for invalid), they think the conclusion must be false. This is not correct!

A Valid Argument with a False Premise and a False Conclusion

The argument below is valid by modus ponens. But its major premise is false, and so is its 
conclusion.

If Canada is north of the United States, then temperatures in Canada never rise above 
freezing.

Canada is north of the United States.

[ Temperatures in Canada never rise above freezing. ■

An Invalid Argument with True Premises and a True Conclusion

The argument below is invalid by the converse error, but it has a true conclusion.

If New York is a big city, then New York has tall buildings.

New York has tall buildings.

[ New York is a big city. ■

Example 2.3.11

Example 2.3.12

Definition

An argument is called sound if, and only if, it is valid and all its premises are true. 
An argument that is not sound is called unsound.

The important thing to note is that validity is a property of argument forms: If an argu-
ment is valid, then so is every other argument that has the same form. Similarly, if an argu-
ment is invalid, then so is every other argument that has the same form. What characterizes a 
valid argument is that no argument whose form is valid can have all true premises and a false 
conclusion. For each valid argument, there are arguments of that form with all true prem-
ises and a true conclusion, with at least one false premise and a true conclusion, and with at 
least one false premise and a false conclusion. On the other hand, for each invalid argument, 
there are arguments of that form with every combination of truth values for the premises and 
conclusion, including all true premises and a false conclusion. The bottom line is that we can 
only be sure that the conclusion of an argument is true when we know that the argument is 
sound, that is, when we know both that the argument is valid and that it has all true premises.

Contradictions and Valid Arguments
The concept of logical contradiction can be used to make inferences through a technique 
of reasoning called the contradiction rule. Suppose p is some statement whose truth you 
wish to deduce.

Contradiction Rule

If you can show that the supposition that statement p is false leads logically to a 
contradiction, then you can conclude that p is true.
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Contradiction Rule

Show that the following argument form is valid:

,p S c, where c is a contradiction

[ p

Solution Construct a truth table for the premise and the conclusion of this argument.

premises conclusion

p ,p c ,p S c p 
There is only one critical 
row in which the premise 
is true, and in this row the 
conclusion is also true. 
Hence this form of argu-
ment is valid.

T F F T T

F T F F

The contradiction rule is the logical heart of the method of proof by contradiction. A slight 
variation also provides the basis for solving many logical puzzles by eliminating contradic-
tory answers: If an assumption leads to a contradiction, then that assumption must be false.

Knights and Knaves

The logician Raymond Smullyan describes an island containing two types of people: 
knights who always tell the truth and knaves who always lie.* You visit the island and are 
approached by two natives who speak to you as follows:

A says: B is a knight.

B says: A and I are of opposite type.

What are A and B?

Solution A and B are both knaves. To see this, reason as follows:

Suppose A is a knight.

[ What A says is true. by definition of knight

[ B is also a knight. That’s what A said.

[ What B says is true. by definition of knight

[ A and B are of opposite types. That’s what B said.

[  We have arrived at the following contradiction: A and B are both knights 
and A and B are of opposite type. 

[ The supposition is false. by the contradiction rule

[ A is not a knight. negation of supposition

[ A is a knave.  by elimination: It’s given that all inhabitants are knights 

or knaves, so since A is not a knight, A is a knave.

[ What A says is false.

[ B is not a knight.

[ B is also a knave. by elimination

Example 2.3.13

■

Example 2.3.14
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Raymond Smullyan 
(1919–2017)

*Raymond Smullyan has written a delightful series of whimsical yet profound books of logical puzzles start-
ing with What Is the Name of This Book? (Englewood Cliffs, New Jersey: Prentice-Hall, 1978). Other good 
sources of logical puzzles are the many excellent books of Martin Gardner, such as Aha! Insight and Aha! 
Gotcha (New York: W. H. Freeman, 1978, 1982).
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This reasoning shows that if the problem has a solution at all, then A and B must both be 
knaves. It is conceivable, however, that the problem has no solution. The problem statement 
could be inherently contradictory. If you look back at the solution, though, you can see that 
it does work out for both A and B to be knaves.  ■

Summary of Rules of Inference
Table 2.3.1 summarizes some of the most important rules of inference.

TAbLE 2.3.1 Valid Argument Forms

Modus Ponens p S q
p

[ q

Elimination a.  p ~ q
,q

[ p

b.  p ~ q
 ,p

[ q

Modus Tollens p S q
,q

[ ,p

Transitivity p S q
q S r

[ p S r

Generalization a.  p
[ p ~ q

b.     q
[ p ~ q

Proof by  
Division into Cases

p ~ q
p S r
q S r

[ rSpecialization a.     p ` q
[ p

b.     p ` q
[ q

Conjunction p
q

[ p ` q

Contradiction Rule ,p S c 

   [ p

 1. For an argument to be valid means that every 
argument of the same form whose premises  
has a  conclusion.

 2. For an argument to be invalid means that there 
is an argument of the same form whose premises 

 and whose conclusion .

 3. For an argument to be sound means that it  
is   and its premises . In this case 
we can be sure that its conclusion .

TEST YOURSELF 

Use modus ponens or modus tollens to fill in the blanks in 
the arguments of 1–5 so as to produce valid inferences.

1.   If Ï2 is rational, then Ï2 5 ayb for some 
integers a and b.
It is not true that Ï2 5 ayb for some integers a 
and b.

[ .

2.    If 120.99999 Á is less than every positive real 
number, then it equals zero.

.
[ The number 120.99999 Á equals zero.

3.  If logic is easy, then I am a monkey’s uncle.
I am not a monkey’s uncle.

[ .

4.   If this graph can be colored with three colors, 
then it can colored with four colors.
This graph cannot be colored with four colors.

[ .

5.   If they were unsure of the address, then they 
would have telephoned.

.
[ They were sure of the address.

ExERCISE SET 2.3 
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Use truth tables to determine whether the argument forms 
in 6–11 are valid. Indicate which columns represent the 
premises and which represent the conclusion, and include 
a sentence explaining how the truth table supports your 
answer. Your explanation should show that you understand 
what it means for a form of argument to be valid or invalid.

6.  p S q
q S p

[ p ~ q

7.   p
p S q
,q ~ r

[ r

8.  p ~ q
p S ,q
p S r

[ r

9.  p ` q S ,r
p ~ ,q
,q S p

[ ,r

10.  p ~ q S r

[ ,r S ,p ` ,q
(This is the form of argument shown on pages 37 
and 38.)

11.  p S q ~ r
,q ~ ,r

[ ,p ~ ,r

12. Use truth tables to show that the following forms 
of argument are invalid.
a.  p S q

q
[ p

(converse error)

b.  p S q
,p

[ ,q
(inverse error)

Use truth tables to show that the argument forms referred 
to in 13–21 are valid. Indicate which columns represent the 
premises and which represent the conclusion, and include 
a sentence explaining how the truth table supports your 
answer. Your explanation should show that you understand 
what it means for a form of argument to be valid.

13.  Modus tollens:
p S q
,q

[ ,p

14. Example 2.3.3(a)

15. Example 2.3.3(b)

16. Example 2.3.4(a)

17. Example 2.3.4(b)

18. Example 2.3.5(a)

19. Example 2.3.5(b)

20. Example 2.3.6

21. Example 2.3.7

Use symbols to write the logical form of each argument 
in 22 and 23, and then use a truth table to test the argu-
ment for validity. Indicate which columns represent the 
premises and which represent the conclusion, and include 
a few words of explanation showing that you understand 
the meaning of validity.

22.  If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.

[ Tom is not on team A or Hua is not on team B.

23.    Oleg is a math major or Oleg is an economics 
major.
If Oleg is a math major, then Oleg is required to 
take Math 362.

[  Oleg is an economics major or Oleg is not  
required to take Math 362.

Some of the arguments in 24–32 are valid, whereas others 
exhibit the converse or the inverse error. Use symbols to 
write the logical form of each argument. If the argument 
is valid, identify the rule of inference that guarantees its 
validity. Otherwise, state whether the converse or the 
inverse error is made.

24.   If Jules solved this problem correctly, then Jules 
obtained the answer 2.
Jules obtained the answer 2.

[ Jules solved this problem correctly.

25.    This real number is rational or it is irrational.
This real number is not rational.

[ This real number is irrational.

26.  If I go to the movies, I won’t finish my homework. 
If I don’t finish my homework, I won’t do well 
on the exam tomorrow. 

[  If I go to the movies, I won’t do well on the 
exam tomorrow.

27.   If this number is larger than 2, then its square is 
larger than 4.
This number is not larger than 2.

[ The square of this number is not larger than 4.

28.   If there are as many rational numbers as there 
are irrational numbers, then the set of all irratio-
nal numbers is infinite.
The set of all irrational numbers is infinite.

[  There are as many rational numbers as there are 
irrational numbers.

29.   If at least one of these two numbers is divisible 
by 6, then the product of these two numbers is 
divisible by 6. 
Neither of these two numbers is divisible by 6. 

[  The product of these two numbers is not divisible 
by 6.
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30.   If this computer program is correct, then it pro-
duces the correct output when run with the test 
data my teacher gave me.
This computer program produces the correct output 
when run with the test data my teacher gave me.

[ This computer program is correct.

31.  Sandra knows Java and Sandra knows C11.
[ Sandra knows C11.

32.  If I get a Christmas bonus, I’ll buy a stereo.
If I sell my motorcycle, I’ll buy a stereo.

[  If I get a Christmas bonus or I sell my motor-
cycle, then I’ll buy a stereo.

33. Give an example (other than Example 2.3.11) of a 
valid argument with a false conclusion.

34. Give an example (other than Example 2.3.12) of an 
invalid argument with a true conclusion.

35. Explain in your own words what distinguishes a 
valid form of argument from an invalid one.

36. Given the following information about a computer 
program, find the mistake in the program.
a. There is an undeclared variable or there is a 

syntax error in the first five lines.
b. If there is a syntax error in the first five lines, 

then there is a missing semicolon or a variable 
name is misspelled.

c. There is not a missing semicolon.
d. There is not a misspelled variable name.

37. In the back of an old cupboard you discover a note 
signed by a pirate famous for his bizarre sense of 
humor and love of logical puzzles. In the note he 
wrote that he had hidden treasure somewhere on 
the property. He listed five true statements (a–e 
below) and challenged the reader to use them to 
figure out the location of the treasure.
a. If this house is next to a lake, then the treasure 

is not in the kitchen.
b. If the tree in the front yard is an elm, then the 

treasure is in the kitchen.
c. This house is next to a lake.
d. The tree in the front yard is an elm or the trea-

sure is buried under the flagpole.
e. If the tree in the back yard is an oak, then the 

treasure is in the garage.

Where is the treasure hidden?

38. You are visiting the island described in Example 
2.3.14 and have the following encounters with 
natives.

a. Two natives A and B address you as follows:
A says: Both of us are knights.
B says: A is a knave.
What are A and B?

b. Another two natives C and D approach you but 
only C speaks.
C says: Both of us are knaves.
What are C and D?

c. You then encounter natives E and F.
E says: F is a knave.
F says: E is a knave.
How many knaves are there?

d. Finally, you meet a group of six natives, U, V, 
W, X, Y, and Z, who speak to you as follows:
U says: None of us is a knight.
V says: At least three of us are knights.
W says: At most three of us are knights.
X says: Exactly five of us are knights.
Y says: Exactly two of us are knights.
Z says: Exactly one of us is a knight.
Which are knights and which are knaves?

39. The famous detective Percule Hoirot was called in 
to solve a baffling murder mystery. He determined 
the following facts:
a. Lord Hazelton, the murdered man, was killed 

by a blow on the head with a brass candlestick.
b. Either Lady Hazelton or a maid, Sara, was in 

the dining room at the time of the murder.
c. If the cook was in the kitchen at the time of the 

murder, then the butler killed Lord Hazelton 
with a fatal dose of strychnine.

d. If Lady Hazelton was in the dining room at the 
time of the murder, then the chauffeur killed 
Lord Hazelton.

e. If the cook was not in the kitchen at the time 
of the murder, then Sara was not in the dining 
room when the murder was committed.

f. If Sara was in the dining room at the time the 
murder was committed, then the wine steward 
killed Lord Hazelton.

Is it possible for the detective to deduce the iden-
tity of the murderer from these facts? If so, who 
did murder Lord Hazelton? (Assume there was 
only one cause of death.)

40. Sharky, a leader of the underworld, was killed by 
one of his own band of four henchmen. Detective 
Sharp interviewed the men and determined that all 
were lying except for one. He deduced who killed 
Sharky on the basis of the following statements:
a. Socko: Lefty killed Sharky.
b. Fats: Muscles didn’t kill Sharky.

H
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c. Lefty: Muscles was shooting craps with Socko 
when Sharky was knocked off.

d. Muscles: Lefty didn’t kill Sharky.
Who did kill Sharky?

In 41–44 a set of premises and a conclusion are given. Use 
the valid argument forms listed in Table 2.3.1 to deduce the 
conclusion from the premises, giving a reason for each step as 
in Example 2.3.8. Assume all variables are statement variables.

41. a. ,p ~ q S r
b.  s ~ ,q
c.  ,t
d.  p S t
e.  ,p ` r S ,s
f. [ ,q

42. a. p ~ q
b.  q S r
c.  p ` s S t
d.  ,r
e.  ,q S u ` s
f. [ t

43. a. ,p S r ` ,s
b.  t S s
c.  u S ,p
d.  ,w
e.  u ~ w
f. [ ,t

44. a. p S q
b.  r ~ s
c.  ,s S ,t
d.  ,q ~ s
e.  ,s
f.  ,p ` r S u
g.  w ~ t
h. [ u ` w

1. are all true; true 2. are all true; is false 3. valid; are all true; is true

ANSWERS FOR TEST YOURSELF  

Application: Digital Logic Circuits
Only connect! —E. M. Forster, Howards End

In the late 1930s, a young M.I.T. graduate student named Claude Shannon noticed an analogy 
between the operations of switching devices, such as telephone switching circuits, and the op-
erations of logical connectives. He used this analogy with striking success to solve problems 
of circuit design and wrote up his results in his master’s thesis, which was published in 1938.

The drawing in Figure 2.4.1(a) shows the appearance of the two positions of a simple 
switch. When the switch is closed, current can flow from one terminal to the other; when 
it is open, current cannot flow. Imagine that such a switch is part of the circuit shown in 
Figure 2.4.1(b). The light bulb turns on if, and only if, current flows through it. And this 
happens if, and only if, the switch is closed.

2.4
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Claude Shannon 
(1916–2001)

Open Closed

The symbol
denotes a battery and
the symbol

denotes a light bulb.

(a) (b)

FIGURE 2.4.1

Now consider the more complicated circuits of Figures 2.4.2(a) and 2.4.2(b).

P Q
Q

P

Switches “in series” Switches “in parallel”

(a) (b)

FIGURE 2.4.2
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80  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

TAbLE 2.4.1

(a) Switches in Series

Switches Light Bulb

P Q State

closed closed on

closed open off

open closed off

open open off

(b) Switches in Parallel

Switches Light Bulb

P Q State

closed closed on

closed open on

open closed on

open open off

Observe that if the words closed and on are replaced by T and open and off are replaced 
by F, Table 2.4.1(a) becomes the truth table for and and Table 2.4.1(b) becomes the truth 
table for or. Consequently, the switching circuit of Figure 2.4.2(a) is said to correspond to 
the logical expression P ` Q, and that of Figure 2.4.2(b) is said to correspond to P ~ Q.

More complicated circuits correspond to more complicated logical expressions. This 
correspondence has been used extensively in the design and study of circuits.

In the 1940s and 1950s, switches were replaced by electronic devices, with the physical 
states of closed and open corresponding to electronic states such as high and low voltages. 

In the circuit of Figure 2.4.2(a) current flows and the light bulb turns on if, and only if, 
both switches P and Q are closed. The switches in this circuit are said to be in series. In the 
circuit of Figure 2.4.2(b) current flows and the light bulb turns on if, and only if, at least 
one of the switches P or Q is closed. The switches in this circuit are said to be in parallel. 
All possible behaviors of these circuits are described by Table 2.4.1.

The Intel 4004, introduced 
in 1971, is generally 
considered to be the first 
commercially viable 
microprocessor or central 
processing unit (CPU) 
contained on a chip about 
the size of a fingernail. 
It consisted of 2,300 
transistors and could 
execute 70,000 instructions 
per second, essentially the 
same computing power 
as the first electronic 
computer, the ENIAC, 
built in 1946, which filled 
an entire room. Modern 
microprocessors consist 
of several CPUs on one 
chip, contain close to a 
billion transistors and 
many hundreds of millions 
of logic circuits, and can 
compute hundreds of 
millions of instructions per 
second. Ti

m
 M

cN
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John W. Tukey 
(1915–2000)

The new electronic technology led to the development of modern digital systems such as 
electronic computers, electronic telephone switching systems, traffic light controls, elec-
tronic calculators, and the control mechanisms used in hundreds of other types of electron-
ic equipment. The basic electronic components of a digital system are called digital logic 
circuits. The word logic indicates the important role of logic in the design of such circuits, 
and the word digital indicates that the circuits process discrete, or separate, signals as op-
posed to continuous ones.

Electrical engineers continue to use the language of logic when they refer to values of 
signals produced by an electronic switch as being “true” or “false.” But they generally use 
the symbols 1 and 0 rather than T and F to denote these values. The symbols 0 and 1 are 
called bits, short for binary digits. This terminology was introduced in 1946 by the statisti-
cian John Tukey.

Black Boxes and Gates
Combinations of signal bits (1’s and 0’s) can be transformed into other combinations of sig-
nal bits (1’s and 0’s) by means of various circuits. Because a variety of different technolo-
gies are used in circuit construction, computer engineers and digital system designers find 
it useful to think of certain basic circuits as black boxes. The inside of a black box contains 
the detailed implementation of the circuit and is often ignored while attention is focused 
on the relation between the input and the output signals.

P
Q
R

S
Input

signals Output signalblack box

The operation of a black box is completely specified by constructing an input/output 
table that lists all its possible input signals together with their corresponding output sig-
nals. For example, the black box pictured above has three input signals. Since each of these 
signals can take the value 1 or 0, there are eight possible combinations of input signals. One 
possible correspondence of input to output signals is as follows:

An Input/Output Table 

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

The third row, for instance, indicates that for inputs P 5 1, Q 5 0, and R 5 1, the output 
S is 0.
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82  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

An efficient method for designing more complicated circuits is to build them by con-
necting less complicated black box circuits. Three such circuits are known as NOT-, AND-,  
and OR-gates.

A NOT-gate (or inverter) is a circuit with one input signal and one output signal. If 
the input signal is 1, the output signal is 0. Conversely, if the input signal is 0, then the 
output signal is 1. An AND-gate is a circuit with two input signals and one output signal. 
If both input signals are 1, then the output signal is 1. Otherwise, the output signal is 0. 
An OR-gate also has two input signals and one output signal. If both input signals are 0, 
then the output signal is 0. Otherwise, the output signal is 1.

The actions of NOT-, AND-, and OR-gates are summarized in Figure 2.4.3, where P 
and Q represent input signals and R represents the output signal. It should be clear from 
Figure 2.4.3 that the actions of the NOT-, AND-, and OR-gates on signals correspond 
exactly to those of the logical connectives ,, `, and ~ on statements, if the symbol 1 is 
identified with T and the symbol 0 is identified with F.

Gates can be combined into circuits in a variety of ways. If the rules shown at the  
bottom of the page are obeyed, the result is a combinational circuit, one whose output at 
any time is determined entirely by its input at that time without regard to previous inputs.

Type of Gate Symbolic Representation Action

NOT P RNOT

Input Output

P R

1 0
0 1

AND
P

Q
RAND

Input Output

P Q R

1 1 1
1 0 0
0 1 0
0 0 0

OR
P

Q
ROR

Input Output

P Q R

1 1 1
1 0 1
0 1 1
0 0 0 

FIGURE 2.4.3

Rules for a Combinational Circuit

Never combine two input wires. 2.4.1

A single input wire can be split partway and used as input for  
two separate gates. 2.4.2

An output wire can be used as input. 2.4.3

No output of a gate can eventually feed back into that gate. 2.4.4
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Rule (2.4.4) is violated in more complex circuits, called sequential circuits, whose 
output at any given time depends both on the input at that time and also on previous inputs. 
These circuits are discussed in Section 12.2.

The Input/Output Table for a Circuit
If you are given a set of input signals for a circuit, you can find its output by tracing through 
the circuit gate by gate.

Determining Output for a Given Input

Indicate the output of the circuits shown below for the given input signals.

a. 
P

Q

RAND
NOT

 Input signals: P 5 0 and Q 5 1

b. P

Q

R
SAND

OR NOT

 Input signals: P 5 1, Q 5 0, R 5 1

Solution

a. Move from left to right through the diagram, tracing the action of each gate on the in-
put signals. The NOT-gate changes P 5 0 to a 1, so both inputs to the AND-gate are 1; 
hence the output R is 1. This is illustrated by annotating the diagram as shown below.

P

Q

NOT
RAND

0 1
1

1

b. The output of the OR-gate is 1 since one of the input signals, P, is 1. The NOT-gate 
changes this 1 into a 0, so the two inputs to the AND-gate are 0 and R 5 1. Hence the 
output S is 0. The trace is shown below.

 
P

Q

R
SAND

OR NOT

1

1

1 0

0

0

 

■

To construct the entire input/output table for a circuit, trace through the circuit to find 
the corresponding output signals for each possible combination of input signals.

Constructing the Input/Output Table for a Circuit

Construct the input/output table for the following circuit.

P

Q

ROR

NOT

Example 2.4.1

Example 2.4.2
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84  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Solution List the four possible combinations of input signals, and find the output for 
each by tracing through the circuit.

Input Output

P Q R

1 1 1

1 0 1

0 1 0

0 0 1

The Boolean Expression Corresponding to a Circuit
In logic, variables such as p, q, and r represent statements, and a statement can have one 
of only two truth values: T (true) or F (false). A statement form is an expression, such as 
p ` (,q ~ r), composed of statement variables and logical connectives.

As noted earlier, one of the founders of symbolic logic was the English mathematician 
George Boole. In his honor, any variable, such as a statement variable or an input signal, 
that can take one of only two values is called a Boolean variable. An expression composed 
of Boolean variables and the connectives ,, `, and ~ is called a Boolean expression.

Given a circuit consisting of combined NOT-, AND-, and OR-gates, a correspond-
ing Boolean expression can be obtained by tracing the actions of the gates on the input 
variables.

Finding a boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits shown below. A black dot 
indicates a soldering of two wires; wires that cross without a dot are assumed not to touch.

P

Q

R

P

Q AND
OR

NOTAND NOT

AND

(a) (b)

AND

Solution

a. Trace through the circuit from left to right, indicating the output of each gate symboli-
cally, as shown below.

P

Q

P ` Q

P ~ Q

~(P ` Q)

(P ~ Q) ` ~(P ` Q)

NOT

AND

AND

OR

The final expression obtained, (P ~ Q) ` ,(P ` Q), is the expression for exclusive or: 
P or Q but not both.

b. The Boolean expression corresponding to the circuit is (P ` Q) ` ,R, as shown on 
the next page.

■

Example 2.4.3
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George Boole 
(1815–1864)

Note Strictly speak-
ing, only meaningful 
expressions such as 
(,p ` q) ~ (p ` r) and 
,(,(p ` q) ~ r) are 
allowed as Boolean, not 
meaningless ones like 
p ,q((rs ~ ` q,. We use 
recursion to give a careful 
definition of Boolean ex-
pressions in Section 5.9.
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 P

Q

R

P ` Q

~R
(P ` Q) ` ~RAND

AND

NOT

 

■

Observe that the output of the circuit shown in Example 2.4.3(b) is 1 for exactly one 
combination of inputs (P 5 1, Q 5 1, and R 5 0) and is 0 for all other combinations of 
inputs. For this reason, the circuit can be said to “recognize” one particular combination 
of inputs. The output column of the input/output table has a 1 in exactly one row and 0’s 
in all other rows.

Definition

A recognizer is a circuit that outputs a 1 for exactly one particular combination of 
input signals and outputs 0’s for all other combinations.

Input/Output Table for a Recognizer

P Q R (P ` Q) ` ,R

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

The Circuit Corresponding to a Boolean Expression
The preceding examples showed how to find a Boolean expression corresponding to a cir-
cuit. The following example shows how to construct a circuit corresponding to a Boolean 
expression. The strategy is to work from the outermost part of the Boolean expression to 
the innermost part, adding logic gates that correspond to the operations in the expression 
as you move from right to left in the circuit diagram.

Constructing Circuits for boolean Expressions

Construct circuits for the following Boolean expressions.

a. (,P ` Q) ~ ,Q b. ((P ` Q) ` (R ` S)) ` T

Solution

a. Write the input variables in a column on the left side of the diagram. Since the last op-
eration executed when evaluating (,P ` Q) ~ ,Q is ~, put an OR-gate at the extreme 

Example 2.4.4
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86  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

right of the diagram. One input to this gate is ,P ` Q, so draw an AND-gate to the 
left of the OR-gate and show its output coming into the OR-gate. Since one input to 
the AND-gate is ,P, draw a line from P to a NOT-gate and from there to the AND-
gate. Since the other input to the AND-gate is Q, draw a line from Q directly to the 
AND-gate. The other input to the OR-gate is ,Q, so draw a line from Q to a NOT-
gate and from the NOT-gate to the OR-gate. The circuit you obtain is shown below.

P

Q

R

S

T

AND
AND

AND

AND

P ` Q (P ` Q) ` (R ` S)

((P ` Q) ` (R ` S)) ` TR ` S
T

 FIGURE 2.4.4 ■

It follows from Theorem 2.1.1 that all the ways of adding parentheses to P ` Q ` R ` S ` T  
give logically equivalent results. Thus, for example,

((P ` Q) ` (R ` S)) ` T ; (P ` (Q ` R)) ` (S ` T),

and hence the circuit in Figure 2.4.5, which corresponds to (P ` (Q ` R)) ` (S ` T), 
has  the same input/output table as the circuit in Figure 2.4.4, which corresponds to  
((P ` Q) ` (R ` S)) ` T .

 FIGURE 2.4.5 

P

Q

R

S

T

AND AND
AND

AND

P ` (Q ` R)
(P ` (Q ` R)) ` (S ` T )Q ` R

S ` T

P

It follows that the circuits in Figures 2.4.4 and 2.4.5 are both implementations of the 
expression P ` Q ` R ` S ` T . Such a circuit is called a multiple-input AND-gate and 
is represented by the diagram shown in Figure 2.4.6. Multiple-input OR-gates are con-
structed similarly.

P

Q
AND

NOT

OR

NOT
~P

~Q

~P ` Q

(~P ` Q) ~ ~Q

b. To start constructing this circuit, put one AND-gate at the extreme right to correspond 
to the `, which is the final operation between ((P ` Q) ` (R ` S)) and T. To the left of 
that gate put the AND-gate corresponding to the ` between P ` Q and R ` S. To the 
left of that gate put the two AND-gates corresponding to the ’̀s between P and Q and 
between R and S. The circuit is shown in Figure 2.4.4.
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Finding a Circuit That Corresponds to a Given Input/Output Table
To this point, we have discussed how to construct the input/output table for a circuit, how 
to find the Boolean expression corresponding to a given circuit, and how to construct the 
circuit corresponding to a given Boolean expression. Now we address the question of how 
to design a circuit (or find a Boolean expression) corresponding to a given input/output 
table. The way to do this is to put several recognizers together in parallel.

Designing a Circuit for a Given Input/Output Table

Design a circuit for the following input/output table:

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

Solution First construct a Boolean expression with this table as its truth table. To do this, 
identify each row for which the output is 1—in this case, the rows 1, 3, and 4. For each such 
row, construct an and expression that produces a 1 (or true) for the exact combination of 
input values for that row and a 0 (or false) for all other combinations of input values.

For example, the expression for row 1 is P ` Q ` R because P ` Q ` R is 1 if P 5 1 and 
Q 5 1 and R 5 1, and it is 0 for all other values of P, Q, and R. The expression for row 3 
is P ` ,Q ` R because P ` ,Q ` R is 1 if P 5 1 and Q 5 0 and R 5 1, and it is 0 for all 
other values of P, Q, and R. Similarly, the expression for row 4 is P ` ,Q ` ,R.

Now any Boolean expression with the given table as its truth table has the value 1 in 
case P ` Q ` R 5 1, or in case P ` ,Q ` R 5 1, or in case P ` ,Q ` ,R 5 1, and in no 
other cases. It follows that a Boolean expression with the given truth table is

 (P ` Q ` R) ~ (P ` ,Q ` R) ~ (P ` ,Q ` ,R). 2.4.5

The circuit corresponding to this expression has the diagram shown in Figure 2.4.7. Ob-
serve that expression (2.4.5) is a disjunction of terms that are themselves conjunctions in 

Example 2.4.5

P

Q

R

S

T

AND

 FIGURE 2.4.6 
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88  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

which one of P or ,P, one of Q or ,Q, and one of R or ,R all appear. Such expressions 
are said to be in disjunctive normal form or sum-of-products form.

 FIGURE 2.4.7 ■

AND
P
Q
R

AND

NOT

NOT

ANDNOT

OR

Simplifying Combinational Circuits
Consider the two combinational circuits shown in Figure 2.4.8.

R

AND
P

Q NOT
OR

AND

AND

R

P

Q

(a)

(b)

AND

 FIGURE 2.4.8 

If you trace through circuit (a), you will find that its input/output table is

Input Output

P Q R

1 1 1

1 0 0

0 1 0

0 0 0
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2.4 APPLICATION: DIGITAL LOGIC CIrCUITS  89

which is the same as the input/output table for circuit (b). Thus these two circuits do the same 
job in the sense that they transform the same combinations of input signals into the same 
output signals. Yet circuit (b) is simpler than circuit (a) in that it contains many fewer logic 
gates. Thus, as part of an integrated circuit, it would take less space and require less power.

Definition

Two digital logic circuits are equivalent if, and only if, their input/output tables 
are identical.

Since logically equivalent statement forms have identical truth tables, you can deter-
mine that two circuits are equivalent by finding the Boolean expressions corresponding 
to the circuits and showing that these expressions, regarded as statement forms, are logi-
cally equivalent. Example 2.4.6 shows how this procedure works for circuits (a) and (b) 
in Figure 2.4.8.

Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in Figure 2.4.8. Use Theorem 2.1.1 to show 
that these expressions are logically equivalent when regarded as statement forms.

Solution The Boolean expressions that correspond to circuits (a) and (b) are  
((P ` ,Q) ~ (P ` Q)) ` Q and P ` Q, respectively. By Theorem 2.1.1,

((P ` ,Q) ~ (P ` Q)) ` Q 

; (P ` (,Q ~ Q)) ` Q by the distributive law

; (P ` (Q ~ , Q)) ` Q by the commutative law for ~

; (P ` t) ` Q by the negation law

; P ` Q by the identity law.

It follows that the truth tables for ((P ` ,Q) ~ (P ` Q)) ` Q and P ` Q are the same. 
Hence the input/output tables for the circuits corresponding to these expressions are also 
the same, and so the circuits are equivalent. ■

In general, you can simplify a combinational circuit by finding the corresponding Bool-
ean expression, using the properties listed in Theorem 2.1.1 to find a Boolean expression 
that is shorter and logically equivalent to it (when both are regarded as statement forms), 
and constructing the circuit corresponding to this shorter Boolean expression.

NAND and NOR Gates
Another way to simplify a circuit is to find an equivalent circuit that uses the least number 
of different kinds of logic gates. Two gates not previously introduced are particularly use-
ful for this: NAND-gates and NOR-gates. A NAND-gate is a single gate that acts like an 
AND-gate followed by a NOT-gate. A NOR-gate acts like an OR-gate followed by a NOT-
gate. Thus the output signal of a NAND-gate is 0 when, and only when, both input signals 
are 1, and the output signal for a NOR-gate is 1 when, and only when, both input signals 
are 0. The logical symbols corresponding to these gates are u  (for NAND) and T (for NOR), 
where u  is called a Sheffer stroke (after H. M. Sheffer, 1882–1964) and T is called a Peirce 
arrow (after C. S. Peirce, 1839–1914; see page 110). Thus

P uQ ; ,(P ` Q) and P T Q ; ,(P ~ Q).

Example 2.4.6

HU
D 

30
5.

25
. H

ar
va

rd
 U

ni
ve

rs
ity

 A
rc

hi
ve

s

H. M. Sheffer  
(1882–1964)
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90  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

The table below summarizes the actions of NAND and NOR gates.

1. The input/output table for a digital logic circuit is 
a table that shows .

2. The Boolean expression that corresponds to a 
digital logic circuit is .

3. A recognizer is a digital logic circuit that .

4. Two digital logic circuits are equivalent if, and 
only if, .

TEST YOURSELF 

Type of Gate Symbolic Representation Action

NAND
P

Q
NAND R

Input Output

P Q R 5 P | Q

1 1 0

1 0 1

0 1 1

0 0 1

NOR
P

Q
RNOR

Input Output

P Q R 5 P T Q

1 1 0

1 0 0

0 1 0

0 0 1

It can be shown that any Boolean expression is equivalent to one written entirely with 
Sheffer strokes or entirely with Peirce arrows. Thus any digital logic circuit is equivalent 
to one that uses only NAND-gates or only NOR-gates. Example 2.4.7 develops part of the 
derivation of this result; the rest is left for the exercises.

Rewriting Expressions Using the Sheffer Stroke

Use Theorem 2.1.1 and the definition of Sheffer stroke to show that

a. ,P ; P uP and b.  P ~ Q ; (P uP) u (Q uQ).

Solution 

a. ,P ;  ,(P ` P) by the idempotent law for `

;  P uP by definition of |.

b. P ~ Q ;  ,(,(P ~ Q)) by the double negative law

;  ,(,P ` ,Q) by De Morgan’s laws

;  ,((P uP) ` (Q uQ))  by part (a)

;  (P uP) u (Q uQ) by definition of |. ■ 

Example 2.4.7
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2.4 APPLICATION: DIGITAL LOGIC CIrCUITS  91

5. A NAND-gate is constructed by placing a  
gate immediately following an  gate.

6. A NOR-gate is constructed by placing a  
gate immediately following an  gate.

Give the output signals for the circuits in 1–4 if the input 
signals are as indicated.

1. P

Q

ROR

NOT

input signals: P 5 1 and Q 5 1

2. 
OR

NOT

P

RQ AND

input signals: P 5 1 and Q 5 0

3. P

Q

R

ORNOT
AND

S

input signals: P 5 1, Q 5 0, R 5 0

4. P

Q

R
NOT

OR
OR

AND

S

input signals: P 5 0, Q 5 0, R 5 0 

In 5–8, write an input/output table for the circuit in the 
referenced exercise.

5. Exercise 1 6. Exercise 2

7. Exercise 3 8. Exercise 4

In 9–12, find the Boolean expression that corresponds to 
the circuit in the referenced exercise.

9. Exercise 1 10. Exercise 2

11. Exercise 3 12. Exercise 4

Construct circuits for the Boolean expressions in 13–17.

13. ,P ~ Q 14. ,(P ~ Q)

15. P ~ (,P ` ,Q) 16. (P ` Q) ~ ,R

17. (P ` ,Q) ~ (,P ` R)

For each of the tables in 18–21, construct (a) a Boolean 
expression having the given table as its truth table and (b) 
a circuit having the given table as its input/output table.

18. P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

19. P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

20. P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1

ExERCISE SET 2.4 
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92  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

21. P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 0

 22. Design a circuit to take input signals P, Q, and R 
and output a 1 if, and only if, P and Q have the 
same value and Q and R have opposite values.

 23. Design a circuit to take input signals P, Q, and R 
and output a 1 if, and only if, all three of P, Q, and 
R have the same value.

 24. The lights in a classroom are controlled by two 
switches: one at the back of the room and one at 
the front. Moving either switch to the opposite 
position turns the lights off if they are on and on if 
they are off. Assume the lights have been installed 
so that when both switches are in the down posi-
tion, the lights are off. Design a circuit to control 
the switches.

 25. An alarm system has three different control panels 
in three different locations. To enable the system, 
switches in at least two of the panels must be in 
the on position. If fewer than two are in the on 
position, the system is disabled. Design a circuit to 
control the switches.

Use the properties listed in Theorem 2.1.1 to show that 
each pair of circuits in 26–29 have the same input/output 
table. (Find the Boolean expressions for the circuits and 
show that they are logically equivalent when regarded as 
statement forms.)

 26. a. P

Q OR
AND

b. P

Q
OR

AND

 27. a. 

b. P

Q
NOTOR

 28. a. 
P

Q

NOT

NOT

NOT

AND

AND

AND

OR

b. P

Q NOT
OR

 29. a.
P

Q
AND

AND OR
NOT

AND
NOT

b. P

Q
OR

For the circuits corresponding to the Boolean expressions 
in each of 30 and 31 there is an equivalent circuit with at 
most two logic gates. Find such a circuit.

 30. (P ` Q) ~ (,P ` Q) ~ (,P ` ,Q)

 31. (,P ` ,Q) ~ (,P ` Q) ~ (P ` ,Q)

 32. The Boolean expression for the circuit in 
Example 2.4.5 is

(P ` Q ` R) ~ (P ` ,Q ` R) ~ (P ` ,Q ` ,R)

(a disjunctive normal form). Find a circuit with at 
most three logic gates that is equivalent to this circuit.

 33. a. Show that for the Sheffer stroke u ,
P ` Q ; (P uQ) u (P uQ).

b. Use the results of Example 2.4.7 and part (a) 
above to write P ` (,Q ~ R) using only  
Sheffer strokes.

P

Q

AND

AND

NOT

NOT
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  93

 34. Show that the following logical equivalences hold 
for the Peirce arrow T, where P T Q ; ,(P ~ Q).
a. ,P ; P T P
b. P ~ Q ; (P T Q) T (P T Q)

c. P ` Q ; (P T P) T (Q T Q)
d. Write P S Q using Peirce arrows only.
e. Write P 4 Q using Peirce arrows only.

H

1. the output signal(s) that correspond to all possible 
combinations of input signals to the circuit 2. a Boolean 
expression that represents the input signals as variables 
and indicates the successive actions of the logic gates on 

the input signals 3. outputs a 1 for exactly one particular 
combination of input signals and outputs 0’s for all other 
combinations 4. they have the same input/output table 
5. NOT; AND 6. NOT; OR

ANSWERS FOR TEST YOURSELF  

Application: Number Systems 
and Circuits for Addition
Counting in binary is just like counting in decimal if you are all thumbs. —Glaser and Way

In elementary school, you learned the meaning of decimal notation: that to interpret a 
string of decimal digits as a number, you mentally multiply each digit by its place value. 
For instance, 5,049 has a 5 in the thousands place, a 0 in the hundreds place, a 4 in the tens 
place, and a 9 in the ones place. Thus

5,049 5 5?(1,000)10?(100)14?(10)19?(1).

Using exponential notation, this equation can be rewritten as

5,049 5 5?103 10?102 14?101 19?100.

More generally, decimal notation is based on the fact that any positive integer can be writ-
ten uniquely as a sum of products of the form

d?10n,

where each n is a nonnegative integer and each d is one of the decimal digits 0, 1, 2, 3, 4, 
5, 6, 7, 8, or 9. The word decimal comes from the Latin root deci, meaning “ten.” Decimal 
(or base 10) notation expresses a number as a string of digits in which each digit’s posi-
tion indicates the power of 10 by which it is multiplied. The right-most position is the ones 
place (or 100 place), to the left of that is the tens place (or 101 place), to the left of that is the 
hundreds place (or 102 place), and so forth, as illustrated below.

Place
103  

thousands
102  

hundreds
101  
tens

100  
ones

Decimal Digit 5 0 4 9

Binary Representation of Numbers
There is nothing sacred about the number 10; we use 10 as a base for our usual number 
system because we happen to have ten fingers. In fact, any integer greater than 1 can serve 
as a base for a number system. In computer science, base 2 notation, or binary notation, 
is of special importance because the signals used in modern electronics are always in one 
of only two states. (The Latin root bi means “two.”)

2.5
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94  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

In Section 5.4, we show that any integer can be represented uniquely as a sum of prod-
ucts of the form

d ? 2n,

where each n is an integer and each d is one of the binary digits (or bits) 0 or 1. For example,

27 5 16181211

5 1?24 11?23 10?22 11?21 11?20.

In binary notation, as in decimal notation, we write just the binary digits, and not the 
powers of the base. In binary notation, then,

1 24 1 23 0 22 1 21 1 20

2710 5

??111 1???

1 1 0 1 1 2

where the subscripts indicate the base, whether 10 or 2, in which the number is written. 
The places in binary notation correspond to the various powers of 2. The right-most posi-
tion is the ones place (or 20 place), to the left of that is the twos place (or 21 place), to the 
left of that is the fours place (or 22 place), and so forth, as illustrated below.

Place
24  

sixteens
23  

eights
22  

fours
21  

twos
20  

ones

Binary Digit 1 1 0 1 1

As in the decimal notation, leading zeros may be added or dropped as desired. For 
example,

00310 5 310 5 1?21 11?20 5 112 5 0112.

binary Notation for Integers from 1 to 9

Derive the binary notation for the integers from 1 to 9.

Solution 110 5
 

1?20 5 12

 210 5 1?21 10?20 5 102

 310 5 1?21 11?20 5 112

 410 5 1?22 10?21 10?20 5 1002

 510 5 1?22 10?21 11?20 5 1012

 610 5 1?22 11?21 10?20 5 1102

 710 5 1?22 11?21 11?20 5 1112

 810 5 1?23 10?22 10?21 10?20 5 10002

 910 5 1?23 10?22 10?21 11?20 5 10012 ■

Example 2.5.1
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  95

A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary con-
versions. See Table 2.5.1.

TAbLE 2.5.1 Powers of 2

Power of 2 210 29 28 27 26 25 24 23 22 21 20

Decimal Form 1024 512 256 128 64 32 16 8 4 2 1

Converting a binary to a Decimal Number

Represent 1101012 in decimal notation.

Solution 1101012 5 1?25 11?24 10?23 11?22 10?21 11?20
 

5 321161411

5 5310

Alternatively, the schema below may be used.

 

2
5 5

32

2
4 5

16

2
3 5

8

2
2 5

4

2
1 5

2

2
0 5

1

1 1 0 1 0 12

1 1 5 1
0 2 5 0
1 4 5 4
0 8 5 0

1 16 5 16
1 32 5 32

5310

?
?
?
?

?
?

 

■

Converting a Decimal to a binary Number

Represent 209 in binary notation.

Solution Use Table 2.5.1 to write 209 as a sum of powers of 2, starting with the highest 
power of 2 that is less than 209 and continuing to lower powers.

Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128. Hence

20910 5 1281a smaller number.

Now 2092128 5 81, and 81 is between 64 and 128, so the highest power of 2 that is less 
than 81 is 64. Hence

20910 5 1281641a smaller number.

Continuing in this way, you obtain

20910 5 12816411611

5 1?27 11?26 10?25 11?24 10?23 10?22 10?21 11?20.

For each power of 2 that occurs in the sum, there is a 1 in the corresponding position 
of the binary number. For each power of 2 that is missing from the sum, there is a 0 in the 
corresponding position of the binary number. Thus

 20910 5 110100012 ■

Another procedure for converting from decimal to binary notation is discussed in 
Section 5.1.

Example 2.5.2

Example 2.5.3
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96  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Binary Addition and Subtraction
The computational methods of binary arithmetic are analogous to those of decimal arith-
metic. In binary arithmetic the number 2 (which equals 102 in binary notation) plays a role 
similar to that of the number 10 in decimal arithmetic.

Addition in Binary Notation

Add 11012 and 1112 using binary notation.

Solution Because 210 5 102 and 110 5 12, the translation of 110 1110 5 210 to binary 
notation is

12

1  12

102

 

It follows that adding two 1’s together results in a carry of 1 when binary notation is used. 
Adding three 1’s together also results in a carry of 1 since 310 5 112 (“one one base two”).

12

1  12

1  12

112

Thus the addition can be performed as follows:

 1
1
1

1
1

0
1

12

1 1 12

1 0 1 0 02

 
■

Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.

Solution In decimal subtraction the fact that 1010 2110 5 910 is used to borrow across 
several columns. For example, consider the following:

1 0 0 010

2 5 810

9 4 210

In binary subtraction it may also be necessary to borrow across more than one column. 
But when you borrow a 12 from 102, what remains is 12.

102

2 12

12

Thus the subtraction can be performed as follows:

 

1 1 0 0 02

2 1 0 1 12

1 1 0 12

 
■

Example 2.5.4

d carry row

Example 2.5.5

0 1 1
  1  1  1  d borrow row

!
Caution! Do not read 
102 as “ten”; it is the num-
ber two. Read 102 as “one 
oh base two.”

9 9
 1 1  d borrow row
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  97

Circuits for Computer Addition
Consider the question of designing a circuit to produce the sum of two binary digits P 
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 112 5 102,

12 102 5 12 5 012,

02 112 5 12 5 012,

02 102 5 02 5 002.

It follows that the circuit must have two outputs—one for the left binary digit (this 
is called the carry) and one for the right binary digit (this is called the sum). The carry 
output is 1 if both P and Q are 1; it is 0 otherwise. Thus the carry can be produced using 
the AND-gate circuit that corresponds to the Boolean expression P ` Q. The sum output 
is 1 if either P or Q, but not both, is 1. The sum can, therefore, be produced using a circuit 
that corresponds to the Boolean expression for exclusive or: (P ~ Q) ` ,(P ` Q). (See 
Example 2.4.3(a).) Hence, a circuit to add two binary digits P and Q can be constructed as 
in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER

Circuit

P

Q
NOT

AND

AND

OR
Sum

Carry

FIGURE 2.5.1 Circuit to Add P1Q, Where P and Q Are Binary Digits

Input/OutputTable
P Q Carry Sum

1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 0

Now consider the question of how to construct a circuit to add two binary integers, each 
with more than one digit. Because the addition of two binary digits may result in a carry to 
the next column to the left, it may be necessary to add three binary digits at certain points. 
In the following example, the sum in the right column is the sum of two binary digits, and, 
because of the carry, the sum in the left column is the sum of three binary digits.

1 12

1  1 12

1 1 02

Thus, in order to construct a circuit that will add multidigit binary numbers, it is neces-
sary to incorporate a circuit that will compute the sum of three binary digits. Such a circuit 
is called a full-adder. Consider a general addition of three binary digits P, Q, and R that 
results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P
1 Q

1 R

CS

The operation of the full-adder is based on the fact that addition is a binary operation: 
Only two numbers can be added at one time. Thus P is first added to Q and then the result 

1  d carry row
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98  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

is added to R. For instance, consider the following addition:

12

1  02
612 102 5 012612 112 5 102

1 12

102

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 1: Add P and Q using a half-adder to obtain a binary number with two digits.

P

1   Q

C1S1

Step 2: Add R to the sum C1 S1 of P and Q.

C1S1

1   R  

 To do this, proceed as follows:

Step 2a: Add R to S1 using a half-adder to obtain the two-digit number C2S.

S1

1 R

C2S

 Then S is the right-most digit of the entire sum of P, Q, and R.

Step 2b:  Determine the left-most digit, C, of the entire sum as follows: First note that it 
is impossible for both C1 and C2 to be 1’s. For if C1 5 1, then P and Q are both 
1, and so S1 5 0. Consequently, the addition of S1 and R gives a binary number  
C2S1 where C2 5 0. Next observe that C will be a 1 in the case that the addition 
of P and Q gives a carry of 1 or in the case that the addition of S1 (the right-most 
digit of P1Q) and R gives a carry of 1. In other words, C 5 1 if, and only if, 
C1 5 1 or C2 5 1. It follows that the circuit shown in Figure 2.5.2 will compute 
the sum of three binary digits.

FULL-ADDER

Circuit Input/Output Table

half-adder #1

half-adder #2

OR
P

Q

R

C

S

C1

C2

S1

FIGURE 2.5.2 Circuit to Add P1Q1R, Where P, Q, and R Are Binary Digits

P Q R C S

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  99

Two full-adders and one half-adder can be used together to build a circuit that will add 
two three-digit binary numbers P Q R and S T U to obtain the sum WX Y Z . This is illustrated 
in Figure 2.5.3. Such a circuit is called a parallel adder. Parallel adders can be constructed 
to add binary numbers of any finite length.

half-adder

R

U

Q

T

P

S

C2

C1

S1 = Z

S2 = Y

S3 = X

C3 = W

full-adder

full-adder

FIGURE 2.5.3 A Parallel Adder to Add PQR and STU to Obtain WXYZ

Two’s Complements and the Computer Representation 
of Signed Integers
Typically a fixed number of bits is used to represent integers on a computer. One way to 
do this is to select a particular bit, normally the left-most, to indicate the sign of the inte-
ger, and to use the remaining bits for its absolute value in binary notation. The problem 
with this approach is that the procedures for adding the resulting numbers are somewhat 
complicated and the representation of 0 is not unique. A more common approach is to use 
“two’s complements,” which makes it possible to add integers quite easily and results in a 
unique representation for 0. Bit lengths of 64 and (sometimes) 32 are most often used in 
practice, but, for simplicity and because the principles are the same for all bit lengths, this 
discussion will focus on a bit length of 8.

We will show how to use eight bits to represent the 256 integers from 2128 through 127 
and how to perform additions and subtractions within this system of numbers. When the 
more realistic 32-bit two’s complements system is used, more than 4 billion integers can 
be represented.

Definition

The 8-bit two’s complement for an integer a between 2128 and 127 is the 8-bit 

binary representation for 5a if a $ 0

28 2 ua u if a , 0.

Thus the 8-bit representation for a nonnegative integer is the same as its 8-bit binary 
representation. As a concrete example for the negative integer 246, observe that

(282u246 u )10 5 (256246)10 5 21010 5 (12816411612)10 5 110100102,.

and so the 8-bit two’s complement for 246 is 11010010.
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100  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

For negative integers, however, there is a more convenient way to compute two’s com-
plements, which involves less arithmetic than applying the definition directly.

The 8-bit Two’s Complement for a Negative Integer

The 8-bit two’s complement for a negative integer a that is at least 2128 can be 
obtained as follows:

 ● Write the 8-bit binary representation for ua u .
 ● Switch all the 1’s to 0’s and all the 0’s to 1’s. (This is called flipping, or comple-

menting, the bits.)

 ● Add 1 in binary notation.

Finding a Two’s Complement

Use the method described above to find the 8-bit two’s complement for 246.

Solution Write the 8-bit binary representation for u246 u  (546), switch all the 1’s to 0’s 
and all the 0’s to 1’s, and then add 1.

Example 2.5.6

u246 u10 5 4610 5 (32181412)10 5 001011102  11010001  1101 0010.
flip the bits add 1

Note that this is the same result as was obtained directly from the definition. ■

The fact that the method for finding 8-bit two’s complements works in general depends 
on the following facts:

1. The binary representation of 28 21 is 111111112.
2. Subtracting an 8-bit binary number a from 111111112 switches all the 1’s to 0’s 

and all the 0’s to 1’s.
3. 28 2 ua u 5 [(28 21)2 ua u ]11 for any number a.

Here is how the facts are used when a 5 246:

1 1 1 1 1 1 1 1 4 28 21

4 u246 u0 0 1 0 1 1 1 0

1 1 0 1 0 0 0 1 4 (28 21)2 u246 u

4 11

4 28 2 u246 u

1 is added 1 0 0 0 0 0 0 0 1

1 1 0 1 0 0 1 0

Because 127 is the largest integer represented in the 8-bit two’s complement system and 
because 12710 5 011111112, all the 8-bit two’s complements for nonnegative integers have 
a leading bit of 0. Moreover, because the bits are switched, the leading bit for all the nega-
tive integers is 1. Table 2.5.2 illustrates the 8-bit two’s complement representations for the 
integers from 2128 through 127.

0’s and 1’s are 
switched

Q
R
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  101

TAbLE 2.5.2

Integer
8-Bit Two’s 

Complement

Decimal Form of 
Two’s Complement for  

Negative Integers

127 01111111

126 01111110
. . .

. . .

2 00000010

1 00000001

0 00000000

21 11111111 28 21

22 11111110 28 22

23 11111101 28 23
. . .

. . .
. . .

2127 10000001 28 2127

2128 10000000 28 2128

Observe that if the two’s complement procedure is used on 11010010, which is the two’s 
complement for 246, the result is

1101 0010  0010 1101  0010 1110, 

which is the two’s complement for 46. In general, if the two’s complement procedure is  
applied to a positive or negative integer in two’s complement form, the result is the negative 
(or opposite) of that integer. The only exception is the number 2128. (See exercise 37a.)

flip the bits add 1

To find the decimal representation of the negative integer with a given 8-bit two’s 
complement:

 ● Apply the two’s complement procedure to the given two’s complement.

 ● Write the decimal equivalent of the result.

Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with two’s complement 10101001?

Solution Since the left-most digit is 1, the integer is negative. Applying the two’s com-
plement procedure gives the following result:

1010 1001  0101 0110  0101 01112

5 (64116141211)10 5 8710 5 u287 u10. 

So the answer is 287. You can check its correctness by deriving the two’s complement of 
287 directly from the definition:

 (28 2 u287 u )10 5 (256287)10 5 16910 5 (1281321811)10 5 101010012. ■

Example 2.5.7

flip the bits add 1
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102  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Addition and Subtraction with Integers  
in Two’s Complement Form 

The main advantage of a two’s complement representation for integers is that the same 
computer circuits used to add nonnegative integers in binary notation can be used for both 
additions and subtractions of integers in a two’s complement system of numeration. First 
note that because of the algebraic identity

a2b 5 a1 (2b) for all real numbers,

any subtraction problem can be changed into an addition one. For example, suppose you 
want to compute 78246. This equals 781 (246), which should give an answer of 32. To 
see what happens when you add the numbers in their two’s complement forms, observe 
that the 8-bit two’s complement for 78 is the same as the ordinary binary representation 
for 78, which is 01001110 because 78 5 64181412, and, as previously shown, the 8-bit 
two’s complement for 246 is 11010010. Adding the numbers using binary addition gives 
the following:

0 1 0 0 1 1 1 0 4 78

1 1 1 0 1 0 0 1 0 4 246

1 0 0 1 0 0 0 0 0 4 32?

The result has a carry bit of 1 in the ninth, or 28th, position, but if you discard it, you ob-
tain 00100000, which is the correct answer in 8-bit two’s complement form because, since 
32 5 28,

3210 5 001000002.

In general, if you add numbers in 8-bit two’s complement form and get a carry bit of 
1 in the ninth, or 28th position, you should discard it. Using this procedure is equivalent 
to reducing the sum of the numbers “modulo 28,” and it gives results that are correct in 
ordinary decimal arithmetic as long as the sum of the two numbers is within the fixed-bit-
length system of integer representations you are using, in this case those between 2128 and 
127. The fact that this method produces correct results follows from general properties of 
modular arithmetic, which is discussed at length in Section 8.4.

General Procedure for Using 8-bit Two’s Complements to Add Two Integers

To add two integers in the range 2128 through 127 whose sum is also in the range 
2128 through 127:

 ● Convert both integers to their 8-bit two’s complement representations.

 ● Add the resulting integers using ordinary binary addition, discarding any carry bit 
of 1 that may occur in the 28th position.

 ● Convert the result back to decimal form.

When integers are restricted to the range 2128 through 127, you can easily  
imagine adding two integers and obtaining a sum outside the range. For instance, 
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  103

(287)1 (246) 5 2133, which is less than 2128 and, therefore, requires more than eight 
bits for its representation. Because this result is outside the 8-bit fixed-length register 
system imposed by the architecture of the computer, it is often labeled “overflow error.” 
In the more realistic environment where integers are represented using 64 bits, they can 
range from less than 21019 to more than 1019. So a vast number of integer calculations 
can be made without producing overflow error. And even if a 32-bit fixed integer length 
is used, nearly 4 billion integers are represented within the system.

Detecting overflow error turns out to be quite simple. The 8-bit two’s complement sum 
of two integers will be outside the range from 2128 through 127 if, and only if, the integers 
are both positive and the sum computed using 8-bit two’s complements is negative, or if the 
integers are both negative and the sum computed using 8-bit two’s complement is positive. 
To see a concrete example for how this works, consider trying to add (287) and (246). 
Here is what you obtain:

1 0 1 0 1 0 0 1 4 287

1 1 1 0 1 0 0 1 0 4 246

1 0 1 1 1 1 0 1 1

When you discard the 1 in the 28th position, you find that the leading digit of the result 
is 0, which would mean that the number with the two’s complement representation for 
the sum of two negative numbers would be positive. So the computer signals an over-
flow error.*

Hexadecimal Notation
It should now be obvious that numbers written in binary notation take up much more space 
than numbers written in decimal notation. Yet many aspects of computer operation can 
best be analyzed using binary numbers. Hexadecimal notation is even more compact than 
decimal notation, and it is much easier to convert back and forth between hexadecimal and 
binary notation than it is between binary and decimal notation. The word hexadecimal 
comes from the Greek root hex-, meaning “six,” and the Latin root deci-, meaning “ten.” 
Hence hexadecimal refers to “sixteen,” and hexadecimal notation is also called base 16 
notation. Hexadecimal notation is based on the fact that any integer can be uniquely ex-
pressed as a sum of numbers of the form

d?16n,

where each n is a nonnegative integer and each d is one of the integers from 0 to 15. In 
order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol. 
The integers 10 through 15 are represented by the symbols A, B, C, D, E, and F. The 16 
hexadecimal digits are shown in Table 2.5.3, together with their decimal equivalents and, 
for future reference, their 4-bit binary equivalents.

*If the carry bit had not been discarded and if the resulting 9 bits could be processed using a “9-bit two’s 
complement conversion procedure,” the result of 101111011 would convert to 2133, which is the correct 
answer. However, the computer signals an error because 2133 is not representable within its 8-bit two’s 
complement system. 
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104  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

TAbLE 2.5.3

Decimal Hexadecimal 4-Bit Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110
7 7 0111
8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.

Solution A schema similar to the one introduced in Example 2.5.2 can be used here.

 

16
2 5

25
6

16
1 5

16

16
0 5

1

316 C16 F16

310 1210 1510

15 1 15
12 16 192

3 256 768
97510

·
·
·

5
5
5

555

So 3CF16 5 97510. ■

Now consider how to convert from hexadecimal to binary notation. In the example 
below the numbers are rewritten using powers of 2, and the laws of exponents are applied. 
The result suggests a general procedure.

Example 2.5.8

16
3 5

40
96

16
2 5

25
6

16
1 5

16

16
0 5

1

C16 516 016 A16

1210 510 010 1010

10 160 (23 2) 1 23 2 since 10 23 2
0 161 0 24 0 since 161 24

5 162 (22 1) 28 210 28 since 5 22 1, 162 (24)2 28 and 22 28 210

12 163 (23 22) 212 215 214 since 12 23 22, 162 (24)3 212,
23 ·

·

·
··

·
·
·

·

·

·

212 215, and 22 212 2145
1
1

1
1

1 15
5
5
5

5
5
5
5

5
55

55 1

1

5

5 1

5 5

5

5555
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  105

But

(215 1214)1 (210 128)101 (23 12)

5 1100 0000 0000 00002 10101 0000 00002 by the rules for writing

10000 00002 110102 binary numbers.

So

C50A16 5 1100 0101 0000 10102

C16 516 016 A16 

The procedure illustrated in this example can be generalized. In fact, the following 
sequence of steps will always give the correct answer.

55 5 5

 by the rules for adding  
binary numbers.

To convert an integer from hexadecimal to binary notation:

 ● Write each hexadecimal digit of the integer in 4-bit binary notation.

 ● Juxtapose the results.

To convert an integer from binary to hexadecimal notation:

 ● Group the digits of the binary number into sets of four, starting from the right and 
adding leading zeros as needed.

 ● Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose 
those hexadecimal digits.

Converting from Hexadecimal to binary Notation

Convert B09F16 to binary notation.

Solution B16 5 1110 5 10112, 016 5 010 5 00002, 916 5 910 5 10012, and F16 5 1510 5 
11112. Consequently,

B 0 9 F

D D D D
1011 0000 1001 1111

and the answer is 10110000100111112. ■

To convert integers written in binary notation into hexadecimal notation, reverse the 
steps of the previous procedure. Note that the commonly used computer representation for 
integers uses 32 bits. When these numbers are written in hexadecimal notation only eight 
characters are needed.

Example 2.5.9

Converting from binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.

Solution First group the binary digits in sets of four, working from right to left and add-
ing leading 0’s if necessary.

0100 1101 1010 1001.

Example 2.5.10
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106  CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Convert each group of four binary digits into a hexadecimal digit.

0100 1101 1010 1001

D D D D
4 D A 9

Then juxtapose the hexadecimal digits.

 4DA916 ■

Reading a Memory Dump

The smallest addressable memory unit on most computers is one byte, or eight bits. In some 
debugging operations a dump is made of memory contents; that is, the contents of each 
memory location are displayed or printed out in order. To save space and make the output 
easier on the eye, the hexadecimal versions of the memory contents are given, rather than 
the binary versions. Suppose, for example, that a segment of the memory dump looks like

A3 BB 59 2E.

What is the actual content of the four memory locations?

Solution

A316 5 101000112

BB16 5 101110112

5916 5 010110012

 2E16 5 001011102 ■

Example 2.5.11

1. To represent a nonnegative integer in binary nota-
tion means to write it as a sum of products of the 
form , where .

2. To add integers in binary notation, you use the 
facts that 12 112 5  and 12 112 112 5  

.

3. To subtract integers in binary notation, you use the 
facts that 102 212 5  and 112 212 5  .

4. A half-adder is a digital logic circuit that , 
and a full-adder is a digital logic circuit that .

5. If a is an integer with 2128 # a # 127, the 8-bit 
two’s complement of a is  if a $ 0 and is 

 if a < 0.

6. To find the 8-bit two’s complement of a negative 
integer a that is at least 2128, you , , 
and .

7. To add two integers in the range 2128 through 
127 whose sum is also in the range 2128 through 
127, you , , , and .

8. To represent a nonnegative integer in hexadecimal 
notation means to write it as a sum of products of 
the form , where .

9. To convert a nonnegative integer from hexadeci-
mal to binary notation, you  and .

TEST YOURSELF

Represent the decimal integers in 1–6 in binary notation.

1. 19 2. 55 3. 287

4. 458 5. 1609 6. 1424

Represent the integers in 7–12 in decimal notation.

7. 11102 8. 101112 9. 1101102

10. 11001012 11. 10001112 12. 10110112

ExERCISE SET 2.5  
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2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION  107

Perform the arithmetic in 13–20 using binary notation.

13.  10112

1 1012

 14. 
 

10012

110112

 15. 1011012

1 111012
 

16.  1101110112

110010110102

 17.  101002

2 11012

 18.  110102

2 11012

 19. 
1011012

2 100112

 20.  10101002

2 101112

 21. Give the output signals S and T for the circuit 
shown below if the input signals P, Q, and R are 
as specified. Note that this is not the circuit for a 
full-adder.
a. P 5 1, Q 5 1, R 5 1
b. P 5 0, Q 5 1, R 5 0
c. P 5 1, Q 5 0, R 5 1

half-adder #1

half-adder #2

P

Q

R

S

T

C1

C2

S1 AND

 22. Add 111111112 112 and convert the result to deci-
mal notation, to verify that 111111112 5 (28 21)10.

Find the 8-bit two’s complements for the integers in 23–26.

 23. 223 24.  267 25.  24 26.  2115

Find the decimal representations for the integers with the 
8-bit two’s complements given in 27–30.

 27. 11010011 28.  10011001

 29. 11110010 30.  10111010

Use 8-bit two’s complements to compute the sums in 31–36.

 31. 571 (2118) 32.  621 (218)

 33. (26)1 (273) 34.  891 (255)

 35. (215)1 (246) 36.  1231 (294)

 37. a.  Show that when you apply the 8-bit two’s com-
plement procedure to the 8-bit two’s complement 
for 2128, you get the 8-bit two’s complement  
for 2128.

*b.   Show that if a, b, and a1b are integers in the 
range 1 through 128, then

(28 2a)1 (28 2  b) 5 (28 2 (a1b))128 $ 28 127.

   Explain why it follows that if integers a, b, and 
a1b are all in the range 1 through 128, then 
the 8-bit two’s complement of (2a)1 (2b) is a 
negative number.

Convert the integers in 38–40 from hexadecimal to deci-
mal notation.

 38.  A2BC16 39.  E0D16 40.  39EB16

Convert the integers in 41–43 from hexadecimal to binary 
notation.

 41.  1C0ABE16 42.  B53DF816 43.  4ADF8316

Convert the integers in 44–46 from binary to hexadeci-
mal notation.

 44. 001011102  45.  10110111110001012

 46. 110010010111002

 47. Octal Notation: In addition to binary and 
hexadecimal, computer scientists also use 
octal notation (base 8) to represent numbers. 
Octal notation is based on the fact that any 
integer can be uniquely represented as a sum 
of numbers of the form d?8n, where each n 
is a nonnegative integer and each d is one of 
the integers from 0 to 7. Thus, for example, 
50738 5 5?83 10?82 17?81 13?80 5 261910.
a. Convert 615028 to decimal notation.
b. Convert 207638 to decimal notation.
c. Describe methods for converting integers from 

octal to binary notation and the reverse that are 
similar to the methods used in Examples 2.5.9 
and 2.5.10 for converting back and forth from 
hexadecimal to binary notation. Give examples 
showing that these methods result in correct 
answers.

1. d?2n; d 5 0 or d 5 1, and n is a nonnegative integer  
2. 102; 112 3. 12; 102 4. outputs the sum of any two 
binary digits; outputs the sum of any three binary 
digits 5. the 8-bit binary representation of a; the 8-bit 
binary representation of 28 2a 6. write the 8-bit binary 
representation of a; flip the bits; add 1 in binary notation  

7. convert both integers to their 8-bit two’s complements; 
add the results using binary notation; truncate any leading 
1; convert back to decimal form 8. d?16n; d 5 0, 1, 2, Á  
9, A, B, C, D, E, F, and n is a nonnegative integer 9. write 
each hexadecimal digit in 4-bit binary notation; juxtapose 
the results

ANSWERS FOR TEST YOURSELF 
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Chapter 1

108

Chapter 3 THE LOGIC OF QUANTIFIED 
STATEMENTS

In Chapter 2 we discussed the logical analysis of compound statements—those made of 
simple statements joined by the connectives ,, `, ~, S, and 4. Such analysis casts light 
on many aspects of human reasoning, but it cannot be used to determine validity in the 
majority of everyday and mathematical situations. For example, the argument

All men are mortal.

Socrates is a man.

[ Socrates is mortal.

is intuitively perceived as correct. Yet its validity cannot be derived using the methods out-
lined in Section 2.3. To determine validity in examples like this, it is necessary to separate 
the statements into parts in much the same way that you separate declarative sentences 
into subjects and predicates. And you must analyze and understand the special role played 
by words that denote quantities such as “all” or “some.” The symbolic analysis of predi-
cates and quantified statements is called the predicate calculus. The symbolic analysis 
of ordinary compound statements (as outlined in Sections 2.1–2.3) is called the statement 
calculus (or the propositional calculus).

Predicates and Quantified Statements I
Á  it was not till within the last few years that it has been realized how fundamental 
any and some are to the very nature of mathematics. —A. N. Whitehead (1861–1947)

As noted in Section 2.1, the sentence “x2 12 5 11” is not a statement because it may be 
either true or false depending on the value of x. Similarly, the sentence “x1y . 0” is not a 
statement because its truth value depends on the values of the variables x and y.

In grammar, the word predicate refers to the part of a sentence that gives information 
about the subject. In the sentence “James is a student at Bedford College,” the word James 
is the subject and the phrase is a student at Bedford College is the predicate. The predicate 
is the part of the sentence from which the subject has been removed.

In logic, predicates can be obtained by removing some or all of the nouns from a state-
ment. For instance, let P stand for “is a student at Bedford College” and let Q stand for “is a 
student at.” Then both P and Q are predicate symbols. The sentences “x is a student at Bed-
ford College” and “x is a student at y” are symbolized as P(x) and as Q(x, y), respectively, 
where x and y are predicate variables that take values in appropriate sets. When concrete 
values are substituted in place of predicate variables, a statement results. For simplicity, 
we define a predicate to be a predicate symbol together with suitable predicate variables. 
In some other treatments of logic, such objects are referred to as propositional functions 
or open sentences.

3.1
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3.1 PREDICATES AND QUANTIFIED STATEMENTS I  109

Finding Truth Values of a Predicate

Let P(x) be the predicate “x2 . x” with domain the set R of all real numbers. Write  

P(2), P_12+, and P_21
2+, and indicate which of these statements are true and which are false.

Solution

P(2): 22 . 2, or 4 . 2. True.

PS1

2D: S1

2D2

.
1

2
, or 1

4
.

1

2
. False.

 PS2
1

2D: S2
1

2D2

. 2
1

2
 or 1

4
. 2

1

2
. True. ■

When an element in the domain of the variable of a one-variable predicate is substituted 
for the variable, the resulting statement is either true or false. The set of all such elements 
that make the predicate true is called the truth set of the predicate.

Example 3.1.1

 Definition

A predicate is a sentence that contains a finite number of variables and becomes 
a statement when specific values are substituted for the variables. The domain of a 
predicate variable is the set of all values that may be substituted in place of the variable.

Definition

If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all ele-
ments of D that make P(x) true when they are substituted for x. The truth set of 
P(x) is denoted

{x [ D u  P(x)}.

Note Recall that we read 
these symbols as “the 
set of all x in D such that 
P(x).”

Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.” Find the truth set of Q(n) if

a. the domain of n is Z1, the set of all positive integers

b. the domain of n is Z, the set of all integers.

Solution
a. The truth set is {1, 2, 4, 8} because these are exactly the positive integers that 

divide 8 evenly.

b. The truth set is {1, 2, 4, 8, 21, 22, 24, 28} because the negative integers 21, 22, 24, 
and 28 also divide into 8 without leaving a remainder. ■

The Universal Quantifier: ;
One sure way to change predicates into statements is to assign specific values to all their 
variables. For example, if x represents the number 35, the sentence “x is (evenly) divisible 
by 5” is a true statement since 35 5 5?7. Another way to obtain statements from predicates 
is to add quantifiers. Quantifiers are words that refer to quantities such as “some” or “all” 

Example 3.1.2
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110  CHAPTEr 3 tHe LOGic Of Quantified statements

and tell for how many elements a given predicate is true. The formal concept of quantifier 
was introduced into symbolic logic in the late nineteenth century by the American philoso-
pher, logician, and engineer Charles Sanders Peirce and, independently, by the German 
logician Gottlob Frege.

The symbol 5 is called the universal quantifier. Depending on the context, it is read as 
“for every,” “for each,” “for any,” “given any,” or “for all.” For example, another way to express 
the sentence “Every human being is mortal” or “All human beings are mortal” is to write

5 human beings x, x is mortal,

which you would read as “For every human being x, x is mortal.” If you let H be the set of 
all human beings, then you can symbolize the statement more formally by writing

5x [ H, x is mortal.

Think of the symbol x as an individual but generic object, with all the properties shared 
by every human being but with no other properties. Because x is individual, even if you 
read 5 as “for all,” you should use the singular verb and say, “For all x in H, x is mortal” 
rather than “For all x in H, x are mortal.”

In a universally quantified sentence the domain of the predicate variable is generally 
indicated either between the 5 symbol and the variable name (as in 5 human being x) or 
immediately following the variable name (as in 5x [ H). In sentences containing a mix-
ture of symbols and words, the 5 symbol can refer to two or more variables. For instance, 
you could symbolize “For all real numbers x and y, x1y 5 y1x.” as “5 real numbers x 
and y, x1y 5 y1x.”*

Sentences that are quantified universally are defined as statements by giving them the 
truth values specified in the following definition:

Charles Sanders Peirce 
(1839–1914)

Fi
ne

 A
rt

 Im
ag

es
/G

lo
w

 Im
ag

es

Note Think “for every” 
when you see the symbol 5.

Gottlob Frege  
(1848–1925)

Pi
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or
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l P
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ss
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./A
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m

y 
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k 
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ot

o

Definition

Let Q(x) be a predicate and D the domain of x. A universal statement is a statement 
of the form “5x [ D, Q(x).” It is defined to be true if, and only if, Q(x) is true for 
each individual x in D. It is defined to be false if, and only if, Q(x) is false for at least 
one x in D. A value for x for which Q(x) is false is called a counterexample to the 
universal statement.

Truth and Falsity of Universal Statements

a. Let D 5 {1, 2, 3, 4, 5}, and consider the statement

5x [ D, x2 $ x.

Write one way to read this statement out loud, and show that it is true.

b. Consider the statement

5x [ R, x2 $ x.

Find a counterexample to show that this statement is false.

Example 3.1.3

*More formal versions of symbolic logic would require a separate 5 for each variable:  
“5x [ R(5y [ R(x1y 5 y1x)).”
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3.1 Predicates and Quantified statements i  111

Solution
a. “For every x in the set D, x2 is greater than or equal to x.” The inequalities below show 

that “x2 $ x” is true for each individual x in D.

12 $ 1,  22 $ 2,  32 $ 3,  42 $ 4,  52 $ 5.

Hence “5x [ D, x2 $ x” is true.

b. Counterexample: The statement claims that x2 $ x for every real number x. But when 
x 5

1
2, for example,

S1

2D2

5
1

4
 à 

1

2
.

Hence “5x [ R, x2 $ x” is false. ■

The technique used to show the truth of the universal statement in Example 3.1.3(a) is 
called the method of exhaustion. It consists of showing the truth of the predicate sepa-
rately for each individual element of the domain. (The idea is to exhaust the possibilities 
before you exhaust yourself!) This method can, in theory, be used whenever the domain 
of the predicate variable is finite. In recent years the prevalence of digital computers has 
greatly increased the convenience of using the method of exhaustion. Computer expert 
systems, or knowledge-based systems, use this method to arrive at answers to many of 
the questions posed to them. Because most mathematical sets are infinite, however, the 
method of exhaustion can rarely be used to derive general mathematical results.

The Existential Quantifier: '
The symbol E denotes “there exists” and is called the existential quantifier. For example, 
the sentence “There is a student in Math 140” can be written as

E a person p such that p is a student in Math 140,

or, more formally,

E p [ P such that p is a student in Math 140,

where P is the set of all people. The domain of the predicate variable is generally indicated 
either between the E symbol and the variable name or immediately following the variable 
name, and the words such that are inserted just before the predicate. Some other expres-
sions that can be used in place of there exists are there is a, we can find a, there is at least 
one, for some, and for at least one. In a sentence such as “E integers m and n such that 
m1n 5 m?n,” the E symbol is understood to refer to both m and n.*

Sentences that are quantified existentially are defined as statements by giving them the 
truth values specified in the following definition.

Note Think “there 
exists” when you see the 
symbol E.

Definition

Let Q(x) be a predicate and D the domain of x. An existential statement is a state-
ment of the form “ E x [ D such that Q(x).” It is defined to be true if, and only if, Q(x) 
is true for at least one x in D. It is false if, and only if, Q(x) is false for all x in D.

*In more formal versions of symbolic logic, the words such that are not written out (although they are under-
stood) and a separate E symbol is used for each variable: “Em [ Z (En [ Z(m1n 5 m?n)).”
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112  CHAPTEr 3 tHe LOGic Of Quantified statements

Truth and Falsity of Existential Statements

a. Consider the statement

E m [ Z1  such that m2 5 m.

Write one way to read this statement out loud, and show that it is true.

b. Let E 5 {5, 6, 7, 8} and consider the statement

Em [ E such that m2 5 m.

Show that this statement is false.

Solution
a. “There is at least one positive integer m such that m2 5 m.” Observe that 12 5 1. Thus 

“m2 5 m” is true for a positive integer m, and so “Em [ Z1 such that m2 5 m” is true.

b. Note that m2 5 m is not true for any integers m from 5 through 8:

52 5 25 Þ 5, 62 5 36 Þ 6, 72 5 49 Þ 7, 82 5 64 Þ 8.

Thus “ Em [ E such that m2 5 m” is false. ■

Formal vs. Informal Language
It is important to be able to translate from formal to informal language when trying to 
make sense of mathematical concepts that are new to you. It is equally important to be able 
to translate from informal to formal language when thinking out a complicated problem.

Translating from Formal to Informal Language

Rewrite the following formal statements in a variety of equivalent but more informal ways. 
Do not use the symbol 5 or E.

a. 5x [ R, x2 $ 0.

b. 5x [ R, x2 Þ 21.

c. Em [ Z1 such that m2 5 m.

Solution
a. Every real number has a nonnegative square.

Or: All real numbers have nonnegative squares.
Or: Any real number has a nonnegative square.
Or: The square of each real number is nonnegative.

b. All real numbers have squares that do not equal 21.
Or: No real numbers have squares equal to 21.
(The words none are or no … are are equivalent to the words all are not.)

c. There is a positive integer whose square is equal to itself.
Or: We can find at least one positive integer equal to its own square.
Or: Some positive integer equals its own square.
Or: Some positive integers equal their own squares. ■

Another way to restate universal and existential statements informally is to place the 
quantification at the end of the sentence. For instance, instead of saying “For any real num-
ber x, x2 is nonnegative,” you could say “x2 is nonnegative for any real number x.” In such 
a case the quantifier is said to “trail” the rest of the sentence.

Example 3.1.4

Example 3.1.5

Note In ordinary English,  
the fourth statement in 
part (c) may be taken to 
mean that there are at least 
two positive integers equal 
to their own squares. In 
mathematics, we under-
stand the last two state-
ments in part (c) to mean 
the same thing.
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Trailing Quantifiers

Rewrite the following statements so that the quantifier trails the rest of the sentence.

a. For any integer n, 2n is even.

b. There exists at least one real number x such that x2 # 0.

Solution
a. 2n is even for any integer n.

b. x2 # 0 for some real number x.
Or: x2 # 0 for at least one real number x. ■

Translating from Informal to Formal Language

Rewrite each of the following statements formally. Use quantifiers and variables.

a. All triangles have three sides.

b. No dogs have wings.

c. Some programs are structured.

Solution
a. 5 triangle t, t has three sides.

Or: 5t [ T , t has three sides (where T is the set of all triangles).

b. 5 dog d, d does not have wings.
Or: 5d [ D, d does not have wings (where D is the set of all dogs).

c. E a program p such that p is structured.
Or: Ep [ P such that p is structured (where P is the set of all programs). ■

Universal Conditional Statements
A reasonable argument can be made that the most important form of statement in math-
ematics is the universal conditional statement:

5x, if P(x) then Q(x).

Familiarity with statements of this form is essential if you are to learn to speak mathematics.

Writing Universal Conditional Statements Informally

Rewrite the following statement informally, without quantifiers or variables.

5x [ R, if x . 2 then x2 . 4.

Solution If a real number is greater than 2, then its square is greater than 4.

Or: Whenever a real number is greater than 2, its square is greater than 4.

Or: The square of any real number greater than 2 is greater than 4.

Or: The squares of all real numbers greater than 2 are greater than 4. ■

Writing Universal Conditional Statements Formally

Rewrite each of the following statements in the form

5 , if  then .

Example 3.1.6

Example 3.1.7

Note The following two 
sentences mean the same 
thing: “All triangles have 
three sides” and “Every 
triangle has three sides.”

Example 3.1.8

Example 3.1.9
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a. If a real number is an integer, then it is a rational number.

b. All bytes have eight bits.

c. No fire trucks are green.

Solution
a. 5 real number x, if x is an integer, then x is a rational number.

Or: 5x [ R, if x [ Z then x [ Q.

b. 5x, if x is a byte, then x has eight bits.

c. 5x, if x is a fire truck, then x is not green.

It is common, as in (b) and (c) above, to omit explicit identification of the domain of 
predicate variables in universal conditional statements. ■

Careful thought about the meaning of universal conditional statements leads to another 
level of understanding for why the truth table for an if-then statement must be defined as it 
is. Consider again the statement

5 real number x, if x . 2 then x2 . 4.

Your experience and intuition tell you that this statement is true. But that means that

If x . 2 then x2 . 4

must be true for every single real number x. Consequently, it must be true even for values 
of x that make its hypothesis “x . 2” false. In particular, both statements

If 1 . 2 then 12 . 4 and If 23 . 2 then (23)2 . 4

must be true. In both cases the hypothesis is false, but in the first case the conclusion  
“12 . 4” is false, and in the second case the conclusion “(23)2 . 4” is true. Hence, if an 
if-then statement has a false hypothesis, we have to interpret it as true regardless of whether 
its conclusion is true or false.

Note also that the definition of valid argument is a universal conditional statement:

For every combination of truth values for the component statements,  
if the premises are all true then the conclusion is also true.

Equivalent Forms of Universal and Existential Statements
Observe that the two statements “5 real number x, if x is an integer then x is rational” and 
“5 integer x, x is rational” mean the same thing because the set of integers is a subset of 
the set of real numbers. Both have informal translations “All integers are rational.” In fact, 
a statement of the form

5x [ U, if P(x) then Q(x)

can always be rewritten in the form

5x [ D, Q(x)

by narrowing U to be the subset D consisting of all values of the variable x that make P(x) 
true. Conversely, a statement of the form

5x [ D, Q(x)

can be rewritten as

5x, if x is in D then Q(x).
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Equivalent Forms for Universal Statements

Rewrite the following statement in the two forms “5x, if  then ” and  
“5  x, ”: All squares are rectangles.

Solution  5x, if x is a square then x is a rectangle.
5 square x, x is a rectangle. ■

Similarly, a statement of the form “E x such that P(x) and Q(x)” can be rewritten as  
“ E x [ D such that Q(x),” where D is the set of all x for which P(x) is true.

Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only positive integer factors are it-
self and 1. Consider the statement “There is an integer that is both prime and even.” Let 
Prime(n) be “n is prime” and Even(n) be “n is even.” Use the notation Prime(n) and Even(n) 
to rewrite this statement in the following two forms:

a. E n such that  ` .

b. E  n such that .

Solution

a. E n such that Prime(n) ` Even(n).

b. Two answers: E a prime number n such that Even(n).
E an even number n such that Prime(n). ■

Bound Variables and Scope
Consider the statement “For every integer x, x2 $ 0.” First note that you don’t have to call 
the variable x. You can use any name for it as long as you do so consistently. For instance, 
all the following statements have the same meaning:

For every integer x, x2 $ 0. For every integer n, n2 $ 0. For every integer s, s2 $ 0.

In each case the variable simply holds a place for any element in the set of all integers. Each 
way of writing the statement says that whatever integer you might choose, when you square 
it the result will be nonnegative. It is important to note, however, that once you finish writ-
ing the statement, whatever symbol you chose to use in it can be given an entirely different 
meaning when used in a different context.

For example, consider the following statements:

(1) For every integer x, x2 $ 0.

(2) There exists a real number x such that x3 5 8.

Statements (1) and (2) both call the variable x, but the x in Statement (1) serves a different 
function from the x in Statement (2). We say that the variable x is bound by the quantifier 
that controls it and that its scope begins when the quantifier introduces it and ends at the 
end of the quantified statement.

The way variables are used in mathematics is similar to the way they are used in com-
puter programming. A variable in a computer program also serves as a placeholder in the 
sense that it creates a location in computer memory (either actual or virtual) into which 
its values can be placed. In addition the way it can be bound in a program is similar to the 

Example 3.1.10

Example 3.1.11
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116  CHAPTEr 3 tHe LOGic Of Quantified statements

way that a mathematical variable can be bound in a statement. For example, consider the 
following two examples in Python:

Program 1 Program 2
def f(): def f():
 X  =  ”Hi”  S  =  ”Hi”
 print X  print S
def g(): def g():
 X  =  ”Bye”  S  =  ”Bye”
 print X  print S
f() f()
g() g()

The output for both programs is

Hi

Bye

In each case the variable—whether X or S—is local to the function where it is defined. It 
is created each time the function is called and destroyed as soon as the call is complete. 
The local variable is bound by the function that defines it, and its scope is restricted to 
that function. Outside of the function definition the variable name can be used for any 
other purpose. That is why the functions f and g are allowed to use the same name for the 
variable in their definitions and why f and g define the same functions in both programs.

Implicit Quantification
Consider the statement

If a number is an integer, then it is a rational number.

As shown earlier, this statement is equivalent to a universal statement. However, it does 
not contain the telltale word all or every or any or each. The only clue to indicate its univer-
sal quantification comes from the presence of the indefinite article a. This is an example 
of implicit universal quantification.

Existential quantification can also be implicit. For instance, the statement “The number 
24 can be written as a sum of two even integers” can be expressed formally as “ E even 
integers m and n such that 24 5 m1n.”

Mathematical writing contains many examples of implicitly quantified statements. 
Some occur, as in the first example above, through the presence of the word a or an. Oth-
ers occur in cases where the general context of a sentence supplies part of its meaning. For 
example, in an algebra course in which the letter x is always used to indicate a real number, 
the predicate

If x . 2 then x2 . 4

is interpreted to mean the same as the statement

For every real number x, if x . 2 then x2 . 4.

Mathematicians often use a double arrow to indicate implicit quantification symbolically. 
For instance, they might express the above statement as

x . 2  1   x2 . 4.
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Using 1 and 3

Let

Q(n) be “n is a factor of 8,”

R(n) be “n is a factor of 4,”

S(n) be “n , 5 and n Þ 3,”

and suppose the domain of n is Z1, the set of positive integers. Use the 1 and 3 symbols 
to indicate true relationships among Q(n), R(n), and S(n).

Solution
1. As noted in Example 3.1.2, the truth set of Q(n) is {1, 2, 4, 8} when the domain of n 

is Z1. By similar reasoning the truth set of R(n) is {1, 2, 4}. Thus it is true that every 
element in the truth set of R(n) is in the truth set of Q(n), or, equivalently, 5n in Z1, 
R(n) S Q(n). So R(n) 1 Q(n), or, equivalently

n is a factor of 4 1 n is a factor of 8.

2. The truth set of S(n) is {1, 2, 4}, which is identical to the truth set of R(n), or, equiva-
lently, 5n in Z1, R(n) 4 S(n). So R(n) 3 S(n), or, equivalently,

n is a factor of 4 3 n , 5 and n Þ 3.

Moreover, since every element in the truth set of S(n) is in the truth set of Q(n), or, 
equivalently, 5n in Z1, S(n) S Q(n), then S(n) 1 Q(n), or, equivalently,

 n , 5 and n Þ 3 1 n is a factor of 8.  ■

Some questions of quantification can be quite subtle. For instance, a mathematics text 
might contain the following:

a. (x11)2 5 x2 12x11.     b. Solve 3x24 5 5.

Although neither (a) nor (b) contains explicit quantification, the reader is supposed to un-
derstand that the x in (a) is universally quantified, whereas the x in (b) is existentially 
quantified. When the quantification is made explicit, (a) and (b) become

a. 5 real number x, (x11)2 5 x2 12x11.

b. Show (by finding a value) that E a real number x such that 3x24 5 5.

The quantification of a statement—whether universal or existential—crucially deter-
mines both how the statement can be applied and what method must be used to establish its 
truth. Thus it is important to be alert to the presence of hidden quantifiers when you read 
mathematics so that you will interpret statements in a logically correct way.

Tarski’s World
Tarski’s World is a computer program developed by information scientists Jon Barwise 
and John Etchemendy to help teach the principles of logic. It is described in their book  

Example 3.1.12

Notation

Let P(x) and Q(x) be predicates and suppose the common domain of x is D.

●● The notation P(x) 1 Q(x) means that every element in the truth set of P(x) is in the 
truth set of Q(x), or, equivalently, 5x, P(x) S Q(x).

●● The notation P(x) 3 Q(x) means that P(x) and Q(x) have identical truth sets, or, 
equivalently, 5x, P(x) 4 Q(x).
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118  CHAPTEr 3 tHe LOGic Of Quantified statements

The Language of First-Order Logic, which is accompanied by a CD containing the pro-
gram Tarski’s World, named after the great logician Alfred Tarski.

Investigating Tarski’s World

The program for Tarski’s World provides pictures of blocks of various sizes, shapes, and 
colors, which are located on a grid. Shown in Figure 3.1.1 is a picture of an arrangement of 
objects in a two-dimensional Tarski world. The configuration can be described using logical 
operators and—for the two-dimensional version—notation such as Triangle(x), meaning “x 
is a triangle,” Blue(y), meaning “y is blue,” and RightOf(x, y), meaning “x is to the right of 
y (but possibly in a different row).” Individual objects can be given names such as a, b, or c.

Example 3.1.13

ba

d

f

i

k

e

h

j

c

g

FIGUrE 3.1.1

Determine the truth or falsity of each of the following statements. The domain for all vari-
ables is the set of objects in the Tarski world shown in Figure 3.1.1.

a. 5t, Triangle(t) S Blue(t).

b. 5x, Blue(x) S Triangle(x).

c. E y such that Square(y) ` RightOf(d, y).

d. E z such that Square(z) ` Gray(z).

Solution
a. This statement is true: Every triangle is blue.

b. This statement is false. As a counterexample, note that e is blue and it is not a triangle.

c. This statement is true because e and h are both square and d is to their right.

d. This statement is false: All the squares are either blue or black. ■

1. If P(x) is a predicate with domain D, the truth set 
of P(x) is denoted . We read these symbols 
out loud as .

2. Some ways to express the symbol 5 in words are 
.

3. Some ways to express the symbol E in words are 
.

4. A statement of the form 5x [ D, Q(x) is true if, 
and only if, Q(x) is  for .

5. A statement of the form E x [ D such that Q(x) is 
true if, and only if, Q(x) is  for .

TEST YOUrSELF 
answers to test Yourself questions are located at the end of each section.

Alfred Tarski 
(1902–1983)
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1. A menagerie consists of seven brown dogs, two 
black dogs, six gray cats, ten black cats, five blue 
birds, six yellow birds, and one black bird. Deter-
mine which of the following statements are true 
and which are false.
a. There is an animal in the menagerie that is red.
b. Every animal in the menagerie is a bird or a 

mammal.
c. Every animal in the menagerie is brown or 

gray or black.
d. There is an animal in the menagerie that is 

neither a cat nor a dog.
e. No animal in the menagerie is blue.
f. There are in the menagerie a dog, a cat, and a 

bird that all have the same color.

2. Indicate which of the following statements are true 
and which are false. Justify your answers as best 
as you can.
a. Every integer is a real number.
b. 0 is a positive real number.
c. For every real number r, 2r is a negative real 

number.
d. Every real number is an integer.

3. Let R(m, n) be the predicate “If m is a factor of n2 
then m is a factor of n,” with domain for both m 
and n being Z the set of integers.
a. Explain why R(m, n) is false if m 5 25 and 

n 5 10.
b. Give values different from those in part (a) for 

which R(m, n) is false.
c. Explain why R(m, n) is true if m 5 5 and 

n 5 10.
d. Give values different from those in part (c) for 

which R(m, n) is true.

4. Let Q(x, y) be the predicate “If x , y then x2 , y2”  
with domain for both x and y being R the set of 
real numbers.
a. Explain why Q(x, y) is false if x 5 22 and 

y 5 1.
b. Give values different from those in part (a) for 

which Q(x, y) is false.
c. Explain why Q(x, y) is true if x 5 3 and y 5 8.
d. Give values different from those in part (c) for 

which Q(x, y) is true.

5. Find the truth set of each predicate.
a. Predicate: 6/d is an integer, domain: Z
b. Predicate: 6/d is an integer, domain: Z1

c. Predicate: 1 # x2 # 4, domain: R
d. Predicate: 1 # x2 # 4, domain: Z

6. Let B(x) be “210 , x , 10.” Find the truth set of 
B(x) for each of the following domains.
a. Z  b.  Z1  c. The set of all even integers

7. Let S be the set of all strings of length 3 consist-
ing of a’s, b’s, and c’s. List all the strings in S that 
satisfy the following conditions:
1. Every string in S begins with b.
2. No string in S has more than one c.

8. Let T be the set of all strings of length 3 consisting 
of 0’s and 1’s. List all the strings in T that satisfy 
the following conditions:
1. For every string s in T, the second character 

of s is 1 or the first two characters of s are 
the same.

2. No string in T has all three characters the 
same.

Find counterexamples to show that the statements in 
9–12 are false.

9. 5x [ R, x $ 1/x.

10. 5a [ Z, (a21)/a is not an integer.

11. 5 positive integers m and n, m?n $ m1n.

12. 5 real numbers x and y, Ïx1y 5 Ïx1Ïy .

13. Consider the following statement:

5 basketball player x, x is tall.

Which of the following are equivalent ways of 
expressing this statement?
a. Every basketball player is tall.
b. Among all the basketball players, some  

are tall.
c. Some of all the tall people are basketball  

players.
d. Anyone who is tall is a basketball player.
e. All people who are basketball players are tall.
f. Anyone who is a basketball player is a tall 

person.

ExErCISE SET 3.1* 

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.
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14. Consider the following statement:

E x [ R  such that x2 5 2.

Which of the following are equivalent ways of 
expressing this statement?
a. The square of each real number is 2.
b. Some real numbers have square 2.
c. The number x has square 2, for some real 

number x.
d. If x is a real number, then x2 5 2.
e. Some real number has square 2.
f. There is at least one real number whose square 

is 2.

15. Rewrite the following statements informally in at 
least two different ways without using variables or 
quantifiers.
a. 5 rectangle x, x is a quadrilateral.
b. E a set A such that A has 16 subsets.

16. Rewrite each of the following statements in the 
form “5  x, .”
a. All dinosaurs are extinct.
b. Every real number is positive, negative, or 

zero.
c. No irrational numbers are integers.
d. No logicians are lazy.
e. The number 2,147,581,953 is not equal to the 

square of any integer.
f. The number 21 is not equal to the square of 

any real number.

17. Rewrite each of the following in the form “E  
x such that .”
a. Some exercises have answers.
b. Some real numbers are rational.

18. Let D be the set of all students at your school, and 
let M(s) be “s is a math major,” let C(s) be “s is a 
computer science student,” and let E(s) be “s is an 
engineering student.” Express each of the follow-
ing statements using quantifiers, variables, and the 
predicates M(s), C(s), and E(s).
a. There is an engineering student who is a math 

major.
b. Every computer science student is an engineer-

ing student.
c. No computer science students are engineering 

students.
d. Some computer science students are also math 

majors.
e. Some computer science students are engineer-

ing students and some are not.

19. Consider the following statement:

5 integer n, if n2 is even then n is even.

Which of the following are equivalent ways of 
expressing this statement?
a. All integers have even squares and are even.
b. Given any integer whose square is even, that 

integer is itself even.
c. For all integers, there are some whose square 

is even.
d. Any integer with an even square is even.
e. If the square of an integer is even, then that 

integer is even.
f. All even integers have even squares.

20. Rewrite the following statement informally in at 
least two different ways without using variables or 
the symbol 5 or the words “for all.”

5 real numbers x, if x is positive  
then the square root of x is positive.

21. Rewrite the following statements so that the quan-
tifier trails the rest of the sentence.
a. For any graph G, the total degree of G is even.
b. For any isosceles triangle T, the base angles of 

T are equal.
c. There exists a prime number p such that p is 

even.
d. There exists a continuous function f such that f 

is not differentiable.

22. Rewrite each of the following statements in the 
form “5  x, if  then .”
a. All Java programs have at least 5 lines.
b. Any valid argument with true premises has a 

true conclusion.

23. Rewrite each of the following statements in 
the two forms “5x, if  then ” and  
“5x, ” (without an if-then).
a. All equilateral triangles are isosceles.
b. Every computer science student needs to take 

data structures.

24. Rewrite the following statements in the two forms 
“E  x such that ” and “E x such that 

 and .”
a. Some hatters are mad.
b. Some questions are easy.

25. The statement “The square of any rational number 
is rational” can be rewritten formally as “For all 
rational numbers x, x2 is rational” or as “For all x,  

H
H
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if x is rational then x2 is rational.” Rewrite each 
of the following statements in the two forms  
“5  x, ” and “5x, if , then ” 
or in the two forms “5  x and y, ” and  
“5x and y, if , then .”
a. The reciprocal of any nonzero fraction is a 

fraction.
b. The derivative of any polynomial function is a 

polynomial function.
c. The sum of the angles of any triangle is 180°.
d. The negative of any irrational number is  

irrational.
e. The sum of any two even integers is even.
f. The product of any two fractions is a fraction.

26. Consider the statement “All integers are ratio-
nal numbers but some rational numbers are not 
integers.”
a. Write this statement in the form “5x, if  

then , but E  x such that .”
b. Let Ratl(x) be “x is a rational number” and 

Int(x) be “x is an integer.” Write the given 
statement formally using only the symbols 
Ratl(x), Int(x), 5, E , `, ~, ,, and S.

27. Refer to the picture of Tarski’s world given in Ex-
ample 3.1.13. Let Above(x, y) mean that x is above 
y (but possibly in a different column). Determine 
the truth or falsity of each of the following state-
ments. Give reasons for your answers.
a. 5u, Circle(u) S Gray(u).
b. 5u, Gray(u) S Circle(u).

c. Ey such that Square(y) ` Above(y, d).

d. Ez such that Triangle(z) ` Above( f, z).

In 28–30, rewrite each statement without using quanti-
fiers or variables. Indicate which are true and which are 
false, and justify your answers as best as you can.

28. Let the domain of x be the set D of objects dis-
cussed in mathematics courses, and let Real(x) be 
“x is a real number,” Pos(x) be “x is a positive real 
number,” Neg(x) be “x is a negative real number,” 
and Int(x) be “x is an integer.”
a. Pos(0)

b. 5x, Real(x) ` Neg(x) S Pos(2x)

c. 5x, Int(x) S Real(x)

d. E x such that Real(x) ` ,Int(x)

29. Let the domain of x be the set of geometric figures 
in the plane, and let Square(x) be “x is a square” 
and Rect(x) be “x is a rectangle.”

a. E x such that Rect(x) ` Square(x)

b. E x such that Rect(x) ` ,Square(x)
c. 5x, Square(x) S Rect(x)

30. Let the domain of x be Z, the set of integers, and 
let Odd(x) be “x is odd,” Prime(x) be “x is prime,” 
and Square(x) be “x is a perfect square.” (An inte-
ger n is said to be a perfect square if, and only if, 
it equals the square of some integer. For example, 
25 is a perfect square because 25 5 52.)

a. E x such that Prime(x) ` ,Odd(x)
b. 5x, Prime(x) S ,Square(x)

c. E x such that Odd(x) ` Square(x)

31. In any mathematics or computer science text other 
than this book, find an example of a statement that 
is universal but is implicitly quantified. Copy the 
statement as it appears and rewrite it making the 
quantification explicit. Give a complete citation 
for your example, including title, author, publisher, 
year, and page number.

32. Let R be the domain of the predicate variable x. 
Which of the following are true and which are 
false? Give counter examples for the statements 
that are false.
a. x . 2 1 x . 1
b. x . 2 1 x2 . 4
c. x2 . 4 1 x . 2
d. x2 . 4 3 ux u  . 2

33. Let R be the domain of the predicate variables a, 
b, c, and d. Which of the following are true and 
which are false? Give counterexamples for the 
statements that are false. 
a. a . 0 and b . 0 1 ab . 0
b. a , 0 and b , 0 1 ab , 0
c. ab 5 0 1 a 5 0 or b 5 0
d. a , b and c , d 1 ac , bd

H

1. {x [ D uP(x)}; the set of all x in D such that P(x)  
2. Possible answers: for every, for any, for each, for 
arbitrary, given any, for all 3. Possible answers: there 
exists, there exist, there exists at least one, for some, for 

at least one, we can find a 4. true; every x in D (Some 
alternative answers: all x in D; each individual x in D)  
5. true; at least one x in D (Alternative answer: some 
x in D)

ANSWErS FOr TEST YOUrSELF 
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122  CHAPTEr 3 tHe LOGic Of Quantified statements

Predicates and Quantified Statements II
TOUCHSTONE: Stand you both forth now: stroke your chins, and swear by your 
beards that I am a knave.
CELIA: By our beards—if we had them—thou art.
TOUCHSTONE: By my knavery—if I had it—then I were; but if you swear by that 
that is not, you are not forsworn. —William Shakespeare, As You Like It

This section continues the discussion of predicates and quantified statements begun in 
Section 3.1. It contains the rules for negating quantified statements; an exploration of the 
relation among 5, E , `, and ~; an introduction to the concept of vacuous truth of universal 
statements; examples of variants of universal conditional statements; and an extension of 
the meaning of necessary, sufficient, and only if to quantified statements.

Negations of Quantified Statements
Consider the statement “All mathematicians wear glasses.” Many people would say 
that its negation is “No mathematicians wear glasses,” but if even one mathemati-
cian does not wear glasses, then the sweeping statement that all mathematicians wear 
glasses is false. So a correct negation is “There is at least one mathematician who does 
not wear glasses.”

The general form of the negation of a universal statement follows immediately from 
the definitions of negation and of the truth values for universal and existential statements.

3.2

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form

5x in D, Q(x)

is logically equivalent to a statement of the form

Ex in D such that ,Q(x).

Symbolically, 

,(5x [ D, Q(x)) ; Ex [ D such that ,Q(x).

Thus

The negation of a universal statement (“all are”) is logically equivalent to an  
existential statement (“some are not” or “there is at least one that is not”).

Note that when we speak of logical equivalence for quantified statements, we mean 
that the statements always have identical truth values no matter what predicates are sub-
stituted for the predicate symbols and no matter what sets are used for the domains of 
the predicate variables.

Now consider the statement “Some snowflakes are the same.” What is its negation? For 
this statement to be false means that not a single snowflake is the same as any other. In 
other words, “No snowflakes are the same,” or “All snowflakes are different.”
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The general form for the negation of an existential statement follows immediately from 
the definitions of negation and of the truth values for existential and universal statements.

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form

E x in D such that Q(x)

is logically equivalent to a statement of the form

5x in D, ,Q(x).

Symbolically,

,(E x [ D such that Q(x)) ; 5x [ D, ,Q(x).

Thus

The negation of an existential statement (“some are”) is logically  
equivalent to a universal statement (“none are” or “all are not”).

Negating Quantified Statements

Write formal negations for the following statements:

a. 5 primes p, p is odd.

b. E a triangle T such that the sum of the angles of T equals 200°.

Solution
a. By applying the rule for the negation of a 5 statement, you can see that the answer is

E a prime p such that p is not odd.

b. By applying the rule for the negation of a E statement, you can see that the answer is

 5 triangles T, the sum of the angles of T does not equal 200°. ■

You need to exercise special care to avoid mistakes when writing negations of state-
ments that are given informally. One way to avoid error is to rewrite the statement formally 
and take the negation using the formal rule.

More Negations

Rewrite the following statements formally. Then write formal and informal negations.

a. No politicians are honest.

b. The number 1,357 is not divisible by any integer between 1 and 37.

Solution

a. Formal version: 5 politicians x, x is not honest.
Formal negation: E a politician x such that x is honest.
Informal negation: Some politicians are honest.

b. This statement has a trailing quantifier. Written formally it becomes:

5 integer n between 1 and 37, 1,357 is not divisible by n.

Example 3.2.1

Example 3.2.2
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124  CHAPTEr 3 tHe LOGic Of Quantified statements

Its negation is therefore

E an integer n between 1 and 37 such that 1,357 is divisible by n.

An informal version of the negation is

 The number 1,357 is divisible by some integer between 1 and 37. ■

Another important way to avoid error when taking negations of statements, whether 
stated formally or informally, is to ask yourself, “What exactly would it mean for the given 
statement to be false? What statement, if true, would be equivalent to saying that the given 
statement is false?”

Still More Negations

Write informal negations for the following statements:

a. All computer programs are finite.

b. Some computer hackers are over 40.

Solution
a. What exactly would it mean for this statement to be false? The statement asserts that 

all computer programs satisfy a certain property. So for it to be false, there would 
have to be at least one computer program that does not satisfy the property. Thus the 
answer is

There is a computer program that is not finite.

Or: Some computer programs are infinite.

b. This statement is equivalent to saying that there is at least one computer hacker with 
a certain property. So for it to be false, not a single computer hacker can have that 
property. Thus the negation is

No computer hackers are over 40.

Or: All computer hackers are 40 or under. ■

Informal negations of many universal statements can be constructed simply by in-
serting the word not or the words do not at an appropriate place. However, the resulting 
statements may be ambiguous. For example, a possible negation of “All mathematicians 
wear glasses” is “All mathematicians do not wear glasses.” The problem is that this 
sentence has two meanings. With the proper verbal stress on the word not, it could be in-
terpreted as the logical negation. (What! You say that all mathematicians wear glasses? 
Nonsense! All mathematicians do not wear glasses.) On the other hand, stated in a flat 
tone of voice (try it!), it would mean that all mathematicians are nonwearers of glasses; 
that is, not a single mathematician wears glasses. This is a much stronger statement than 
the logical negation: It implies the negation but is not equivalent to it.

Negations of Universal Conditional Statements
Negations of universal conditional statements are of special importance in mathe-
matics. The form of such negations can be derived from facts that have already been 
established.

By definition of the negation of a for all statement,

 ,(5x, P(x) S Q(x)) ; E x such that ,(P(x) S Q(x)). 3.2.1

Note Which is true: 
the statement in part (b) 
or its negation? Is 1,357 
divisible by some integer 
between 1 and 37? Or is 
1,357 not divisible by any 
integer between 1 and 37?

Example 3.2.3

!
Caution! Just inserting 
the word not to negate a 
quantified statement can 
result in a statement that 
is ambiguous.
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3.2 Predicates and Quantified statements ii  125

But the negation of an if-then statement is logically equivalent to an and statement. More 
precisely,

 ,(P(x) S Q(x)) ; P(x) ` ,Q(x). 3.2.2

Substituting (3.2.2) into (3.2.1) gives

,(5x, P(x) S Q(x)) ; E x such that (P(x) ` ,Q(x)).

Written somewhat less symbolically, this becomes

Negation of a Universal Conditional Statement

,(5x, if P(x) then Q(x)) ; E x such that P(x) and ,Q(x).

Negating Universal Conditional Statements

Write a formal negation for statement (a) and an informal negation for statement (b).

a. 5 person p, if p is blond then p has blue eyes.

b. If a computer program has more than 100,000 lines, then it contains a bug.

Solution
a. E a person p such that p is blond and p does not have blue eyes.

b. There is at least one computer program that has more than 100,000 lines and does not 
contain a bug. ■

The Relation among ;, ', ` , and  ~

The negation of a for all statement is a there exists statement, and the negation of a there 
exists statement is a for all statement. These facts are analogous to De Morgan’s laws, 
which state that the negation of an and statement is an or statement and that the negation of 
an or statement is an and statement. This similarity is not accidental. In a sense, universal 
statements are generalizations of and statements, and existential ments are generalizations 
of or statements.

If Q(x) is a predicate and the domain D of x is the set {x1, x2, …, xn}, then the statements

5x [ D, Q(x) and Q(x1) ` Q(x2) ` Á ` Q(xn)

are logically equivalent. For example, let Q(x) be “x?x 5 x” and suppose D = {0, 1}. Then

5x [ D, Q(x)

can be rewritten as 

5 binary digits x, x?x 5 x.

This is equivalent to

0?0 5 0 and 1?1 5 1,

which can be rewritten in symbols as

Q(0) ` Q(1).

Example 3.2.4
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126  CHAPTEr 3 tHe LOGic Of Quantified statements

Similarly, if Q(x) is a predicate and D 5 {x1, x2, Á , xn}, then the statements

Ex [ D such that Q(x) and Q(x1) ~ Q(x2) ~ Á ~ Q(xn)

are logically equivalent. For example, let Q(x) be “x1x 5 x” and suppose D 5 {0, 1}. 
Then

E x [ D such that Q(x)

can be rewritten as

E a binary digit x such that x1x 5 x.

This is equivalent to

010 5 0 or 111 5 1,

which can be rewritten in symbols as

Q(0) ~ Q(1).

Vacuous Truth of Universal Statements
Suppose a bowl sits on a table and next to the bowl is a pile of five blue and five gray balls, 
any of which may be placed in the bowl. If three blue balls and one gray ball are placed 
in the bowl, as shown in Figure 3.2.1(a), the statement “All the balls in the bowl are blue” 
would be false (since one of the balls in the bowl is gray).

Now suppose that no balls at all are placed in the bowl, as shown in Figure 3.2.1(b). 
Consider the statement

All the balls in the bowl are blue.

Is this statement true or false? The statement is false if, and only if, its negation is true. 
And its negation is

There exists a ball in the bowl that is not blue.

But the only way this negation can be true is for there actually to be a nonblue ball in the 
bowl. And there is not! Hence the negation is false, and so the statement is true “by default.”

FIGUrE 3.2.1
(a) (b)

In general, a statement of the form

5x in D, if P(x) then Q(x)

is called vacuously true or true by default if, and only if, P(x) is false for every x in D.
In mathematics, the words in general signal that what is to follow is a generalization of 

some aspect of the example that always holds true.

Variants of Universal Conditional Statements
Recall from Section 2.2 that a conditional statement has a contrapositive, a converse, and an 
inverse. The definitions of these terms can be extended to universal conditional statements.

Note In ordinary lan-
guage the words in gen-
eral mean that something 
is usually, but not always 
the case. (In general, I 
take the bus, but today I 
walked.) In mathemat-
ics the words in general 
mean that something is 
always true.
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Definition

Consider a statement of the form 5x [ D, if P(x) then Q(x).

1. Its contrapositive is the statement 5x [ D, if ,Q(x) then ,P(x).

2. Its converse is the statement 5x [ D, if Q(x) then P(x).

3. Its inverse is the statement 5x [ D, if ,P(x) then ,Q(x).

Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write a formal and an informal contrapositive, converse, and inverse for the following 
statement:

If a real number is greater than 2, then its square is greater than 4.

Solution The formal version of this statement is 5x [ R, if x . 2 then x2 . 4.
Contrapositive:  5x [ R, if x2 # 4 then x # 2. 

Or: If the square of a real number is less than or equal to 4, 
then the number is less than or equal to 2.

Converse:  5x [ R, if x2 . 4 then x . 2. 
Or: If the square of a real number is greater than 4, then the 
number is greater than 2.

Inverse:  5x [ R, if x # 2 then x2 # 4. 
Or: If a real number is less than or equal to 2, then the square 
of the number is less than or equal to 4.

Note that in solving this example, we have used the equivalence of “x ò a” and “x # a”  
for all real numbers x and a. (See page 47.) ■

In Section 2.2 we showed that a conditional statement is logically equivalent to its con-
trapositive and that it is not logically equivalent to either its converse or its inverse. The 
following discussion shows that these facts generalize to the case of universal conditional 
statements and their contrapositives, converses, and inverses.

Let P(x) and Q(x) be any predicates, let D be the domain of x, and consider the statement

5x [ D, if P(x) then Q(x)

and its contrapositive

5x [ D, if ,Q(x) then ,P(x).

Any particular x in D that makes “if P(x) then Q(x)” true also makes “if ,Q(x) then ,P(x)”  
true (by the logical equivalence between p S q and ,q S ,p). It follows that the sen-
tence “If P(x) then Q(x)” is true for all x in D if, and only if, the sentence “If ,Q(x) then 
,P(x)” is true for all x in D.

Thus we write the following and say that a universal conditional statement is logically 
equivalent to its contrapositive:

5x [ D, if P(x) then Q(x) ; 5x [ D, if ,Q(x) then ,P(x)

In Example 3.2.5 we noted that the statement

5x [ R, if x . 2 then x2 . 4

has the converse 5x [ R, if x2 . 4 then x . 2.

Example 3.2.5
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Observe that the statement is true whereas its converse is false (since, for instance, 
(23)2 5 9 . 4 but 23 ò 2). This shows that a universal conditional statement may have a 
different truth value from its converse. Hence a universal conditional statement is not logi-
cally equivalent to its converse. This is written in symbols as follows:

5x [ D, if P(x) then Q(x) ò 5x [ D, if Q(x) then P(x).

In exercise 35 at the end of this section, you are asked to provide an example to show that 
a universal conditional statement is not logically equivalent to its inverse.

5x [ D, if P(x) then Q(x) ò 5x [ D, if ,P(x) then ,Q(x).

Necessary and Sufficient Conditions, Only If
The definitions of necessary, sufficient, and only if can also be extended to apply to uni-
versal conditional statements.

Definition

●● “5x, r(x) is a sufficient condition for s(x)” means “5x, if r(x) then s(x).”

●● “5x, r(x) is a necessary condition for s(x)” means “5x, if ,r(x) then ,s(x)” or, 
equivalently, “5x, if s(x) then r(x).”

●● “5x, r(x) only if s(x)” means “5x, if ,s(x) then ,r(x)” or, equivalently, “5x, if r(x) 
then s(x).”

Necessary and Sufficient Conditions

Rewrite each of the following as a universal conditional statement, quantified either explic-
itly or implicitly. Do not use the word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for being president of the United 
States.

Solution
a. A formal version of the statement is

5x, if x is a square, then x is a rectangle.

Or, with implicit universal quantification:

If a figure is a square, then it is a rectangle.

b. Using formal language, you could write the answer as

5 person x, if x is younger than 35, then x 
cannot be president of the United States.

Or, by the equivalence between a statement and its contrapositive:

5 person x, if x is president of the United States, 
then x is at least 35 years old. ■

Example 3.2.6
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Only If

Rewrite the following as a universal conditional statement:

A product of two numbers is 0 only if one of the numbers is 0.

Solution Using informal language, you could write the answer as

If it is not the case that one of two numbers is 0,  
then the product of the numbers is not 0.

In other words,

If neither of two numbers is 0, then the product of the numbers is not 0.

Or, by the equivalence between a statement and its contrapositive:

 If a product of two numbers is 0, then one of the numbers is 0. ■

Example 3.2.7

1. A negation for “All R have property S” is “There 
is  R that .”

2. A negation for “Some R have property S” is  
“ .”

3. A negation for “For every x, if x has property P 
then x has property Q” is “ .”

4. The converse of “For every x, if x has property P 
then x has property Q” is “ .”

5. The contrapositive of “For every x, if x has prop-
erty P then x has property Q” is “ .”

6. The inverse of “For every x, if x has property P 
then x has property Q” is “ .”

TEST YOUrSELF 

1. Which of the following is a negation for “All 
discrete mathematics students are athletic”? More 
than one answer may be correct.
a. There is a discrete mathematics student who is 

nonathletic.
b. All discrete mathematics students are  

nonathletic.
c. There is an athletic person who is not a dis-

crete mathematics student.
d. No discrete mathematics students are athletic.
e. Some discrete mathematics students are  

nonathletic.
f. No athletic people are discrete mathematics 

students.

2. Which of the following is a negation for “All dogs 
are loyal”? More than one answer may be correct.
a. All dogs are disloyal.
b. No dogs are loyal.
c. Some dogs are disloyal.
d. Some dogs are loyal.
e. There is a disloyal animal that is not a dog.

f. There is a dog that is disloyal.
g. No animals that are not dogs are loyal.
h. Some animals that are not dogs are loyal.

3. Write a formal negation for each of the following 
statements.
a. 5 string s, s has at least one character.
b. 5 computer c, c has a CPU.
c. E a movie m such that m is over 6 hours long.
d. E a band b such that b has won at least 10 

Grammy awards.

4. Write an informal negation for each of the follow-
ing statements. Be careful to avoid negations that 
are ambiguous.
a. All dogs are friendly.
b. All graphs are connected.
c. Some suspicions were substantiated.
d. Some estimates are accurate.

5. Write a negation for each of the following statements.
a. Every valid argument has a true conclusion.
b. All real numbers are positive, negative, or zero.

ExErCISE SET 3.2  
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Write a negation for each statement in 6 and 7.

6. a.   Sets A and B do not have any points in common.
b. Towns P and Q are not connected by any road 

on the map.

7. a.  This vertex is not connected to any other vertex 
in the graph.

b. This number is not related to any even number.

8. Consider the statement “There are no simple solu-
tions to life’s problems.” Write an informal nega-
tion for the statement, and then write the statement 
formally using quantifiers and variables.

Write a negation for each statement in 9 and 10.

9. 5 real number x, if x . 3 then x2 . 9.

10. 5 computer program P, if P compiles without error 
messages, then P is correct.

In each of 11–14 determine whether the proposed nega-
tion is correct. If it is not, write a correct negation.

11.  Statement:  The sum of any two irrational 
numbers is irrational.

Proposed negation:  The sum of any two irrational 
numbers is rational.

12.   Statement:   The product of any irrational 
number and any rational num-
ber is irrational.

Proposed negation:  The product of any irrational 
number and any rational num-
ber is rational.

13.   Statement:  For every integer n, if n2 is 
even then n is even.

Proposed negation:  For every integer n, if n2 is 
even then n is not even.

14.  Statement:  For all real numbers x1 and x2,  
if x2

1 5 x2
2  then x1 5 x2.

Proposed negation:  For all real numbers x1 and x2,  
if x2

1 5 x2
2 then x1 Þ x2.

15. Let D 5 {248,214,28, 0, 1, 3, 16, 23, 26, 32, 36}. 
Determine which of the following statements are 
true and which are false. Provide counterexamples 
for the statements that are false.

a. 5x [ D, if x is odd then x . 0.

b. 5x [ D, if x is less than 0 then x is even.

c. 5x [ D, if x is even then x # 0.

d. 5x [ D, if the ones digit of x is 2, then the tens 
digit is 3 or 4.

e. 5x [ D, if the ones digit of x is 6, then the tens 
digit is 1 or 2.

In 16–23, write a negation for each statement.

16. 5 real number x, if x2 $ 1 then x . 0.

17. 5 integer d, if 6/d is an integer then d 5 3.

18. 5x [ R, if x(x11) . 0 then x . 0 or x , 21.

19. 5n [ Z, if n is prime then n is odd or n 5 2.

20. 5 integers a, b, and c, if a2b is even and b2c is 
even, then a2c is even.

21. 5 integer n, if n is divisible by 6, then n is divisible 
by 2 and n is divisible by 3.

22. If the square of an integer is odd, then the integer 
is odd.

23. If a function is differentiable then it is continuous.

24. Rewrite the statements in each pair in if-then form 
and indicate the logical relationship between them.
a. All the children in Tom’s family are female.

All the females in Tom’s family are children.
b.  All the integers that are greater than 5 and end 

in 1, 3, 7, or 9 are prime.
All the integers that are greater than 5 and are 
prime end in 1, 3, 7, or 9.

25. Each of the following statements is true. In each 
case write the converse of the statement, and give a 
counterexample showing that the converse is false.
a. If n is any prime number that is greater than 2, 

then n11 is even.
b. If m is any odd integer, then 2m is even.
c. If two circles intersect in exactly two points, 

then they do not have a common center.

In 26–33, for each statement in the referenced exercise 
write the contrapositive, converse, and inverse. Indicate 
as best as you can which of these statements are true and 
which are false. Give a counterexample for each that is false.

26. Exercise 16 27. Exercise 17

28. Exercise 18 29. Exercise 19

30. Exercise 20 31. Exercise 21

32. Exercise 22 33. Exercise 23

34. Write the contrapositive for each of the following 
statements.
a. If n is prime, then n is not divisible by any 

prime number from 2 through Ïn. (Assume 
that n is a fixed integer.)

b. If A and B do not have any elements in com-
mon, then they are disjoint. (Assume that 
A and B are fixed sets.)
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35. Give an example to show that a universal condition-
al statement is not logically equivalent to its inverse.

36. If P(x) is a predicate and the domain of x is the set 

of all real numbers, let R be “5x [ Z, P(x),” let S 

be “5x [ Q, P(x),” and let T be “5x [ R, P(x).”

a. Find a definition for P(x) (but do not use “x [ Z”) 
so that R is true and both S and T are false.

b. Find a definition for P(x) (but do not use “x [ Q”)  
so that both R and S are true and T is false.

37. Consider the following sequence of digits: 0204. 
A person claims that all the 1’s in the sequence 
are to the left of all the 0’s in the sequence. Is this 
true? Justify your answer. (Hint: Write the claim 
formally and write a formal negation for it. Is the 
negation true or false?)

38. True or false? All occurrences of the letter u in Dis-
crete Mathematics are lowercase. Justify your answer.

rewrite each statement of 39–44 in if-then form.

39. Earning a grade of C2 in this course is a suffi-
cient condition for it to count toward graduation.

40. Being divisible by 8 is a sufficient condition for 
being divisible by 4.

41. Being on time each day is a necessary condition 
for keeping this job.

42. Passing a comprehensive exam is a necessary 
condition for obtaining a master’s degree.

43. A number is prime only if it is greater than 1.

44. A polygon is square only if it has four sides.

Use the facts that the negation of a 5 statement is 
a E statement and that the negation of an if-then 
statement is an and statement to rewrite each of the 
statements 45–48 without using the word necessary or 
sufficient.

45. Being divisible by 8 is not a necessary condition 
for being divisible by 4.

46. Having a large income is not a necessary condi-
tion for a person to be happy.

47. Having a large income is not a sufficient condition 
for a person to be happy.

48. Being a polynomial is not a sufficient condition 
for a function to have a real root.

49. The computer scientists Richard Conway and 
David Gries once wrote:

The absence of error messages during 
translation of a computer program is only a 
necessary and not a sufficient condition for 
reasonable [program] correctness.

Rewrite this statement without using the words 
necessary or sufficient.

50. A frequent-flyer club brochure states, “You may 
select among carriers only if they offer the same 
lowest fare.” Assuming that “only if” has its for-
mal, logical meaning, does this statement guaran-
tee that if two carriers offer the same lowest fare, 
the customer will be free to choose between them? 
Explain.

*

1. some (Alternative answers: at least one; an); does not 
have property S. 2. No R have property S. 3. There 
is an x such that x has property P and x does not have 
property Q. 4. For every x, if x has property Q then 

x has property P.  5. For every x, if x does not have 
property Q then x does not have property P. 6. For every 
x, if x does not have property P then x does not have 
property Q.

ANSWErS FOr TEST YOUrSELF

Statements with Multiple Quantifiers
It is not enough to have a good mind. The main thing is to use it well. —René Descartes

Imagine you are visiting a factory that manufactures computer microchips. The factory 
guide tells you,

“There is a person supervising every detail of the production process.”

3.3
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132  CHAPTEr 3 tHe LOGic Of Quantified statements

Note that this statement contains informal versions of both the existential quantifier there 
is and the universal quantifier every. Which of the following best describes its meaning?

●● There is one single person who supervises all the details of the production process.

●● For any particular production detail, there is a person who supervises that detail, but 
there might be different supervisors for different details.

As it happens, either interpretation could be what the guide meant. (Reread the sentence to 
be sure you agree!) Taken by itself, his statement is genuinely ambiguous, although other 
things he may have said (the context for his statement) might have clarified it. In our ordi-
nary lives, we deal with this kind of ambiguity all the time. Usually context helps resolve 
it, but sometimes we simply misunderstand each other.

In mathematics, formal logic, and computer science, by contrast, it is essential that we 
all interpret statements in exactly the same way. For instance, the initial stage of software 
development typically involves careful discussion between a programmer analyst and a 
client to turn vague descriptions of what the client wants into unambiguous program speci-
fications that client and programmer can mutually agree on.

Because many important technical statements contain both E and 5, a convention has de-
veloped for interpreting them uniformly. When a statement contains more than one kind 
of quantifier, we imagine the actions suggested by the quantifiers as being performed 
in the order in which the quantifiers occur. For instance, consider a statement of the form

5x in set D, Ey in set E such that x and y satisfy property P(x, y).

To show that such a statement is true, you must be able to meet the following challenge:

●● Imagine that someone is allowed to choose any element whatsoever from the set D, and 
imagine that the person gives you that element. Call it x.

●● The challenge for you is to find an element y in E so that the person’s x and your y, taken 
together, satisfy property P(x, y).

Because you do not have to specify the y until after the other person has specified the x, 
you are allowed to find a different value of y for each different x you are given.

Truth of a ;' Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1.

Example 3.3.1

Note The scope of 5x 
extends throughout the 
statement, whereas the 
scope of Ey starts in the 
middle. That is why the 
value of y depends on the 
value of x.

a

b c

f

i

e g

h

j

d

FIGUrE 3.3.1

Show that the following statement is true in this world:

For every triangle x, there is a square y such that x and y have the same color.
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Solution The statement says that no matter which triangle someone gives you, you will 
be able to find a square of the same color. There are only three triangles, d, f, and i. The fol-
lowing table shows that for each of these triangles a square of the same color can be found.

Given x 5 choose y 5 and check that y is the same color as x.

d e yes ✓

f or i h or g yes ✓

Now consider a statement containing both 5 and E , where the E comes before the 5:

E x in set D such that 5y in set E, x and y satisfy property P(x, y).

To show that a statement of this form is true:

You must find one single element (call it x) in D with the following property:

●● After you have found your x, someone is allowed to choose any element whatsoever 
from E. The person challenges you by giving you that element. Call it y.

●● Your job is to show that your x together with the person’s y satisfy property P(x, y).

Your x has to work for any y the person might give you; you are not allowed to change 
your x once you have specified it initially.

Truth of a '; Statement in a Tarski World

Consider again the Tarski world in Figure 3.3.1. Show that the following statement is true: 
There is a triangle x such that for every circle y, x is to the right of y.

Solution The statement says that you can find a triangle that is to the right of all the 
circles. Actually, either d or i would work for all of the three circles, a, b, and c, as you can 
see in the following table.

Choose x 5 Then: given y 5 check that x is to the right of y.

d or i a yes ✓

b yes ✓

c yes ✓

Here is a summary of the convention for interpreting statements with two different 
quantifiers:

■

Example 3.3.2

■

Note The value of x 
cannot be changed once 
it is specified because 
the scope of Ex extends 
throughout the entire 
statement. 

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form

5x in D, E y in E such that P(x, y)

your challenge is to allow someone else to pick whatever element x in D they wish 
and then you must find an element y in E that “works” for that particular x.

If you want to establish the truth of a statement of the form

E x in D such that 5 y in E, P(x, y)

your job is to find one particular x in D that will “work” no matter what y in E any-
one might choose to challenge you with.
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134  CHAPTEr 3 tHe LOGic Of Quantified statements

Interpreting Statements with More Than One Quantifier

A college cafeteria line has four stations: salads, main courses, desserts, and beverages. 
The salad station offers a choice of green salad or fruit salad; the main course station of-
fers spaghetti or fish; the dessert station offers pie or cake; and the beverage station offers 
milk, soda, or coffee. Three students, Uta, Tim, and Yuen, go through the line and make 
the following choices:

Uta: green salad, spaghetti, pie, milk

Tim: fruit salad, fish, pie, cake, milk, coffee 

Yuen: spaghetti, fish, pie, soda

These choices are illustrated in Figure 3.3.2.

Example 3.3.3

FIGUrE 3.3.2

green salad
fruit salad

Salads

spaghetti
�sh

Main courses

pie
cake

Desserts

milk
soda
coffee

Beverages

Uta

Tim

Yuen

Write each of following statements informally and find its truth value.

a. E an item I such that 5 student S, S chose I.

b. E a student S such that 5 item I, S chose I.

c. E a student S such that 5 station Z, E an item I in Z such that S chose I.

d. 5 student S and 5 station Z, E an item I in Z such that S chose I.

Solution
a. There is an item that was chosen by every student. This is true; every student chose 

pie.

b. There is a student who chose every available item. This is false; no student chose all 
nine items.

c. There is a student who chose at least one item from every station. This is true; both 
Uta and Tim chose at least one item from every station.

d. Every student chose at least one item from every station. This is false; Yuen did not 
choose a salad. ■

Translating from Informal to Formal Language
Most problems are stated in informal language, but solving them often requires translating 
them into more formal terms.
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Translating Statements with Multiple Quantifiers from Informal 
to Formal Language

The reciprocal of a real number a is a real number b such that ab 5 1. The following two 
statements are true. Rewrite them formally using quantifiers and variables.

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal.

Solution
a. 5 nonzero real number u, E a real number v such that uv 5 1.

b. E a real number c such that 5 real number d, cd Þ 1. ■

There Is a Smallest Positive Integer

Recall that every integer is a real number and that real numbers are of three types: positive, 
negative, and zero (zero being neither positive nor negative). Consider the statement “There 
is a smallest positive integer.” Write this statement formally using both symbols E and 5.

Solution To say that there is a smallest positive integer means that there is a positive 
integer m with the property that no matter what positive integer n a person might pick, m 
will be less than or equal to n:

E a positive integer m such that 5 positive integer n, m # n.

Note that this statement is true because 1 is a positive integer that is less than or equal to 
every positive integer.

 
–3–4–5 –2 –1 0 1 2 3 4 5

positive integers

 ■

There Is No Smallest Positive real Number

Imagine the positive real numbers on the real number line. These numbers correspond to 
all the points to the right of 0. Observe that no matter how small a real number x is, the 
number x /2 will be both positive and less than x.*

–2 –1 0 1 2x

x
2

Thus the following statement is true: “There is no smallest positive real number.” Write 
this statement formally using both symbols 5 and E.

Solution 5 positive real number x, E a positive real number y such that y , x. ■

The Definition of Limit of a Sequence

The definition of limit of a sequence, studied in calculus, uses both quantifiers 5 and E and 
also if-then. We say that the limit of the sequence an as n goes to infinity equals L and write

lim
n S `

an 5 L

if, and only if, the values of an become arbitrarily close to L as n gets larger and larger 
without bound. More precisely, this means that given any positive number «, we can find 

Example 3.3.4

Note The number 0 has 
no reciprocal.

Example 3.3.5

Example 3.3.6

Example 3.3.7

*This can be deduced from the properties of the real numbers given in Appendix A. Because x is positive, 
0 , x. Add x to both sides to obtain x , 2x. Then 0 , x , 2x. Now multiply all parts of the inequality by the 
positive number 1/2. This does not change the direction of the inequality, so 0 , x/2 , x.
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136  CHAPTEr 3 tHe LOGic Of Quantified statements

an integer N such that whenever n is larger than N, the number an sits between L2« and 
L1« on the number line.

L – � L + �L

an must lie in here when n > N

Symbolically:

5« . 0, E an integer N such that 5 integer n,

if n . N then L2« , an , L1«.

Considering the logical complexity of this definition, it is no wonder that many students 
find it hard to understand. ■

Ambiguous Language
The drawing in Figure 3.3.3 is a famous example of visual ambiguity. When you look at it 
for a while, you will probably see either a silhouette of a young woman wearing a large hat 
or an elderly woman with a large nose. Whichever image first pops into your mind, try to 
see how the drawing can be interpreted in the other way. (Hint: The mouth of the elderly 
woman is the necklace on the young woman.)

Once most people see one of the images, it is difficult for them to perceive the other. 
So it is with ambiguous language. Once you interpreted the sentence at the beginning of 
this section in one way, it may have been hard for you to see that it could be understood 
in the other way. Perhaps you had difficulty even though the two possible meanings were 
explained, just as many people have difficulty seeing the second interpretation for the 
drawing even when they are told what to look for.

FIGUrE 3.3.3
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Although statements written informally may be open to multiple interpretations, we 
cannot determine their truth or falsity without interpreting them one way or another. 
Therefore, we have to use context to try to ascertain their meaning as best we can.

Negations of Statements with More Than One Quantifier
You can use the same rules to negate statements with several quantifiers that you used to 
negate simpler quantified statements. Recall that

,(5x in D, P(x)) ; E x in D such that ,P(x).

and

,(Ex in D such that P(x)) ; 5x in D, ,P(x).

Thus

,(5x in D, Ey in E such that P(x, y)) ; Ex in D such that ,(Ey in E such that P(x, y))

; E x in D such that 5y in E, ,P(x, y)

Similarly,

,(Ex in D such that 5y in E, P(x, y)) ; 5x in D, ,(5y in E, P(x, y))

; 5x in D, Ey in E such that ,P(x, y)

These facts are summarized as follows:

Negations of Statements with Two Different Quantifiers

,(5x in D, E y in E such that P(x, y)) ; E x in D such that 5y in E, ,P(x, y)

,(E x in D such that 5y in E, P(x, y)) ; 5x in D, E y in E such that ,P(x, y)

Negating Statements in a Tarski World

Refer to the Tarski world of Figure 3.3.1, which is reprinted here for reference.

a

b c

f

i

e g

h

j

d

Example 3.3.8

94193_ch03_ptg01.indd   137 12/11/18   3:51 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



138  CHAPTEr 3 tHe LOGic Of Quantified statements

Write a negation for each of the following statements, and determine which is true, the 
given statement or its negation.

a. For every square x, there is a circle y such that x and y have the same color.

b. There is a triangle x such that for every square y, x is to the right of y.

Solution
a.  First version of negation:  E a square x such that ,(E a circle y such  

that x and y have the same color).
 Final version of negation:  E a square x such that 5 circle y, x and y do not have 

the same color.

The negation is true. Square e is black and no circle in this Tarski world is black, so there 
is a square that does not have the same color as any circle.

b.  First version of negation:  5 triangle x, ,(5 square y, x is to the right of y).
 Final version of negation:  5 triangle x, E a square y such that x is not to the right 

of y.

The negation is true because no matter what triangle is chosen, it is not to the right of 
square g or square j, which are the only squares in this Tarski world.  ■

Order of Quantifiers
Consider the following two statements:

5 person x, E a person y such that x loves y.

E a person y such that 5 person x, x loves y.

Note that except for the order of the quantifiers, these statements are identical. However, 
the first means that given any person, it is possible to find someone whom that person 
loves, whereas the second means that there is one amazing individual who is loved by 
all people. (Reread the statements carefully to verify these interpretations!) The two 
sentences illustrate an extremely important property about statements with two different 
quantifiers.

In a statement containing both 5 and E , changing the order of the quantifiers can 
significantly change the meaning of the statement.

Interestingly, however, if one quantifier immediately follows another quantifier of the 
same type, then the order of the quantifiers does not affect the meaning. Consider the com-
mutative property of addition of real numbers, for example:

5 real number x and 5 real number y, x1y 5 y1x.

This means the same as

5 real number y and 5 real number x, x1y 5 y1x.

Thus the property can be expressed a little less formally as

5 real numbers x and y, x1y 5 y1x.
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Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the following two statements have the 
same truth value?

a. For every square x there is a triangle y such that x and y have different colors.

b. There exists a triangle y such that for every square x, x and y have different colors.

Solution Statement (a) says that if someone gives you one of the squares from the Tarski 
world, you can find a triangle that has a different color. This is true. If someone gives you 
square g or h (which are gray), you can use triangle d (which is black); if someone gives you 
square e (which is black), you can use either triangle f or i (which are gray); and if someone 
gives you square j (which is blue), you can use triangle d (which is black) or triangle f or i 
(which are gray).

Statement (b) says that there is one particular triangle in the Tarski world that has a dif-
ferent color from every one of the squares in the world. This is false. Two of the triangles 
are gray, but they cannot be used to show the truth of the statement because the Tarski 
world contains gray squares. The only other triangle is black, but it cannot be used either 
because there is a black square in the Tarski world.

Thus one of the statements is true and the other is false, and so they have opposite 
truth values. ■

Formal Logical Notation
In some areas of computer science, logical statements are expressed in purely symbolic 
notation. The notation involves using predicates to describe all properties of variables 
and omitting the words such that in existential statements. (When you try to figure 
out the meaning of a formal statement, however, it is helpful to think the words such 
that to yourself each time they are appropriate.) The formalism also depends on the 
following facts:

“5x in D, P(x)” can be written as “5x (x in D S P(x)),” and

“E x in D such that P(x)” can be written as “E x (x in D ` P(x)).”

We illustrate the use of these facts in Example 3.3.10.

Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

a

b c

f

i

e g

h

j

d

Example 3.3.9

Example 3.3.10

!
Caution! If a statement 
contains two different 
quantifiers, reversing 
their order may change 
the truth value of the 
statement to its opposite.
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Let Triangle(x), Circle(x), and Square(x) mean “x is a triangle,” “x is a circle,” and “x is a 
square”; let Blue(x), Gray(x), and Black(x) mean “x is blue,” “x is gray,” and “x is black”; let 
RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean “x is to the right of y,” “x is above 
y,” and “x has the same color as y”; and use the notation x 5 y to denote the predicate “x is 
equal to y.” Let the common domain D of all variables be the set of all the objects in the 
Tarski world. Use formal logical notation to write each of the following statements, and 
write a formal negation for each statement.

a. For every circle x, x is above f.

b. There is a square x such that x is black.

c. For every circle x, there is a square y such that x and y have the same color.

d. There is a square x such that for every triangle y, x is to the right of y.

Solution

a. Statement: 5x(Circle(x) S Above(x, f))
Negation: ,(5x (Circle(x) S Above(x, f)))

; E x ,(Circle(x) S Above(x, f))
by the law for negating a 5 statement

; E x(Circle(x) ` ,Above(x, f))
by the law of negating an if-then statement

b. Statement: E x(Square(x) ` Black(x))

Negation: ,(E x(Square(x) ` Black(x)))

; 5x ,(Square(x) ` Black(x))
by the law for negating a E statement

; 5x(,Square(x) ~ ,Black(x))
by De Morgan’s law

c. Statement: 5x(Circle(x) S E y(Square(y) ` SameColor(x, y)))

Negation: ,(5x(Circle(x) S E y(Square(y) ` SameColor(x, y))))

; E x ,(Circle(x) S E y(Square(y) ` SameColor(x, y)))
by the law for negating a 5 statement

; E x(Circle(x) ` ,(E y(Square(y) ` SameColor(x, y))))
by the law for negating an if-then statement

; Ex(Circle(x) ` 5 y(,(Square(y) ` SameColor(x, y))))
by the law for negating a E statement

; Ex(Circle(x) ` 5 y(,Square(y) ~ ,SameColor(x, y)))
by De Morgan’s law

d. Statement: E x(Square(x) ` 5y(Triangle(y) S RightOf(x, y)))

Negation: ,(E x(Square(x) ` 5y(Triangle(y) S RightOf(x, y))))

; 5x,(Square(x) ` 5y(Triangle(x) S RightOf(x, y)))
by the law for negating a E statement

; 5x(,Square(x) ~ ,(5y(Triangle(y) S RightOf(x, y))))
by De Morgan’s law

; 5x(,Square(x) ~ E y(,(Triangle(y) S RightOf(x, y))))
by the law for negating a 5 statement

; 5x(,Square(x) ~ Ey(Triangle(y) ` ,RightOf(x, y)))
by the law for negating an if-then statement

 ■
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3.3 statements witH muLtiPLe Quantifiers  141

The disadvantage of the fully formal notation is that because it is complex and some-
what remote from intuitive understanding, when we use it, we may make errors that go 
unrecognized. The advantage, however, is that operations, such as taking negations, can 
be made completely mechanical and programmed on a computer. Also, when we become 
comfortable with formal manipulations, we can use them to check our intuition, and then 
we can use our intuition to check our formal manipulations. Formal logical notation is used 
in branches of computer science such as artificial intelligence, program verification, and 
automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, predicates, and logical connec-
tives make up what is known as the language of first-order logic. Even though this lan-
guage is simpler in many respects than the language we use every day, learning it requires 
the same kind of practice needed to acquire any foreign language.

Prolog
The programming language Prolog (short for programming in logic) was developed in 
France in the 1970s by A. Colmerauer and P. Roussel to help programmers working in the 
field of artificial intelligence. A simple Prolog program consists of a set of statements de-
scribing some situation together with questions about the situation. Built into the language 
are search and inference techniques needed to answer the questions by deriving the an-
swers from the given statements. This frees the programmer from the necessity of having 
to write separate programs to answer each type of question. Example 3.3.11 gives a very 
simple example of a Prolog program.

A Prolog Program

Consider the following picture, which shows colored blocks stacked on a table.

g

b1

w1

w2

b2

b3

g

b1 w1

= gray block

= blue block 1

= blue block 2

= blue block 3

= white block 1

= white block 2w2b2

b3

The following are statements in Prolog that describe this picture and ask two questions 
about it.

isabove(g, b1) color(g, gray) color(b3, blue)

isabove(b1, w1) color(b1, blue) color(w1, white)

isabove(w2, b2) color(b2, blue) color(w2, white)

isabove(b2, b3) isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)

1. ?color(b1, blue) 2. ?isabove(X, w1)

The statements “isabove(g, b1)” and “color(g, gray)” are to be interpreted as “g is above b1” 
and “g is colored gray.” The statement “isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)” is 
to be interpreted as “For all X, Y, and Z, if X is above Y and Y is above Z, then X is above Z.” 
Statement 1

?color(b1, blue)

Example 3.3.11

Note Different Prolog 
implementations follow 
different conventions as to 
how to represent constant, 
variable, and predicate 
names and forms of ques-
tions and answers. The 
conventions used here 
are similar to those of 
Edinburgh Prolog.
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142  CHAPTEr 3 tHe LOGic Of Quantified statements

asks whether block b1 is colored blue. Prolog answers this by writing

Yes.

Statement 2

?isabove(X, w1)

asks for which blocks X the predicate “X is above w1” is true. Prolog answers by giving a 
list of all such blocks. In this case, the answer is

X 5 b1, X 5 g.

Note that Prolog can find the solution X 5 b1 by merely searching the original set of given 
facts. However, Prolog must infer the solution X 5 g from the following statements:

isabove(g, b1),

isabove(b1, w1),

isabove(X, Z) if isabove(X, Y) and isabove(Y, Z).

Write the answers Prolog would give if the following questions were added to the program 
above.

a. ?isabove(b2, w1) b. ?color(w1, X) c. ?color(X, blue)

Solution

a. The question means “Is b2 above w1?”; so the answer is “No.”

b. The question means “For what colors X is the predicate ‘w1 is colored X ’ true?”; so 
the answer is “X 5 white.”

c. The question means “For what blocks is the predicate ‘X is colored blue’ true?”; so the 
answer is “X 5 b1,” “X 5 b2,” and “X 5 b3.” ■

1. To establish the truth of a statement of the form 
“5x in D, E y in E such that P(x, y),” you imagine 
that someone has given you an element x from 
D but that you have no control over what that el-
ement is. Then you need to find  with the 
property that the x the person gave you together 
with the  you subsequently found satisfy 

.

2. To establish the truth of a statement of the form 
“E x in D such that 5y in E, P(x, y),” you need 
to find  so that no matter what  a 
person might subsequently give you,  will 
be true.

3. Consider the statement “5x, Ey such that P(x, y), a 
property involving x and y, is true.” A negation for 
this statement is “ .”

4. Consider the statement “Ex such that 5y, P(x, y), a 
property involving x and y, is true.” A negation for 
this statement is “ .”

5. Suppose P(x, y) is some property involving x  
and y, and suppose the statement “5x in D, E y in E 
such that P(x, y)” is true. Then the statement “E x in 
D such that 5y in E, P(x, y)”
a. is true.
b. is false.
c. may be true or may be false.

TEST YOUrSELF
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3.3 statements witH muLtiPLe Quantifiers  143

1. Let C be the set of cities in the world, let N be the 
set of nations in the world, and let P(c, n) be “c is 
the capital city of n.” Determine the truth values 
of the following statements.
a. P(Tokyo, Japan) b. P(Athens, Egypt)
c. P(Paris, France) d. P(Miami, Brazil)

2. Let G(x, y) be “x2 . y.” Indicate which of the fol-
lowing statements are true and which are false.
a. G(2, 3) b. G(1, 1)
c. G _12, 12+ d. G(22, 2)

3. The following statement is true: “5 nonzero 
number x, E a real number y such that xy 5 1.” For 
each x given below, find a y to make the predicate 
“xy 5 1” true.
a. x 5 2 b. x 5 21 c. x 5 3/4

4. The following statement is true: “5 real number x, 
E an integer n such that n . x.”* For each x given 
below, find an n to make the predicate “n . x” true.
a. x 5 15.83 b. x 5 108 c. x 5 101010

the statements in exercises 5–8 refer to the tarski world 
given in Figure 3.3.1. explain why each is true.

5. For every circle x there is a square y such that 
x and y have the same color.

6. For every square x there is a circle y such that  
x and y have different colors and y is above x.

7. There is a triangle x such that for every square  
y, x is above y.

8. There is a triangle x such that for every circle y,  
y is above x.

9. Let D 5 E 5 {22, 21, 0, 1, 2}. Explain why the 
following statements are true.
a. 5x in D, Ey in E such that x1y 5 0.
b. E x in D such that 5y in E, x1y 5 y.

10. This exercise refers to Example 3.3.3. Determine 
whether each of the following statements is true or 
false.
a. 5 student S, E a dessert D such that S chose D.
b. 5 student S, E a salad T such that S chose T.
c. E a dessert D such that 5 student S, S chose D.
d. E a beverage B such that 5 student D, D chose B.

e. E an item I such that 5 student S, S did not 
choose I.

f. E a station Z such that 5 student S, E an item I 
such that S chose I from Z.

11. Let S be the set of students at your school, let M 
be the set of movies that have ever been released, 
and let V(s, m) be “student s has seen movie m.” 
Rewrite each of the following statements without 
using the symbol 5, the symbol E , or variables.

a. E s [ S such that V(s, Casablanca).

b. 5s [ S, V(s, Star Wars).

c. 5s [ S, E m [ M such that V(s, m).

d. Em [ M such that 5s [ S, V(s, m).

e. Es [ S, E t [ S, and E m [ M such that s Þ t 

and V(s, m) ` V(t, m).

f. E s [ S and E t [ S such that s Þ t and 5m [ M, 
V(s, m) S V(t, m).

12. Let D 5 E 5 {22, 21, 0, 1, 2}. Write negations 
for each of the following statements and determine 
which is true, the given statement or its negation.
a. 5x in D, E y in E such that x1y 5 1.
b. E x in D such that 5y in E, x1y 5 2y.
c. 5x in D, E y in E such that xy $ y.
d. E x in D such that 5y in E, x # y.

In each of 13–19, (a) rewrite the statement in english 
without using the symbol 5 or E or variables and express-
ing your answer as simply as possible, and (b) write a 
negation for the statement.

13. 5 color C, E an animal A such that A is colored C.

14. E a book b such that 5 person p, p has read b.

15. 5 odd integer n, E an integer k such that n 5 2k11.

16. E a real number u such that 5 real number v, uv 5 v.

17. 5r [ Q, E integers a and b such that r 5 a/b.

18. 5x [ R, E a real number y such that x1y 5 0.

19. E x [ R such that for every real number y, 
x1y 5 0.

20. Recall that reversing the order of the quantifiers 
in a statement with two different quantifiers may 

ExErCISE SET 3.3  

*This is called the Archimedean principle because it was first formulated (in geometric terms) by the great Greek mathematician Archimedes 
of Syracuse, who lived from about 287 to 212 b.c.e.
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144  CHAPTEr 3 tHe LOGic Of Quantified statements

change the truth value of the statement—but it 
does not necessarily do so. All the statements in 
the pairs below refer to the Tarski world of Figure 
3.3.1. In each pair, the order of the quantifiers is 
reversed but everything else is the same. For each 
pair, determine whether the statements have  
the same or opposite truth values. Justify your 
answers.
a. (1)  For every square y there is a triangle x such 

that x and y have different colors.
(2)  There is a triangle x such that for every 

square y, x and y have different colors.
b. (1)  For every circle y there is a square x such 

that x and y have the same color.
(2)  There is a square x such that for every 

circle y, x and y have the same color.

21. For each of the following equations, determine 
which of the following statements are true:
(1) For every real number x, there exists a real 

number y such that the equation is true.
(2) There exists a real number x, such that for 

every real number y, the equation is true.

Note that it is possible for both statements to be 
true or for both to be false.
a. 2x1y 5 7
b. y1x 5 x1y
c. x2 22xy1y2 5 0
d. (x25)(y21) 5 0
e. x2 1y2 5 21

In 22 and 23, rewrite each statement without using vari-
ables or the symbol ; or '. Indicate whether the state-
ment is true or false.

22. a.  5 real number x, E a real number y such that 
x1y 5 0.

b. E a real number y such that 5 real number x, 
x1y 5 0.

23. a.  5 nonzero real number r, E a real number s 
such that rs 5 1.

b. E a real number r such that 5 nonzero real 
number s, rs 5 1.

24. Use the laws for negating universal and existential 
statements to derive the following rules:

a. ,(5 x [ D(5 y [ E(P(x, y))))

; E x [ D(E y [ E(,P(x, y)))

b. ,(E x [ D(E y [ E(P(x, y))))

; 5 x [ D(5 y [ E(,P(x, y)))

each statement in 25–28 refers to the tarski world of 
Figure 3.3.1. For each, (a) determine whether the state-
ment is true or false and justify your answer, and (b) write 
a negation for the statement (referring, if you wish, to the 
result in exercise 24).

25. 5 circle x and 5 square y, x is above y.

26. 5 circle x and 5 triangle y, x is above y.

27. E a circle x and E a square y such that x is above y 
and x and y have different colors.

28. E a triangle x and E a square y such that x is above 
y and x and y have the same color.

For each of the statements in 29 and 30, (a) write a new 
statement by interchanging the symbols ; and ', and 
(b) state which is true: the given statement, the version 
with interchanged quantifiers, neither, or both.

29. 5x [ R, Ey [ R such that x , y.

30. E x [ R such that 5y [ R2 (the set of negative real 
numbers), x . y.

31. Consider the statement “Everybody is older than 
somebody.” Rewrite this statement in the form  
“5 people x, E .”

32. Consider the statement “Somebody is older than 
everybody.” Rewrite this statement in the form 
“E a person x such that 5 .”

In 33–39, (a) rewrite the statement formally using 
quantifiers and variables, and (b) write a negation for the 
statement.

33. Everybody loves somebody.

34. Somebody loves everybody.

35. Everybody trusts somebody.

36. Somebody trusts everybody.

37. Any even integer equals twice some integer.

38. Every action has an equal and opposite reaction.

39. There is a program that gives the correct answer to 
every question that is posed to it.

40. In informal speech most sentences of the form 
“There is  every ” are intended to be 
understood as meaning “5  E ,” even 
though the existential quantifier there is comes 
before the universal quantifier every. Note that 
this interpretation applies to the following  
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3.3 statements witH muLtiPLe Quantifiers  145

well-known sentences. Rewrite them using quan-
tifiers and variables.
a. There is a sucker born every minute.
b. There is a time for every purpose under 

heaven.

41. Indicate which of the following statements are true 
and which are false. Justify your answers as best 
you can.

a. 5x [ Z1, E y [ Z1 such that x 5 y11.

b. 5x [ Z, E y [ Z such that x 5 y11.

c. E x [ R such that 5 y [ R, x 5 y11.

d. 5x [ R1, E y [ R1 such that xy 5 1.

e. 5x [ R, E y [ R such that xy 51.

f. E x [ R such that 5 y [ R, x1y 5 y.

g. 5x [ R1, E y [ R1 such that y , x.

h. E x [ R1 such that 5y [ R1, x # y.

42. Write the negation of the definition of limit of a 
sequence given in Example 3.3.7.

43. The following is the definition for limx S a f(x) 5 L:

For every real number « . 0, there exists a real 
number � . 0 such that for every real number x,  
if a2� , x , a1� and x Þ a then 

L2« , f(x) , L1«.

Write what it means for limx S a f(x) Þ L. In other 
words, write the negation of the definition.

44. The notation E! stands for the words “there exists 
a unique.” Thus, for instance, “E! x such that x 
is prime and x is even” means that there is one 
and only one even prime number. Which of the 
following statements are true and which are false? 
Explain.
a. E! real number x such that 5 real number  

y, xy 5 y.
b. E! integer x such that 1/x is an integer.
c. 5 real number x, E! real number y such that 

x1y 5 0.

45. Suppose that P(x) is a predicate and D is the 

domain of x. Rewrite the statement “E! x [ D 
such that P(x)” without using the symbol E!. (See 
exercise 44 for the meaning of E!.)

In 46–54, refer to the tarski world given in Figure 3.1.1, 
which is shown again here for reference. the domains of 
all variables consist of all the objects in the tarski world. 
For each statement, (a) indicate whether the statement 

is true or false and justify your answer, (b) write the given 
statement using the formal logical notation illustrated in 
example 3.3.10, and (c) write a negation for the given state-
ment using the formal logical notation of example 3.3.10.

ba

d

f

i

k

e

h

j

c

g

46. There is a triangle x such that for every square y, x 
is above y.

47. There is a triangle x such that for every circle y, x 
is above y.

48. For every circle x, there is a square y such that y is 
to the right of x.

49. For every object x, if x is a circle then there is a 
square y such that y has the same color as x.

50. For every object x, if x is a triangle then there is a 
square y such that y is below x.

51. There is a square x such that for every triangle y, if 
y is above x then y has the same color as x.

52. For every circle x and for every triangle y, x is to 
the right of y.

53. There is a circle x and there is a square y such that 
x and y have the same color.

54. There is a circle x and there is a triangle y such 
that x has the same color as y.

Let P(x) and Q(x) be predicates and suppose D is the 
domain of x. In 55–58, for the statement forms in each 
pair, determine whether (a) they have the same truth 
value for every choice of P(x), Q(x), and D, or (b) there is 
a choice of P(x), Q(x), and D for which they have opposite 
truth values.

55. 5x [ D, (P(x) ` Q(x)), and

(5x [ D, P(x)) ` (5x [ D, Q(x))

*
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146  CHAPTEr 3 tHe LOGic Of Quantified statements

56. E x [ D, (P(x) ` Q(x)), and

(E x [ D, P(x)) ` (E x [ D, Q(x))

57. 5 x [ D, (P(x) ~ Q(x)), and

(5x [ D, P(x)) ~ (5x [ D, Q(x))

58. E x [ D, (P(x) ~ Q(x)), and

(E x [ D, P(x)) ~ (E x [ D, Q(x))

In 59–61, find the answers prolog would give if the 
following questions were added to the program given 
in example 3.3.11.

59. a. ?isabove(b1, w1)
b. ?color(X, white)
c. ?isabove(X, b3)

60. a. ?isabove(w1, g)

b. ?color(w2, blue)
c. ?isabove(X, b1)

61.  a. ?isabove(w2, b3)
b. ?color(X, gray)
c. ?isabove(g, X)

1. an element y in E; y; P(x, y) 2. an element x in D; y 
in E; P(x, y) 3. E x such that 5y, the property P(x, y) is 
false. 4. 5x, E y such that the property P(x, y) is false. 

5. The answer is (c): the truth or falsity of a statement in 
which the quantifiers are reversed depends on the nature of 
the property involving x and y.

ANSWErS FOr TEST YOUrSELF 

Arguments with Quantified Statements
The only complete safeguard against reasoning ill, is the habit of reasoning well; 
familiarity with the principles of correct reasoning; and practice in applying those 
principles. —John Stuart Mill

The rule of universal instantiation (in-stan-she-AY-shun) says the following:

Universal Instantiation

If a property is true of everything in a set, then it is true of any particular thing in 
the set.

Use of the words universal instantiation indicates that the truth of a property in a particu-
lar case follows as a special instance of its more general or universal truth. The validity of 
this argument form follows immediately from the definition of truth values for a universal 
statement. One of the most famous examples of universal instantiation is the following:

All men are mortal.

Socrates is a man.

[ Socrates is mortal.

Universal instantiation is the fundamental tool of deductive reasoning. Mathematical 
formulas, definitions, and theorems are like general templates that are used over and over 
in a wide variety of particular situations. A given theorem says that such and such is true 
for all things of a certain type. If, in a given situation, you have a particular object of 
that type, then by universal instantiation, you conclude that such and such is true for that 
particular object. You may repeat this process 10, 20, or more times in a single proof or 
problem solution.

As an example of universal instantiation, suppose you are doing a problem that requires 
you to simplify

rk11?r,

3.4
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3.4 arGuments witH Quantified statements  147

where r is a particular real number and k is a particular integer. You know from your study 
of algebra that the following universal statements are true:

1. For every real number x and for all integers m and n, xm?xn 5 xm1n.

2. For every real number x, x1 5 x.

So you proceed as follows:

 rk11?r 5 rk11?r1  Step 1

 5 r(k11)11  Step 2

 5 rk12 by basic algebra.

Here is the reasoning behind steps 1 and 2.

Step 1: For every real number x, x1 5 x. universal truth

r is a particular real number. particular instance

[ r1 5 r. conclusion

Step 2:  For every real number x and for all integers 
m and n, xm?xn 5 xm1n. universal truth

r is a particular real number and k11 
and 1 are particular integers. particular instance

[ rk11?r1 5 r(k11)11. conclusion

Both arguments are examples of universal instantiation.

Universal Modus Ponens
The rule of universal instantiation can be combined with modus ponens to obtain the valid 
form of argument called universal modus ponens.

Universal Modus Ponens

Formal Version Informal Version

5x, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
P(a) for a particular a. a makes P(x) true.

[ Q(a). [ a makes Q(x) true.

Note that the first, or major, premise of universal modus ponens could be written “All 
things that make P(x) true make Q(x) true,” in which case the conclusion would follow by 
universal instantiation alone. However, the if-then form is more natural to use in the major-
ity of mathematical situations.

recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Is this 
argument valid? Why?

If an integer is even, then its square is even.

k is a particular integer that is even.

[ k2 is even.

Solution The major premise of this argument can be rewritten as

5x, if x is an even integer then x2 is even.

Example 3.4.1

94193_ch03_ptg01.indd   147 12/11/18   3:51 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



148  CHAPTEr 3 tHe LOGic Of Quantified statements

Let E(x) be “x is an even integer,” let S(x) be “x2 is even,” and let k stand for a particular 
integer that is even. Then the argument has the following form:

5x, if E(x) then S(x).

E(k), for a particular k.
[ S(k).

This argument has the form of universal modus ponens and is therefore valid. ■

Drawing Conclusions Using Universal Modus Ponens

Write the conclusion that can be inferred using universal modus ponens.

If T is any right triangle with hypotenuse  
c and legs a and b, then c2 5 a2 1b2.

The triangle shown at the right is a right triangle  
with both legs equal to 1 and hypotenuse c.

[ 

Solution c2 5 12 112 5 2
Note that if you take the nonnegative square root of both sides of this equation, you obtain 
c 5 Ï2. This shows that there is a line segment whose length is Ï2. Section 4.7 contains 
a proof that Ï2 is not a rational number. ■

Use of Universal Modus Ponens in a Proof
In Chapter 4 we discuss methods of proving quantified statements. Here is a proof that 
the sum of any two even integers is even. It makes use of the definition of even integer, 
namely, that an integer is even if, and only if, it equals twice some integer. (Or, more for-
mally: 5 integers x, x is even if, and only if, E an integer—say, k—such that x 5 2k.)

Suppose m and n are particular but arbitrarily chosen even integers. Then m 5 2r for 
some integer r,(1) and n 5 2s for some integer s.(2) Hence

m1n 5 2r12s   by substitution

5 2(r1 s)(3)  by factoring out the 2.

Now r1 s is an integer,(4) and so 2(r1 s) is even.(5) Thus m1n is even.

The following expansion of the proof shows how each of the numbered steps is justified by 
arguments that are valid by universal modus ponens.

(1)  If an integer is even, then it equals twice some integer.
m is a particular even integer.

[ m equals twice some integer, say, r.

(2)  If an integer is even, then it equals twice some integer.
n is a particular even integer.

[ n equals twice some integer, say, s.

(3)  If a quantity is an integer, then it is a real number.
r and s are particular integers.

[ r and s are real numbers.

For all a, b, and c, if a, b, and c are real numbers, then ab1ac 5 a(b1c).
2, r, and s are particular real numbers.

[ 2r12s 5 2(r1 s).

Example 3.4.2

Pythagorean Theorem

1

c 1

Note The logical 
principle of existential 
instantiation says that if 
we know or have deduced 
that something exists, we 
may give it a name. This 
is the principle that allows 
us to call the integers 
r and s.
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3.4 arGuments witH Quantified statements  149

(4)  For all u and v, if u and v are integers, then u1v is an integer.
r and s are two particular integers.

[ r1 s is an integer.

(5)  If a number equals twice some integer, then that number is even.
2(r1 s) equals twice the integer r1 s.

[ 2(r1 s) is even.

Of course, the actual proof that the sum of even integers is even does not explicitly 
contain the sequence of arguments given above. In fact, people who are good at analyti-
cal thinking are normally not even conscious that they are reasoning in this way because 
they have absorbed the method so completely that it has become almost as automatic as 
breathing.

Universal Modus Tollens
Another crucially important rule of inference is universal modus tollens. Its validity re-
sults from combining universal instantiation with modus tollens. Universal modus tollens 
is the heart of proof of contradiction, which is one of the most important methods of math-
ematical argument.

Universal Modus Tollens

Formal Version Informal Version

5x, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
,Q(a), for a particular a. a does not make Q(x) true.

[ ,P(a). [ a does not make P(x) true.

recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Write 
the major premise in conditional form. Is this argument valid? Why?

All human beings are mortal.

Zeus is not mortal.

[ Zeus is not human.

Solution The major premise can be rewritten as

5x, if x is human then x is mortal.

Let H(x) be “x is human,” let M(x) be “x is mortal,” and let Z stand for Zeus. The argument 
becomes

5x, if H(x) then M(x)

,M(Z)
[ ,H(Z).

This argument has the form of universal modus tollens and is therefore valid. ■

Example 3.4.3
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150  CHAPTEr 3 tHe LOGic Of Quantified statements

Drawing Conclusions Using Universal Modus Tollens

Write the conclusion that can be inferred using universal modus tollens.

All professors are absent-minded.

Tom Hutchins is not absent-minded.
[ .

Solution Tom Hutchins is not a professor. ■

Proving Validity of Arguments with Quantified Statements
The intuitive definition of validity for arguments with quantified statements is the same as 
for arguments with compound statements. An argument is valid if, and only if, the truth 
of its conclusion follows necessarily from the truth of its premises. The formal definition 
is as follows:

Example 3.4.4

Definition

To say that an argument form is valid means the following: No matter what particu-
lar predicates are substituted for the predicate symbols in its premises, if the result-
ing premise statements are all true, then the conclusion is also true. An argument is 
called valid if, and only if, its form is valid. It is called sound if, and only if, its form 
is valid and its premises are true.

As already noted, the validity of universal instantiation follows immediately from the 
definition of the truth value of a universal statement. General formal proofs of validity of 
arguments in the predicate calculus are beyond the scope of this book. We give the proof of 
the validity of universal modus ponens as an example to show that such proofs are possible 
and to give an idea of how they look.

Universal modus ponens asserts that

5x, if P(x) then Q(x).

P(a) for a particular a.

[ Q(a).

To prove that this form of argument is valid, suppose the major and minor premises are 
both true. [We must show that the conclusion “Q(a)” is also true.] By the minor premise, 
P(a) is true for a particular value of a. By the major premise and universal instantiation, 
the statement “If P(a) then Q(a)” is true for that particular a. But by modus ponens, since 
the statements “If P(a) then Q(a)” and “P(a)” are both true, it follows that Q(a) is true also. 
[This is what was to be shown.]

The proof of validity given above is abstract and somewhat subtle. We include the proof 
not because we expect that you will be able to make up such proofs yourself at this stage of 
your study. Rather, it is intended as a glimpse of a more advanced treatment of the subject, 
which you can try your hand at in exercises 35 and 36 at the end of this section if you wish.

One of the paradoxes of the formal study of logic is that the laws of logic are used to 
prove that the laws of logic are valid!

In the next part of this section we show how you can use diagrams to analyze the valid-
ity or invalidity of arguments that contain quantified statements. Diagrams do not provide 
totally rigorous proofs of validity and invalidity, and in some complex settings they may 
even be confusing, but in many situations they are helpful and convincing.
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Using Diagrams to Test for Validity
Consider the statement

All integers are rational numbers.

Or, formally,

5 integer n, n is a rational number.

Picture the set of all integers and the set of all rational numbers as disks. The truth of the 
given statement is represented by placing the integers disk entirely inside the rationals disk, 
as shown in Figure 3.4.1.

FIGUrE 3.4.1

rational numbers

integers

Because the two statements “5x [ D, Q(x)” and “5x, if x is in D then Q(x)” are logically 
equivalent, both can be represented by diagrams like the foregoing.

Perhaps the first person to use diagrams like these to analyze arguments was the German 
mathematician and philosopher Gottfried Wilhelm Leibniz. Leibniz (LIPE-nits) was far 
ahead of his time in anticipating modern symbolic logic. He also developed the main ideas 
of the differential and integral calculus at approximately the same time as (and indepen-
dently of) Isaac Newton (1642–1727).

To test the validity of an argument diagrammatically, represent the truth of both prem-
ises with diagrams. Then analyze the diagrams to see whether they necessarily represent 
the truth of the conclusion as well.

Using a Diagram to Show Validity

Use diagrams to show the validity of the following syllogism:

All human beings are mortal.

Zeus is not mortal.

[ Zeus is not a human being.

Solution The major premise is pictured on the left in Figure 3.4.2 by placing a disk la-
beled “human beings” inside a disk labeled “mortals.” The minor premise is pictured on 
the right in Figure 3.4.2 by placing a dot labeled “Zeus” outside the disk labeled “mortals.”

Example 3.4.5

G. W. Leibniz 
(1646–1716)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es

FIGUrE 3.4.2

human beings

mortals

Major premise

mortals

Minor premise

Zeus
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152  CHAPTEr 3 tHe LOGic Of Quantified statements

The two diagrams fit together in only one way, as shown in Figure 3.4.3.

FIGUrE 3.4.3

human beings

mortals

Zeus

Since the Zeus dot is outside the mortals disk, it is necessarily outside the human beings 
disk. Thus the truth of the conclusion follows necessarily from the truth of the premises. It 
is impossible for the premises of this argument to be true and the conclusion false; hence 
the argument is valid. ■

Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following argument:

All human beings are mortal.

Felix is mortal.

[ Felix is a human being.

Solution The major and minor premises are represented diagrammatically in Figure 3.4.4.

Example 3.4.6

FIGUrE 3.4.4

human beings

mortals

Major premise

mortals

Minor premise

Felix

All that is known is that the Felix dot is located somewhere inside the mortals disk. 
Where it is located with respect to the human beings disk cannot be determined. Either one 
of the situations shown in Figure 3.4.5 might be the case.

FIGUrE 3.4.5

human beings human beings

mortals

(a)

mortals

(b)

Felix

Felix
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3.4 ARGUMENTS WITH QUANTIFIED STATEMENTS  153

The conclusion “Felix is a human being” is true in the first case but not in the second 
(Felix might, for example, be a cat). Because the conclusion does not necessarily follow 
from the premises, the argument is invalid. ■

The argument of Example 3.4.6 would be valid if the major premise were replaced by 
its converse. But since a universal conditional statement is not logically equivalent to its 
converse, such a replacement cannot, in general, be made. We say that this argument ex-
hibits the converse error.

!
Caution! Be careful 
when using diagrams to 
test for validity! For in-
stance, in this example if 
you put the diagrams for 
the premises together to 
obtain only Figure 3.4.5(a) 
and not Figure 3.4.5(b), 
you would conclude erro-
neously that the argument 
was valid.

Converse Error (Quantified Form)

Formal Version Informal Version

5x, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
Q(a) for a particular a. a makes Q(x) true.

[ P(a). d invalid [ a makes P(x) true. d invalid 
conclusion conclusion

The following form of argument would be valid if a conditional statement were logi-
cally equivalent to its inverse. But it is not, and the argument form is invalid. We say that 
it exhibits the inverse error. You are asked to show the invalidity of this argument form in 
the exercises at the end of this section.

Inverse Error (Quantified Form)

Formal Version Informal Version

5x, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
,P(a), for a particular a. a does not make P(x) true.

[ ,Q(a). d invalid [ a does not make Q(x) true. d invalid
conclusion conclusion

An Argument with “No”

Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.

This function has a horizontal asymptote.

[ This function is not a polynomial function.

Solution A good way to represent the major premise diagrammatically is shown in Fig-
ure 3.4.6, two disks—a disk for polynomial functions and a disk for functions with hori-
zontal asymptotes—that do not overlap at all. The minor premise is represented by placing 
a dot labeled “this function” inside the disk for functions with horizontal asymptotes.

Example 3.4.7

FIgurE 3.4.6

polynomial functions
functions with

horizontal  asymptotes

this function
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154  CHAPTEr 3 tHe LOGic Of Quantified statements

The diagram shows that “this function” must lie outside the polynomial functions disk, and 
so the truth of the conclusion necessarily follows from the truth of the premises. Hence the 
argument is valid. ■

An alternative way to solve Example 3.4.7 is to transform “No polynomial functions 
have horizontal asymptotes” into the equivalent statement “5x, if x is a polynomial func-
tion, then x does not have a horizontal asymptote.” If this is done, the argument can be seen 
to have the form

5x, if P(x) then Q(x).

,Q(a), for a particular a.

[ ,P(a).

where P(x) is “x is a polynomial function” and Q(x) is “x does not have a horizontal asymp-
tote.” This is valid by universal modus tollens.

Creating Additional Forms of Argument
Universal modus ponens and modus tollens were obtained by combining universal instan-
tiation with modus ponens and modus tollens. In the same way, additional forms of argu-
ments involving universally quantified statements can be obtained by combining universal 
instantiation with other of the valid argument forms given in Section 2.3. For instance, in 
Section 2.3 the argument form called transitivity was introduced:

p S q

q S r

[ p S r

This argument form can be combined with universal instantiation to obtain the following 
valid argument form.

Universal Transitivity

Formal Version Informal Version

5x P(x) S Q(x). Any x that makes P(x) true makes Q(x) true.
5x Q(x) S R(x). Any x that makes Q(x) true makes R(x) true.

[ 5x P(x) S R(x). [ Any x that makes P(x) true makes R(x) true.

Evaluating an Argument for Tarski’s World

The following argument refers to the kind of arrangement of objects of various types and 
colors described in Examples 3.1.13 and 3.3.1. Reorder and rewrite the premises to show 
that the conclusion follows as a valid consequence from the premises.

1. All the triangles are blue.

2. If an object is to the right of all the squares, then it is above all the circles.

3. If an object is not to the right of all the squares, then it is not blue.

[ All the triangles are above all the circles.

Solution It is helpful to begin by rewriting the premises and the conclusion in if-then form:

1. 5x, if x is a triangle, then x is blue.

2. 5x, if x is to the right of all the squares, then x is above all the circles.

Example 3.4.8
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3.4 arGuments witH Quantified statements  155

3. 5x, if x is not to the right of all the squares, then x is not blue.

[ 5x, if x is a triangle, then x is above all the circles.

The goal is to reorder the premises so that the conclusion of each is the same as the 
hypothesis of the next. Also, the hypothesis of the argument’s conclusion should be the 
same as the hypothesis of the first premise, and the conclusion of the argument’s conclu-
sion should be the same as the conclusion of the last premise. To achieve this goal, it may 
be necessary to rewrite some of the statements in contrapositive form.

In this example you can see that the first premise should remain where it is, but the sec-
ond and third premises should be interchanged. Then the hypothesis of the argument is the 
same as the hypothesis of the first premise, and the conclusion of the argument’s conclusion 
is the same as the conclusion of the third premise. But the hypotheses and conclusions of 
the premises do not quite line up. This is remedied by rewriting the third premise in con-
trapositive form.

1. 5x, if x is a triangle, then x is blue.

 3. 5x, if x is blue, then x is to the right of all the squares.

 2. 5x, if x is to the right of all the squares, then x is above all the circles.

Putting 1 and 3 together and using universal transitivity gives that

 4. 5x, if x is a triangle, then x is to the right of all the squares.

And putting 4 together with 2 and using universal transitivity gives that

[ 5x, if x is a triangle, then x is above all the circles,

which is the conclusion of the argument. ■

Remark on the Converse and Inverse Errors
One reason why so many people make converse and inverse errors is that the forms of the 
resulting arguments would be valid if the major premise were a biconditional rather than a 
simple conditional. And, as we noted in Section 2.2, many people tend to conflate bicon-
ditionals and conditionals.

Consider, for example, the following argument:

All the town criminals frequent the Den of Iniquity bar.

John frequents the Den of Iniquity bar.

[ John is one of the town criminals.

The conclusion of this argument is invalid—it results from making the converse error. 
Therefore, it may be false even when the premises of the argument are true. This type of 
argument attempts unfairly to establish guilt by association.

The closer, however, the major premise comes to being a biconditional, the more likely 
the conclusion is to be true. If hardly anyone but criminals frequent the bar and John also 
frequents the bar, then it is likely (though not certain) that John is a criminal. On the basis 
of the given premises, it might be sensible to be suspicious of John, but it would be wrong to 
convict him.

A variation of the converse error is a very useful reasoning tool, provided that it is used 
with caution. It is the type of reasoning that is used by doctors to make medical diagnoses 
and by auto mechanics to repair cars. It is the type of reasoning used to generate explana-
tions for phenomena. It goes like this: 
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If a statement of the form

For every x, if P(x) then Q(x)

is true, and if

Q(a) is true, for a particular a,

then check out the statement P(a); it just might be true. For instance, suppose a doctor 
knows that

For every x, if x has pneumonia, then x has a fever and chills, 
coughs deeply, and feels exceptionally tired and miserable.

And suppose the doctor also knows that

John has a fever and chills, coughs deeply, 
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of pneumonia is a strong 
possibility, though not a certainty. The doctor will probably attempt to gain further support 
for this diagnosis through laboratory testing that is specifically designed to detect pneu-
monia. Note that the closer a set of symptoms comes to being a necessary and sufficient 
condition for an illness, the more nearly certain the doctor can be of his or her diagnosis.

This form of reasoning has been named abduction by researchers working in artificial 
intelligence. It is used in certain computer programs, called expert systems, that attempt to 
duplicate the functioning of an expert in some field of knowledge.

1. The rule of universal instantiation says that if 
some property is true for  in a domain, then 
it is true for .

2. If the first two premises of universal modus 
ponens are written as “If x makes P(x) true, then 
x makes Q(x) true” and “For a particular value 
of a ,” then the conclusion can be written 
as “ .”

3. If the first two premises of universal modus tol-
lens are written as “If x makes P(x) true, then x 
makes Q(x) true” and “For a particular value of a 

,” then the conclusion can be written  
as “ .”

4. If the first two premises of universal transitivity are 
written as “Any x that makes P(x) true makes Q(x) 
true” and “Any x that makes Q(x) true makes R(x) 
true,” then the conclusion can be written as “ .”

5. Diagrams can be helpful in testing an argument 
for validity. However, if some possible configu-
rations of the premises are not drawn, a person 
could conclude that an argument was  when 
it was actually .

TEST YOUrSELF 

1. Let the following law of algebra be the first state-
ment of an argument: For all real numbers a and b,

(a1b)2 5 a2 12ab1b2.

Suppose each of the following statements is, in 
turn, the second statement of the argument. Use 
universal instantiation or universal modus ponens 
to write the conclusion that follows in each case.
a. a 5 x and b 5 y are particular real numbers.
b. a 5 fi and b 5 fj are particular real numbers.
c. a 5 3u and b 5 5v are particular real numbers.

d. a 5 g(r) and b 5 g(s) are particular real 
numbers.

e. a 5 log(t1) and b 5 log(t2) are particular real 
numbers.

Use universal instantiation or universal modus ponens to 
fill in valid conclusions for the arguments in 2–4.

2.    If an integer n equals 2?k and k is an integer, 
then n is even.
0 equals 2?0 and 0 is an integer.

[ .

ExErCISE SET 3.4 
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3.   For all real numbers a, b, c, and d, if b Þ 0 and 
d Þ 0 then a/b1c/d 5 (ad1bc)/bd.
a 5 2, b 5 3, c 5 4, and d 5 5 are particular 
real numbers such that b Þ 0 and d Þ 0.

[ .

4.   5 real numbers r, a, and b, if r is positive, then 
(ra)b 5 rab.
r 5 3, a 5 1/2, and b 5 6 are particular real 
numbers such that r is positive.

[ .

Use universal modus tollens to fill in valid conclusions for 
the arguments in 5 and 6.

5.   All irrational numbers are real numbers.
1
0 is not a real number.

[ .

6.    If a computer program is correct, then compilation 
of the program does not produce error messages.
Compilation of this program produces error 
messages.

[ .

Some of the arguments in 7–18 are valid by universal 
modus ponens or universal modus tollens; others are 
invalid and exhibit the converse or the inverse error. State 
which are valid and which are invalid. Justify your answers.

7.   All healthy people eat an apple a day.
Keisha eats an apple a day.

[ Keisha is a healthy person.

8.  All freshmen must take a writing course.
Caroline is a freshman.

[ Caroline must take a writing course.

9.   If a graph has no edges, then it has a vertex of 
degree zero.
This graph has at least one edge.

[  This graph does not have a vertex of degree 
zero.

10.   If a product of two numbers is 0, then at least 
one of the numbers is 0.
For a particular number x, neither (2x11) nor 
(x27) equals 0.

[ The product (2x11)(x27) is not 0.

11.  All cheaters sit in the back row.
Monty sits in the back row.

[ Monty is a cheater.

12.    If an 8-bit two’s complement represents a posi-
tive integer, then the 8-bit two’s complement 
starts with a 0.

The 8-bit two’s complement for this integer does 
not start with a 0.

[ This integer is not positive.

13.    For every student x, if x studies discrete math-
ematics, then x is good at logic.
Tarik studies discrete mathematics.

[ Tarik is good at logic.

14.   If compilation of a computer program produces 
error messages, then the program is not correct.
Compilation of this program does not produce 
error messages.

[ This program is correct.

15.   Any sum of two rational numbers is rational.
The sum r1 s is rational.

[ The numbers r and s are both rational.

16.    If a number is even, then twice that number is 
even.
The number 2n is even, for a particular number n.

[ The particular number n is even.

17.   If an infinite series converges, then the terms go 
to 0.
The terms of the infinite series o

`

n51

 
1
n

 go to 0.

[ The infinite series o
`

n51

 
1
n

 converges.

18.   If an infinite series converges, then its terms go 
to 0.

The terms of the infinite series o
`

n51

 
n

n11
 do not 

go to 0.

[ The infinite series o
`

n51

 
n

n11
 does not converge.

19. Rewrite the statement “No good cars are cheap” 
in the form “5x, if P(x) then ,Q(x).” Indicate 
whether each of the following arguments is valid 
or invalid, and justify your answers.
a.  No good car is cheap.

A Rimbaud is a good car.
[ A Rimbaud is not cheap.

b.  No good car is cheap.
A Simbaru is not cheap.

[ A Simbaru is a good car.
c.  No good car is cheap.

A VX Roadster is cheap.
[ A VX Roadster is not good.

d.  No good car is cheap.
An Omnex is not a good car.

[ An Omnex is cheap.
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20. a.  Use a diagram to show that the following 
argument can have true premises and a false 
conclusion.

All dogs are carnivorous.
Aaron is not a dog.

[ Aaron is not carnivorous.
b. What can you conclude about the validity or 

invalidity of the following argument form? 
Explain how the result from part (a) leads to 
this conclusion.

5x, if P(x) then Q(x).

,P(a) for a particular a.
[ ,Q(a).

Indicate whether the arguments in 21–27 are valid or 
invalid. Support your answers by drawing diagrams.

21.  All people are mice.
All mice are mortal.

[ All people are mortal.

22.   All discrete mathematics students can tell a 
valid argument from an invalid one.
All thoughtful people can tell a valid argument 
from an invalid one.

[  All discrete mathematics students are thoughtful.

23.   All teachers occasionally make mistakes.
No gods ever make mistakes.

[ No teachers are gods.

24.  No vegetarians eat meat.
All vegans are vegetarian.

[ No vegans eat meat.

25.   No college cafeteria food is good.
No good food is wasted.

[ No college cafeteria food is wasted.

26.  All polynomial functions are differentiable.
All differentiable functions are continuous.

[ All polynomial functions are continuous.

27.  [Adapted from Lewis Carroll.]
Nothing intelligible ever puzzles me.
Logic puzzles me.

[ Logic is unintelligible.

In exercises 28–32, reorder the premises in each of the 
arguments to show that the conclusion follows as a valid 
consequence from the premises. It may be helpful to 
rewrite the statements in if-then form and replace some 
of them by their contrapositives. exercises 28–30 refer to 
the kinds of tarski worlds discussed in examples 3.1.13 

and 3.3.1. exercises 31 and 32 are adapted from Symbolic 
Logic by Lewis Carroll.*

28. 1.  Every object that is to the right of all the blue 
objects is above all the triangles.

2. If an object is a circle, then it is to the right of 
all the blue objects.

3. If an object is not a circle, then it is not gray.
[  All the gray objects are above all the triangles.

29. 1.  All the objects that are to the right of all the 
triangles are above all the circles.

2. If an object is not above all the black objects, 
then it is not a square.

3. All the objects that are above all the black 
objects are to the right of all the triangles.

[ All the squares are above all the circles.

30. 1.  If an object is above all the triangles, then it is 
above all the blue objects.

2. If an object is not above all the gray objects, 
then it is not a square.

3. Every black object is a square.
4. Every object that is above all the gray objects 

is above all the triangles.
[ If an object is black, then it is above all the 

blue objects.

31. 1. I trust every animal that belongs to me.
2. Dogs gnaw bones.
3. I admit no animals into my study unless they 

will beg when told to do so.
4. All the animals in the yard are mine.
5. I admit every animal that I trust into my study.
6. The only animals that are really willing to beg 

when told to do so are dogs.
[ All the animals in the yard gnaw bones.

32. 1.  When I work a logic example without grum-
bling, you may be sure it is one I understand.

2. The arguments in these examples are not ar-
ranged in regular order like the ones I am used 
to.

3. No easy examples make my head ache.
4. I can’t understand examples if the arguments 

are not arranged in regular order like the ones 
I am used to.

5. I never grumble at an example unless it gives 
me a headache.

[ These examples are not easy.

*Lewis Carroll, Symbolic Logic (New York: Dover, 1958),  
pp. 118, 120, 123.
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In 33 and 34 a single conclusion follows when all the given 
premises are taken into consideration, but it is difficult 
to see because the premises are jumbled up. reorder the 
premises to make it clear that a conclusion follows logi-
cally, and state the valid conclusion that can be drawn. 
(It may be helpful to rewrite some of the statements in 
if-then form and to replace some statements by their 
contrapositives.)

33.  1.  No birds except ostriches are at least 9 feet tall.
2. There are no birds in this aviary that belong to 

anyone but me.
3. No ostrich lives on mince pies.
4. I have no birds less than 9 feet high.

34. 1.  All writers who understand human nature are 
clever.

2. No one is a true poet unless he can stir the hu-
man heart.

3. Shakespeare wrote Hamlet.
4. No writer who does not understand human 

nature can stir the human heart.
5. None but a true poet could have written  

Hamlet.

35. Derive the validity of universal modus tollens 
from the validity of universal instantiation and 
modus tollens.

36. Derive the validity of universal form of part (a) of 
the elimination rule from the validity of universal 
instantiation and the valid argument called elimi-
nation in Section 2.3.

*

*

1. all elements; any particular element in the domain (Or: each 
individual element of the domain) 2. P(a) is true; Q(a) is 

true 3. Q(a) is false; P(a) is false 4. Any x that makes P(x) 
true makes R(x) true. 5. valid; invalid (Or: invalid; valid)

ANSWErS FOr TEST YOUrSELF 
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Chapter 4 ELEMENTARY NUMBER 
THEORY AND METHODS 
OF PROOF

The underlying content of this chapter consists of properties of integers (whole numbers), 
rational numbers (integer fractions), and real numbers. The underlying theme of the chap-
ter is how to determine the truth or falsity of a mathematical statement.

Here is an example involving a concept used frequently in computer science. Given any 
real number x, the floor of x, or greatest integer in x, denoted :x;, is the largest integer that 
is less than or equal to x. On the number line, :x; is the integer immediately to the left of x 
(or equal to x if x is, itself, an integer). Thus :2.3; 5 2, :12.99999; 512, and :−1.5; 5 22. 
Consider the following two questions:

1. For any real number x, is :x21; 5 :x;21?

2. For any real numbers x and y, is :x2y; 5 :x;2 :y;?

Take a few minutes to try to answer these questions for yourself.
It turns out that the answer to (1) is yes, whereas the answer to (2) is no. Are these the an-

swers you got? If not, don’t worry. In Section 4.6 you will learn the techniques you need to 
answer these questions and more. If you did get the correct answers, congratulations! You 
have excellent mathematical intuition. Now ask yourself, “How sure am I of my answers? 
Were they plausible guesses or absolute certainties? Was there any difference in certainty 
between my answers to (1) and (2)? Would I have been willing to bet a large sum of money 
on the correctness of my answers?”

One of the best ways to think of a mathematical proof is as a carefully reasoned argu-
ment to convince a skeptical listener (often yourself) that a given statement is true. Imagine 
the listener challenging your reasoning every step of the way, constantly asking, “Why is 
that so?” If you can counter every possible challenge, then your proof as a whole will be 
correct.

As an example, imagine proving to someone not very familiar with mathematical nota-
tion that if x is a number with 5x13 5 33, then x 5 6. You could argue as follows:

If 5x13 5 33, then 5x13 minus 3 will equal 3323 because subtracting the same 
number from two equal quantities gives equal results. But 5x13 minus 3 equals 5x 
because adding 3 to 5x and then subtracting 3 just leaves 5x. Also, 3323 5 30. Hence 
5x 5 30. This means that x is a number which when multiplied by 5 equals 30. But the 
only number with this property is 6. Therefore, if 5x13 5 33 then x 5 6.

Of course there are other ways to phrase this proof, depending on the level of mathemat-
ical sophistication of the intended reader. In practice, mathematicians often omit reasons 
for certain steps of an argument when they are confident that the reader can easily supply 
them. When you are first learning to write proofs, however, it is better to err on the side 
of supplying too many reasons rather than too few. All too frequently, when even the best 
mathematicians carefully examine some “details” in their arguments, they discover that 
those details are actually false. One of the most important reasons for requiring proof in 
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mathematics is that writing a proof forces us to become aware of weaknesses in our argu-
ments and in the unconscious assumptions we have made.

Sometimes correctness of a mathematical argument can be a matter of life or death. 
Suppose, for example, that a mathematician is part of a team charged with designing a new 
type of airplane engine, and suppose that the mathematician is given the job of determin-
ing whether the thrust delivered by various engine types is adequate. If you knew that the 
mathematician was only fairly sure, but not positive, of the correctness of his analysis, 
would you want to ride in the resulting aircraft?

At a certain point in Lewis Carroll’s Alice in Wonderland (see exercise 28 in Section 2.2), 
the March Hare tells Alice to “say what you mean.” In other words, if she means a thing, 
then that is exactly what she should say. In this chapter, perhaps more than in any other 
mathematics course you have ever taken, you will need to say what you mean. Precision of 
thought and language is essential to achieve the mathematical certainty that is necessary for 
you to have complete confidence in your solutions to mathematical problems.

Direct Proof and Counterexample I: Introduction
Mathematics, as a science, commenced when first someone, probably a Greek, 
proved propositions about “any” things or about “some” things without specification 
of definite particular things. —Alfred North Whitehead, 1861–1947

Both discovery and proof are integral parts of problem solving. When you think you have 
discovered that a certain statement is true, try to figure out why it is true. If you succeed, you 
will know that your discovery is genuine. Even if you fail, the process of trying will give you 
insight into the nature of the problem and may lead you to discover that the statement is false. 
For complex problems, the interplay between discovery and proof is not reserved to the end 
of the problem-solving process but, rather, is an important part of each step.

4.1

Assumptions

●● In this text we assume a familiarity with the laws of basic algebra, which are listed 
in Appendix A.

●● We also use the three properties of equality: For all objects A, B, and C, (1) A 5 A,
(2) if A 5 B, then B 5 A, and (3) if A 5 B and B 5 C, then A 5 C.

●● And we use the principle of substitution: For all objects A and B, if A 5 B, then 
we may substitute B wherever we have A.

●● In addition, we assume that there is no integer between 0 and 1 and that the set of 
all integers is closed under addition, subtraction, and multiplication. This means 
that sums, differences, and products of integers are integers.

The mathematical content of this section primarily concerns even and odd integers and 
prime and composite numbers.

Even, Odd, Prime, and Composite Integers
In order to evaluate the truth or falsity of a statement, you must understand what the state-
ment is about. In other words, you must know the meanings of all terms that occur in  

Note Most quotients of 
integers are not integers. 
For example, 3 4 2, which 
equals 3y2, is not an inte-
ger, and 3 4 0 is not even 
a number.
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the statement. Mathematicians define terms very carefully and precisely and consider it 
important to learn definitions virtually word for word.

Definitions

An integer n is even if, and only if, n equals twice some integer. An integer n is odd 
if, and only if, n equals twice some integer plus 1.

Symbolically, for any integer, n

n is even 3 n 5 2k for some integer k

n is odd 3 n 5 2k11 for some integer k

It follows from the definition that if you are doing a problem in which you know that a 
particular integer is even, you can deduce that it has the form 2?(some integer). Conversely, 
if you know that an integer equals 2?(some integer), then you can deduce that the integer 
is even.

Know a particular
integer n is even.     n has the form

2?(some integer).

Know n has the form
2?(some integer).   n is even.

This illustrates why both the if and the only-if parts of definitions are important in math-
ematical reasoning. In stating definitions, however, mathematics books often replace the 
words if-and-only-if by the single word if, perhaps to seem less formal. For instance, the 
definition of even might be given as “An integer is even if it equals twice some integer.” But 
when the definition is actually used in a proof, both the if and the only-if parts are usually 
needed. So, even when the only-if part of a definition is not stated explicitly, you are sup-
posed to understand intuitively that it should be included.

Also observe that the definitions of even and odd integers are quantified statements. 
In Section 3.1 we pointed out that variables used in quantified statements are local, 
which means that they are bound by the quantifier to which they are attached and that 
their scopes extend only to the end of the quantified statements that contain them. As 
a result, the particular names used for the variables have no meaning themselves and 
are freely replaceable by other names. For example, you can substitute any symbols you 
like in place of n and k in the definitions of even and odd without changing the meaning 
of the definitions.

For every integer n, n is even if, and only if, n 5 2r for some integer r.

For every integer m, m is even if, and only if, m 5 2a for some integer a.

For every integer a, a is odd if, and only if, a 5 2s11 for some integer s.

For every integer k, k is odd if, and only if, k 5 2n11 for some integer n.

Even and Odd Integers

Use the definitions of even and odd to justify your answers to the following questions.

a. Is 0 even?

b. Is 2301 odd?

c. If a and b are integers, is 6a2b even?

deduce

deduce

Example 4.1.1
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d. If a and b are integers, is 10a18b11 odd?

e. Is every integer either even or odd?

Solution
a. Yes, 0 is even because 0 5 2?0.

b. Yes, 2301 is odd because 2301 5 2(2151)11 and 2151 is an integer.

c. Yes, 6a2b is even because 6a2b 5 2(3a2b) and 3a2b is an integer since it is a product 
of integers.

d. Yes, 10a18b11 is odd because 10a18b11 5 2(5a14b)11 and 5a14b is an 
integer since it is a sum of products of integers.

e. Yes, every integer is either even or odd. However, the reason for this fact is not im-
mediately apparent. It can be deduced using the method of proof by contradiction, 
which is introduced in Section 4.7. It is also a consequence of the quotient-remainder 
theorem, which is stated in Section 4.5. ■

The integer 6, which equals 2?3, is a product of two smaller positive integers. On the 
other hand, 7 cannot be written as a product of two smaller positive integers; its only posi-
tive factors are 1 and 7. A positive integer, such as 7, that cannot be written as a product of 
two smaller positive integers is called prime.

Definition

An integer n is prime if, and only if, n . 1 and for all positive integers r and s, if 
n 5 rs, then either r or s equals n. An integer n is composite if, and only if, n . 1 
and n 5 rs for some integers r and s with 1 , r , n and 1 , s , n.

In symbols: For each integer n with n . 1,

n is prime 3  5 positive integers r and s, if n 5 rs 
then either r 5 1 and s 5 n or r 5 n and s 5 1.

n is composite 3  E positive integers r and s such that n 5 rs 
and 1 , r , n and 1 , s , n.

Prime and Composite Numbers

a. Is 1 prime?

b. Is every integer greater than 1 either prime or composite?

c. Write the first six prime numbers.

d. Write the first six composite numbers.

Solution
a. No. A prime number is required to be greater than 1.

b. Yes. Let n be any integer that is greater than 1. Consider all pairs of positive integers 
r and s such that n 5 rs. There exist at least two such pairs, namely, r 5 n and s 5 1 
and r 5 1 and s 5 n. Moreover, since n 5 rs, all such pairs satisfy the inequalities 
1 # r # n and 1 # s # n. If n is prime, then these two pairs are the only ways to write 
n as rs. Otherwise, there exists a pair of positive integers r and s such that n 5 rs and 
neither r nor s equals either 1 or n. Therefore, in this case 1 , r , n and 1 , s , n, and 
hence n is composite.

Example 4.1.2

Note The reason for not 
allowing 1 to be prime is 
discussed in Section 4.4.
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c. 2, 3, 5, 7, 11, 13

d. 4, 6, 8, 9, 10, 12 ■

Proving Existential Statements
According to the definition given in Section 3.1, a statement in the form

E x [ D such that Q(x)

is true if, and only if,

Q(x) is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true. Another way is to give a set 
of directions for finding such an x. Both of these methods are called constructive proofs 
of existence. The logical principle underlying such a proof is called existential general-
ization. It says that if you know a certain property is true for a particular object, then you 
may conclude that “there exists an object for which the property is true.”

Constructive Proofs of Existence

a. Prove: E an even integer n that can be written in two ways as a sum of two 
prime numbers.

b. Suppose that r and s are integers. Prove: E an integer k such that 22r118s 5 2k.

Solution
a. Let n 5 10. Then 10 5 515 5 317 and 3, 5, and 7 are all prime numbers. Thus  

E an even integer—namely, 10—that can be written in two ways as a sum of two 
prime numbers.

b. Let k 5 11r19s. Then k is an integer because it is a sum of products of integers, and 
by substitution, and the distributive law of algebra,

2k 5 2(11r19s) 5 22r118s.

Thus E an integer, namely k, such that 22r118s 5 2k. ■

A nonconstructive proof of existence involves showing either (a) that the existence 
of a value of x that makes Q(x) true is guaranteed by an axiom or a previously proved 
theorem or (b) that the assumption that there is no such x leads to a contradiction. The 
disadvantage of a nonconstructive proof is that it may give virtually no clue about where 
or how x may be found. The widespread use of digital computers in recent years has 
led to some dissatisfaction with this aspect of nonconstructive proofs and to increased 
efforts to produce constructive proofs containing directions for computer calculation of 
the quantity in question.

Disproving Universal Statements by Counterexample
To disprove a statement means to show that it is false. Consider the question of disproving 
a statement of the form

5x in D, if P(x) then Q(x).

Example 4.1.3
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Showing that this statement is false is equivalent to showing that its negation is true. The 
negation of the statement is existential:

E x in D such that P(x) and not Q(x).

But to show that an existential statement is true, we generally give an example, and because 
the example is used to show that the original statement is false, we call it a counterexample. 
Thus the method of disproof by counterexample can be written as follows:

Disproof by Counterexample

To disprove a statement of the form “5x [ D, if P(x) then Q(x),” find a value of x in 
D for which the hypothesis P(x) is true and the conclusion Q(x) is false. Such an x is 
called a counterexample.

Disproof by Counterexample

Disprove the following statement by finding a counterexample:

5 real numbers a and b, if a2 5 b2 then a 5 b.

Solution To disprove this statement, you need to find real numbers a and b such that the 
hypothesis a2 5 b2 is true and the conclusion a 5 b is false. The fact that both positive and 
negative integers have positive squares helps in the search. If you flip through some possi-
bilities in your mind, you will quickly see that 1 and 21 will work (or 2 and 22, or 0.5 and 
20.5, and so forth). You only need one such pair to give a counterexample.

Example 4.1.4

Statement: 5 real numbers a and b, if a2 5 b2, then a 5 b.

Counterexample: Let a 5 1 and b 5 21. Then a2 5 12 5 1 and b2 5 (21)2 5 1, 
and so a2 5 b2. But a Þ b since 1 Þ 21.

■

After observing that a property holds in a large number of cases, you may guess that it 
holds in all cases. You may, however, run into difficulty when you try to prove your guess. 
Perhaps you just have not figured out the key to the proof, or perhaps your guess is false. 
Consequently, when you are having serious difficulty proving a general statement, you 
should interrupt your efforts to look for a counterexample. Analyzing the kinds of prob-
lems you are encountering in your proof efforts may help in the search. It may even happen 
that if you find a counterexample and therefore prove the statement false, your understand-
ing may be sufficiently clarified so that you can formulate a more limited but true version 
of the statement by changing the hypothesis.

Proving Universal Statements
The vast majority of mathematical statements to be proved are universal. In discussing 
how to prove such statements, it is helpful to imagine them in a standard form:

5x [ D, if P(x) then Q(x).

Note Example 4.1.4 
shows that it is not always 
true that if the squares of 
two numbers are equal, 
then the numbers are 
equal. However, it is true 
that if the squares of two 
positive numbers are 
equal, then the numbers 
are equal.
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Sections 1.1 and 3.1 give examples showing how to write any universal statement in this 
form. When D is finite or when only a finite number of elements satisfy P(x), such a state-
ment can be proved by the method of exhaustion.

The Method of Exhaustion

Use the method of exhaustion to prove the following statement:

5n [ Z, if n is even and 4 # n # 26 then n can be written as a sum of 
two prime numbers.

Solution  4 5 212 6 5 313 8 5 315 10 5 515

 12 5 517 14 5 1113 16 5 5111 18 5 7111

 20 5 7113 22 5 5117 24 5 5119 26 5 7119 ■

In most mathematical situations, however, the method of exhaustion cannot be used. For 
instance, to prove by exhaustion that every even integer greater than 2 can be written as a 
sum of two prime numbers you would have to check every even integer. But this is impos-
sible because there are infinitely many such numbers.

Even when the domain is finite, it may be infeasible to use the method of exhaustion. 
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a 
particular computer gives the correct result for every pair of numbers in the computer’s 
range. Since a typical computer would require thousands of years just to compute all pos-
sible products of all numbers in its range (not to mention the time it would take to check 
the accuracy of the answers), checking correctness by the method of exhaustion is obvi-
ously impractical.

The most powerful technique for proving a universal statement is one that works re-
gardless of the size of the domain over which the statement is quantified. It is based on a 
logical principle sometimes called universal generalization. A more descriptive name is 
generalizing from the generic particular.

Example 4.1.5

Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a 
particular but arbitrarily chosen element of the set, and show that x satisfies 
the property.

The principle of generalizing from the generic particular is not a typical part of everyday 
reasoning. Its main use is to determine that a general mathematical statement is correct. 
The example below introduces the idea.

Generalizing from the Generic Particular

At some time you may have been shown a “mathematical trick” like the following. You 
ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and sub-
tract twice the original number. Then you astound the person by announcing that their 
final result was 7. How does this “trick” work? Imagine that an empty box n contains 
whatever number the person picked. The table shows that by the end of the calculations, 
whatever was in the empty box was subtracted out of the answer.

Example 4.1.6
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Step Visual Result Algebraic Result

Pick a number. n x

Add 5. n u u u u u x15

Multiply by 4. n u u u u u
n u u u u u
n u u u u u
n u u u u u

(x15)?4 5 4x120

Subtract 6. n u u
n u u
n u u u u u
n u u u u u

(4x120)26 5 4x114

Divide by 2. n u u
n u u u u u

4x 1 14
2 5 2x17

Subtract twice the original number. u u
u u u u u

(2x17)22x 5 7

Method of Direct Proof

1. Express the statement to be proved in the form “For every x [ D, if P(x) then 
Q(x).” (This step is often done mentally.)

2. Start the proof by supposing x is a particular but arbitrarily chosen element of D 
for which the hypothesis P(x) is true. (This step is often abbreviated “Suppose 

x [ D and P(x).”)

3. Show that the conclusion Q(x) is true by using definitions, previously established 
results, and the rules for logical inference.

The x in the table above is another way of holding a place for the number the person picked. 
It is particular (because it is a single object), but it is also arbitrarily chosen or generic 
(because any number whatsoever can be put in its place). So you can generalize from the 
generic particular to conclude that if you follow the steps you will always get 7, regardless 
of the initial value you put in place of x or inside the empty box. ■

The point of having x be arbitrarily chosen (or generic) is to make a proof that can be gen-
eralized to all elements of the domain. By choosing x arbitrarily, you are making no special 
assumptions about x that are not also true of all other elements of the domain. The word generic 
means “sharing all the common characteristics of a group or class.” Thus everything you de-
duce about a generic element x of the domain is equally true of any other element of the domain.

When the method of generalizing from the generic particular is applied to a property of 
the form “If P(x) then Q(x),” the result is the method of direct proof. Recall that the only 
way an if-then statement can be false is for the hypothesis to be true and the conclusion to 
be false. Thus, given the statement “If P(x) then Q(x),” if you can show that the truth of P(x) 
compels the truth of Q(x), then you will have proved the statement. It follows by the method 
of generalizing from the generic particular that to show that “5x, if P(x) then Q(x),” is true 
for every element x in a set D, you suppose x is a particular but arbitrarily chosen element 
of D that makes P(x) true, and then you show that x makes Q(x) true.
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A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.

Solution Whenever you are presented with a statement to be proved, it is a good idea to 
ask yourself whether you believe it to be true. In this case you might imagine some pairs 
of even integers—say 214, 6110, 12112, 28154—and mentally check that their 
sums are even. However, since you cannot possibly check all pairs of even numbers, you 
cannot know for sure that the statement is true in general by checking its truth in these 
particular instances. Many properties hold for a large number of examples and yet fail to 
be true in general.

To prove this statement in general, you need to show that no matter what even inte-
gers are given, their sum is even. But given any two even integers, it is possible to repre-
sent them as 2r and 2s for some integers r and s. And by the distributive law of algebra, 
2r12s 5 2(r1 s), which is even because r1 s is an integer. Thus the statement is true 
in general.

Suppose the statement to be proved is much more complicated than this. What method 
can you use to derive a proof? You can begin by expressing the statement formally.

Formal Restatement: 5 integers m and n, if m and n are even then m1n is even.

This statement is universally quantified over an infinite domain. Thus to prove it in gen-
eral, you need to show that no matter what two integers you might be given, if both of them 
are even then their sum will also be even.

Next ask yourself, “How should I start the proof?” or “What am I supposing?” The an-
swer to such a question gives you the starting point, or first sentence, of the proof.

Starting Point:  Suppose m and n are any particular but arbitrarily chosen integers that are 
even.

Or, in abbreviated form:

Suppose m and n are any even integers.

Then ask yourself, “What conclusion do I need to show in order to complete the proof?”

To Show: m1n is even.

At this point you need to ask yourself, “How do I get from the starting point to the con-
clusion?” Since both involve the term even integer, you must use the definition of this 
term—and thus you must know what it means for an integer to be even. It follows from the 
definition that since m and n are even, each equals twice some integer. One of the basic 
laws of logic, called existential instantiation, says, in effect, that if you know something 
exists, you can give it a name. However, you cannot use the same name to refer to two dif-
ferent things, both of which are currently under discussion.

Example 4.1.7

Existential Instantiation

If the existence of a certain kind of object is assumed or has been deduced, then 
it can be given a name, as long as that name is not currently being used to refer to 
something else in the same discussion.

!
Caution!  Because m and 
n are arbitrarily chosen 
they can be any pair of 
even integers whatsoever. 
But if you write m 5 2r 
and n 5 2r, then m would 
equal n, which is not 
usually the case.

Thus since m equals twice some integer, you can give that integer a name, and since n 
equals twice some integer, you can also give that integer a name:

m 5 2r, for some integer r  and  n 5 2s, for some integer s.

!
Caution! The word two 
in this statement does 
not necessarily refer to 
two distinct integers. If a 
choice of integers is made 
arbitrarily, the integers 
are very likely to be 
distinct, but they might be 
the same.
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Now what you want to show is that m1n is even. In other words, you want to show that 
m1n equals 2?(some integer). Having just found alternative representations for m (as 2r) 
and n (as 2s), it seems reasonable to substitute these representations in place of m and n:

m1n 5 2r12s.

Your goal is to show that m1n is even. By definition of even, this means that m1n can 
be written in the form

2?(some integer).

This analysis narrows the gap between the starting point and what is to be shown to 
showing that

2r12s 5 2?(some integer).

Why is this true? First, because of the distributive law from algebra, which says that

2r12s 5 2(r1 s),

and, second, because the sum of any two integers is an integer, which implies that r1 s is 
an integer.

This discussion is summarized by rewriting the statement as a theorem and giving a 
formal proof of it. (In mathematics, the word theorem refers to a statement that is known to 
be true because it has been proved.) The formal proof, as well as many others in this text, 
includes explanatory notes to make its logical flow apparent. Such comments are purely a 
convenience for the reader and could be omitted entirely. For this reason they are italicized 
and enclosed in italic square brackets: [ ].

Donald Knuth, one of the pioneers of the science of computing, has compared con-
structing a computer program from a set of specifications to writing a mathematical proof 
based on a set of axioms.* In keeping with this analogy, the bracketed comments can be 
thought of as similar to the explanatory documentation provided by a good programmer. 
Documentation is not necessary for a program to run, but it helps a human reader under-
stand what is going on.

Theorem 4.1.1

The sum of any two even integers is even.

Proof: Suppose m and n are any [particular but arbitrarily chosen] even integers. [We 
must show that m1n is even.] By definition of even, m 5 2r and n 5 2s for some 
integers r and s. Then

m1n 5 2r12s  by substitution

5 2(r1 s)    by factoring out a 2.

Let t 5 r1 s. Note that t is an integer because it is a sum of integers. Hence

m1n 5 2t where t is an integer.

It follows by definition of even that m1n is even. [This is what we needed to show.]†

■

*Donald E. Knuth, The Art of Computer Programming, 2nd ed., Vol. I (Reading, MA: Addison-Wesley, 
1973), p. ix.
†See page 148 for a discussion of the role of universal modus ponens in this proof. 

Note Introducing t to 
equal r1 s is another use 
of existential instantiation. 
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Most theorems, like Theorem 4.1.1, can be analyzed to a point where you realize that 
as soon as a certain thing is shown, the theorem will be proved. When that thing has been 
shown, it is natural to end the proof with the words “this is what we needed to show” or “as 
was to be shown.”  The Latin words for this are quod erat demonstrandum, or Q.E.D. for 
short. Proofs in older mathematics books end with these initials.

Note that both the if and the only if parts of the definition of even were used in the 
proof of Theorem 4.1.1. Since m and n were known to be even, the only if (1) part of the 
definition was used to deduce that m and n had a certain general form. Then, after some 
algebraic substitution and manipulation, the if (B) part of the definition was used to de-
duce that m1n was even.

Getting Proofs Started
Believe it or not, once you understand the idea of generalizing from the generic particular 
and the method of direct proof, you can write the beginnings of proofs even for theorems 
you do not understand. The reason is that the starting point and what is to be shown in a 
proof depend only on the linguistic form of the statement to be proved, not on the content 
of the statement.

Identifying the “Starting Point” and the “Conclusion to Be Shown”

Write the first sentence of a proof (the “starting point”) and the last sentence of a proof (the 
“conclusion to be shown”) for the following statement:

Every complete bipartite graph is connected.

Solution It is helpful to rewrite the statement formally using a quantifier and a variable:

Formal Restatement: For every graph G, if G is complete bipartite, then G is connected.

The first sentence, or starting point, of a proof supposes the existence of an object (in this 
case G) in the domain (in this case the set of all graphs) that satisfies the hypothesis of the 
if-then part of the statement (in this case that G is complete bipartite). The conclusion to 
be shown is just the conclusion of the if-then part of the statement (in this case that G is 
connected).

Starting Point:  Suppose G is a [particular but arbitrarily chosen] graph such that G is 
complete bipartite.

Conclusion to Be Shown: G is connected.

Thus the proof has the following shape:

Proof:
Suppose G is a [particular but arbitrarily chosen] graph such that G is complete bipartite.
. . .
Therefore, G is connected. ■

Fill in the Blanks for a Proof

Fill in the blanks in the proof of the following theorem.

Theorem: For all integers r and s, if r is even and s is odd then 3r12s is even.

Example 4.1.8

Note You are not expected 
to know anything about 
complete bipartite graphs.

Example 4.1.9

domain $%& hypothesis $'''%'''& conclusion $''%''&
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Proof:
 Suppose r and s are any [particular but arbitrarily chosen] integers such that r is even 
and s is odd. 
[We must show that 3r12s is even.]

By , r 5 2m and s 5 2n11 for some integers m and n.
Then

3r12s 5 3(2m)12(2n11) by 

5 6m14n12  by multiplying out

5 2(3m12n11) by factoring out 2

Let t 5 3m12n11.
Then t is an integer because m, n, 3, 2, and 1 are integers and because .
 Hence 3r12s 5 2t, where t is an integer, and so by , 3r12s is even  
[as was to be shown].

Solution
(a) definition of even and odd, (b) substitution, (c) products and sums of integers are inte-
gers, (d) definition of even.

(a)

(b)

(c)
(d)

1. An integer is even if, and only if, .

2. An integer is odd if, and only if, .

3. An integer n is prime if, and only if, .

4. The most common way to disprove a universal 
statement is to find .

5. According to the method of generalizing from the 
generic particular, to show that every element of 
a set satisfies a certain property, suppose x is a 

, and show that .

6. To use the method of direct proof to prove a state-
ment of the form, “For every x in a set D, if P(x) 
then Q(x),” one supposes that  and one 
shows that .

TEST YOURSELF 
answers to test Yourself questions are located at the end of each section.

In 1–4 justify your answers by using the definitions of 
even, odd, prime, and composite numbers.

1. Assume that k is a particular integer.
a. Is 217 an odd integer?
b. Is 0 neither even nor odd?
c. Is 2k21 odd?

2. Assume that c is a particular integer.
a. Is 26c an even integer?
b. Is 8c15 an odd integer?
c. Is (c2 11)2 (c2 21)22 an even integer?

3. Assume that m and n are particular integers.
a. Is 6m18n even?
b. Is 10mn17 odd?
c. If m . n . 0, is m2 2n2 composite?

4. Assume that r and s are particular integers.
a. Is 4rs even?
b. Is 6r14s2 13 odd?
c. If r and s are both positive, is r2 12rs1 s2 

composite?

prove the statements in 5–11.

5. There are integers m and n such that m . 1 and 
n . 1 and 1

m 1
1
n is an integer.

6. There are distinct integers m and n such that  
1
m 1

1
n is an integer.

7. There are real numbers a and b such that

Ïa1b 5 Ïa1Ïb.

ExERCISE SET 4.1*

*For exercises with blue numbers, solutions are given in Appendix B. The symbol H indicates that only a hint or partial solution is given. The 
symbol * signals that an exercise is more challenging than usual.
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8. There is an integer n . 5 such that 2n 21 is prime.

9. There is a real number x such that x . 1 and 
2x . x10.

Definition:  An integer n is called a perfect square if, 
and only if, n 5 k2 for some integer k.

10. There is a perfect square that can be written as a 
sum of two other perfect squares.

11. There is an integer n such that 2n2 25n12 is 
prime.

In 12–13, (a) write a negation for the given statement,  
and (b) use a counterexample to disprove the given state-
ment. explain how the counterexample actually shows 
that the given statement is false.

12. For all real numbers a and b, if a , b then 
a2 , b2.

13. For every integer n, if n is odd then n 2 1
2  is odd.

Disprove each of the statements in 14–16 by giving a 
counterexample. In each case explain how the counterex-
ample actually disproves the statement.

14. For all integers m and n, if 2m1n is odd then m 
and n are both odd.

15. For every integer p, if p is prime then p2 21 is 
even.

16. For every integer n, if n is even then n2 11 is 
prime.

In 17–20, determine whether the property is true for all 
integers, true for no integers, or true for some integers 
and false for other integers. Justify your answers.

17. (a1b)2 5 a2 1b2

18. 
a

b
1

c

d
5

a1c

b1d
 

19. 2an 5 (2a)n

20. The average of any two odd integers is odd.

prove the statement in 21 and 22 by the method of 
exhaustion.

21. Every positive even integer less than 26 can be ex-
pressed as a sum of three of fewer perfect squares. 
(For instance, 10 5 12 132 and 16 5 42.)

22. For each integer n with 1 # n # 10, n2 2n111 is 
a prime number.

each of the statements in 23–26 is true. For each, (a) 
rewrite the statement with the quantification implicit as 
If , then , and (b) write the first sentence 

of a proof (the “starting point”) and the last sentence of 
a proof (the “conclusion to be shown”). (Note that you do 
not need to understand the statements in order to be able 
to do these exercises.)

23. For every integer m, if m . 1 then 0 ,
1
m , 1.

24. For every real number x, if x . 1 then x2 . x.

25. For all integers m and n, if mn 5 1 then m 5 n 5 1 
or m 5 n 5 21.

26. For every real number x, if 0 , x , 1 then x2 , x.

27. Fill in the blanks in the following proof.

Theorem: For every odd integer n, n2 is odd.

Proof: Suppose n is any . By definition of 
odd, n 5 2k11 for some integer k. Then

n2 5  _  +2 by substitution

5 4k2 14k11 by multiplying out

5 2(2k2 12k)11 by factoring out a 2

Now 2k2 12k is an integer because it is a sum of 
products of integers. Therefore, n2 equals 2?(an in-
teger)11, and so  is odd by definition of odd.

Because we have not assumed anything about n 
except that it is an odd integer, it follows from the 
principle of  that for every odd integer n,  
n2 is odd.

In each of 28−31: a. rewrite the theorem in three differ-
ent ways: as ; , if  then , as 
; ,  (without using the words if or then), 
and as If , then  (without using an explicit 
universal quantifier).

b. Fill in the blanks in the proof of the theorem.

28. Theorem: The sum of any two odd integers is even.

Proof: Suppose m and n are any [particular but 
arbitrarily chosen] odd integers.

[We must show that m1n is even.]

By , m 5 2r11 and n 5 2s11 for some 
integers r and s.

Then

m1n 5 (2r11)1 (2s11) by 

5 2r12s12

5 2(r1 s11) by algebra.

Let u 5 r1 s11. Then u is an integer because r, 
s, and 1 are integers and because .

H

H

(a)

(b)

(c)

(d)

(a)

(b)

(c)
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Hence m1n 5 2u, where u is an integer, and so, 
by , m1n is even [as was to be shown].

29. Theorem: The negative of any even integer is 
even.

Proof: Suppose n is any [particular but arbitrarily 
chosen] even integer.

[We must show that 2n is even.]

By , n 5 2k for some integer k.

Then

2n 5 2(2k) by 

5 2(2k) by algebra.

Let r 5 2k. Then r is an integer because (21) and 
k are integers and .

Hence 2n 5 2r, where r is an integer, and so −n is 
even by  [as was to be shown].

30. Theorem 4.1.2: The sum of any even integer and 
any odd integer is odd.

Proof: Suppose m is any even integer and n is 
. By definition of even, m 5 2r for some 
, and by definition of odd, n 5 2s11 for 

some integer s. By substitution and algebra,

m1n 5 5 2(r1 s)11.

Since r and s are both integers, so is their sum 
r1 s. Hence m1n has the form twice some inte-
ger plus one, and so  by definition of odd.

31. Theorem: Whenever n is an odd integer, 5n2 17 
is even.

Proof: Suppose n is any [particular but arbitrarily 
chosen] odd integer.

[We must show that 5n2 17 is even.]

By definition of odd, n 5  for some integer k.

Then

5n2 17 5  by substitution

5 5(4k2 14k11)17

5 20k2 120k112 

5 2(10k2 110k16) by algebra.

Let t 5 . Then t is an integer because prod-
ucts and sums of integers are integers.

Hence 5n2 17 5 2t, where t is an integer, and thus 
 by definition of even [as was to be shown].

(d)

(a)

(b)

(c)

(d)

(a)
(b)

(c)

(d)

(a)

(b)

(c)

(d)

1. it equals twice some integer 2. it equals twice some 
integer plus 1 3. n is greater than 1 and if n equals the 
product of any two positive integers, then one of the integers 
equals 1 and the other equals n. 4. a counterexample  

5. particular but arbitrarily chosen element of the set; 
x satisfies the given property 6. x is a particular but 
arbitrarily chosen element of the set D that makes the 
hypothesis P(x) true; x makes the conclusion Q(x) true.

ANSwERS FOR TEST YOURSELF 

Direct Proof and Counterexample II: writing Advice
“Á it is demanded for proof that every doubt becomes impossible.” —Carl Friedrich 

Gauss (1777–1855)

Think of a proof as a way to communicate a convincing argument for the truth of a math-
ematical statement. When you write a proof, try to be clear and complete. Keep in mind 
that a classmate reading your proof will see only what you actually write down, not any 
unexpressed thoughts behind it. Ideally, your proof will lead your reader to understand why 
the given statement is true.

Directions for Writing Proofs of Universal Statements
Over the years, the following rules of style have become fairly standard for writing the 
final versions of proofs:

1. Copy the statement of the theorem to be proved on your paper. 
This makes the theorem statement available for reference to anyone reading the proof.

4.2
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2. Clearly mark the beginning of your proof with the word Proof. 
This word separates general discussion about the theorem from its actual proof.

3. Make your proof self-contained. 
This means that you should explain the meaning of each variable used in your proof 

in the body of the proof. Thus you will begin proofs by introducing the initial variables 
and stating what kind of objects they are. The first sentence of your proof would be 
something like “Suppose m and n are any even integers” or “Let x be a real number such 
that x is greater than 2.” This is similar to declaring variables and their data types at the 
beginning of a computer program.

At a later point in your proof, you may introduce a new variable to represent a quan-
tity that is known at that point to exist. For example, if you have assumed that a particu-
lar integer n is even, then you know that n equals 2 times some integer, and you can give 
this integer a name so that you can work with it concretely later in the proof. Thus if 
you decide to call the integer, say, s, you would write, “Since n is even, n 5 2s for some 
integer s,” or “since n is even, there exists an integer, say s, such that n 5 2s.”

4. Write your proof in complete, grammatically correct sentences. 
This does not mean that you should avoid using symbols and shorthand abbrevia-

tions, just that you should incorporate them into sentences. For example, the proof of 
Theorem 4.1.1 contains the sentence

Then m1n 5 2r12s   by substitution

5 2(r1 s) by factoring out 2.

To read such text as a sentence, read the first equals sign as “equals” and each subse-
quent equals sign as “which equals.”

5. Keep your reader informed about the status of each statement in your proof. 
Your reader should never be in doubt about whether something in your proof has 

been assumed or established or is still to be deduced. If something is assumed, preface it 
with a word like Suppose or Assume. If it is still to be shown, preface it with words like, 
We must show that or In other words, we must show that. This is especially important if 
you introduce a variable in rephrasing what you need to show. (See Common Mistakes 
on the next page.)

6. Give a reason for each assertion in your proof. 
Each assertion in a proof should come directly from the hypothesis of the theorem, 

or follow from the definition of one of the terms in the theorem, or be a result obtained 
earlier in the proof, or be a mathematical result that has previously been established or 
is agreed to be assumed. Indicate the reason for each step of your proof using phrases 
such as by hypothesis, by definition of Á  by theorem Á  and so forth.

It is best to refer to definitions and theorems by name or number. If you need to 
state one in the body of your proof, avoid using a variable when you write it because 
otherwise your proof could end up with a variable that has two conflicting meanings.*

Proofs in more advanced mathematical contexts often omit reasons for some steps 
because it is assumed that students either understand them or can easily figure them out 
for themselves. However, in a course that introduces mathematical proof, you should 
make sure to provide the details of your arguments because you cannot guarantee that 
your readers have the necessary mathematical knowledge and sophistication to supply 
them on their own.

*When a variable is used to state a definition, the scope of the variable extends only to the end of the defini-
tion. After that, the symbol for the variable no longer has the same meaning. Confusion can result from think-
ing that the meaning of the symbol continues into other parts of the proof.
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7. Include the “little words and phrases” that make the logic of your arguments clear. 
When writing a mathematical argument, especially a proof, indicate how each sen-

tence is related to the previous one. Does it follow from the previous sentence or from a 
combination of the previous sentence and earlier ones? If so, start the sentence with the 
word Because or Since and state the reason why it follows, or write Then, or Thus, or 
So, or Hence, or Therefore, or Consequently, or It follows that, and include the reason 
at the end of the sentence. For instance, in the proof of Theorem 4.1.1, once you know 
that m is even, you can write: “By definition of even, m 5 2r for some integer r,” or you 
can write, “Then m 5 2r for some integer r by definition of even.” And when you write 
“Then m1n 5 2r12s,” add the words by substitution to explain why you are allowed 
to write 2r in place of m and 2s in place of n.

If a sentence expresses a new thought or fact that does not follow as an immediate 
consequence of the preceding statement but is needed for a later part of a proof, intro-
duce it by writing Observe that, or Note that, or Recall that, or But, or Now.

Sometimes in a proof it is desirable to define a new variable in terms of previous 
variables. In such a case, introduce the new variable with the word Let. For instance, 
in the proof of Theorem 4.1.1, once it is known that m1n 5 2(r1 s), where r and s are 
integers, a new variable t is introduced to represent r1 s. The convention in mathemat-
ics and computer science is to put a new variable to the left of the equal sign and the 
expression that defines it to the right of the sign. Thus the proof goes on to say, “Let 
t 5 r1 s. Then t is an integer because it is a sum of two integers.”

8. Display equations and inequalities. 
The convention is to display equations and inequalities on separate lines to increase 

readability, both for other people and for ourselves so that we can more easily check our 
work for accuracy. We follow the convention in the text of this book, but in order to save 
space, we violate it in a few of the exercises and in many of the solutions contained in 
Appendix B. So you may need to copy out some parts of solutions on scratch paper to 
understand them fully. Please follow the convention in your own work. Leave plenty of 
empty space, and don’t be stingy with paper!

Variations among Proofs
It is rare that two proofs of a given statement, written by two different people, are identical. 
Even when the basic mathematical steps are the same, the two people may use different 
notation or may give differing amounts of explanation for their steps, or may choose dif-
ferent words to link the steps together into paragraph form. An important question is how 
detailed to make the explanations for the steps of a proof. This must ultimately be worked 
out between the writer of a proof and the intended reader, whether they be student and 
teacher, teacher and student, student and fellow student, or mathematician and colleague. 
Your teacher may provide explicit guidelines for you to use in your course. Or you may 
follow the example of the proofs in this book (which are generally explained rather fully 
in order to be understood by students at various stages of mathematical development). 
Remember that the phrases written inside brackets [ ] are intended to elucidate the logical 
flow or underlying assumptions of the proof and need not be written down at all. It is your 
decision whether to include such phrases in your own proofs.

Common Mistakes
The following are some of the most common mistakes people make when writing math-
ematical proofs.
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1. Arguing from examples. 
Looking at examples is one of the most helpful practices a problem solver can engage 

in and is encouraged by all good mathematics teachers. However, it is a mistake to think 
that a general statement can be proved by showing it to be true for some individual 
cases. A property referred to in a universal statement may be true in many instances 
without being true in general.

Consider the following “proof” that the sum of any two even integers is even  
(Theorem 4.1.1).

This is true because if m 5 14 and n 5 6, which are both even,  
then m1n 5 20, which is also even.

Some people find this kind of argument convincing because it does, after all, 
consist of evidence in support of a true conclusion. But remember that when we 
discussed valid arguments, we pointed out that an argument may be invalid and 
yet have a true conclusion. In the same way, an argument from examples may be 
mistakenly used to “prove” a true statement. In the previous example, it is not suf-
ficient to show that the conclusion “m1n is even” is true for m 5 14 and n 5 6. 
You must give an argument to show that the conclusion is true for any arbitrarily 
chosen even integers m and n.

2. Using the same letter to mean two different things. 
Some beginning theorem provers give a new variable quantity the same letter name 

as a previously introduced variable. Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,  
m 5 2k11 and n 5 2k11 where k is an integer.

You might think of a variable in a mathematical proof as similar to a global variable 
in a computer program: once introduced, it has the same meaning throughout the pro-
gram. In other words, its scope extends to the end of the program. In this example, 
using the symbol k in the expressions for both m and n makes k a global variable. As 
a result, both m and n equal 2k11, and thus are equal to each other. The proof then 
only shows that a sum of two identical odd integers is even, not that the sum of two 
arbitrarily chosen odd integers is even.

3. Jumping to a conclusion.
To jump to a conclusion means to allege the truth of something without giving an 

adequate reason. Consider the following “proof” that the sum of any two even integers 
is even.

Suppose m and n are any even integers. By definition of even, 
m 5 2r and n 5 2s for some integers r and s. Then m1n 5 2r12s. 
So m1n is even.

The problem with this “proof” is that to show an integer is even one needs to show 
that it equals twice some integer. This proof jumps to the conclusion that m1n is even 
without having found an integer that, when doubled, equals m1n.

4. Assuming what is to be proved.
To assume what is to be proved is a variation of jumping to a conclusion. As an 

example, consider the following “proof” of the fact that the product of any two odd 
integers is odd:

Suppose m and n are any odd integers. When any odd integers are  
multiplied, their product is odd. Hence mn is odd.
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5. Confusion between what is known and what is still to be shown.
A more subtle way to jump to a conclusion occurs when the conclusion is restated 

using a variable. Here is an example in a “proof” that the product of any two odd inte-
gers is odd:

Suppose m and n are any odd integers. We must show that mn is 
odd. This means that there exists an integer s such that

mn 5 2s11.

Also by definition of odd, there exist integers a and b such that

m 5 2a11 and n 5 2b11.

Then

mn 5 (2a11)(2b11) 5 2s11.

So, since s is an integer, mn is odd by definition of odd.
In this example, when the author restated the conclusion to be shown (that mn is 

odd), the author wrote “there exists an integer s such that mn 5 2s11.” But we only 
know that the integer s exists if we know that mn is odd, which is what the author is 
trying to show. Thus, in the sentence starting with the word “Then,” the author jumped 
to an unjustified conclusion. This mistake might have been avoided if the author had 
written 

“This means we must show that there exists an integer s such that mn 5 2s11.”

An even better way to avoid this kind of error is not to introduce a variable into a proof 
unless it is either part of the hypothesis or deducible from it.

6. Use of any when the correct word is some.
There are a few situations in which the words any and some can be used interchange-

ably. For instance, in starting a proof that the square of any odd integer is odd, one could 
correctly write, “Suppose m is any odd integer” or “Suppose m is some odd integer.” In 
most situations, however, the words any and some are not interchangeable. Here is the 
start of a “proof” that the square of any odd integer is odd, which uses any when the 
correct word is some:

Suppose m is a particular but arbitrarily chosen odd integer.  
By definition of odd, m 5 2a11 for any integer a.

In the second sentence it is incorrect to say that “m 5 2a11 for any integer a” because 
a cannot be just “any” integer; in fact, solving m 5 2a11 for a shows that the only 
possible value for a is (m21)y2. The correct way to finish the second sentence is,  
“m 5 2a11 for some integer a” or “there exists an integer a such that m 5 2a11.”

7. Misuse of the word if.
Another common error is not serious in itself, but it reflects imprecise thinking that 

sometimes leads to problems later in a proof. This error involves using the word if when 
the word because is really meant. Consider the following proof fragment:

Suppose p is a prime number. If p is prime, then p cannot be written  
as a product of two smaller positive integers.

The use of the word if in the second sentence is inappropriate. It suggests that the 
primeness of p is in doubt. But p is known to be prime by the first sentence. It cannot 

Note At this point in the 
proof, we do not know 
whether there is an inte-
ger s making this equality 
true.

T

!
Caution! A reader of 
your proof should never 
be in doubt about what 
you have already shown 
and what still needs to 
be shown.

94193_ch04_ptg01.indd   177 12/11/18   3:54 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



178  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

be written as a product of two smaller positive integers because it is prime. Here is a 
correct version of the fragment:

Suppose p is a prime number. Because p is prime, p cannot be written  
as a product of two smaller positive integers.

An Odd Integer Minus an Even Integer

Prove that the difference of any odd integer and any even integer is odd. Use only the defi-
nitions of odd and even and the Assumptions listed on page 161, not any other properties 
of odd and even integers. Follow the directions given in this section for writing proofs of 
universal statements.

Solution
You may already have a sense that the statement to be proved is true, but to make sure your 
intuition is correct and to develop a careful proof, rewrite the statement using names such as 
a and b for the odd and even integers so that you will have a convenient way to refer to them:

For all integers a and b, if a is odd and b is even, then a2b is odd.

Or:  For every odd integer a and every even integer b, the difference a2b is odd.

Or: If a is any odd integer and b is any even integer, then a2b is odd. 

Thus the starting point for your proof would be something like, “Suppose a is any odd in-
teger and b is any even integer,” and the conclusion to be shown would be “We must show that 
a2b is odd.” If, in addition, you know how to use the definitions of odd and even, you will have 
reduced the creative part of developing the proof to a small, but crucial, section in the middle. 

Example 4.2.1

Theorem 4.2.1 

The difference of any odd integer and any even integer is odd.

Proof:

1. Suppose a is any odd integer and b is any even integer. [We must show that a2b 
is odd.]

2. By definition of odd, a 5 2r11 for some integer r, and b 5 2s for some integer s.

3. Then a2b 5 (2r11)22s by substitution

4.  5 2r22s11 by combining like terms

5.  5 2(r2 s)11 by factoring out 2.

6. Let t 5 r2 s.

7. Then t is an integer because it is a difference of integers.

8. So, by substitution, a2b 5 2t11, where t is an integer.

9. Hence a2b is odd [as was to be shown].

Note that lines 1 –3 follow immediately from the general structure of the proof, the defini-
tions of odd and even, and substitution. In order to figure out your next steps, it can be helpful 
to refer to what must be shown—namely, that a2b is odd. According to the definition of 
odd, you can conclude that a2b is odd if you can show that it equals 2?(some integer)11. 
So showing that a2b is odd involves transforming (2r11)22s into 2?(some integer)11. 
Lines 4−8 show the steps for doing this, and line 9 concludes that what was to be shown has 
been achieved. ■
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Some of the exercises at the end of the section are based on actual student work and ask 
you to identify mistakes in “proofs” that have been proposed. Example 4.2.2 illustrates the 
kind of care that must be taken in evaluating a proof.

Identifying a Mistake in a Proposed Proof

Find the mistake in the following “proof.”
Theorem: If n is any even integer, then (21)n 5 1.

Proof:

1. Suppose n is any even integer. [We must show that (21)n is even.]

2. By definition of even, n 5 2a for some integer a.

3. Then (21)n 5 (21)2a by substitution

4.  5 ((21)a)2 
by a law of exponents

5.  5 1 because any nonzero real number squared is positive.

Solution
This “proof” incorrectly jumps to a conclusion in line 5. Although it is true that the square 
of any nonzero real number is positive, it does not follow that the square of (21)a is 1. 
Exercise 10 at the end of this section asks you to give a correct proof of this theorem. ■

Showing That an Existential Statement Is False
Recall that the negation of an existential statement is universal. It follows that to prove an 
existential statement is false, you must prove a universal statement (its negation) is true.

Disproving an Existential Statement

Show that the following statement is false:

There is a positive integer n such that n2 13n12 is prime.

Solution Proving that the given statement is false is equivalent to proving its negation is 
true. The negation is

For all positive integers n, n2 13n12 is not prime.

Because the negation is universal, it is proved by generalizing from the generic particular.

Claim: The statement “There is a positive integer n such that n2 13n12 is prime” is false.

Proof:
Suppose n is any [particular but arbitrarily chosen] positive integer. [We will show that 
n2 13n12 is not prime.] Factoring shows that 

n2 13n12 5 (n11)(n12).

In addition, n11 and n12 are integers (because they are sums of integers), and both 
n11 . 1 and n12 . 1 (because n $ 1). Thus n2 13n12 is a product of two integers 
each greater than 1, and so n2 13n12 is not prime. ■

Conjecture, Proof, and Disproof
More than 350 years ago, the French mathematician Pierre de Fermat claimed that it is 
impossible to find positive integers x, y, and z with xn 1yn 5 zn if n is an integer that is 
at least 3. (For n 5 2, the equation has many integer solutions, such as 32 142 5 52 and 

Example 4.2.2

Example 4.2.3
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52 1122 5 132.) Fermat wrote his claim in the margin of a book, along with the comment 
“I have discovered a truly remarkable PROOF of this theorem which this margin is too 
small to contain.” No proof, however, was found among his papers, and over the years 
some of the greatest mathematical minds tried and failed to discover a proof or a counter-
example for what came to be known as Fermat’s last theorem.

In 1986 Kenneth Ribet of the University of California at Berkeley showed that if a cer-
tain other statement, the Taniyama–Shimura conjecture, could be proved, then Fermat’s 
theorem would follow. Andrew Wiles, an English mathematician and faculty member at 
Princeton University, had become intrigued by Fermat’s claim while still a child and, as 
an adult, had come to work in the branch of mathematics to which the Taniyama–Shimura 
conjecture belonged. As soon as he heard of Ribet’s result, Wiles immediately set to work 
to prove the conjecture. In June of 1993, after 7 years of concentrated effort, he presented 
a proof to worldwide acclaim.

During the summer of 1993, however, while the proof was being carefully checked 
to prepare for publication, Wiles found a step he had difficulty justifying and which he 
ultimately realized was an error. Having worked alone for so long, he decided to call on 
a former student, Richard Taylor, then at Cambridge University in England, who agreed 
to join him in Princeton, and, together, they worked ceaselessly for months to resolve the 
problem. After almost a year without a breakthrough, Taylor encouraged Wiles to revisit 
an approach that had been abandoned years earlier, and, as Wiles examined the details, 
he suddenly saw that the reason it had failed was the exact reason another approach he 
had previously abandoned would succeed. By the end of 1994, the revised proof had been 
thoroughly checked and pronounced correct by experts in the field. It was published in the 
Annals of Mathematics in 1995. Several books and an excellent documentary have been 
produced that convey the drama and excitement of the discovery.*

One of the oldest problems in mathematics that remains unsolved is the Gold-
bach conjecture. In Example 4.1.5 it was shown that every even integer from 4 to 
26 can be represented as a sum of two prime numbers. More than 250 years ago, 
Christian Goldbach (1690–1764) conjectured that every even integer greater than 2 
can be so represented. Explicit computer-aided calculations have shown the conjec-
ture to be true up to at least 1018. But there is a huge chasm between 1018 and infin-
ity. As pointed out by James Gleick of the New York Times, many other plausible 
conjectures in number theory have proved false. Leonhard Euler (1707–1783), for 
example, proposed in the eighteenth century that a4 1b4 1c4 5 d4 had no nontrivial 
whole number solutions. In other words, no three perfect fourth powers add up to an-
other perfect fourth power. For many numbers, Euler’s conjecture looked good. But in 
1987 a Harvard mathematician, Noam Elkies, proved it wrong. One counterexample, 
found by Roger Frye of Thinking Machines Corporation in a long computer search, is 
95,8004 1217,5194 1414,5604 5 422,4814.†

In May 2000, “to celebrate mathematics in the new millennium,” the Clay Mathematics 
Institute of Cambridge, Massachusetts, announced that it would award prizes of $1 mil-
lion each for the solutions to seven longstanding, classical mathematical questions. One of 
them, “P vs. NP,” asks whether problems belonging to a certain class can be solved on a 
computer using more efficient methods than the very inefficient methods that are presently 
known to work for them. This question is discussed briefly at the end of Chapter 11.

Pierre de Fermat 
(1601–1665)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es

Andrew Wiles 
(born 1953)

A
P 

Im
ag

es
/C

ha
rle

s 
Re

x 
Ar

bo
ga

st

*“The Proof,” produced in 1997, for the series Nova on the Public Broadcasting System; Fermat’s Enigma: 
The Epic Quest to Solve the World’s Greatest Mathematical Problem, by Simon Singh and John Lynch (New 
York: Bantam Books, 1998); Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical Prob-
lem by Amir D. Aczel (New York: Delacorte Press, 1997).

†James Gleick, “Fermat’s Last Theorem Still Has Zero Solutions,” New York Times, April 17, 1988.
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1. The meaning of every variable used in a proof 
should be explained within .

2. Proofs should be written in sentences that are 
 and .

3. Every assertion in a proof should be supported by 
a .

4. The following are some useful “little words and 
phrases” that clarify the reasoning in a proof: 

, , , , and .

5. A new thought or fact that does not follow as an 
immediate consequence of the preceding state-
ment can be introduced by writing , 

, , , or .

6. To introduce a new variable that is defined in 
terms of previous variables, use the word .

7. Displaying equations and inequalities increases 
the  of a proof.

8. Some proof-writing mistakes are , , 
, , , , and .

TEST YOURSELF 

prove the statements in 1–11. In each case use only the 
definitions of the terms and the assumptions listed on 
page 161, not any previously established properties of 
odd and even integers. Follow the directions given in this 
section for writing proofs of universal statements.

1. For every integer n, if n is odd then 3n15 is even.

2. For every integer m, if m is even then 3m15 is 
odd.

3. For every integer n, 2n21 is odd.

4. Theorem 4.2.2: The difference of any even inte-
ger minus any odd integer is odd.

5. If a and b are any odd integers, then a2 1b2 is 
even.

6. If k is any odd integer and m is any even integer, 
then k2 1m2 is odd.

7. The difference between the squares of any two 
consecutive integers is odd.

8. For any integers m and n, if m is even and n is odd 
then 5m13n is odd.

9. If an integer greater than 4 is a perfect square, then 
the immediately preceding integer is not prime.

10. If n is any even integer, then (21)n 5 1.

11. If n is any odd integer, then (21)n 5 21.

prove that the statements in 12–14 are false.

12. There exists an integer m $ 3 such that m2 21 is 
prime.

13. There exists an integer n such that 6n2 127 is 
prime.

14. There exists an integer k $ 4 such that 
2k2 25k12 is prime.

Find the mistakes in the “proofs” shown in 15–19.

15. Theorem: For every integer k, if k . 0 then 
k2 12k11 is composite.

“Proof: For k 5 2, k . 0 and k2 12k11 5
22 12?211 5 9. And since 9 5 3?3,  
then 9 is composite. Hence the theorem is true.”

16. Theorem: The difference between any odd integer 
and any even integer is odd.

“Proof: Suppose n is any odd integer, and m is 
any even integer. By definition of odd, n 5 2k11 
where k is an integer, and by definition of even, 
m 5 2k where k is an integer. Then

n2m 5 (2k11)22k 5 1,

and 1 is odd. Therefore, the difference between 
any odd integer and any even integer is odd.”

17. Theorem: For every integer k, if k . 0 then 
k2 12k11 is composite.

“Proof: Suppose k is any integer such that k . 0. 
If k2 12k11 is composite, then k2 12k11 5 rs 
for some integers r and s such that

1 , r , k2 12k11

and 1 , s , k2 12k11.

Since k2 12k11 5 rs 

and both r and s are strictly between 1 and 
k2 12k11, then k2 12k11 is not prime. Hence 
k2 12k11 is composite as was to be shown.”

H

H

ExERCISE SET 4.2 
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18. Theorem: The product of any even integer and 
any odd integer is even.

“Proof: Suppose m is any even integer and n is 
any odd integer. If m?n is even, then by defini-
tion of even there exists an integer r such that 
m?n 5 2r. Also since m is even, there exists an in-
teger p such that m 5 2p, and since n is odd there 
exists an integer q such that n 5 2q11. Thus

mn 5 (2p)(2q11) 5 2r,

where r is an integer. By definition of even, then, 
m?n is even, as was to be shown.”

19. Theorem: The sum of any two even integers 
equals 4k for some integer k.

“Proof: Suppose m and n are any two even integers. 
By definition of even, m 5 2k for some integer k 
and n 5 2k for some integer k. By substitution,

m1n 5 2k12k 5 4k.

This is what was to be shown.”

In 20–38 determine whether the statement is true or 
false. Justify your answer with a proof or a counterexam-
ple, as appropriate. In each case use only the definitions 
of the terms and the assumptions listed on page 161, not 
any previously established properties.

20. The product of any two odd integers is odd.

21. The negative of any odd integer is odd.

22. For all integers a and b, 4a15b13 is even.

23. The product of any even integer and any integer is 
even.

24. If a sum of two integers is even, then one of the 
summands is even. (In the expression a1b, a and 
b are called summands.)

25. The difference of any two even integers is even.

26. For all integers a, b, and c, if a, b, and c are con-
secutive, then a1b1c is even.

27. The difference of any two odd integers is even.

28. For all integers n and m, if n2m is even then 
n3 2m3 is even.

29. For every integer n, if n is prime then (21)n 5 21.

30. For every integer m, if m . 2 then m2 24 is  
composite.

31. For every integer n, n2 2n111 is a prime number.

32. For every integer n, 4(n2 1n11)23n2 is a perfect 
square.

33. Every positive integer can be expressed as a sum 
of three or fewer perfect squares.

34. (Two integers are consecutive if, and only if, one 
is one more than the other.) Any product of four 
consecutive integers is one less than a perfect 
square.

35. If m and n are any positive integers and mn is a 
perfect square, then m and n are perfect squares.

36. The difference of the squares of any two consecu-
tive integers is odd.

37. For all nonnegative real numbers a and b, 
Ïab 5 ÏaÏb. (Note that if x is a nonnegative 
real number, then there is a unique nonnegative 
real number y, denoted Ïx, such that y2 5 x.)

38. For all nonnegative real numbers a and b,

Ïa1b 5 Ïa1Ïb.

39. Suppose that integers m and n are perfect squares. 
Then m1n12Ïmn is also a perfect square. 
Why?

40. If p is a prime number, must 2p 21 also be prime? 
Prove or give a counterexample.

41. If n is a nonnegative integer, must 22n 11 be 
prime? Prove or give a counterexample.

H

H

H*

H

H*

*

1. the body of the proof (or: the proof itself) 2. complete; 
grammatically correct 3. reason 4. Because; Since; 
Then; Thus; So; Hence; Therefore; Consequently; It follows 
that; By substitution 5. Observe that; Note that; Recall 
that; But; Now 6. Let 7. readability 8. Arguing from 

examples; Using the same letter to mean two different 
things; Jumping to a conclusion; Assuming what is to be 
proved; Confusion between what is known and what is still 
to be shown; Use of any when the correct word is some; 
Misuse of the word if

ANSwERS FOR TEST YOURSELF
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Direct Proof and Counterexample III: 
Rational Numbers
Such, then, is the whole art of convincing. It is contained in two principles: to define 
all notations used, and to prove everything by replacing mentally the defined terms by 
their definitions. —Blaise Pascal, 1623–1662

Sums, differences, and products of integers are integers. But most quotients of integers 
are not integers. Quotients of integers are, however, important; they are known as rational 
numbers.

4.3

Definition

A real number r is rational if, and only if, it can be expressed as a quotient of two 
integers with a nonzero denominator. A real number that is not rational is irrational. 
More formally, if r is a real number, then

r is rational 3 E integers a and b such that r 5
a

b
 and b Þ 0.

The word rational contains the word ratio, which is another word for quotient. A rational 
number can be written as a ratio of integers.

Determining whether Numbers Are Rational or Irrational

a. Is 10y3 a rational number?

b. Is2 5
39 a rational number?

c. Is 0.281 a rational number?

d. Is 7 a rational number?

e. Is 0 a rational number?

f. Is 2y0 a rational number?

g. Is 2y0 an irrational number?

h. Is 0.12121212 Á  a rational number (where the digits 12 are assumed to repeat  
forever)?

i. If m and n are integers and neither m nor n is zero, is (m1n)ymn a rational number?

Solution
a. Yes, 10y3 is a quotient of the integers 10 and 3 and hence is rational.

b. Yes, 2 5
39 5

25
39 , which is a quotient of the integers 25 and 39 and hence is rational.

c. Yes, 0.281 5 281y1000. Note that the numbers shown on a typical calculator display 
are all finite decimals. An explanation similar to the one in this example shows that 
any such number is rational. It follows that a calculator with such a display can accu-
rately represent only rational numbers.

d. Yes, 7 5 7y1.

e. Yes, 0 5 0y1.

f. No, 2y0 is not a real number (division by 0 is not allowed).

Example 4.3.1

94193_ch04_ptg01.indd   183 12/11/18   3:54 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



184  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

g. No, because every irrational number is a real number, and 2y0 is not a real number. 
We discuss additional techniques for determining whether numbers are irrational in 
Sections 4.7, 4.8, and 7.4.

h. Yes. Let x 5 0.12121212 Á  Then 100x 5 12.12121212 Á  Thus

100x2x 5 12.12121212 Á 20.12121212 Á 5 12.

But also 100x2x 5 99x  by basic algebra.

Hence 99x 5 12,

and so x 5
12

99
.

Therefore, 0.12121212 Á 5 12y99, which is a ratio of two nonzero integers and thus 
is a rational number.

Note that you can use an argument similar to this one to show that any repeating 
decimal is a rational number. In Section 9.4 we show that any rational number can be 
written as a repeating or terminating decimal.

i. Yes, since m and n are integers, so are m1n and mn (because sums and products of 
integers are integers). Also mn Þ 0 by the zero product property. One version of this 
property says the following:

Zero Product Property

If neither of two real numbers is zero, then their product is also not zero.

(See Theorem T11 in Appendix A and exercise 8 at the end of this section.) It follows 
that (m1n)ymn is a quotient of two integers with a nonzero denominator and hence is 
a rational number. ■

More on Generalizing from the Generic Particular
If you claim a property holds for all elements in a domain, then someone can challenge 
your claim by picking any element in the domain and asking you to prove that that element 
satisfies the property. To prove your claim, you must be able to meet all such challenges. 
In other words, you must have a way to convince the challenger that the property is true for 
an arbitrarily chosen element in the domain.

For example, suppose “A” claims that every integer is a rational number. “B” challenges 
this claim by asking “A” to prove it for n 5 7. “A” observes that

7 5
7

1
 which is a quotient of integers and hence rational.

“B” accepts this explanation but challenges again with n 5 212. “A” responds that

212 5
212

1
  which is a quotient of integers and hence rational.

Next “B” tries to trip up “A” by challenging with n 5 0, but “A” answers that

0 5
0

1
 which is a quotient of integers and hence rational.
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As you can see, “A” is able to respond effectively to all “B”s challenges because “A” has a 
general procedure for putting integers into the form of rational numbers: “A” just divides 
whatever integer “B” gives by 1. That is, no matter what integer n “B” gives “A”, “A” writes

n 5
n

1
  which is a quotient of integers and hence rational.

This discussion is an informal proof for the following theorem.

Theorem 4.3.1

Every integer is a rational number.

In exercise 11 at the end of this section you are asked to condense the above discussion into 
a formal proof.

Proving Properties of Rational Numbers
The next example shows how to use the method of generalizing from the generic particular 
to prove a property of rational numbers.

Any Sum of Rational Numbers Is Rational

Prove that the sum of any two rational numbers is rational.

Solution Begin by mentally or explicitly rewriting the statement to be proved in the form 
“5 , if  then .”

Formal Restatement: 5 real numbers r and s, if r and s are rational then r1 s is rational.

Next ask yourself, “Where am I starting from?” or “What am I supposing?” The answer 
gives you the starting point, or first sentence, of the proof.

Starting Point:  Suppose r and s are any particular but arbitrarily chosen real numbers such 
that r and s are rational; or, more simply,

Suppose r and s are any rational numbers.

Then ask yourself, “What must I show to complete the proof?”

To Show: r1 s is rational.

Finally ask, “How do I get from the starting point to the conclusion?” or “Why must r1 s 
be rational if both r and s are rational?” The answer depends in an essential way on the 
definition of rational.

Rational numbers are quotients of integers, so to say that r and s are rational means that

r 5
a

b
 and s 5

c

d
  for some integers a, b, c, and d  

where b Þ 0 and d Þ 0.

It follows by substitution that

 r1 s 5
a

b
1

c

d
. (4.3.1)

Example 4.3.2
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You need to show that r1 s is rational, which means that r1 s can be written as a single 
fraction or ratio of two integers with a nonzero denominator. But the right-hand side of 
equation (4.3.1) is

a

b
1

c

d
5

ad

bd
1

bc

bd
  

by rewriting the fraction with a common 
denominator

5
ab1bc

bd
 

by adding fractions with a 
common denominator.

Is this fraction a ratio of integers? Yes. Because products and sums of integers are integers, 
ad1bc and bd are both integers. Is the denominator bd Þ 0? Yes, by the zero product 
property (since b Þ 0 and d Þ 0). Thus r1 s is a rational number.

This discussion is summarized as follows:

Theorem 4.3.2

The sum of any two rational numbers is rational.

Proof: Suppose r and s are any rational numbers. [We must show that r1 s is rational.] 
Then, by definition of rational, r 5 ayb and s 5 cyd for some integers a, b, c, and d 
with b Þ 0 and d Þ 0. Thus

r1 s 5
a

b
1

c

d
   by substitution

5
ad1bc

bd
 by basic algebra.

Let p 5 ad1bc and q 5 bd. Then p and q are integers because products and sums 
of integers are integers and because a, b, c, and d are all integers. Also q Þ 0 by the 
zero product property. Thus

r1 s 5
p
q

 where p and q are integers and q Þ 0.

Therefore, r1 s is rational by definition of a rational number [as was to be shown]. 

■

Deriving New Mathematics from Old
Section 4.1 focused on establishing truth and falsity of mathematical theorems using only the 
basic algebra normally taught in secondary school; the fact that the integers are closed under 
addition, subtraction, and multiplication; and the definitions of the terms in the theorems 
themselves. In the future, when we ask you to prove something directly from the defini-
tions, we will mean that you should restrict yourself to this approach. However, once a col-
lection of statements has been proved directly from the definitions, another method of proof 
becomes possible. The statements in the collection can be used to derive additional results.

Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved the following properties of even and odd integers:

1. The sum, product, and difference of any two even integers are even.

2. The sum and difference of any two odd integers are even.

Example 4.3.3
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3. The product of any two odd integers is odd.

4. The product of any even integer and any odd integer is even.

5. The sum of any odd integer and any even integer is odd.

6. The difference of any odd integer minus any even integer is odd.

7. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any even integer and b is any odd inte-

ger, then a
2 1 b2 1 1

2  is an integer.

Solution Suppose a is any even integer and b is any odd integer. By property 3, b2 is 
odd, and by property 1, a2 is even. Then by property 5, a2 1b2 is odd, and because 1 is 
also odd, the sum (a2 1b2)11 5 a2 1b2 11 is even by property 2. Hence, by definition 
of even, there exists an integer k such that a2 1b2 11 5 2k. Dividing both sides by 2 gives 
a2 1 b2 11

2 5 k, which is an integer. Thus a
2 1 b2 11

2  is an integer [as was to be shown]. ■

A corollary is a statement whose truth can be immediately deduced from a theorem 
that has already been proved.

The Double of a Rational Number

Derive the following as a corollary of Theorem 4.3.2.

Example 4.3.4

Corollary 4.2.3

The double of a rational number is rational.

Solution The double of a number is just its sum with itself. But since the sum of any 
two rational numbers is rational (Theorem 4.3.2), the sum of a rational number with itself 
is rational. Hence the double of a rational number is rational. Here is a formal version of 
this argument:

Proof: Suppose r is any rational number. Then 2r 5 r1 r is a sum of two rational numbers. 
So, by Theorem 4.3.2, 2r is rational. ■

1. To show that a real number is rational, we must 
show that we can write it as .

2. An irrational number is a  that is .

3. Zero is a rational number because .

TEST YOURSELF 

the numbers in 1–7 are all rational. Write each number as 
a ratio of two integers.

1. 2
35

6
2. 4.6037 3. 

4

5
1

2

9
4. 0.37373737 Á

5. 0.56565656 Á

6. 320.5492492492 Á

7. 52.4672167216721 Á

8. The zero product property, says that if a product 
of two real numbers is 0, then one of the numbers 
must be 0.

ExERCISE SET 4.3 

94193_ch04_ptg01.indd   187 12/11/18   3:54 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



188  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

a. Write this property formally using quantifiers 
and variables.

b. Write the contrapositive of your answer to part (a).
c. Write an informal version (without quantifier 

symbols or variables) for your answer to part (b). 
9. Assume that a and b are both integers and that 

a Þ 0 and b Þ 0. Explain why (b2a)y(ab2) must 
be a rational number.

10. Assume that m and n are both integers and that 
n Þ 0. Explain why (5m212n)y(4n) must be a 
rational number.

11. Prove that every integer is a rational number.

12. Let S be the statement “The square of any rational 
number is rational.” A formal version of S is “For 
every rational number r, r2 is rational.” Fill in the 
blanks in the proof for S.

Proof: Suppose that r is . By definition of 
rational, r 5 ayb for some  with b Þ 0. By 
substitution,

r2 5 5 a2yb2.

Since a and b are both integers, so are the prod-
ucts a2 and . Also b2 Þ 0 by the .  
Hence r2 is a ratio of two integers with a non-
zero denominator, and so  by definition of 
rational.

13. Consider the following statement: The negative of 
any rational number is rational.
a. Write the statement formally using a quantifier 

and a variable.
b. Determine whether the statement is true or 

false and justify your answer. 
14. Consider the statement: The cube of any rational 

number is a rational number.
a. Write the statement formally using a quantifier 

and a variable.
b. Determine whether the statement is true or 

false and justify your answer. 
Determine which of the statements in 15–19 are true 
and which are false. prove each true statement directly 
from the definitions, and give a counterexample for each 
false statement. For a statement that is false, determine 
whether a small change would make it true. If so, make 
the change and prove the new statement. Follow the 
directions for writing proofs on page 173.

15. The product of any two rational numbers is a 
rational number.

16. The quotient of any two rational numbers is a 
rational number.

17. The difference of any two rational numbers is a 
rational number.

18. If r and s are any two rational numbers, then r 1 s
2  

is rational.

19. For all real numbers a and b, if a , b then  
a ,

a 1 b
2 , b.

(You may use the properties of inequalities in 
T17–T27 of Appendix A.)

20. Use the results of exercises 18 and 19 to prove 
that given any two rational numbers r and s with 
r , s, there is another rational number between r 
and s. An important consequence is that there are 
infinitely many rational numbers in between any 
two distinct rational numbers. See Section 7.4.

Use the properties of even and odd integers that are 
listed in example 4.3.3 to do exercises 21–23. Indicate 
which properties you use to justify your reasoning.

21. True or false? If m is any even integer and n is any 
odd integer, then m2 13n is odd. Explain.

22. True or false? If a is any odd integer, then a2 1a is 
even. Explain.

23. True or false? If k is any even integer and m is any 
odd integer, then (k12)2 2 (m21)2 is even. Explain.

Derive the statements in 24–26 as corollaries of 
theorems 4.3.1, 4.3.2, and the results of exercises 12, 13, 
14, 15, and 17.

24. For any rational numbers r and s, 2r13s is rational.

25. If r is any rational number, then 3r2 22r14 is 
rational.

26. For any rational number s, 5s3 18s2 27 is rational.

27. It is a fact that if n is any nonnegative integer, then

11
1

2
1

1

22 1
1

23 1 Á 1
1

2n 5
12 _1y2n11+

12 (1y2)
.

(A more general form of this statement is proved in 
Section 5.2.) Is the right-hand side of this equation 
rational? If so, express it as a ratio of two integers.

28. Suppose a, b, c, and d are integers and a Þ c. Sup-
pose also that x is a real number that satisfies the 
equation

ax1b

cx1d
5 1.

(a)
(b)

(c)

(d) (e)

(f)

H

H

H

H
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Must x be rational? If so, express x as a ratio of 
two integers.

29. Suppose a, b, and c are integers and x, y, and z are 
nonzero real numbers that satisfy the following 
equations:

xy

x1y
5 a and xz

x1 z
5 b and yz

y1 z
5 c.

Is x rational? If so, express it as ratio of two integers.

30. Prove that if one solution for a quadratic equa-
tion of the form x2 1bx1c 5 0 is rational 
(where b and c are rational), then the other 
solution is also rational. (Use the fact that if 
the solutions of the equation are r and s, then 
x2 1bx1c 5 (x2 r)(x2 s).)

31. Prove that if a real number c satisfies a polyno-
mial equation of the form

r3x
3 1 r2x

2 1 r1x1 r0 5 0,

where r0, r1, r2, and r3 are rational numbers, then 
c satisfies an equation of the form

n3x
3 1n2x

2 1n1x1n0 5 0,

where n0, n1, n2, and n3 are integers.

Definition: A number c is called a root of a polynomial 
p(x) if, and only if, p(c) 5 0.

32. Prove that for every real number c, if c is a root of 
a polynomial with rational coefficients, then c is a 
root of a polynomial with integer coefficients.

Use the properties of even and odd integers that are 
listed in example 4.3.3 to do exercises 33 and 34.

33. When expressions of the form (x2 r)(x2 s) are 
multiplied out, a quadratic polynomial is obtained. 
For instance, (x22)(x2 (27)) 5 (x22)(x17) 5
x2 15x214.
a. What can be said about the coefficients of 

the polynomial obtained by multiplying out 
(x2 r)(x2 s) when both r and s are odd integers? 
When both r and s are even integers? When one 
of r and s is even and the other is odd?

b. It follows from part (a) that x2 21253x1255 
cannot be written as a product of two polynomials 
with integer coefficients. Explain why this is so.

34. Observe that

(x2 r)(x2 s)(x2 t)

5 x3 2 (r1 s1 t)x2 1 (rs1 rs1 st)x2 rst.

a. Derive a result for cubic polynomials similar 
to the result in part (a) of exercise 33 for 
quadratic polynomials.

b. Can x3 17x2 28x227 be written as a product 
of three polynomials with integer coefficients? 
Explain. 

In 35–39 find the mistakes in the “proofs” that the sum of 
any two rational numbers is a rational number.

35. “Proof: Any two rational numbers produce a 
rational number when added together. So if r and 
s are particular but arbitrarily chosen rational 
numbers, then r1 s is rational.”

36. “Proof: Let rational numbers r 5
1
4 and s 5

1
2 be 

given. Then r1 s 5
1
4 1

1
2 5

3
4, which is a rational 

number. This is what was to be shown.”

37. “Proof: Suppose r and s are rational numbers. By 
definition of rational, r 5 ayb for some integers 
a and b with b Þ 0, and s 5 ayb for some integers 
a and b with b Þ 0. Then

r1 s 5
a

b
1

a

b
5

2a

b
.

Let p 5 2a. Then p is an integer since it is a prod-
uct of integers. Hence r1 s 5 pyb, where p and b  
are integers and b Þ 0. Thus r1 s is a rational 
number by definition of rational. This is what was 
to be shown.”

38. “Proof: Suppose r and s are rational numbers. 
Then r 5 ayb and s 5 cyd for some integers a, 
b, c, and d with b Þ 0 and d Þ 0 (by definition of 
rational). Then

r1 s 5
a

b
1

c

d
.

But this is a sum of two fractions, which is a frac-
tion. So r2 s is a rational number since a rational 
number is a fraction.”

39. “Proof: Suppose r and s are rational numbers. 
If r1 s is rational, then by definition of ratio-
nal r1 s 5 ayb for some integers a and b with 
b Þ 0. Also since r and s are rational, r 5 iyj and 
s 5 myn for some integers i, j, m, and n with j Þ 0 
and n Þ 0. It follows that

r1 s 5
i

j
1

m
n

5
a

b
,

which is a quotient of two integers with a nonzero 
denominator. Hence it is a rational number. This is 
what was to be shown.”

*

*

H

*

94193_ch04_ptg01.indd   189 12/11/18   3:54 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



190  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

Direct Proof and Counterexample IV: Divisibility
The essential quality of a proof is to compel belief. —Pierre de Fermat

When you were first introduced to the concept of division in elementary school, you were 
probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups of 
3, you get 4 groups with nothing left over.

xxx  xxx  xxx  xxx

You may also have been taught to describe this fact by saying that “12 is evenly divisible 
by 3” or “3 divides 12 evenly.”

The notion of divisibility is the central concept of one of the most beautiful subjects in 
advanced mathematics: number theory, the study of properties of integers.

4.4

1. a ratio of integers with a nonzero denominator 2. real number; not rational 3. 0 5
0

1

ANSwERS FOR TEST YOURSELF 

Definition

If n and d are integers then

n is divisible by d if, and only if, n equals d times some integer and d Þ 0.

Instead of “n is divisible by d,” we can say that

n is a multiple of d, or
d is a factor of n, or
d is a divisor of n, or
d divides n.

The notation d un is read “d divides n.” Symbolically, if n and d are integers:

d un 3 E an integer, say k, such that n 5 dk and d Þ 0.

The notation d un is read “d does not divide n.”

Note According to the 
definition of divisibility 
if you know that n and d 
are any integers such that 
d divides n, then you may 
assume that d is not equal 
to zero.

Divisibility

a. Is 21 divisible by 3? b. Does 5 divide 40? c. Does 7 u42?

d. Is 32 a multiple of 216? e. Is 6 a factor of 54? f. Is 7 a factor of 27?

Solution
a. Yes, 21 5 3?7. b. Yes, 40 5 5?8. c. Yes, 42 5 7?6.

d. Yes, 32 5 (216)?(22). e. Yes, 54 5 6?9. f. Yes, 27 5 7?(21). ■

Divisors of Zero

If k is any nonzero integer, does k divide 0?

Solution Yes, because 0 5 k?0. ■

Example 4.4.1

Example 4.4.2
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Two useful properties of divisibility are (1) that if one positive integer divides a second 
positive integer, then the first is less than or equal to the second, and (2) that the only divi-
sors of 1 are 1 and 21.

Theorem 4.4.1 A Positive Divisor of a Positive Integer

For all integers a and b, if a and b are positive and a divides b then a # b.

Proof: Suppose a and b are any positive integers such that a divides b. [We must show 
that a # b.] By definition of divisibility, there exists an integer k so that b 5 ak. By 
property T25 of Appendix A, k must be positive because both a and b are positive. 
It follows that

1 # k

because every positive integer is greater than or equal to 1. Multiplying both sides 
by a gives

a # ka 5 b

because multiplying both sides of an inequality by a positive number preserves the 
inequality by property T20 of Appendix A. Thus a # b [as was to be shown].

Theorem 4.4.2 Divisors of 1

The only divisors of 1 are 1 and 21.

Proof: Since 1?1 5 1 and (21)(21) 5 1, both 1 and 21 are divisors of 1. Now sup-
pose m is any integer that divides 1. Then there exists an integer n such that 1 5 mn. 
By Theorem T25 in Appendix A, either both m and n are positive or both m and n 
are negative. If both m and n are positive, then m is a positive integer divisor of 1. By 
Theorem 4.4.1, m # 1, and, since the only positive integer that is less than or equal 
to 1 is 1 itself, it follows that m 5 1. On the other hand, if both m and n are nega-
tive, then, by Theorem T12 in Appendix A, (2m)(2n) 5 mn 5 1. In this case 2m 
is a positive integer divisor of 1, and so, by the same reasoning, 2m 5 1 and thus 
m 5 21. Therefore there are only two possibilities: either m 5 1 or m 5 21. So the 
only divisors of 1 are 1 and 21.

Divisibility and Algebraic Expressions

a. If a and b are integers, is 3a13b divisible by 3?

b. If k and m are integers, is 10km divisible by 5?

Solution
a. Yes. By the distributive law of algebra, 3a13b 5 3(a1b) and a1b is an integer 

because it is a sum of two integers.

b. Yes. By the associative law of algebra, 10km 5 5?(2km) and 2km is an integer because 
it is a product of three integers. ■

Example 4.4.3
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When the definition of divides is rewritten formally using the existential quantifier, the 
result is

d un 3 E an integer k such that n 5 dk and d Þ 0.

Since the negation of an existential statement is universal, it follows that d does not divide 
n (denoted d un) if, and only if, 5 integer k, n Þ dk or d 5 0; in other words, the quotient 
nyd is not an integer.

For all integers n and d, d un   3  n

d
  is not an integer.

Note If d 5 0, then nd is 
not defined, and so it is 
certainly not an integer.

Checking Nondivisibility

Does 4 u15?

Solution No, 15
4 5 3.75, which is not an integer. ■

Be careful to distinguish between the notation a ub and the notation ayb. The notation 
a ub stands for the sentence “a divides b,” which means that there is an integer k such that 
b 5 ak. Dividing both sides by a gives bya 5 k, an integer. Thus, when a Þ 0, a ub if, and 
only if, bya is an integer. On the other hand, the notation ayb stands for the number ayb 
which is the result of dividing a by b and which may or may not be an integer. In particular, 
since the symbol u  stands for the word “divides,” be sure to avoid writing something like

4 u (315) 5 4 u8.

If read out loud, this becomes “4 divides the quantity 3 plus 5 equals 4 divides 8,” which 
is nonsense.

Prime Numbers and Divisibility

An alternative way to define a prime number is to say that an integer n . 1 is prime if, and 
only if, its only positive integer divisors are 1 and itself. ■

Proving Properties of Divisibility
One of the most useful properties of divisibility is that it is transitive. If one number divides 
a second and the second number divides a third, then the first number divides the third.

Transitivity of Divisibility

Prove that for all integers a, b, and c, if a ub and b uc, then a uc.

Solution Since the statement to be proved is already written formally, you can immedi-
ately pick out the starting point, or first sentence of the proof, and the conclusion that must 
be shown.

Starting Point: Suppose a, b, and c are particular but arbitrarily chosen integers such that 
a ub and b uc.

To Show: a uc.

You need to show that a uc, or, in other words, that

c 5 a?(some integer).

Example 4.4.4

Example 4.4.5

Example 4.4.6

!
Caution! a ub denotes the 
sentence “a divides b,” 
whereas ayb denotes the 
number a divided by b.
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But since a ub,

 b 5 ar for some integer r. 4.4.1

And since b uc,

 c 5 bs for some integer s. 4.4.2

Equation 4.4.2 expresses c in terms of b, and equation 4.4.1 expresses b in terms of a. Thus 
if you substitute 4.4.1 into 4.4.2, you will have an equation that expresses c in terms of a.

c 5 bs by equation 4.4.2

5 (ar)s by equation 4.4.1.

But (ar)s 5 a(rs) by the associative law for multiplication. Hence

c 5 a(rs).

Now you are almost finished. You have expressed c as a?(something). It remains only to 
verify that that something is an integer. But of course it is, because it is a product of two 
integers.

This discussion is summarized as follows:

Theorem 4.4.3 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Proof: Suppose a, b, and c are any [particular but arbitrarily chosen] integers such 
that a divides b and b divides c. [We must show that a divides c.] By definition of 
divisibility,

b 5 ar and c 5 bs for some integers r and s.

By substitution

c 5 bs

5 (ar)s

5 a(rs)  by basic algebra.

Let k 5 rs. Then k is an integer since it is a product of integers, and therefore

c 5 ak where k is an integer.

Thus a divides c by definition of divisibility. [This is what was to be shown.]

■

It would appear from the definition of prime that to show that an integer is prime you 
would need to show that it is not divisible by any integer greater than 1 and less than itself. 
In fact, you need only check whether it is divisible by a prime number less than or equal 
to itself. This follows from Theorems 4.4.1, 4.4.3, and the following theorem, which says 
that any integer greater than 1 is divisible by a prime number. The idea of the proof is quite 
simple. You start with a positive integer. If it is prime, you are done; if not, it is a product of 
two smaller positive factors. If one of these is prime, you are done; if not, you can pick one 
of the factors and write it as a product of still smaller positive factors. You can continue in 
this way, factoring the factors of the number you started with, until one of them turns out to 
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be prime. This must happen eventually because all the factors can be chosen to be positive 
and each is smaller than the preceding one.

Theorem 4.4.4 Divisibility by a Prime

Any integer n . 1 is divisible by a prime number.

Proof: Suppose n is a [particular but arbitrarily chosen] integer that is greater than 
1. [We must show that there is a prime number that divides n.] If n is prime, then n is 
divisible by a prime number (namely itself), and we are done. If n is not prime, then, 
as discussed in Example 4.1.2b,

n 5 r0s0  where r0 and s0 are integers and  
1 , r0 , n and 1 , s0 , n.

It follows by definition of divisibility that r0 un.
If r0 is prime, then r0 is a prime number that divides n, and we are done. If r0 is 

not prime, then

r0 5 r1s1  where r1 and s1 are integers and  
1 , r1 , r0 and 1 , s1 , r0.

It follows by the definition of divisibility that r1 ur0. But we already know that r0 un. 
Consequently, by transitivity of divisibility, r1 un.

If r1 is prime, then r1 is a prime number that divides n, and we are done. If r1 is 
not prime, then

r1 5 r2s2  where r2 and s2 are integers and  
1 , r2 , r1 and 1 , s2 , r1.

It follows by definition of divisibility that r2 ur1. But we already know that r1 un. Con-
sequently, by transitivity of divisibility, r2 un.

If r2 is prime, then r2 is a prime number that divides n, and we are done. If r2 is 
not prime, then we may repeat the previous process by factoring r2 as r3s3.

We may continue in this way, factoring successive factors of n until we find a 
prime factor. We must succeed in a finite number of steps because each new factor 
is both less than the previous one (which is less than n) and greater than 1, and there 
are fewer than n integers strictly between 1 and n.* Thus we obtain a sequence

r0, r1, r2, Á , rk,

where k $ 0, 1 , rk , rk21 , Á , r2 , r1 , r0 , n, and ri un for each i 5 0, 
1, 2, Á , k. The condition for termination is that rk should be prime. Hence rk is a 
prime number that divides n. [This is what we were to show.]

Counterexamples and Divisibility
To show that a proposed divisibility property is not universally true, you need only find one 
pair of integers for which it is false.

*Strictly speaking, this statement is justified by an axiom for the integers called the well-ordering principle, 
which is discussed in Section 5.4. Theorem 4.4.4 can also be proved using strong mathematical induction, as 
shown in Example 5.4.1.
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Checking a Proposed Divisibility Property

Is the following statement true or false? For all integers a and b, if a ub and b ua then a 5 b.

Solution This statement is false. Can you think of a counterexample just by concentrat-
ing for a minute or so?

The following discussion describes a mental process that may take just a few seconds. It 
is helpful to be able to use it consciously, however, to solve more difficult problems.

To discover the truth or falsity of a statement such as the one given above, start off much 
as you would if you were trying to prove it.

Starting Point: Suppose a and b are integers such that a ub and b ua.

Ask yourself, “Must it follow that a 5 b, or could it happen that a Þ b for some a and b?” 
Focus on the supposition. What does it mean? By definition of divisibility, the conditions 
a ub and b ua mean that

b 5 ha and a 5 kb for some integers h and k.

Must it follow that a 5 b, or can you find integers a and b that satisfy these equations for 
which a Þ b? The equations imply that

b 5 ha 5 h(kb) 5 (hk)b.

Since b ua, b Þ 0, and so you can cancel b from the extreme left and right sides to obtain

1 5 hk.

In other words, h and k are divisors of 1. But, by Theorem 4.4.2, the only divisors of 1 
are 1 and 21. Thus h and k are both 1 or are both 21. If h 5 k 5 1, then b 5 a. But if 
h 5 k 5 21, then b 5 2a and so a Þ b. This analysis suggests that you can find a coun-
terexample by taking b 5 2a. Here is a formal answer:

Example 4.4.7

Proposed Divisibility Property: For all integers a and b, if a ub and b ua then 
a 5 b.

Counterexample: Let a 5 2 and b 5 22. Then 22 5 (21)?2 and 2 5 (21)?(22), 
and thus

a ub and b ua, but a Þ b because 2 Þ 22.

Therefore, the statement is false.

■

The search for a proof will frequently help you discover a counterexample (provided the 
statement you are trying to prove is, in fact, false). Conversely, in trying to find a counter-
example for a statement, you may come to realize the reason why it is true (if it is, in fact, 
true). The important thing is to keep an open mind until you are convinced by the evidence 
of your own careful reasoning.

The Unique Factorization of Integers Theorem
The most comprehensive statement about divisibility of integers is contained in the unique 
factorization of integers theorem. Because of its importance, this theorem is also called the 

94193_ch04_ptg01.indd   195 12/11/18   3:54 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



196  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

fundamental theorem of arithmetic. Although Euclid, who lived about 300 b.c.e., seems to 
have been acquainted with the theorem, it was first stated precisely by the great German 
mathematician Carl Friedrich Gauss (rhymes with house) in 1801.

The unique factorization of integers theorem says that any integer greater than 1 either 
is prime or can be written as a product of prime numbers in a way that is unique except, 
perhaps, for the order in which the primes are written. For example,

72 5 2?2?2?3?3 5 2?3?3?2?2 5 3?2?2?3?2,

and so forth. The three 2’s and two 3’s may be written in any order, but any factorization of 
72 as a product of primes must contain exactly three 2’s and two 3’s—no other collection 
of prime numbers besides three 2’s and two 3’s multiplies out to 72.

Note This theorem is the 
reason the number 1 is 
not allowed to be prime. 
If 1 were prime, then 
factorizations would not 
be unique. For example, 
6 5 2?3 5 1?2?3, and so 
forth.

Theorem 4.4.5  Unique Factorization of Integers Theorem 
(Fundamental Theorem of Arithmetic)

Given any integer n . 1, there exist a positive integer k, distinct prime numbers p1, 
p2, Á , pk, and positive integers e1, e2, Á , ek such that

n 5 pe1
1  pe2

2  pe3
3 Á pek

k ,

and any other expression for n as a product of prime numbers is identical to this 
except, perhaps, for the order in which the factors are written.

The proof of the unique factorization of integers theorem is outlined in the exercises for 
Sections 5.4 and 8.4.

Because of the unique factorization theorem, any integer n . 1 can be put into a stan-
dard factored form in which the prime factors are written in ascending order from left 
to right.

Definition

Given any integer n . 1, the standard factored form of n is an expression of the 
form

n 5 pe1
1  pe2

2  pe3
3

Á pek
k ,

where k is a positive integer, p1, p2, Á , pk are prime numbers, e1, e2, Á , ek are posi-
tive integers, and p1 , p2 , Á , pk.

writing Integers in Standard Factored Form

Write 3,300 in standard factored form.

Solution First find all the factors of 3,300. Then write them in ascending order:

3,300 5 100?33 5 4?25?3?11

5 2?2?5?5?3?11 5 22?31?52?111.
 ■

Example 4.4.8
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Using Unique Factorization to Solve a Problem

Suppose m is an integer such that

8?7?6?5?4?3?2?m 5 17?16?15?14?13?12?11?10.

Does 17 um?

Solution Since 17 is one of the prime factors of the right-hand side of the equation, it is 
also a prime factor of the left-hand side (by the unique factorization of integers theorem). 
But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large). Hence 
17 must occur as one of the prime factors of m, and so 17 um. ■

Example 4.4.9

1. To show that a nonzero integer d divides an integer 
n, we must show that .

2. To say that d divides n means the same as saying 
that  is divisible by .

3. If a and b are positive integers and a ub, then 
 is less than or equal to .

4. For all integers n and d, d un if, and only if, .

5. If a and b are integers, the notation a ub denotes 
 and the notation ayb denotes .

6. The transitivity of divisibility theorem says that 
for all integers a, b, and c, if  then  

.

7. The divisibility by a prime theorem says that every 
integer greater than 1 is .

8. The unique factorization of integers theorem says 
that any integer greater than 1 is either  or 
can be written as  in a way that is unique 
except possibly for the  in which the num-
bers are written.

TEST YOURSELF 

Give a reason for your answer in each of 1–13. assume 
that all variables represent integers.

1. Is 52 divisible by 13?

2. Does 7 u56?

3. Does 5 u0?

4. Does 3 divide (3k11)(3k12)(3k13)?

5. Is 6m(2m110) divisible by 4?

6. Is 29 a multiple of 3?

7. Is 23 a factor of 66?

8. Is 6a(a1b) a multiple of 3a?

9. Is 4 a factor of 2a?34b?

10. Does 7 u34?

11. Does 13 u73?

12. If n 5 4k11, does 8 divide n2 21?

13. If n 5 4k13, does 8 divide n2 21?

14. Fill in the blanks in the following proof that for all 
integers a and b, if a ub then a u (2b).

Proof: Suppose a and b are any integers such that 
. By definition of divisibility, there exists an 

integer r such that . By substitution,

2b 5 2(ar) 5 a(2r).

Let t 5 . Then t is an integer because 
t 5 (21)?r, and both 21 and r are integers. Thus, 
by substitution, 2b 5 at, where t is an integer, and 
so by definition of divisibility, , as was to be 
shown.

prove statements 15 and 16 directly from the definition 
of divisibility.

15. For all integers a, b, and c, if a ub and a uc then 
a u (b1c).

16. For all integers a, b, and c, if a ub then a uc then 
a u (b2c).

17. For all integers a, b, c, and d, if a uc and b ud then 
ab ucd.

(a)
(b)

(c)

(d)

H

ExERCISE SET 4.4 
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18. Consider the following statement: The negative of 
any multiple of 3 is a multiple of 3.
a. Write the statement formally using a quantifier 

and a variable.
b. Determine whether the statement is true or 

false and justify your answer. 

19. Show that the following statement is false: For all 
integers a and b, if 3 u (a1b) then 3 u (a2b).

For each statement in 20–32, determine whether the 
statement is true or false. prove the statement directly 
from the definitions if it is true, and give a counterex-
ample if it is false.

20. The sum of any three consecutive integers is divis-
ible by 3.

21. The product of any two even integers is a multiple 
of 4.

22. A necessary condition for an integer to be divisible 
by 6 is that it be divisible by 2.

23. A sufficient condition for an integer to be divisible 
by 8 is that it be divisible by 16.

24. For all integers a, b, and c, if a ub and a uc then 
a u (2b23c).

25. For all integers a, b, and c, if a is a factor of c and 
b is a factor of c then ab is a factor of c.

26. For all integers a, b, and c, if ab uc then a uc and 
b uc.

27. For all integers a, b, and c, if a u (b1c) then a ub  
or a uc.

28. For all integers a, b, and c, if a ubc then a ub or a uc.

29. For all integers a and b, if a ub then a2 ub2.

30. For all integers a and n, if a un2 and a # n then 
a un.

31. For all integers a and b, if a u10b then a u10 or a ub.

32. A fast-food chain has a contest in which a card with 
numbers on it is given to each customer who makes 
a purchase. If some of the numbers on the card add 
up to 100, then the customer wins $100. A certain 
customer receives a card containing the numbers

72, 21, 15, 36, 69, 81, 9, 27, 42, and 63.

Will the customer win $100? Why or why not?

33. Is it possible to have a combination of nickels, 
dimes, and quarters that add up to $4.72? Explain.

34. Consider a string consisting of a’s, b’s, and c’s 
where the number of b’s is three times the num-
ber of a’s and the number of c’s is five times the 
number of a’s. Prove that the length of the string is 
divisible by 3.

35. Two athletes run a circular track at a steady 
pace so that the first completes one round in 8 
minutes and the second in 10 minutes. If they 
both start from the same spot at 4 p.m., when 
will be the first time they return to the start 
together?

36. It can be shown (see exercises 44–48) that an 
integer is divisible by 3 if, and only if, the sum of 
its digits is divisible by 3; an integer is divisible 
by 9 if, and only if, the sum of its digits is divis-
ible by 9; an integer is divisible by 5 if, and only 
if, its right-most digit is a 5 or a 0; and an integer 
is divisible by 4 if, and only if, the number 
formed by its right-most two digits is divisible by 
4. Check the following integers for divisibility by 
3, 4, 5, and 9.
a. 637,425,403,705,125
b. 12,858,306,120,312
c. 517,924,440,926,512
d. 14,328,083,360,232

37. Use the unique factorization theorem to write the 
following integers in standard factored form.
a. 1,176 b. 5,733 c. 3,675

38. Let n 5 8,424.
a. Write the prime factorization for n.
b. Write the prime factorization for n5.
c. Is n5 divisible by 20? Explain.
d. What is the least positive integer m so that 

8,424?m is a perfect square? 

39. Suppose that in standard factored form 
a 5 pe1

1  pe2
2 Á pek

k , where k is a positive integer; p1, 
p2, Á , pk are prime numbers; and e1, e2, Á , ek 
are positive integers.
a. What is the standard factored form for a3?
b. Find the least positive integer k such that 

24?35?7?112?k is a perfect cube (that is, it 
equals an integer to the third power). Write the 
resulting product as a perfect cube. 

40. a.  If a and b are integers and 12a 5 25b, does 
12 ub? does 25 ua? Explain.

b. If x and y are integers and 10x 5 9y, does 
10 uy? does 9 ux? Explain.

H

H

H

H
H

H
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41. How many zeros are at the end of 458?885? Explain 
how you can answer this question without actually 
computing the number. (Hint: 10 5 2?5.)

42. If n is an integer and n . 1, then n! is the product 
of n and every other positive integer that is less 
than n. For example, 5! 5 5?4?3?2?1.
a. Write 6! in standard factored form.
b. Write 20! in standard factored form.
c. Without computing the value of (20!)2 

determine how many zeros are at the end of 
this number when it is written in decimal form. 
Justify your answer. 

43. At a certain university 2y3 of the mathematics 
students and 3y5 of the computer science students 
have taken a discrete mathematics course. The 
number of mathematics students who have taken 
the course equals the number of computer science 
students who have taken the course. If there are at 
least 100 mathematics students at the university, 
what are the least possible number of mathematics 
students and the least possible number of com-
puter science students at the university?

Definition: Given any nonnegative integer n, the decimal 
representation of n is an expression of the form

dk dk21
Á d2d1d0,

where k is a nonnegative integer, d0, d1, d2, Á , dk (called 
the decimal digits of n) are integers from 0 to 9 inclu-
sive, dk Þ 0 unless n 5 0 and k 5 0, and

n 5 dk?10k 1dk21?10k21 1 Á 1d2?102 1d1?101d0.

(For example, 2,503 5 2?103 15?102 10?1013.)

44. Prove that if n is any nonnegative integer whose 
decimal representation ends in 0, then 5 un. (Hint: 
If the decimal representation of a nonnegative 
integer n ends in d0, then n 5 10m1d0 for some 
integer m.)

45. Prove that if n is any nonnegative integer whose 
decimal representation ends in 5, then 5 un.

46. Prove that if the decimal representation of 
a nonnegative integer n ends in d1d0 and if 

4 u (10d1 1d0), then 4 un. (Hint: If the decimal 
representation of a nonnegative integer n ends 
in d1d0, then there is an integer s such that 
n 5 100s110d1 1d0.)

47. Observe that

7,524 5 7?1,00015?10012?1014

5 7(99911)15(9911)12(911)14

5 (7?99917)1 (5?9915)1 (2?912)14

5 (7?99915?9912?9)1 (7151214)

5 (7?111?915?11?912?9)1 (7151214)

5 (7?11115?1112)?91 (7151214)

5 (an integer divisible by 9)

1 (the sum of the digits of 7,524).
Since the sum of the digits of 7,524 is divisible by 
9, 7,524 can be written as a sum of two integers 
each of which is divisible by 9. It follows from 
exercise 15 that 7,524 is divisible by 9.

Generalize the argument given in this example 
to any nonnegative integer n. In other words, prove 
that for any nonnegative integer n, if the sum of 
the digits of n is divisible by 9, then n is divisible 
by 9.

48. Prove that for any nonnegative integer n, if the 
sum of the digits of n is divisible by 3, then n is 
divisible by 3.

49. Given a positive integer n written in decimal form, 
the alternating sum of the digits of n is obtained 
by starting with the right-most digit, subtracting 
the digit immediately to its left, adding the next 
digit to the left, subtracting the next digit, and 
so forth. For example, the alternating sum of the 
digits of 180,928 is 82219201821 5 22. 
Justify the fact that for any nonnegative integer n, 
if the alternating sum of the digits of n is divisible 
by 11, then n is divisible by 11.

50. The integer 123,123 has the form abc,abc, where 
a, b, and c are integers from 0 through 9. Consider 
all six-digit integers of this form. Which prime 
numbers divide every one of these integers? Prove 
your answer.

H

H*

H*

*

*

1. n equals d times some integer and d Þ 0 (Or: there is an 
integer r such that n 5 dr and d Þ 0) 2. n; d 3. a; b 
4. nd is not an integer 5. the sentence “a divides b”; the 

number obtained when a is divided by b 6. a divides b 
and b divides c; a divides c 7. divisible by some prime 
number 8. prime; a product of prime numbers; order

ANSwERS FOR TEST YOURSELF
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Direct Proof and Counterexample V: Division into 
Cases and the Quotient-Remainder Theorem
Be especially critical of any statement following the word “obviously.”  
—Anna Pell Wheeler, 1883–1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

2

4)11

8

3

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

xxx  xxx  xxx

c c
2 groups of 4 3 left over

Or,

11 5 2?413.
c      c

2 groups of 4 3 left over

The number left over (3) is less than the size of the groups (4) because if 4 or more were 
left over, another group of 4 could be formed.

The quotient-remainder theorem says that when any integer n is divided by any positive 
integer d, the result is a quotient q and a nonnegative integer remainder r that is smaller than d.

4.5

d quotient

d remainder

Theorem 4.5.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers q and r such 
that

n 5 dq1 r     and     0 # r , d.

The proof that there exist integers q and r with the given properties is in Section 5.4; the 
proof that q and r are unique is outlined in exercise 21 in Section 4.8.

If n is positive, the quotient-remainder theorem can be illustrated on the number line 
as follows:

0 2d 3dd qd n

r

If n is negative, the picture changes. Since n 5 dq1 r, where r is nonnegative, d must be 
multiplied by a negative integer q to bring dq either exactly to n (in which case r 5 0) or to 
a point below n (in which case the positive integer r is added to bring dq1 r back up to n). 
This is illustrated as follows:

0–2d–3d –dqd n

r
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The Quotient-Remainder Theorem

For each of the following values of n and d, find integers q and r such that n 5 dq1 r and 
0 # r , d.

a. n 5 54, d 5 4 b. n 5 254, d 5 4 c. n 5 54, d 5 70

Solution
a. 54 5 4?1312; hence q 5 13 and r 5 2.

b. 254 5 4?(214)12; hence q 5 214 and r 5 2.

c. 54 5 70?0154; hence q 5 0 and r 5 54. ■

div and mod
A number of computer languages have built-in functions that enable you to compute values of 
the quotients and remainders for the quotient-remainder theorem. In Python n div d is written 
n yy d and n mod d is written n % d, and for all integer inputs both operators give the values 
that satisfy the quotient-remainder theorem. In C, C#, and Java, n div d is written n y d and  
n mod d is written n % d. For all nonnegative integer inputs for n and positive integer inputs 
for d, both operators give the values that satisfy the quotient-remainder theorem, but for nega-
tive integer inputs for n or d the resulting values differ from their mathematical counterparts.

Example 4.5.1

It follows from the quotient-remainder theorem that n mod d equals one of the integers 
from 0 through d21 (since the remainder of the division of n by d must be one of these inte-
gers). Also a necessary and sufficient condition for an integer n to be divisible by an integer 
d is that n mod d 5 0. You are asked to prove this in the exercises at the end of this section.

Computing div and mod by Hand or with a Four-Function Calculator

Compute 32 div 9 and 32 mod 9 by hand or with a four-function calculator.

Solution Performing the division by hand gives the following results:

3

9)32

27

5

Example 4.5.2

d 32 div 9

d 32 mod 9

Definition

Given an integer n and a positive integer d,

n div d 5  the integer quotient obtained 
when n is divided by d, and

n mod d 5  the nonnegative integer remainder obtained 
when n is divided by d.

Symbolically, if n and d are integers and d . 0, then

n div d 5 q and n mod d 5 r 3 n 5 dq1 r,

where q and r are integers and 0 # r , d.

Note In 1801 Carl Fried-
rich Gauss introduced 
the word modulus and its 
abbreviation mod with the 
meaning shown here.
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To use a four-function calculator to compute n div d for a nonnegative integer n and a posi-
tive integer d, just divide n by d and ignore the part of the answer to the right of the decimal 
point. To compute n mod d, substitute n div d in place of q and n mod d in place of r in the 
equation n 5 dq1 r. The result is

n 5 d?(n div d)1n mod d.

Solving for n mod d gives

n mod d 5 n2d?(n div d).

Thus when you use a four-function calculator to divide 32 by 9, you obtain an expression 
like 3.555555556. Discarding the fractional part gives 32 div 9 5 3, and so

 32 mod 9 5 3229?(32 div 9) 5 32227 5 5. ■

Computing the Day of the week

Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of 
the week will it be 1 year from today?

Solution There are 365 days in a year that is not a leap year, and each week has 7 days.
Now

365 div 7 5 52 and 365 mod 7 5 1

because 365 5 52?711. Thus 52 weeks, or 364 days, from today will be a Tuesday, and 
so 365 days from today will be 1 day later, namely, Wednesday.

More generally, if DayT is the day of the week today and DayN is the day of the week 
in N days, then

 DayN 5 (DayT1N) mod 7, 4.5.1

where Sunday 5 0, Monday 5 1, Á , Saturday 5 6. ■

Solving Problems about mod

a. Prove that if n is a positive integer, then n mod 10 is the digit in the ones place in the 
decimal representation for n. (See Section 2.5 or the preamble to exercises 44–49 in 
Section 4.4 for discussion about the decimal representation of integers.)

b. Suppose m is an integer. If m mod 11 5 6, what is 4m mod 11?

Solution
a. Proof: Suppose n is any positive integer. The decimal representation for n is 

dk dk21 Á d2 d1 d0, where d0, d1, d2, Á , dk are integers from 0 to 9 inclusive, dk Þ 0 
unless n 5 0 and k 5 0,

n 5 dk?10k 1dk21?10k21 1 Á 1d2?102 1d1?101d0,

and d0 is the digit in the ones place. Factoring out 10 from all but the final term gives

n 5 10?(dk?10k21 1dk21?10k22 1 Á 1d2?101 1d1)1d0.

Thus n 5 10?(an integer)1d0, and so n mod 10 5 d0, which is the digit in the ones 
place in the decimal representation for n.

b. Because m mod 11 5 6, the remainder obtained when m is divided by 11 is 6. This 
means that there is some integer q so that

m 5 11q16.

Example 4.5.3

Example 4.5.4
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Thus 4m 5 44q124 5 44q12212 5 11(4q12)12.

Since 4q12 is an integer (because products and sums of integers are integers) and since 
2 , 11, the remainder obtained when 4m is divided by 11 is 2. Therefore,

 4m mod 11 5 2. ■

Representations of Integers
In Section 4.1 we defined an even integer to have the form twice some integer. At that time 
we could have defined an odd integer to be one that was not even. Instead, because it was 
more useful for proving theorems, we specified that an odd integer has the form twice 
some integer plus 1. The quotient-remainder theorem brings these two ways of describing 
odd integers together by guaranteeing that any integer is either even or odd. To see why, 
let n be any integer, and consider what happens when n is divided by 2. By the quotient-
remainder theorem (with d 5 2), there exist unique integers q and r such that

n 5 2q1 r and 0 # r , 2.

But the only integers that satisfy 0 # r , 2 are r 5 0 and r 5 1. It follows that given any 
integer n, there exists an integer q with

n 5 2q10 or n 5 2q11.

In the case that n 5 2q10 5 2q, n is even. In the case that n 5 2q11, n is odd. Hence 
n is either even or odd, and, because of the uniqueness of q and r, n cannot be both even 
and odd.

The parity of an integer refers to whether the integer is even or odd. For instance, 5 has 
odd parity and 28 has even parity.

Consecutive Integers Have Opposite Parity

Prove that given any two consecutive integers, one is even and the other is odd.

Solution Two integers are called consecutive if, and only if, one is one more than the 
other. So if one integer is m, the next consecutive integer is m11.

To prove the given statement, you can divide the analysis into two cases: case 1, where 
the smaller of the two integers is even, and case 2, where the smaller of the two integers 
is odd.

Example 4.5.5

Note The fact that any 
integer is either even or 
odd is called the parity 
property.

Theorem 4.5.2 The Parity Property

Any two consecutive integers have opposite parity.

Proof: 
Suppose that two [particular but arbitrarily chosen] consecutive integers are given; 
call them m and m11. [We must show that one of m and m11 is even and that the 
other is odd.] By the parity property, either m is even or m is odd. [We break the proof 
into two cases depending on whether m is even or odd.]

Case 1 (m is even): In this case, m 5 2k for some integer k, and so m11 5 2k11, 
which is odd [by definition of odd]. Hence in this case, one of m and m11 is even 
and the other is odd.

(continued on page 204)
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The division into cases in a proof is like the transfer of control for an if-then-else statement 
in a computer program. If m is even, control transfers to case 1; if not, control transfers to 
case 2. For any given integer, only one of the cases will apply. You must consider both cases, 
however, to obtain a proof that is valid for an arbitrarily given integer whether even or not.

There are times when division into more than two cases is called for. Suppose that at 
some stage of developing a proof, you know that a statement of the form

A1 or A2 or A3 or Á or An

is true, and suppose you want to deduce a conclusion C. By definition of or, you know that 
at least one of the statements Ai is true (although you may not know which). In this situa-
tion, you should use the method of division into cases. First assume A1 is true and deduce 
C; next assume A2 is true and deduce C; and so forth, until you have assumed An is true and 
deduced C. At that point, you can conclude that regardless of which statement Ai happens 
to be true, the truth of C follows.

Case 2 (m is odd): In this case, m 5 2k11 for some integer k, and so 
m11 5 (2k11)11 5 2k12 5 2(k11). But k11 is an integer because it is a sum 
of two integers. Therefore, m11 equals twice some integer, and thus m11 is even. 
Hence in this case also, one of m and m11 is even and the other is odd.

It follows that regardless of which case actually occurs for the particular m and m11 that 
are chosen, one of m and m11 is even and the other is odd. [This is what was to be shown.]

■

Method of Proof by Division into Cases

To prove a statement of the form “If A1 or A2 or Á or An, then C,” prove all of the 
following:

If A1, then C,

If A2, then C,

o
If An, then C.

This process shows that C is true regardless of which of A1, A2, Á , An happens to 
be the case.

Proof by division into cases is a generalization of the argument form shown in Ex-
ample 2.3.7, whose validity you were asked to establish in exercise 21 of Section 2.3. This 
method of proof was combined with the quotient-remainder theorem for d 5 2 to prove 
Theorem 4.5.2. Allowing d to take on additional values makes it possible to obtain a vari-
ety of other results. We begin by showing what happens when a 5 4.

Representing Integers mod 4

Show that any integer can be written in one of the four forms

n 5 4q or n 5 4q11 or n 5 4q12 or n 5 4q13

for some integer q.

Example 4.5.6
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Solution Given any integer n, apply the quotient-remainder theorem to n with the divi-
sor equal to 4. This implies that there exist an integer quotient q and a remainder r such 
that

n 5 4q1 r and 0 # r , 4.

But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence

n 5 4q or n 5 4q11 or n 5 4q12 or n 5 4q13

for some integer q. In other words, n mod 4 equals 0, 1, 2, or 3. ■

The next example illustrates how the alternative representations for integers mod 4 can 
help establish a result in number theory. The solution is broken into two parts: a discussion 
and a formal proof. These correspond to the stages of actual proof development. Very few 
people, when asked to prove an unfamiliar theorem, immediately write down the kind of 
formal proof you find in a mathematics text. They may first check some examples to ex-
plore whether the theorem is believable. If it passes that test, they often need to experiment 
with several possible approaches before finding one that works. A formal proof is much 
like the ending of a mystery story—the part in which the action of the story is systemati-
cally reviewed and all the loose ends are carefully tied together.

The Square of an Odd Integer

Prove: The square of any odd integer has the form 8m11 for some integer m.

Solution If checking some examples convinces you that the statement may be true, be-
gin to develop a proof by asking, “Where am I starting from?” and “What do I need to 
show?” To help answer these questions, introduce variables to rewrite the statement more 
formally.

Formal Restatement: 5 odd integer n, E an integer m such that n2 5 8m11.

From this, you can immediately identify the starting point and what is to be shown.

Starting Point: Suppose n is a particular but arbitrarily chosen odd integer.

To Show: E an integer m such that n2 5 8m11.

This looks tough. Why should there be an integer m with the property that n2 5 8m11? 
That would say that (n2 21)y8 is an integer, or that 8 divides n2 21. Perhaps you could 
make use of the fact that n2 21 5 (n21)(n11). Does 8 divide (n21)(n11)? Since n is 
odd, both (n21) and (n11) are even. That means that their product is divisible by 4. But 
that’s not enough. You need to show that the product is divisible by 8. 

You could try another approach by arguing that since n is odd, you can represent it as 
2q11 for some integer q. Then n2 5 (2q11)2 5 4q2 14q11 5 4(q2 1q)11. It is clear 
from this analysis that n2 can be written in the form 4m+1, but it may not be clear that it 
can be written as 8m11.*

Yet another possibility is to use the result of Example 4.5.6. That example showed 
that any integer can be written in one of the four forms 4q, 4q11, 4q12, or 4q13. Two 
of these, 4q11 and 4q13, are odd. Thus any odd integer can be written in the form 
4q11 or 4q13 for some integer q. You could try breaking into cases based on these two  
different forms.

Example 4.5.7

Note Another way to 
state this fact is that if you 
square an odd integer and 
divide by 8, you will always 
get a remainder of 1. Try a 
few examples!

Note Desperation can 
spur creativity. When you 
have tried all the obvious 
approaches without suc-
cess and you really care 
about solving a problem, 
you reach into the odd cor-
ners of your memory for 
anything that may help.

*See exercise 18 for a different perspective about this approach.
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It turns out that this last possibility works! In each of the two cases, the conclusion 
follows readily by direct calculation. The details are shown in the following formal 
proof:

Theorem 4.5.3

The square of any odd integer has the form 8m11 for some integer m.

Proof: Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-
remainder theorem with the divisor equal to 4, n can be written in one of the forms

4q or 4q11 or 4q12 or 4q13

for some integer q. In fact, since n is odd and 4q and 4q12 are even, n must have 
one of the forms

4q11 or 4q13.

Case 1 (n 5 4q11 for some integer q): [We must find an integer m such that n2 5 8m11.]  
Since n 5 4q11,

n2 5 (4q11)2  by substitution

5 (4q11)(4q11) by definition of square

5 16q2 18q11

5 8(2q2 1q)11 by the laws of algebra.

Let m 5 2q2 1q. Then m is an integer since 2 and q are integers and sums and prod-
ucts of integers are integers. Thus, substituting,

n2 5 8m11 where m is an integer.

Case 2 (n 5 4 q 1 3 for some integer q): [We must find an integer m such that n2 5 8m11.]  
Since n 5 4q13,

n2 5 (4q13)2 by substitution

5 (4q13)(4q13) by definition of square

5 16q2 124q19

5 16q2 124q1 (811)

5 8(2q2 13q11)11 by the laws of algebra.

[The motivation for the choice of algebra steps was the desire to write the expression in 
the form 8?(some integer)11.]

Let m 5 2q2 13q11. Then m is an integer since 1, 2, 3, and q are integers and sums 
and products of integers are integers. Thus, substituting,

n2 5 8m11 where m is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4q11 or 
4q13, n2 5 8m11 for some integer m. [This is what we needed to show.]

■
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Note that the result of Theorem 4.5.3 can also be written, “For any odd integer n, n2 
mod 8 5 1.”

In general, according to the quotient-remainder theorem, if an integer n is divided by an 
integer d, the possible remainders are 0, 1, 2, Á , (d21). This implies that n can be written 
in one of the forms

dq, dq11, dq12, Á , dq1 (d21) for some integer q.

Many properties of integers can be obtained by giving d a variety of different values and 
analyzing the cases that result.

Absolute Value and the Triangle Inequality
The triangle inequality is one of the most important results involving absolute value. It has 
applications in many areas of mathematics.

Definition

For any real number x, the absolute value of x, denoted ux u , is defined as follows:

ux u 5 5 x if x $ 0

2x if x , 0
  

.

The triangle inequality says that the absolute value of the sum of two numbers is less than 
or equal to the sum of their absolute values. We give a proof based on the following two facts, 
both of which are derived using division into cases. We state both as lemmas. A lemma is 
a statement that does not have much intrinsic interest but is helpful in deriving other results.

Lemma 4.5.4

For every real number r, 2 ur u # r # ur u .

Proof: Suppose r is any real number. We divide into cases according to whether 
r 5 0, r . 0, or r , 0.

Case 1 (r 5 0): In this case, by definition of absolute value, ur u 5 r 5 0. since 0 5 20,  
we have that 20 5 2 ur u 5 0 5 r 5 ur u , and so it is true that

2 ur u # r # ur u .

Case 2 (r . 0): In this case, by definition of absolute value, [&|pipe|r|pipe||=|r&]. 
Also, since r is positive and 2 ur u  is negative, 2 ur u , r. Thus it is true that

2 ur u # r # ur u .

Case 3 (r , 0): In this case, by definition of absolute value, ur u 5 2r. Multiplying 
both sides by 21 gives that 2 ur u 5 r. Also, since r is negative and ur u  is positive, 
r , ur u . Thus it is also true in this case that

2 ur u # r # ur u .

Hence, in every case,

2 ur u # r # ur u

[as was to be shown].

94193_ch04_ptg01.indd   207 12/11/18   3:55 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



208  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

Lemma 4.5.5

For every real number r, u2r u 5 ur u .

Proof: Suppose r is any real number. By Theorem T23 in Appendix A, if r . 0, then 
2r , 0, and if r , 0, then 2r . 0. Thus

u2r u 5 5
2r if 2 r . 0

0 if2 r 5 0

2(2r) if 2 r , 0

5 5
2r if 2 r . 0

0 if     r 5 0

r if 2 r , 0

5 5
2r if    r , 0

0 if    r 5 0

r if    r . 0

5 5 r if    r $ 0

2r if    r , 0

5 ur u

by definition of absolute value

because 2(2r) 5 r by Theorem T4 in  
Appendix A, and when 2r 5 0, then r 5 0

because, by Theorem T24 in Appendix A, 
when 2r . 0, then r , 0, when 2 r , 0,  
then r . 0

by reformatting the previous result

by definition of absolute value.

Theorem 4.5.6 The Triangle Inequality

For all real numbers x and y, ux1y u # ux u 1 uy u .

Proof: Suppose x and y are any real numbers.

Case 1 (x 1 y $ 0): In this case, ux1y u 5 x1y, and so, by Lemma 4.5.4,

x # ux u     and   y # uy u .

Hence, by Theorem T26 of Appendix A,

ux1y u 5 x1y # ux u 1 uy u .

Case 2 (x 1 y , 0): In this case, ux1y u 5 2(x1y) 5 (2x)1 (2y), and so, by  
Lemmas 4.5.4 and 4.5.5,

2x # u2x u 5 ux u  and 2y # u2y u 5 uy u .

It follows, by Theorem T26 of Appendix A, that

ux1y u 5 (2x)1 (2y) # ux u 1 uy u .

Hence in both cases ux1y u # ux u 1 uy u  [as was to be shown].

Lemmas 4.5.4 and 4.5.5 now provide a basis for proving the triangle inequality.
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1. The quotient-remainder theorem says that for all 
integers n and d with d $ 0, there exist  q 
and r such that  and .

2. If n and d are integers with d . 0, n div d is 
 and n mod d is .

3. The parity of an integer indicates whether the 
integer is .

4. According to the quotient-remainder theorem, if 
an integer n is divided by a positive integer d, the 

possible remainders are . This implies that 
n can be written in one of the forms  for 
some integer q.

5. To prove a statement of the form “If A1 or A2 
or A3, then C,” prove  and  and 

.

6. The triangle inequality says that for all real num-
bers x and y, .

TEST YOURSELF 

For each of the values of n and d given in 1–6, find inte-

gers q and r such that n 5 dq 1 r and 0 # r , d.

1. n 5 70, d 5 9 2. n 5 62, d 5 7

3. n 5 36, d 5 40 4. n 5 3, d 5 11

5. n 5 245, d 5 11 6. n 5 227, d 5 8

evaluate the expressions in 7–10.

7. a.  43 div 9 b.  43 mod 9

8. a.  50 div 7 b.  50 mod 7

9. a.  28 div 5 b.  28 mod 5

10. a.  30 div 2 b.  30 mod 2

11. Check the correctness of formula (4.5.1) given in 
Example 4.5.3 for the following values of DayT 
and N.
a. DayT 5 6 (Saturday) and N 5 15
b. DayT 5 0 (Sunday) and N 5 7
c. DayT 5 4 (Thursday) and N 5 12

12. Justify formula (4.5.1) for general values of DayT 
and N.

13. On a Monday a friend says he will meet you again 
in 30 days. What day of the week will that be?

14. If today is Tuesday, what day of the week will it be 
1,000 days from today?

15. January 1, 2000, was a Saturday, and 2000 was a 
leap year. What day of the week will January 1, 
2050, be?

16. Suppose d is a positive and n is any integer. If d un, 
what is the remainder obtained when the quotient-
remainder theorem is applied to n with divisor d?

17. Prove directly from the definitions that for every 
integer n, n22n13 is odd. Use division into two 
cases: n is even and n is odd.

18. a.  Prove that the product of any two consecutive 
integers is even.

b. The result of part (a) suggests that the second 
approach in the discussion of Example 4.5.7 
might be possible after all. Write a new proof 
of Theorem 4.5.3 based on this observation. 

19. Prove directly from the definitions that for all 
integers m and n, if m and n have the same  
parity, then 5m17n is even. Divide into two 
cases: m and n are both even and m and n are 
both odd.

20. Suppose a is any integer. If a mod 7 5 4, what 
is 5a mod 7? In other words, if division of a by 
7 gives a remainder of 4, what is the remainder 
when 5a is divided by 7? Your solution should 
show that you obtain the same answer no matter 
what integer you start with.

21. Suppose b is any integer. If b mod 12 5 5, what 
is 8b mod 12? In other words, if division of b by 
12 gives a remainder of 5, what is the remainder 
when 8b is divided by 12? Your solution should 
show that you obtain the same answer no matter 
what integer you start with.

22. Suppose c is any integer. If c mod 15 5 3, what 
is 10c mod 15? In other words, if division of c by 
15 gives a remainder of 3, what is the remainder 
when 10c is divided by 15? Your solution should 
show that you obtain the same answer no matter 
what integer you start with.

*

H

ExERCISE SET 4.5 

94193_ch04_ptg01.indd   209 12/11/18   3:55 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



210  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

23.  Prove that for every integer n, if n mod 5 5 3 then 
n2 mod 5 5 4.

24. Prove that for all integers m and n, if m mod 5 5 2 
and n mod 5 5 1 then mn mod 5 5 2.

25. Prove that for all integers a and b, if a mod 7 5 5 
and b mod 7 5 6 then ab mod 7 5 2.

26. Prove that a necessary and sufficient condition for 
an integer n to be divisible by a positive integer d 
is that n mod d 5 0.

27. Use the quotient-remainder theorem with divisor 
equal to 2 to prove that the square of any integer 
can be written in one of the two forms 4k or 4k11 
for some integer k.

28. a.  Prove: Given any set of three consecutive inte-
gers, one of the integers is a multiple of 3.

b. Use the result of part (a) to prove that any product 
of three consecutive integers is a multiple of 3.

29. a.  Use the quotient-remainder theorem with 
divisor equal to 3 to prove that the square of 
any integer has the form 3k or 3k11 for some 
integer k.

b.  Use the mod notation to rewrite the result of 
part (a).

30. a.   Use the quotient-remainder theorem with divi-
sor equal to 3 to prove that the product of any 
two consecutive integers has the form 3k or 
3k12 for some integer k.

b. Use the mod notation to rewrite the result of 
part (a).

In 31–33, you may use the properties listed in  
example 4.3.3.

31. a.  Prove that for all integers m and n, m1n and 
m2n are either both odd or both even.

b. Find all solutions to the equation m2 2n2 5 56 
for which both m and n are positive integers.

c. Find all solutions to the equation m2 2n2 5 88 
for which both m and n are positive integers.

32. Given any integers a, b, and c, if a2b is even and 
b2c is even, what can you say about the parity of 
2a2 (b1c)? Prove your answer.

33. Given any integers a, b, and c, if a2b is odd and 
b2c is even, what can you say about the parity of 
a2c? Prove your answer.

34. Given any integer n, if n . 3, could n, n12, and 
n14 all be prime? Prove or give a counterexample.

prove each of the statements in 35–43.

35. The fourth power of any integer has the form 8m 
or 8m11 for some integer m.

36. The product of any four consecutive integers is 
divisible by 8.

37. For any integer n, n2 15 is not divisible by 4.

38. For every integer m, m2 5 5k, or m2 5 5k11, or 
m2 5 5k14 for some integer k.

39. Every prime number except 2 and 3 has the form 
6q11 or 6q15 for some integer q.

40. If n is any odd integer, then n4 mod 16 5 1.

41. For all real numbers x and y, ux u? uy u 5 uxy u .

42. For all real numbers r and c with c $ 0, 2c # r # c 
if, and only if, ur u # c. (Hint: Proving A if, and 
only if, B requires proving both if A then B and if 
B then A.)

43. For all real numbers a and b, uua u2 ub uu # ua2b u .

44. A matrix M has 3 rows and 4 columns.

3
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34
4

The 12 entries in the matrix are to be stored in 
row major form in locations 7,609 to 7,620 in a 
computer’s memory. This means that the entries in 
the first row (reading left to right) are stored first, 
then the entries in the second row, and finally the 
entries in the third row.
a. Which location will a22 be stored in?
b. Write a formula (in i and j) that gives the 

integer n so that aij is stored in location 
7,6091n.

c. Find formulas (in n) for r and s so that ars is 
stored in location 7,6091n.

45. Let M be a matrix with m rows and n col-
umns, and suppose that the entries of M are 
stored in a computer’s memory in row ma-
jor form (see exercise 44) in locations N, 
N11, N12, Á , N1mn21. Find formulas in k 
for r and s so that ars is stored in location N1k.

46. If m, n, and d are integers, d . 0, and m mod d 5  
n mod d, does it necessarily follow that m 5 n? 
That m2n is divisible by d? Prove your answers.

H

H

H

H

H

H

H

H

H

H

*
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47. If m, n, and d are integers, d . 0, and d u (m2n), 
what is the relation between m mod d and n 
mod d? Prove your answer.

48. If m, n, a, b, and d are integers, d . 0, and m mod 
d 5 a and n mod d 5 b, is (m1n) mod d 5 a1b? 
Is (m1n) mod d 5 (a1b) mod d? Prove your 
answers.

49. If m, n, a, b, and d are integers, d . 0, and m  
mod d 5 a and n mod d 5 b, is (mn) mod  
d 5 ab? Is (mn) mod d 5 ab mod d? Prove your  
answers.

50. Prove that if m, d, and k are integers and d . 0, 
then (m1dk) mod d 5 m mod d.

*

*

*

1. integers; n 5 dq1 r; 0 # r , d 2. the quotient obtained 
when n is divided by d; the nonnegative remainder obtained 
when n is divided by d 3. odd or even 4. 0, 1, 2, Á , 

(d21); dq, dq11, dq12, Á , dq1 (d21) 5. If A1, 
then C; If A2, then C; If A3, then C 6. ux1y u # ux u 1 uy u

ANSwERS FOR TEST YOURSELF 

Direct Proof and Counterexample VI:  
Floor and Ceiling
Proof serves many purposes simultaneously. In being exposed to the scrutiny and 
judgment of a new audience, [a] proof is subject to a constant process of criticism 
and revalidation. Errors, ambiguities, and misunderstandings are cleared up by 
constant exposure. Proof is respectability. Proof is the seal of authority.

Proof, in its best instances, increases understanding by revealing the heart of the 
matter. Proof suggests new mathematics. The novice who studies proofs gets closer to 
the creation of new mathematics. Proof is mathematical power, the electric voltage of 
the subject which vitalizes the static assertions of the theorems.

Finally, proof is ritual, and a celebration of the power of pure reason. 
—Philip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

Imagine a real number sitting on a number line. The floor and ceiling of the number are the 
integers to the immediate left and to the immediate right of the number (unless the number 
is an integer, in which case its floor and ceiling both equal the number itself). Many com-
puter languages have built-in functions that compute floor and ceiling automatically. These 
functions are very convenient to use when writing certain kinds of computer programs. 
In addition, the concepts of floor and ceiling are important in analyzing the efficiency of 
many computer algorithms.

4.6

Definition

Given any real number x, the floor of x, denoted :x;, is defined as follows:

:x; 5 that unique integer n such that n # x , n11.

Symbolically, if x is a real number and n is an integer, then

:x; 5 n 3 n # x , n11.

n n + 1

x

floor of x =   x
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Definition

Given any real number x, the ceiling of x, denoted <x=, is defined as follows:

<x= 5 that unique integer n such that n21 , x # n.

Symbolically, if x is a real number and n is an integer, then

<x= 5 n 3 n21 , x # n.

nn – 1

x

ceiling of x =   x

Computing Floors and Ceilings

Compute :x; and <x= for each of the following values of x:

a. 25y4 b. 0.999 c. 22.01

Solution
a. 25y4 5 6.25 and 6 , 6.25 , 7; hence :25y4; 5 6 and <25y4= 5 7.

b. 0 , 0.999 , 1; hence :0.999; 5 0 and <0.999= 5 1.

c. 23 , 22.01 , 22; hence :22.01; 5 23 and <22.01= 5 22. ■

An Application

The 1,370 students at a college are given the opportunity to take buses to an out-of-town 
event. Each bus holds a maximum of 40 passengers.

a. For reasons of economy, the leader of the event will send only full buses. What is the 
maximum number of buses the event leader will send?

b. If the event leader is willing to send one partially filled bus, how many buses will be 
needed to allow all the students to take the trip?

Solution
a. :1370y40; 5 :34.25; 5 34 b. <1370y40= 5 <34.25= 5 35 ■

Some General Values of Floor

If k is an integer, what are :k; and :k11y2;? Why?

Solution Suppose k is an integer. Then

:k; 5 k because k is an integer and k # k , k11,

and

 jk1
1

2
k 5 k because k is an integer and k # k1

1

2
, k11. ■

Example 4.6.1

Note On some calcula-
tors :x; is denoted INT (x).

Example 4.6.2

Example 4.6.3
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Disproving an Alleged Property of Floor

Is the following statement true or false?

For all real numbers x and y, :x1y; 5 :x;1 :y;.

Solution The statement is false. As a counterexample, take x 5 y 5
1
2 . Then

:x;1 :y; 5 j1
2
k1 j1

2
k 5 010 5 0,

whereas

:x1y; 5 j1
2

1
1

2
k 5 :1; 5 1.

Hence it is not always the case that :x1y; Þ :x;1 :y;.
To arrive at this counterexample, you could have reasoned as follows: Suppose x and 

y are real numbers. Must it necessarily be the case that :x1y; 5 :x;1 :y;, or could x and 
y be such that :x1y; Þ :x;1 :y;? Imagine values that the various quantities could take. 
For instance, if both x and y are positive, then :x; and :y; are the integer parts of :x; and :y; 
respectively; just as

2
3

5
5 21

3

5

integer part fractional part

so is

x 5 :x;1 fractional part of x

and

y 5 :y;1 fractional part of y,

where the term fractional part is understood here to mean the part of the number to the 
right of the decimal point when the number is written in decimal notation. Thus if x and 
y are positive,

x1y 5 :x;1 :y;1 the sum of the fractional parts of x and y.

But also

x1y 5 :x1y;1 the fractional part of (x1y).

These equations show that if there exist numbers x and y such that the sum of the fractional 
parts of x and y is at least 1, then a counterexample can be found. As previously indicated, 
there do exist such x and y; for instance, x 5

1
2 and y 5

1
2. ■

The analysis of Example 4.6.4 indicates that if x and y are positive and the sum of their 
fractional parts is less than 1, then :x1y; 5 :x;1 :y;. In particular, if x is positive and m is a 
positive integer, then :x1m; 5 :x;1 :m; 5 :x;1m. (The fractional part of m is 0; hence the 
sum of the fractional parts of x and m equals the fractional part of x, which is less than 1.) It 
turns out that you can use the definition of floor to show that this equation holds for every 
real number x and for every integer m.

Proving a Property of Floor

Prove that for every real number x and for every integer m, :x1m; 5 :x;1m.

Example 4.6.4

Example 4.6.5

a¡
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214  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

Solution Begin by supposing that x is a particular but arbitrarily chosen real number and 
that m is a particular but arbitrarily chosen integer. You must show that :x1m; 5 :x;1m. 
Since this is an equation involving :x; and :x1m;, it is reasonable to give one of these quan-
tities a name: Let n 5 :x;. By definition of floor,

n is an integer and n # x , n11.

This double inequality enables you to compute the value of :x1m; in terms of n by adding 
m to all sides:

n1m # x1m , n1m11.

Thus the left-hand side of the equation to be shown is

:x1m; 5 n1m.

On the other hand, since n 5 :x;, the right-hand side of the equation to be shown is

:x;1m 5 n1m

also. Thus :x1m; 5 :x;1m. This discussion is summarized as follows:

Theorem 4.6.1

For every real number x and every integer m, :x1m; 5 :x;1m.

Proof: Suppose any real number x and any integer m are given. [We must show that 
:x1m; 5 :x;1m.] Let n 5 :x;. By definition of floor, n is an integer and

n # x , n11.

Add m to all three parts to obtain

n1m # x1m , n1m11

[since adding a number to both sides of an inequality does not change the direction of 
the inequality].

Now n1m is an integer [since n and m are integers and a sum of integers is an in-
teger], and so, by definition of floor, the left-hand side of the equation to be shown is

:x1m; 5 n1m.

But n 5 :x;. Hence, by substitution,

n1m 5 :x;1m,

which is the right-hand side of the equation to be shown. Thus :x1m; 5 :x;1m [as 
was to be shown].

■

The analysis of a number of computer algorithms, such as the binary search and merge 
sort algorithms, requires that you know the value of :ny2;, where n is an integer. The for-
mula for computing this value depends on whether n is even or odd.
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4.6 Direct Proof anD counterexamPle vi: floor anD ceiling  215

Given any integer n and any positive integer d, the quotient-remainder theorem guaran-
tees the existence of unique integers q and r such that

n 5 dq1 r and 0 # r , d.

The following theorem states that the floor notation can be used to describe q and r as 
follows:

q 5 jn
d
k and r 5 n2d?jn

d
k.

Thus if, on a calculator or in a computer language, floor is built in but div and mod are not, 
div and mod can be defined as follows: For a nonnegative integer n and a positive integer d,

 

n div d 5 jn
d
k and n mod d 5 n2d?jn

d
k.  4.6.1

Note that d divides n if, and only if, n mod d 5 0. In floor notation this means that d divides 
n if, and only if, n 5 d? :nyd;. You are asked to prove this in exercise 33.

Theorem 4.6.2 The Floor of ny2

For any integer n,

jn
2
k 5 5

n

2
if n is even

n21

2
if n is odd.

Proof: Suppose n is a [particular but arbitrarily chosen] integer. By the quotient-
remainder theorem, either n is odd or n is even.

Case 1 (n is odd): In this case, n 5 2k11 for some integer k. [We must show that 
:ny2; 5 (n21)y2.] But the left-hand side of the equation to be shown is

jn
2
k 5 j2k11

2
k 5 j2k

2
1

1

2
k 5 jk1

1

2
k 5 k

because k is an integer and k # k11y2 , k11. And the right-hand side of the equa-
tion to be shown is

n21

2
5

(2k11)21

2
5

2k

2
5 k

also. So since both the left-hand and right-hand sides equal k, they are equal to each 
other. That is, :n2; 5

n 2 1
2  [as was to be shown].

Case 2 (n is even): In this case, n 5 2k for some integer k. [We must show that 
:ny2; 5 ny2.] The rest of the proof of this case is left as an exercise.
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216  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

Computing div and mod

Use the floor notation to compute 3,850 div 17 and 3,850 mod 17.

Solution By formula (4.6.1),

 3,850 div 17 5 :3,850y17; 5 :226.4705882 Á ; 5 226

 3,850 mod 17 5 3,850217? :3,850y17;

 5 3,850217?226

 5 3,85023,842 5 8. ■

Example 4.6.6

Theorem 4.6.3

If n is any integer and d is a positive integer, and if q 5 :nyd; and r 5 n2d? :nyd;, then

n 5 dq1 r and 0 # r , d.

Proof: Suppose n is any integer, d is a positive integer, q 5 :nyd;, and r 5 n2d? :nyd;. 
[We must show that n 5 dq1 r and 0 # r , d.] By substitution,

dq1 r 5 d?jn
d
k1Sn2d?jn

d
kD 5 n.

So it remains only to show that 0 # r , d. But q 5 :nyd;. Thus, by definition of 
floor,

q #
n

d
, q11.

Then

dq # n , dq1d   by multiplying all parts by d

and so

0 # n2dq , d   by subtracting dq from all parts.

But

r 5 n2d jn
d
k 5 n2dq.

Hence

0 # r , d  by substitution.

[This is what was to be shown.]

1. Given any real number x, the floor of x is the 
unique integer n such that .

2. Given any real number x, the ceiling of x is the 
unique integer n such that .

TEST YOURSELF 
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1. 37.999 2. 17y4

3. 214.00001 4. 232y5

5. Use the floor notation to express 259 div 11 and 
259 mod 11.

6. If k is an integer, what is <k=? Why?

7. If k is an integer, what is <k1
1
2=? Why?

8. Seven pounds of raw material are needed to 
manufacture each unit of a certain product. 
Express the number of units that can be produced 
from n pounds of raw material using either the 
floor or the ceiling notation. Which notation is 
more appropriate?

9. Boxes, each capable of holding 36 units, are 
used to ship a product from the manufacturer to 
a wholesaler. Express the number of boxes that 
would be required to ship n units of the product 
using either the floor or the ceiling notation. 
Which notation is more appropriate?

10. If 0 5 Sunday, 1 5 Monday, 2 5 Tuesday, Á ,
6 5 Saturday, then January 1 of year n occurs 
on the day of the week given by the following 
formula:

Sn1 jn21

4
k2 jn21

100
k1 jn21

400
kD mod 7.

a. Use this formula to find January 1 of
i. 2050 ii. 2100 iii. the year of your birth.

b. Interpret the different components of this 
formula. 

11. State a necessary and sufficient condition for the 
floor of a real number to equal that number.

12. Let S be the statement: For any odd integer n, 
:ny2; 5 (n21)y2. Then S is true, but the following 
“proof” is incorrect. Find the mistake.

“Proof: Suppose n is any odd integer. Then 
n 5 2k11 for some integer k. Consequently,

j2k11

2
k 5

(2k11)21

2
5

2k

2
5 k.

But n 5 2k11. Solving for k gives k 5 (n21)y2. 
Hence, by substitution, :n/2; 5 (n21)y2.”

13. Prove that if n is any even integer, then :ny2; 5 ny2.

14. Show that the following statement is false.

For all real numbers x and y, :x2y; 5 :x;2 :y;.

Some of the statements in 15–22 are true and some are 
false. prove each true statement and find a counterexam-
ple for each false statement, but do not use theorem 4.6.1 
in your proofs.

15. For every real number x, :x21; 5 :x;21.

16. For every real number x, :x2; 5 :x;2.

17. For every integer n,

:ny3; 5 5
ny3 if n mod 3 5 0

(n21)y3 if n mod 3 5 1

(n22)y3 if n mod 3 5 2.

18. For all real numbers x and y, <x1y= 5 <x=1 <y=.

19. For every real number x, <x21= 5 <x=21.

20. For all real numbers x and y, <xy= 5 <x=? <y=.

21. For every odd integer n, <ny2= 5 (n11)y2.

22. For all real numbers x and y, <xy= 5 <x=? :y;.

prove each of the statements in 23–33.

23. For any real number x, if x is not an integer, then 
:x;1 :−x; 5 21.

24. For any integer m and any real number x, if x is 
not an integer, then :x;1 :m2x; 5 m21.

25. For every real number x, : :x/2;y2; 5 :xy4;.

26. For every real number x, if x2 :x; , 1y2 then 
:2x; 5 2 :x;.

27. For every real number x, if x2 :x; $ 1y2 then 
:2x; 5 2 :x;11.

28. For any odd integer n,

jn
2

4
k 5 Sn21

2 DSn11

2 D.

29. For any odd integer n,

ln
2

4
m 5

n2 13

4
.

H

H

H

H

H

H

ExERCISE SET 4.6 
Compute :x; and <x= for each of the values of x in 1–4.

H
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30. For every integer n, jn
2
k1 ln

2
m 5 n.

31. For every integer n, j  

n
2

 3 

  k 5 jn
6
k.

32. For every integer n,   l  

n
2

 3 

  m 5 ln
6
m.

33. A necessary and sufficient condition for an integer 
n to be divisible by a nonzero integer d is that 
n 5 :nyd;?d. In other words, for every integer n 
and nonzero integer d,
a. if d un, then n 5 :nyd;?d.
b. if n 5 :nyd;?d then d un.

H

H

1. n # x , n11 2. n21 , x # n

answers for test Yourself

Indirect argument: Contradiction and Contraposition
Reductio ad absurdum Á  is one of a mathematician’s finest weapons. It is a far finer 
gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or 
even a piece, but the mathematician offers the game. —G. H. Hardy, 1877–1947

In a direct proof you start with the hypothesis of a statement and make one deduction after 
another until you reach the conclusion. Indirect proofs are more roundabout. One kind of 
indirect proof, argument by contradiction, is based on the fact that either a statement is true 
or it is false but not both. So if you can show that the assumption that a given statement is 
not true leads logically to a contradiction, impossibility, or absurdity, then that assumption 
must be false: and, hence, the given statement must be true. This method of proof is also 
known as reductio ad impossible or reductio ad absurdum because it relies on reducing a 
given assumption to an impossibility or absurdity.

Argument by contradiction occurs in many different settings. For example, if a man ac-
cused of holding up a bank can prove that he was someplace else at the time the crime was 
committed, he will certainly be acquitted. The logic of his defense is as follows:

Suppose I did commit the crime. Then at the time of the crime, I would have had to be at the 
scene of the crime. In fact, at the time of the crime I was in a meeting with 20 people far from 
the crime scene, as they will testify. This contradicts the supposition that I committed the 
crime since it is impossible to be in two places at one time. Hence that supposition is false.

Another example occurs in debate. One technique of debate is to say, “Suppose for a 
moment that what my opponent says is correct.” Starting from this supposition, the debater 
then deduces one statement after another until finally arriving at a statement that is com-
pletely ridiculous and unacceptable to the audience. By this means the debater shows the 
opponent’s statement to be false.

The point of departure for a proof by contradiction is the supposition that the statement 
to be proved is false. The goal is to reason to a contradiction. Thus proof by contradiction 
has the following outline:

4.7

!
Caution! People often 
make mistakes when 
they write a negation for 
a statement they want 
to prove by contradiction.

Method of proof by Contradiction

1. Suppose the statement to be proved is false. That is, suppose that the negation 
of the statement is true.

2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.
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There are no clear-cut rules for when to try a direct proof and when to try a proof by 
contradiction, but there are some general guidelines. Proof by contradiction is indicated 
if you want to show that there is no object with a certain property, or if you want to show 
that a certain object does not have a certain property. The next three examples illustrate 
these situations.

There Is No Greatest Integer

Use proof by contradiction to show that there is no greatest integer.

Solution For this proof, the “certain property” is the property of being the greatest in-
teger. So prove that there is no object with this property, begin by supposing the negation: 
that there is an object with the property.

Starting Point:  Suppose not. Suppose there is a greatest integer; call it N. This means that 
N $ n for every integer n.

To Show: This supposition leads logically to a contradiction.

Example 4.7.1

Theorem 4.7.1

There is no greatest integer.

Proof: [We take the negation of the theorem and suppose it to be true.] Suppose not. 
That is, suppose there is a greatest integer N. [We must deduce a contradiction.] Then 
N $ n for every integer n. Let M 5 N11. Now M is an integer since it is a sum of 
integers. Also M . N since M 5 N11. Thus M is an integer that is greater than 
N. So N is the greatest integer and N is not the greatest integer, which is a contra-
diction. [This contradiction shows that the supposition is false and, hence, that the 
theorem is true.]

■

After a contradiction has been reached, the logic of the argument is always the same: 
“This is a contradiction. Hence the supposition is false and the theorem is true.” Because 
of this, most mathematics texts end proofs by contradiction at the point at which the con-
tradiction has been obtained.

The contradiction in the next example is based on the fact that 1y2 is not an integer.

No Integer Can Be Both Even and Odd

The fact that no integer is both even and odd can also be deduced from the uniqueness part 
of the quotient-remainder theorem. A full proof of this part of the theorem is outlined in 
exercise 21 of Section 4.8.

Example 4.7.2

Theorem 4.7.2

There is no integer that is both even and odd.

Proof: [We take the negation of the theorem and suppose it to be true.] Suppose not. 
That is, suppose there is at least one integer n that is both even and odd. 

(continued on page 220)
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220  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

[We must deduce a contradiction.] By definition of even, n 5 2a for some integer a, 
and by definition of odd, n 5 2b11 for some integer b. Consequently,

2a 5 2b11 by equating the two expressions for n,

and so

2a22b 5 1

2(a2b) 5 1

a2b 5 1y2

 

by algebra.

Now since a and b are integers, the difference a2b must also be an integer. But 
a2b 5 1y2, and 1y2 is not an integer. Thus a2b is an integer and a2b is not an 
integer, which is a contradiction. [This contradiction shows that the supposition is 
false and, hence, that the theorem is true.]

■

If you want to prove that a certain object does not have a certain property, you may need 
to assume that it does have the property and deduce a contradiction. The next example il-
lustrates this strategy. It asks you to prove that a certain object (the sum of a rational and 
an irrational number) does not have the property being rational.

The Sum of a Rational Number and an Irrational Number

Use proof by contradiction to show that the sum of any rational number and any irrational 
number is irrational.

Solution Begin by supposing the negation of what you are to prove. Be very careful when 
writing down what this means. If you take the negation incorrectly, the entire rest of the 
proof will be flawed. In this example, the statement to be proved can be written formally as

5 real numbers r and s, if r is rational and

s is irrational, then r1 s is irrational.

From this you can see that the negation is

E a rational number r and an irrational number

s such that r1 s is rational.

It follows that the starting point and what is to be shown are as follows:

Starting Point:  Suppose not. That is, suppose there is a rational number r and an irrational 
number s such that r1 s is rational.

To Show: This supposition leads to a contradiction.

To derive a contradiction, you need to understand what you are supposing: that there are 
numbers r and s such that r is rational, s is irrational, and r1 s is rational. By definition of 
rational and irrational, this means there are convenient expressions that can be substituted 
for r and r1 s, but all you can say about s is that it cannot be written as a quotient of integers

 r 5
a

b
 for some integers a and b with b Þ 0, and 4.7.1

 r1 s 5
c

d
 for some integers c and d with d Þ 0. 4.7.2

Example 4.7.3

!
Caution! The negation 
of “The sum of any ir-
rational number and any 
rational number is irratio-
nal” is NOT “The sum of 
any irrational number and 
any rational number is 
rational.”
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4.7 inDirect argument: contraDiction anD contraPoSition  221

If you substitute (4.7.1) into (4.7.2), you obtain
a

b
1 s 5

c

d
.

Subtracting a/b from both sides gives

s 5
c

d
2

a

b

 5
bc

bd
2

ad

bd
 by rewriting cyd and ayb as equivalent fractions

5
bc2ad

bd
 

by the rule for subtracting fractions  
with the same denominator.

Now both bc2ad and bd are integers because products and differences of integers are 
integers, and bd Þ 0 by the zero product property. Hence s can be expressed as a quotient 
of two integers with a nonzero denominator, and so s is rational, which contradicts the sup-
position that it is irrational.

This discussion is summarized in a formal proof.

Note There is no con-
venient expression that 
can be substituted for an 
irrational number.

Theorem 4.7.3

The sum of any rational number and any irrational number is irrational.

Proof:
[We take the negation of the theorem and suppose it to be true.] Suppose not. That is, 
suppose there is a rational number r and an irrational number s such that r1 s is 
rational. [We must deduce a contradiction.] By definition of rational, r 5 ayb and 
r1 s 5 cyd for some integers a, b, c, and d with b Þ 0 and d Þ 0. By substitution,

a

b
1 s 5

c

d
,

and so

s 5
c

d
2

a

b
 by subtracting ayb from both sides

5
bc2ad

bd
 by the laws of algebra.

Now bc2ad and bd are both integers [since a, b, c, and d are integers and since 
products and differences of integers are integers], and bd Þ 0 [by the zero product 
property]. Hence s is a quotient of the two integers bc2ad and bd with bd Þ 0. 
Thus, by definition of rational, s is rational, which contradicts the supposition that s 
is irrational. [Hence the supposition is false and the theorem is true.]

■

Argument by Contraposition
A second form of indirect argument, argument by contraposition, is based on the logical 
equivalence between a statement and its contrapositive. To prove a statement by contra-
position, you take the contrapositive of the statement, prove the contrapositive by a direct 
proof, and conclude that the original statement is true. The underlying reasoning is that 
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since a conditional statement is logically equivalent to its contrapositive, if the contraposi-
tive is true then the statement must also be true.

Method of Proof by Contraposition

1. Express the statement to be proved in the form

5 x in D, if P(x) then Q(x).

(This step may be done mentally.)

2. Rewrite this statement in the contrapositive form

5 x in D, if Q(x) is false then P(x) is false.

(This step may also be done mentally.)

3. Prove the contrapositive by a direct proof.

a. Suppose x is a (particular but arbitrarily chosen) element of D such that Q(x) 
is false.

b. Show that P(x) is false.

If the Square of an Integer Is Even, Then the Integer Is Even

Prove that for every integer n, if n2 is even then n is even.

Solution First form the contrapositive of the statement to be proved.

Contrapositive: For every integer n, if n is not even then n2 is not even.

By the quotient-remainder theorem with divisor equal to 2, any integer is even or odd, and, 
by Theorem 4.7.2, no integer is both even and odd. So if an integer is not even, then it is 
odd. Thus the contrapositive can be restated as follows:

Contrapositive: For every integer n, if n is odd then n2 is odd.

A straightforward computation is the heart of a direct proof for this statement, as shown 
below.

Example 4.7.4

Proposition 4.7.4

For every integer n, if n2 is even then n is even.

Proof (by contraposition): Suppose n is any odd integer. [We must show that n2 
is odd.] By definition of odd, n 5 2k11 for some integer k. By substitution and 
algebra,

n2 5 (2k11)2 5 4k2 14k11 5 2(2k2 12k)11.

Now 2k2 12k is an integer because products and sums of integers are integers. So 
n2 5 2?(an integer)11, and thus, by definition of odd, n2 is odd [as was to be shown].

We used the word proposition here rather than theorem because although the word theo-
rem can refer to any statement that has been proved, mathematicians often restrict it to 
especially important statements that have many and varied consequences. Then they use 
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the word proposition to refer to a statement that is somewhat less consequential but none-
theless worth writing down. We will use Proposition 4.7.4 in Section 4.8 to prove that Ï2 
is irrational. ■

Relation between Proof by Contradiction 
and Proof by Contraposition
Observe that any proof by contraposition can be recast in the language of proof by contra-
diction. In a proof by contraposition, the statement

5 x in D, if P(x) then Q(x)

is proved by giving a direct proof of the equivalent statement

5x in D, if ,Q(x) then ,P(x).

To do this, you suppose you are given an arbitrary element x of D such that ,Q(x). You 
then show that ,P(x). This is illustrated in Figure 4.7.1.

FIGURE 4.7.1 Proof by Contraposition

sequence of steps
∼P(x)

Suppose x is an arbitrary
element of D such that ∼Q(x).

Exactly the same sequence of steps can be used as the heart of a proof by contradiction 
for the given statement. The only thing that changes is the context in which the steps are 
written down.

To rewrite the proof as a proof by contradiction, you suppose there is an x in D such 
that P(x) and ,Q(x). You then follow the steps of the proof by contraposition to deduce 
the statement ,P(x). But ,P(x) is a contradiction to the supposition that P(x) and ,Q(x). 
(Because to contradict a conjunction of two statements, it is only necessary to contradict 
one of them.) This process is illustrated in Figure 4.7.2.

FIGURE 4.7.2 Proof by Contradiction

Suppose ∃x in D such
that P(x) and ∼Q(x).

Contradiction:
P(x) and ∼P(x)

same sequence of steps

As an example, here is a proof by contradiction of Proposition 4.7.4.

Proposition 4.7.4

For every integer n, if n2 is even then n is even.

Proof (by contradiction): [We take the negation of the theorem and suppose it to be 
true.] Suppose not. That is, suppose there is an integer n such that n2 is even and n is 
not even. [We must deduce a contradiction.] By the quotient-remainder theorem with 
divisor equal to 2, any integer is even or odd. Hence, since n is not even it is odd, and 
thus, by definition of odd, n 5 2k11 for some integer k. By substitution and algebra,

n2 5 (2k11)2 5 4k2 14k11 5 2(2k2 12k)11.

(continued on page 224)
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224  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

Note that when you use proof by contraposition, you know exactly what conclusion you 
need to show, namely, the negation of the hypothesis; whereas in proof by contradiction, 
it may be difficult to know what contradiction to head for. On the other hand, when you 
use proof by contradiction, once you have deduced any contradiction whatsoever, you are 
done. The main advantage of contraposition over contradiction is that you avoid having to 
take (possibly incorrectly) the negation of a complicated statement. The disadvantage of 
contraposition as compared with contradiction is that you can use contraposition only for a 
specific class of statements—those that are universal and conditional. The previous discus-
sion shows that any statement that can be proved by contraposition can be proved by con-
tradiction. But the converse is not true. Statements such as “Ï2 is irrational” (discussed in 
the next section) can be proved by contradiction but not by contraposition.

Proof as a Problem-Solving Tool
Direct proof, disproof by counterexample, proof by contradiction, and proof by contraposi-
tion are all tools that may be used to help determine whether statements are true or false. 
Working with examples might have given you a sense that a statement of the form

For all elements in a domain, if (hypothesis) then (conclusion),

might be true. To explore further, imagine elements in the domain that satisfy the hypothesis. 
Ask yourself: Must they satisfy the conclusion? If you can see that the answer is “yes” in all 
cases, then the statement is true and your insight will form the basis for a direct proof. If after 
some thought it is not clear that the answer is “yes,” ask yourself whether there are elements of 
the domain that satisfy the hypothesis and not the conclusion. If you are successful in finding 
some, then the statement is false and you have a counterexample. On the other hand, if you are 
not successful in finding such elements, perhaps none exist. Perhaps you can show that assum-
ing the existence of elements in the domain that satisfy the hypothesis and not the conclusion 
leads logically to a contradiction. If so, then the given statement is true and you have the basis 
for a proof by contradiction. Alternatively, you could imagine elements of the domain for 
which the conclusion is false and ask whether such elements also fail to satisfy the hypothesis. 
If the answer in all cases is “yes,” then you have a basis for a proof by contraposition.

Solving problems, especially difficult problems, is rarely a straightforward process. At 
any stage of following the guidelines above, you might want to try the method of a previous 
stage again. If, for example, you fail to find a counterexample for a certain statement, your 
experience in trying to find it might help you decide to reattempt a direct argument rather 
than trying an indirect one. Psychologists who have studied problem solving have found 
that the most successful problem solvers are those who are flexible and willing to use a 
variety of approaches without getting stuck in any one of them for very long. Mathemati-
cians sometimes work for months (or longer) on difficult problems. Don’t be discouraged 
if some problems in this book take you quite a while to solve.

Learning the skills of proof and disproof is much like learning other skills, such as 
those used in a sport or playing a musical instrument. When you first start out, you may 

Now 2k2 12k is an integer because products and sums of integers are integers. So 
n2 5 2?(an integer)11, and thus, by definition of odd, n2 is odd. Therefore, n2 is 
both even and odd. This contradicts Theorem 4.7.2, which states that no integer can 
be both even and odd. [This contradiction shows that the supposition is false and, 
hence, that the proposition is true.]
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4.7 inDirect argument: contraDiction anD contraPoSition  225

feel bewildered by all the rules, and you may not feel confident as you attempt new things. 
But with practice the rules become internalized and you can use them in conjunction with 
all your other powers—of balance, coordination, judgment, aesthetic sense—to concen-
trate on winning a competition or performing in public.

Now that you have worked through several sections of this chapter, return to the idea 
that, above all, a proof or disproof should be a convincing argument. You need to know 
how direct and indirect proofs and counterexamples are structured. But to use this knowl-
edge effectively, you must use it in conjunction with your imaginative powers, your intu-
ition, and especially your common sense.

1. To prove a statement by contradiction, you sup-
pose that  and you show that .

2. A proof by contraposition of a statement of the 

form “5x [ D, if P(x) then Q(x)” is a direct proof 
of .

3. To prove a statement of the form “5x [ D, if P(x) 
then Q(x)” by contraposition, you suppose that 

 and you show that .

TEST YOURSELF 

1. Fill in the blanks in the following proof by contra-
diction that there is no least positive real number.

Proof: Suppose not. That is, suppose that there 
is a least positive real number x. [We must deduce 

 ] Consider the number xy2. Since x is a 
positive real number, xy2 is also . In addi-
tion, we can deduce that xy2 , x by multiplying 
both sides of the inequality 1 , 2 by  and 
dividing . Hence xy2 is a positive real num-
ber that is less than the least positive real number. 
This is a . [Thus the supposition is false, and 
so there is no least positive real number.]

2. Is 10 an irrational number? Explain.

3. Use proof by contradiction to show that for every 
integer n, 3n12 is not divisible by 3.

4. Use proof by contradiction to show that for every 
integer m, 7m14 is not divisible by 7.

Carefully formulate the negations of each of the state-
ments in 5–7. then prove each statement by contradiction.

5. There is no greatest even integer.

6. There is no greatest negative real number.

7. There is no least positive rational number.

8. Fill in the blanks for the following proof that the 
difference of any rational number and any irrational 
number is irrational.

Proof (by contradiction): Suppose not. That is, 
suppose that there exist  x and  y such 
that x2y is rational. By definition of rational, 
there exist integers a, b, c, and d with b Þ 0 and 
d Þ 0 so that x 5  and x2y 5 . By 
substitution,

a

b
2y 5

c

d
Adding y and subtracting cd on both sides gives

y 5  by substitution

5
ad

bd
2

bc

bd

5
ad2bc

bd
 by algebra.

Now both ad2bc and bd are integers because 
products and differences of  are . And 
bd Þ 0 by the . Hence y is a ratio of integers 
with a nonzero denominator, and thus y is  
by definition of rational. We therefore have both 
that y is irrational and that y is rational, which is a 
contradiction. [Thus the supposition is false and the 
statement to be proved is true.]

9. a.  When asked to prove that the difference of any 
irrational number and any rational number is 
irrational, a student began, “Suppose not. That 
is, suppose the difference of any irrational 
number and any rational number is rational.” 

(a)
(b)

(c)
(d)

(e)

(a) (b)

(c) (d)

(e)

(f) (g)
(h)

(i)

ExERCISE SET 4.7 
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226  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

What is wrong with beginning the proof in 
this way? (Hint: If needed, review the answer 
to exercise 11 in Section 3.2.)

b. Prove that the difference of any irrational 
number and any rational number is irrational. 

10. Let S be the statement: For all positive real num-
bers r and s, Ïr1 s Þ Ïr1Ïs. Statement S is 
true, but the following “proof” is incorrect. Find 
the mistake.

“Proof by contradiction: Suppose not. That is, 
suppose that for all positive real numbers r and s, 
Ïr1 s 5 Ïr1Ïs. This means that the equation 
will be true no matter what positive real numbers 
are substituted for r and s. So let r 5 9 and s 5 16. 
Then r and s are positive real numbers and

Ïr1 s 5 Ï9116 5 Ï25 5 5

whereas

Ïr1Ïs 5 Ï91Ï16 5 314 5 7.

Since 5 Þ 7, we have that Ïr1 s Þ Ïr1Ïs, 
which contradicts the supposition that 
Ïr1 s 5 Ïr1Ïs. This contradiction shows 
that the supposition is false, and hence statement 
S is true.”

11. Let T be the statement: The sum of any two ra-
tional numbers is rational. Then T is true, but the 
following “proof” is incorrect. Find the mistake.

“Proof by contradiction: Suppose not. That is, 
suppose that the sum of any two rational numbers 
is not rational. This means that no matter what 
two rational numbers are chosen their sum is not 
rational. Now both 1 and 3 are rational because 
1 5 1y1 and 3 5 3y1, and so both are ratios of 
integers with a nonzero denominator. Hence, by a 
supposition, the sum of 1 and 3, which is 4, is not 
rational. But 4 is rational because 4 5 4y1, which 
is a ratio of integers with a nonzero denominator. 
Hence 4 is both rational and not rational, which is 
a contradiction. This contradiction shows that the 
supposition is false, and hence statement T is true.”

12. Let R be the statement: The square root of any 
irrational number is irrational.
a. Write a negation for R.
b. Prove R by contradiction. 

13. Let S be the statement: The product of any ir-
rational number and any nonzero rational number 
is irrational.

a. Write a negation for S.
b. Prove S by contradiction. 

14. Let T be the statement: For every integer a, if a 
mod 6 5 3, then a mod 3 Þ 2.
a. Write a negation for T. 
b. Prove T by contradiction.

15. Do there exist integers a, b, and c such that a, b, 
and c are all odd and a2 1b2 5 c2? Prove your 
answer. 

prove each statement in 16–19 by contradiction.

16. For all odd integers a and b, b2 2a2 Þ 4.
(Hint: b2 2a2 5 (b1a)(b2a) and the only way to 
factor 4 is either 4 5 2?2 or 4 5 4?1.)

17. For all prime numbers a, b, and c, a2 1b2 Þ c2.

18. If a and b are rational numbers, b Þ 0, and r is an 
irrational number, then a1br is irrational.

19. For any integer n, n2 22 is not divisible by 4.

20. Fill in the blanks in the following proof by  
contraposition that for every integer n, if 5 un2  
then 5 un.

Proof (by contraposition): [The contrapositive is: 
For every integer n, if 5 un then 5 un2.] Suppose n is 
any integer such that . [We must show  
that .] By definition of divisibility,  
n 5  for some integer k. By substitution, 
n2 5 5 5(5k2). But 5k2 is an integer be-
cause it is a product of integers. Hence n2 5  
5?(an integer), and so  [as was to be  
shown].

21. Consider the statement “For every integer n, if n2 
is odd then n is odd.”
a. Write what you would suppose and what you 

would need to show to prove this statement by 
contradiction.

b. Write what you would suppose and what you 
would need to show to prove this statement by 
contraposition. 

22. Consider the statement “For every real number r, 
if r2 is irrational then r is irrational.”
a. Write what you would suppose and what you 

would need to show to prove this statement by 
contradiction.

b. Write what you would suppose and what you 
would need to show to prove this statement by 
contraposition. 

H

H

H

H

(a)
(b)
(c)
(d)

(e)
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4.7 inDirect argument: contraDiction anD contraPoSition  227

prove each of the statements in 23–25 in two ways:  
(a) by contraposition and (b) by contradiction.

23. The negative of any irrational number is irrational.

24. The reciprocal of any irrational number is irrational. 
(The reciprocal of a nonzero real number x is 1yx.)

25. For every integer n, if n2 is odd then n is odd.

Use any method to prove the statements in 26–29.

26. For all integers a, b, and c, if a ubc then a ub. 

27. For all positive real numbers r and s, 
Ïr1 s Þ Ïr1Ïs.

28. For all integers a, b, and c, if a ub and a uc, then 
a u (b1c). 

29. For all integers m and n, if m1n is even then m 
and n are both even or m and n are both odd.

30. a.  Let n 5 53. Find an approximate value for Ïn 
and write a list of all the prime numbers less 
than or equal to Ïn. Is the following statement 
true or false? When n 5 53, n is not divisible 
by any prime number less than or equal to Ïn.

b. Suppose n is a fixed integer. Let S be the state-
ment, “n is not divisible by any prime number 
less than or equal to Ïn.” The following state-
ment is equivalent to S:

5 prime number p, if p is less than or equal  
to Ïn then n is not divisible by p.

Which of the following are negations for S?

 (i)  E a prime number p such that p # Ïn 
and n is divisible by p.

 (ii)  n is divisible by every prime number less 
than or equal to Ïn.

(iii)  E a prime number p such that p is a mul-
tiple of n and p is less than or equal to Ïn.

 (iv)  n is divisible by some prime number that 
is less than or equal to Ïn.

 (v)  5 prime number p, if p is less than or 
equal to Ïn, then n is divisible by p.

31. a.  Prove by contraposition: For all positive 
integers n, r, and s, if rs # n, then r # Ïn or 
s # Ïn.

(Hint: Use Theorem T27 in Appendix A.)

b. Prove: For each integer n . 1, if n is not prime 
then there exists a prime number p such that 

p # Ïn and n is divisible by p. (Hint: Use the 
results of part (a), Theorems 4.4.1, 4.4.3, and 
4.4.4, and the transitive property of order.)

c. State the contrapositive of the result of part (b).
The results of exercise 31 provide a way to test 
whether an integer is prime.

Test for Primality
Given an integer n . 1, to test whether n is prime check 
to see if it is divisible by a prime number less than or 
equal to its square root. If it is not divisible by any of 
these numbers, then it is prime.

32. Use the test for primality to determine whether the 
following numbers are prime or not.
a. 667 b. 557 c. 527 d. 613

33. The sieve of Eratosthenes, named after its inventor, 
the Greek scholar Eratosthenes (276–194 b.c.e.),  
provides a way to find all prime numbers less han 
or equal to some fixed number n. To construct it, 
write out all the integers from 2 to n. Cross out 
all multiples of 2 except 2 itself, then all multiples 
of 3 except 3 itself, then all multiples of 5 except 
5 itself, and so forth. Continue crossing out the 
multiples of each successive prime number up to 
Ïn. The numbers that are not crossed out are all 
the prime numbers from 2 to n. Here is a sieve of 
Eratosthenes that includes the numbers from 2 to 
27. The multiples of 2 are crossed out with a y, 
the multiples of 3 with a \, and the multiples of 
5 with a —.

2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27

Use the sieve of Eratosthenes to find all prime 
numbers less than 100.

34. Use the test for primality and the result of exercise 
33 to determine whether the following numbers 
are prime.
a. 9,269 b. 9,103 c. 8,623 d. 7,917

35. Use proof by contradiction to show that every 
integer greater than 11 is a sum of two composite 
numbers.

36. For all odd integers a, b, and c, if z is a solution of 
ax2 1bx1c 5 0 then z is irrational. (In the proof, 
use the properties of even and odd integers that 
are listed in Example 4.3.3.)

H

H

H

H*

H*
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Indirect Argument: Two Famous Theorems
He is unworthy of the name of man who does not know that the diagonal of a square 
is incommensurable with its side. —Plato (ca. 428–347 b.c.e.)

This section contains proofs of two of the most famous theorems in mathematics: that Ï2 
is irrational and that there are infinitely many prime numbers. Both proofs are examples 
of indirect arguments and were well known more than 2,000 years ago, but they remain 
exemplary models of mathematical argument to this day.

The Irrationality of Ï  
When mathematics flourished at the time of the ancient Greeks, mathematicians believed 
that given any two line segments, say A:  and B: , a certain unit of length 
could be found so that segment A was exactly m units long and segment B was exactly n 
units long, for some integers m and n. (The segments were said to be commensurable with 
respect to this special unit of length.) Then the ratio of the lengths of A and B would be in 
the same proportion as the ratio of the integers m and n. Symbolically:

length A

length B
5

m
n

.

Now it is easy to find a line segment of length Ï2; just take the diagonal of a unit square:

c

1

1

By the Pythagorean theorem, c2 5 12 112 5 2, and so c 5 Ï2. If the belief of the ancient 
Greeks were correct, there would be integers m and n such that

length (diagonal)

length (side)
5

m
n

.

And this would imply that

c

1
5

Ï2

1
5 Ï2 5

m
n

.

But then Ï2 would be a ratio of two integers, or, in other words, Ï2 would be rational.
In the fourth or fifth century b.c.e., the followers of the Greek mathematician and phi-

losopher Pythagoras discovered that Ï2 was not rational. This discovery was very upset-
ting to them, for it undermined their deep, quasi-religious belief in the power of whole 
numbers to describe phenomena.

4.8

2

1. the statement is false; this supposition leads to a contradiction  
2. the contrapositive of the statement, namely, 5x [ D, if 

,Q(x) then ,P(x) 3. x is any [particular but arbitrarily 
chosen] element of D for which Q(x) is false; P(x) is false

ANSwERS FOR TEST YOURSELF 
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The following proof of the irrationality of Ï2 was known to Aristotle and is similar to 
that in the tenth book of Euclid’s Elements of Geometry. The Greek mathematician Euclid 
is best known as a geometer, and knowledge of the geometry in the first six books of his 
Elements was considered an essential part of a liberal education for more than 2,000 years. 
However, books 7–10 of his Elements contain much that we would now call number theory.

The proof begins by supposing the negation: Ï2 is rational. This means that there 
exist integers m and n such that Ï2 5 myn. Now if m and n have any common factors, 
these may be factored out to obtain a new fraction, equal to myn, in which the numerator 
and denominator have no common factors. (For example, 18y12 5 (6?3)y(6?2) 5 3y2, 
which is a fraction whose numerator and denominator have no common factors.) Thus, 
without loss of generality, we may assume that m and n had no common factors in the first 
place. We will then derive the contradiction that m and n do have a common factor of 2. 
The argument makes use of Proposition 4.7.4: If the square of an integer is even, then that 
integer is even.

Note Strictly speaking, 
being able to assume that 
m and n have no common 
factors is a consequence 
of the “well-ordering 
principle for the inte-
gers,” which is discussed 
in Section 5.4.

Theorem 4.8.1  Irrationality of Ï  

Ï2 is irrational.

Proof (by contradiction): [We take the negation and suppose it to be true.] Suppose 
not. That is, suppose Ï2 is rational. Then there are integers m and n with no com-
mon factors such that

 Ï2 5
m
n

 4.8.1

[by dividing m and n by any common factors if necessary]. [We must derive a contradic-
tion.] Squaring both sides of equation (4.8.1) gives

 2 5
m2

n2 .

Or, equivalently,

 m2 5 2n2. 4.8.2

Note that equation (4.8.2) implies that m2 is even (by definition of even). It follows 
that m is even (by Proposition 4.7.4). We file this fact away for future reference and 
also deduce (by definition of even) that

 m 5 2k for some integer k. 4.8.3

Substituting equation (4.8.3) into equation (4.8.2), we see that

m2 5 (2k)2 5 4k2 5 2n2.

Dividing both sides of the right-most equation by 2 gives

n2 5 2k2.

Consequently, n2 is even, and so n is even (by Proposition 4.7.4). But we also know 
that m is even. [This is the fact we filed away.] Hence both m and n have a common 
factor of 2. But this contradicts the supposition that m and n have no common fac-
tors. [Hence the supposition is false and so the theorem is true.]

2

Euclid 
(fl. 300 b.c.E.)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es
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Now that you have seen the proof that Ï2 is irrational, you can use the irrationality of 
Ï2 to derive the irrationality of certain other real numbers.

Irrationality of  1 1 3Ï  

Prove by contradiction that 113Ï2 is irrational.

Solution The essence of the argument is the observation that if 113Ï2 could be writ-
ten as a ratio of integers, then so could Ï2. But by Theorem 4.8.1, we know that to be 
impossible.

Example 4.8.1 2

Proposition 4.8.2

113Ï2 is irrational.

Proof: Suppose not. Suppose 113Ï2 is rational. [We must derive a contradiction.] 
Then by definition of rational,

113Ï2 5
a

b
for some integers a and b with b Þ 0.

It follows that

3Ï2 5
a

b
21  by subtracting 1 from both sides

5
a

b
2

b

b
 by substitution

5
a2b

b
 

by the rule for subtracting fractions  
with a common denominator.

Hence

Ï2 5
a2b

3b
 by dividing both sides by 3.

But a2b and 3b are integers (since a and b are integers and differences and products 
of integers are integers), and 3b Þ 0 by the zero product property. Hence Ï2 is a 
quotient of the two integers a2b and 3b with 3b Þ 0, and so Ï2 is rational (by defi-
nition of rational). This contradicts the fact that Ï2 is irrational. [The contradiction 
shows that the supposition is false.] Hence 113Ï2 is irrational.

■

Are There Infinitely Many Prime Numbers?
You know that a prime number is a positive integer that cannot be factored as a product 
of two smaller positive integers. Is the set of all such numbers infinite, or is there a larg-
est prime number? The answer was known to Euclid, and a proof that the set of all prime 
numbers is infinite appears in Book 9 of his Elements of Geometry.

Euclid’s proof requires one additional fact we have not yet established: If a prime num-
ber divides an integer, then it does not divide the next successive integer.
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The idea of Euclid’s proof is this: Suppose the set of prime numbers were finite. Then 
you could take the product of all the prime numbers and add 1. By Theorem 4.4.4 this 
number must be divisible by some prime number. But by Proposition 4.8.3, this number is 
not divisible by any of the prime numbers in the set. Hence there must be a prime number 
that is not in the set of all prime numbers, which is impossible.

The following formal proof fills in the details of this outline.

Proposition 4.8.3

For any integer a and any prime number p, if p ua then p u (a11).

Proof (by contradiction): Suppose not. That is, suppose there exist an integer a and 
a prime number p such that p ua and p u (a11). Then, by definition of divisibility, 
there exist integers r and s such that a 5 pr and a11 5 ps. It follows that

1 5 (a11)2a 5 ps2pr 5 p(s2 r),

and so (since s2 r is an integer) p u1. But, by Theorem 4.4.2, the only integer divisors 
of 1 are 1 and 21, and p . 1 because p is prime. Thus p # 1 and p . 1, which is a 
contradiction. [Hence the supposition is false, and the proposition is true.]

Theorem 4.8.4 Infinitude of the Primes

The set of prime numbers is infinite.

Proof (by contradiction): Suppose not. That is, suppose the set of prime numbers is 
finite. [We must deduce a contradiction.] Then some prime number p is the largest of 
all the prime numbers, and hence we can list the prime numbers in ascending order:

2, 3, 5, 7, 11, Á , p.

Let N be the product of all the prime numbers plus 1:

N 5 (2?3?5?7?11 Á p)11

Then N . 1, and so, by Theorem 4.4.4, N is divisible by some prime number q. Be-
cause q is prime, q must equal one of the prime numbers 2, 3, 5, 7, 11, Á , p. Thus, 
by definition of divisibility, q divides 2?3?5?7?11 Á p, and so, by Proposition 4.8.3, 
q does not divide (2?3?5?7?11 Á p)11, which equals N. Hence N is divisible by q 
and N is not divisible by q, and we have reached a contradiction. [Therefore, the sup-
position is false and the theorem is true.]

The proof of Theorem 4.8.4 shows that if you form the product of all the prime numbers 
up to a certain point and add one, the result, N, is divisible by a prime not on the list. The 
proof does not show that N is itself prime. In exercise 30 at the end of the section you will 
find a value for N that is not prime, although it is divisible by a prime.

When to Use Indirect Proof
The examples in this section and Section 4.7 have not provided a definitive answer to 
the question of when to prove a statement directly and when to prove it indirectly. Many 
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232  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

theorems can be proved either way. Usually, however, when both types of proof are pos-
sible, indirect proof is clumsier than direct proof. In the absence of obvious clues suggest-
ing indirect argument, try first to prove a statement directly. Then, if that does not succeed, 
look for a counterexample. If the search for a counterexample is unsuccessful, look for a 
proof by contradiction or contraposition.

Open Questions in Number Theory
In this section we proved that there are infinitely many prime numbers. There is no known 
formula for obtaining primes, but a few formulas have been found to be more successful at 
producing them than other formulas. One such is due to Marin Mersenne, a French monk 
who lived from 1588 to 1648. Mersenne primes have the form 2p 21, where p is prime. Not 
all numbers of this form are prime, but because Mersenne primes are easier to test for primal-
ity than are other numbers, most of the largest known prime numbers are Mersenne primes.

An interesting question is whether there are infinitely many Mersenne primes. As of the 
date of publication of this book, the answer is not known, but new mathematical discoveries 
are being made every day and by the time you read this someone may have discovered the 
answer. Another formula that seems to produce a relatively large number of prime numbers 
is due to Fermat. Fermat primes are prime numbers of the form 22n

11, where n is a positive 
integer. Are there infinitely many Fermat primes? Again, as of now, no one knows. Similarly 
unknown are whether there are infinitely many primes of the form n2 11, where n is a posi-
tive integer, and whether there is always a prime number between integers n2 and (n11)2.

Another famous open question involving primes is the twin primes conjecture, which 
states that there are infinitely many pairs of prime numbers of the form p and p12. As 
with other well-known problems in number theory, this conjecture has withstood computer 
testing up to extremely large numbers, and some progress has been made toward a proof. In 
2004, Ben Green and Terence Tao showed that for any integer m . 1, there is a sequence of 
m equally spaced integers all of which are prime. In 2013 Yitang Zhang proved that there 
are infinitely many pairs of prime numbers that differ by no more than 70,000,000. This 
is a lot more than 2, but Zhang’s was the first discovery of any fixed upper bound between 
infinitely many pairs of prime numbers. In 2014 a group of mathematicians working col-
laboratively showed that the bound could be reduced from 70,000,000 to 246; still more 
than 2 but giving hope that a proof of the twin primes conjecture may be attainable.

Related to the twin primes conjecture is a conjecture made by Sophie Germain, a 
French mathematician born in 1776, who made significant progress toward a proof of 
Fermat’s Last Theorem. Germain conjectured that there are infinitely many prime number 
pairs of the form p and 2p11. Initial values of p with this property are 2, 3, 5, 11, 23, 29, 
41, and 53, and computer testing has verified the conjecture for many additional values. In 
fact, as of the writing of this book, the largest prime p for which 2p11 is also known to be 
prime is 2618163402417 3 21290000 21. This is a number with 388,341 decimal digits! But 
compared with infinity, any number, no matter how large, is less than a drop in the bucket.

In 1844, the Belgian mathematician Eugène Catalan conjectured that the only solu-
tions to the equation xn 2ym 5 1, where x, y, n, and m are all integers greater than 1, is 
32 223 5 1. This conjecture was finally proved by Preda Milhăilescu in 2002.

In 1993, while trying to prove Fermat’s Last Theorem, an amateur number theorist, 
Andrew Beal, became intrigued by the equation xm 1yn 5 zk, where no two of x, y, or z 
have any common factor other than 61. When diligent effort, first by hand and then by 
computer, failed to reveal any solutions, Beal conjectured that no solutions exist. His con-
jecture has become known as the Beal conjecture, and he has offered a prize of $100,000 
to anyone who can either prove or disprove it.

Marie-Sophie Germain 
(1776–1831)

Sc
ie

nc
e 

& 
So

cie
ty

 P
ic

tu
re

 Li
br

ar
y/

SS
PL

/G
et

ty
 Im

ag
es

Yitang Zhang 
(born 1955)

Pe
te

r B
oh

le
r/

Re
du

x

Terence Chi-Shen Tao 
(born 1975)

Ph
ili

pp
e 

De
sm

az
es

/A
FP

/G
et

ty
 Im

ag
es

Ben Joseph Green 
(born 1977)

Th
e 

Ro
ya

l S
oc

ie
ty

94193_ch04_ptg01.indd   232 12/11/18   3:55 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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These are just a few of a large number of open questions in number theory. Many people 
believe that mathematics is a fixed subject that changes very little from one century to the 
next. In fact, more mathematical questions are being raised and more results are being 
discovered now than ever before in history.

1. The ancient Greeks discovered that in a right 
triangle where both legs have length 1, the ratio of 
the length of the hypotenuse to the length of one 
of the legs is not equal to a ratio of .

2. One way to prove that Ï2 is an irrational number 
is to assume that Ï2 5 myn for some integers m 
and n that have no common factor greater than 1, 
use the lemma that says that if the square of an 

integer is even then , and eventually show 
that m and n .

3. One way to prove that there are infinitely 
many prime numbers is to assume that there is 
a largest prime number p, construct the number 

, and then show that this number has to 
be divisible by a prime number that is greater 
than .

TEST YOURSELF 

1. A calculator display shows that Ï2 5 1.414213562.  
Because 1.414213562 5

1414213562
1000000000, this suggests 

that Ï2 is a rational number, which contradicts 
Theorem 4.8.1. Explain the discrepancy.

2. Example 4.3.1(h) illustrates a technique for show-
ing that any repeating decimal number is rational. 
A calculator display shows the result of a certain 
calculation as 40.72727272727. Can you be sure 
that the result of the calculation is a rational num-
ber? Explain.

3. Could there be a rational number whose first tril-
lion digits are the same as the first trillion digits 
of Ï2? Explain.

4. A calculator display shows that the result of 
a certain calculation is 0.2. Can you be sure 
that the result of the calculation is a rational 
number?

5. Let S be the statement: The cube root of every 
irrational number is irrational. This statement is 
true, but the following “proof” is incorrect. Ex-
plain the mistake.

“Proof (by contradiction): Suppose not.  
Suppose the cube root of every irrational number 
is rational. But 2Ï2 is irrational because it is  
a product of a rational and an irrational number, 
and the cube root of 2Ï2 is Ï2, which is irratio-
nal. This is a contradiction, and hence it is not  
true that the cube root of every irrational number 
is rational. Thus the statement to be proved  
is true.”

Determine which statements in 6–16 are true and which 
are false. prove those that are true and disprove those 
that are false.

6. 627Ï2 is irrational.

7. 3Ï227 is irrational.

8. Ï4 is irrational.

9. Ï2y6 is irrational.

10. The sum of any two irrational numbers is irrational.

11. The difference of any two irrational numbers is 
irrational.

12. The positive square root of a positive irrational 
number is irrational.

13. If r is any rational number and s is any irrational 
number, then rys is irrational.

14. The sum of any two positive irrational numbers is 
irrational.

15. The product of two irrational numbers is irrational.

16. If an integer greater than 1 is a perfect square, 
then its cube root is irrational.

17. Consider the following sentence: If x is rational 
then Ïx is irrational. Is this sentence always true, 
sometimes true and sometimes false, or always 
false? Justify your answer.

18. a.  Prove that for every integer a, if a3 is even then 
a is even.

b. Prove that Ï3 2 is irrational.

H

ExERCISE SET 4.8 
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19. a.  Use proof by contradiction to show that for any 
integer n, it is impossible for n to equal both 
3q1 1 r1 and 3q2 1 r2, where q1, q2, r1, and r2 are 
integers, 0 # r1 , 3, 0 # r2 , 3, and r1 Þ r2.

b. Use proof by contradiction, the quotient-
remainder theorem, division into cases, and the 
result of part (a) to prove that for every integer 
n, if n2 is divisible by 3 then n is divisible by 3.

c. Prove that Ï3 is irrational.

20. Give an example to show that if d is not prime and 
n2 is divisible by d, then n need not be divisible by d.

21. The quotient-remainder theorem says not only 
that there exist quotients and remainders but also 
that the quotient and remainder of a division are 
unique. Prove the uniqueness. That is, prove that 
if a and d are integers with d . 0 and if q1, r1, q2, 
and r2 are integers such that

a 5 dq1 1 r1 where 0 # r1 , d

and

a 5 dq2 1 r2 where 0 # r2 , d,

then

q1 5 q2 and r1 5 r2.

22. Prove that Ï5 is irrational.

23. Prove that for any integer a, 9 u (a2 23).

24. An alternative proof of the irrationality of Ï2 
counts the number of 2’s on the two sides of the 
equation 2n2 5 m2 and uses the unique factoriza-
tion of integers theorem to deduce a contradiction. 
Write a proof that uses this approach.

25. Use the proof technique illustrated in exercise 24 
to prove that if n is any positive integer that is not 
a perfect square, then Ïn is irrational.

26. Prove that Ï21Ï3 is irrational.

27. Prove that log5(2) is irrational. (Hint: Use the 
unique factorization of integers theorem.)

28. Let N 5 2?3?5?711. What remainder is obtained 
when N is divided by 2? 3? 5? 7? Justify your answer.

29. Suppose a is an integer and p is a prime number 
such that p ua and p u (a13). What can you deduce 
about p? Why?

30. Let p1, p2, p3, Á  be a list of all prime numbers in 
ascending order. Here is a table of the first six:

p1 p2 p3 p4 p5 p6

2 3 5 7 11 13

a. Let N1 5 p1, N2 5 p1?p2, N3 5 p1?p2?p3, Á ,  
N6 5 p1?p2?p3?p4?p5?p6. Calculate N1, N2, N3, 
N4, N5, and N6.

b. For each i 5 1, 2, 3, 4, 5, 6, find whether Ni is 
itself prime or just has a prime factor less than 
itself. (Hint: Use the test for primality from 
exercise 31 in Section 4.7 to determine your 
answers.)

For exercises 31 and 32, use the fact that for every integer n, 

n! 5 n(n21) Á 3?2?1.

31. An alternative proof of the infinitude of the prime 
numbers begins as follows:

Proof: Suppose there are only finitely many 
prime numbers. Then one is the largest. Call it 
p. Let M 5 p!11. We will show that there is a 
prime number q such that q . p. Complete this 
proof.

32. Prove that for every integer n, if n . 2 then there 
is a prime number p such that n , p , n!.

33. Prove that if p1, p2, Á , and pn are distinct 
prime numbers with p1 5 2 and n . 1, then 
p1 p2

Á pn 11 can be written in the form 4k13 
for some integer k.

34. a.  Fermat’s last theorem says that for every 
integer n . 2, the equation xn 1yn 5 zn has 
no positive integer solution (solution for which 
x, y, and z are positive integers). Prove the 
following: If for every prime number p . 2, 
xp 1yp 5 zp has no positive integer solution, 
then for any integer n . 2 that is not a power of 
2, xn 1yn 5 zn has no positive integer solution.

b. Fermat proved that there are no integers x, y, 
and z such that x4 1y4 5 z4. Use this result to 
remove the restriction in part (a) that n not be 
a power of 2. That is, prove that if n is a power 
of 2 and n . 4, then xn 1yn 5 zn has no posi-
tive integer solution. 

For exercises 35–38 note that to show there is a unique 
object with a certain property, show that (1) there is an 
object with the property and (2) if objects A and B have 
the property, then A 5 B.

35. Prove that there exists a unique prime number 
of the form n2 21, where n is an integer that is 
greater than or equal to 2.

H

H

H

H

*

H

H

H

H*

H*

H
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36. Prove that there exists a unique prime number 
of the form n2 12n23, where n is a positive  
integer.

37. Prove that there is at most one real number a 
with the property that a1 r 5 r for every real 

number r. (Such a number is called an additive 
identity.)

38. Prove that there is at most one real number b with 
the property that br 5 r for every real number r. 
(Such a number is called a multiplicative identity.)

1. two integers 2. the integer is even; have a common factor greater than 1 3. 2?3?5?7?11 Á p11; p

ANSwERS FOR TEST YOURSELF 

Application: The Handshake Theorem
The most important things in those first few seconds [of a job interview] are, basically, a 
firm handshake and a smile, good eye contact and really paying attention. —Pat Schaumann

Consider the following curious problem: At a meeting attended by a group of people, four 
people shook hands with one other person, six people shook hands with two other people, 
two people shook hands with three other people, and the rest shook hands with four other 
people. No two people shook hands with each other more than once, and a total of 23 hand-
shakes occurred. How many people attended the meeting?

It turns out that a theorem about graphs helps to answer this question. Recall from 
Section 1.4 that if G is a graph and v is a vertex of G, then the degree of v, denoted deg(v), 
is the number of edges incident on v, with an edge that is a loop counted twice.

4.9

The Total Degree of a Graph

Find the degree of each vertex of the graph G shown below, and then find the total degree 
of the graph.

�1

�2

�4

�3

Solution
deg(v1) 5 1; deg(v2) 5 4; deg(v3) 5 2; deg(v4) 5 3
total degree of G 5 1141213 5 10 ■

Note that in Example 4.9.1 the total degree of G, which is 10, equals twice the number 
of edges of G, which is 5. In fact, the total degree of any graph is twice the number of its 
edges. One way to see why this is so, at least for a graph without loops, is to imagine that 
the vertices of the graph represent people at a meeting and that each edge of the graph rep-
resents a handshake between two people. Each person participates in a certain number of 
handshakes—perhaps many, perhaps none—but if the numbers for each person are added 
together, a total is obtained, and, because each handshake is experienced by two different 
people, the total will equal twice the number of handshakes.

Example 4.9.1

Definition

The total degree of a graph is the sum of the degrees of all the vertices of the graph.
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The handshake analogy is such an attractive way to understand the graph theory result 
that the theorem describing it is known as the handshake theorem. As the proof demon-
strates, the conclusion is true even for a graph that contains loops.

Theorem 4.9.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice 
the number of edges of G. Specifically, if the vertices of G are v1, v2, Á , vn, where 
n is a nonnegative integer, then

 the total degree of G 5 deg(v1)1  deg(v2)1 Á 1 deg(vn)

 5 2?(the number of edges of G).

Proof: Let G be a particular but arbitrarily chosen graph, and suppose that G has n 
vertices v1, v2, Á , vn and m edges, where n is a positive integer and m is a nonnega-
tive integer. We claim that each edge of G contributes 2 to the total degree of G. For 
suppose e is an arbitrarily chosen edge with endpoints vi and vj. This edge contrib-
utes 1 to the degree of vi and 1 to the degree of vj. As shown below, this is true even 
if i 5 j, because an edge that is a loop is counted twice in computing the degree of 
the vertex on which it is incident.

� i

� j
e e

� i = � j

i = ji ≠ j

Therefore, e contributes 2 to the total degree of G. Since e was arbitrarily chosen, 
this shows that each edge of G contributes 2 to the total degree of G. Thus

the total degree of G 5 2?(the number of edges of G).

Corollary 4.9.2

The total degree of a graph is even.

Proof: By Theorem 4.9.1 the total degree of G equals 2 times the number of edges 
of G, which is an integer, and so the total degree of G is even.

Determining whether Certain Graphs Exist

Draw a graph with the specified properties or show that no such graph exists.

a. A graph with four vertices of degrees 1, 1, 2, and 3

b. A graph with four vertices of degree 1, 1, 3, and 3

Solution
a. No such graph exists. By Corollary 4.9.2 the total degree of a graph is even. But 

a graph with four vertices of degrees 1, 1, 2, and 3 would have a total degree of 
1111213 5 7, which is odd.

Example 4.9.2

The following corollary follows immediately from the handshake theorem.
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b. Let G be any of the graphs shown below.

a

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

In each case, no matter how the edges are labeled, deg(a) 5 1, deg(b) 5 1, deg(c) 5 3, 
and deg(d) 5 3. ■

Application to an Acquaintance Graph

Is it possible in a group of nine people for each to be friends with exactly five others in the 
group?

Solution The answer is no. Imagine constructing an “acquaintance graph” in which each 
of the nine people is represented by a vertex and two vertices are joined by an edge if, and 
only if, the people they represent are friends. Suppose each of the people is friends with 
exactly five others. Then the degree of each of the nine vertices of the graph would be 
five, and so the total degree of the graph would be 45. But this contradicts Corollary 4.9.2, 
which says that the total degree of the graph is even. The contradiction shows that the 
supposition is false. Hence it is impossible for each person in a group of nine people to be 
friends with exactly five others in the group.

The following proposition can be deduced from Corollary 4.9.2 using properties of even 
and odd integers. ■

Example 4.9.3

Proposition 4.9.3

In any graph there is an even number of vertices of odd degree.

Proof: Suppose G is any graph, and suppose G has n vertices of odd degree and m 
vertices of even degree, where n is a positive integer and m is a nonnegative integer. 
[We must show that n is even.] Let E be the sum of the degrees of all the vertices of 
even degree, O the sum of the degrees of all the vertices of odd degree, and T the 
total degree of G. If u1, u2, Á , um are the vertices of even degree and v1, v2, Á , vn 
are the vertices of odd degree, then

 E 5  deg(u1)1  deg(u2)1 Á 1 deg(um),

 O 5  deg(v1)1 deg(v2)1 Á 1 deg(vn), and
 T 5  deg(u1)1 Á 1 deg(um)1 deg(v1)1 Á 1 deg(vn) 5 E1O.

Now T, the total degree of G, is an even integer by Corollary 4.9.2. Also E is even 
since either E is zero, which is even, or E is a sum of even numbers. Now since

T 5 E1O,

then

O 5 T2E.

Hence O is a difference of two even integers, and so O is even.
By assumption, deg(vi) is odd for every integer i 5 1, 2, Á , n. Thus O, an even 

integer, is a sum of the n odd integers deg(v1), deg(v2), Á , deg(vn). But if a sum of n 
odd integers is even, then n is even. Therefore, n is even [as was to be shown].

Note In Section 5.4 you 
will have an opportunity 
to prove formally that 
any finite sum of even 
integers is even and that if 
a sum of n odd integers is 
even then n is even.
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Applying the Fact That the Number of Vertices with Odd Degree Is Even

Is there a graph with ten vertices of degrees 1, 1, 2, 2, 2, 3, 4, 4, 4, and 6?

Solution No. Such a graph would have three vertices of odd degree, which is impossible 
by Proposition 4.9.3.

Note that this same result could have been deduced directly from Corollary 4.9.2 by 
computing the total degree (1111212121314141416 5 29) and noting that 
it is odd. However, Proposition 4.9.3 gives the result without the need to perform this 
addition. ■

We can now show how to answer the question posed at the beginning of this section.

How Many People Attended the Meeting?

At a meeting attended by a group of people, four people shook hands with one other per-
son, six people shook hands with two other people, two people shook hands with three 
other people, and the rest shook hands with four other people. No two people shook hands 
with each other more than once, and a total of 23 handshakes occurred. How many people 
attended the meeting?

Solution Define a graph G by letting each vertex represent a person at the meeting and let-
ting each edge represent one handshake between two people. Let x be the number of people 
who shook hands with four other people. Then

the total degree of the graph 5 4?116?212?31x?4 5 2214x

because 4 people shook hands with 1 other person, 6 people shook hands with 2 other 
people, 2 people shook hands with 3 other people, and x people shook hands with 4 other 
people. In addition, since a total of 23 handshakes occurred, the graph has 23 edges. By 
the handshake theorem (Theorem 4.9.1), the total degree is twice the number of edges. 
Hence

the total degree of the graph 5 2?23 5 46.

It follows that

2214x 5 46.

Thus

4x 5 46222 5 24,

and so   

x 5
24

4
5 6.

In other words, six people at the meeting shook hands with four other people. Now the 
total number of people at the meeting is the sum of the number who shook hands with one 
other person, plus the number who shook hands with two other people, plus the number 
who shook hands with three other people, plus the number who shook hands with four 
other people. Therefore,

 the number of people at the meeting 5 4161216 5 18. ■

Example 4.9.4

Example 4.9.5
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Special Graphs
One important class of graphs consists of those that do not have any loops or parallel edges. 
Such graphs are called simple. In a simple graph, no two edges share the same set of end-
points, so specifying two endpoints is sufficient to determine an edge.

Definition and Notation

A simple graph is a graph that does not have any loops or parallel edges. In a simple 
graph, an edge with endpoints v and w is denoted {v, w}.

Some Simple Graphs

Draw all simple graphs with the four vertices {u, v, w, x} and two edges, one of which is 
{u, v}.

Solution
Since one edge of the graph is specified to be {u, v}, the possibilities for the other edge are 
{u, w}, {u, x}, {v, w}, {v, x}, and {w, x}. The resulting graphs are shown below.

u �

x

u �

x

u �

x

u �

x

u �

x

 ■

Determining whether Certain Simple Graphs Exist

Draw a graph with the specified properties or show that no such graph exists.

a. A simple graph with six vertices and sixteen edges.

b. A simple graph with four vertices of degrees 1, 1, 3, and 3.

Solution
a. There is no simple graph with six vertices and sixteen edges.

Proof (by contradiction): Suppose there is a graph G with six vertices and sixteen 
edges. According to the handshake theorem (Theorem 4.9.1), since G has sixteen 
edges its total degree is 2?16 5 32, and because G has six vertices,

the average degree of each vertex 5
the total degree

the number of vertices
5

32

6
5 5

1

3
.

The only way this can happen is for at least one vertex—say v, to have degree greater 
than five. But since G has only six vertices, there are at most five other vertices to 
which v can be connected. Thus, in order for v to have degree greater than five, either 
there are at least two edges connecting v to one of the other vertices or there is a loop 
incident on v. In either case G would not be simple. Thus there is no simple graph that 
satisfies the given conditions.

b. There is no simple graph with four vertices of degrees 1, 1, 3, and 3.

You might first try the same approach as in the solution for part (a): Assume such a 
graph exists and divide its total degree by the number of edges. Since the total degree 

Example 4.9.6

Example 4.9.7
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is 1111313 5 8 and there are four vertices, the result is 8y4 5 2. But this, by 
itself, is not a problem. You can easily find examples of simple graphs with four verti-
ces where the average number of edges per vertex is two. Nonetheless, as the follow-
ing argument shows, you will not be able to find a simple graph with total degree of 
eight and four vertices of degrees 1, 1, 3, and 3. 

Proof (by contradiction): Suppose there is a simple graph G with four vertices 
of degrees 1, 1, 3, and 3. Call a and b the vertices of degree 1, and call c and d the 
vertices of degree 3. Since deg(c) 5 3 and G does not have any loops or parallel edges 
(because it is simple), there must be edges that connect c to a, b, and d.

a

d

b

c

By the same reasoning, there must be edges connecting d to a, b, and c.

a

d

b

c

But then deg(a) $ 2 and deg(b) $ 2, which contradicts the supposition that these ver-
tices have degree 1. Hence the supposition is false, and consequently there is no simple 
graph with four vertices of degrees 1, 1, 3, and 3. ■

Another important class of graphs consists of those that are “complete” in the sense that 
each vertex in the graph is connected by exactly one edge to each other vertex in the 
graph.

Note The K stands 
for the German word 
komplett, which means 
“complete.”

Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple 
graph with n vertices and exactly one edge connecting each pair of distinct vertices.

Complete Graphs on n Vertices: K1, K2, K3, K4, K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

�1 �1 �5

�2 �4

�2

�4

�3

�3

�1

�2

�3�1 �2

K2K1 K3 K4 K5

 ■

The Number of Edges of Kn

Prove that for any positive integer n, a complete graph on n vertices has 
n(n 2 1)

2  edges.

Example 4.9.8

Example 4.9.9
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Solution
Proof: Suppose n is a positive integer and Kn is a complete graph on n vertices. Because 
each vertex of Kn is connected by exactly one edge to each of the other n21 vertices of Kn, 
the degree of each vertex of Kn is n21. Thus

the total degree of Kn 5 1the number of

vertices of Kn
2?1 the degree of

each vertex of Kn
2 5 n(n21).

By the handshake theorem (Theorem 4.9.1), the total degree of Kn equals twice the number 
of its edges. So since the total degree is n(n21),

n(n21) 5 2?(the number of edges of Kn)

Dividing by 2 gives that

 the number of edges of Kn 5
n(n21)

2
. ■

In another class of graphs, called complete bipartite graphs, the vertex set can be separated 
into two subsets so that each vertex in one of the subsets is connected by exactly one edge 
to each vertex in the other subset but no vertex is connected by an edge to any other vertex 
in its own subset.

Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices, 
denoted Km,n, is a simple graph whose vertices are divided into two distinct subsets, 
V with m vertices and W with n vertices, in such a way that

1. every vertex of Km,n belongs to one of V or W, but no vertex belongs to both V 
and W;

2. there is exactly one edge from each vertex of V to each vertex of W;

3. there is no edge from any one vertex of V to any other vertex of V;

4. there is no edge from any one vertex of W to any other vertex of W.

Complete Bipartite Graphs: K3,2 and K3,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.

�1

� 2

�3

�1

� 2

�3

1

2

3

2

1

K3,2 K3,3

V V

W

W

 ■

In exercise 23, you are asked to find the number of edges of Km,n, where m and n are any 
positive integers.

Example 4.9.10

94193_ch04_ptg01.indd   241 12/11/18   3:55 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



242  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

In 1 and 2 find the degree of each vertex and the total de-
gree of the graph. Check that the number of edges equals 
one-half of the total degree.

1. 

�1 �3

�2

�5

�4 �6

2. 

�1
�3 �5

�2 �4 �6

3. A graph has vertices of degrees 0, 2, 2, 3, and 9. 
How many edges does the graph have?

4. A graph has vertices of degrees 1, 1, 4, 4, and 6. 
How many edges does the graph have?

In each of 5–13 either draw a graph with the specified 
properties or explain why no such graph exists.

5. Graph with five vertices of degrees 1, 2, 3, 3, and 5.

6. Graph with four vertices of degrees 1, 2, 3, and 3.

7. Graph with four vertices of degrees 1, 1, 1, and 4.

8. Graph with four vertices of degrees 1, 2, 3, and 4.

9. Simple graph with four vertices of degrees 1, 2, 3, 
and 4.

10. Simple graph with five vertices of degrees 2, 3, 3, 
3, and 5.

11. Simple graph with five vertices of degrees 1, 1, 1, 
2, and 3.

12. Simple graph with six edges and all vertices of 
degree 3.

13. Simple graph with nine edges and all vertices of 
degree 3.

14. At a party attended by a group of people, two 
people knew one other person before the party, 
and five people knew two other people before the 
party. The rest of the people knew three other 
people before the party. A total of 15 pairs of 
people knew each other before the party.
a. How many people attending the party knew 

three other people before the party?
b. How many people attended the party? 

15. A small social network contains three people who 
are network friends with six other people in the 
network, one person who is network friend with 
five other people in the network, and five people 
who are network friends with four other people 
in the network. The rest are network friends with 
three other people in the network. The network 
contains 41 pairs of network friends.
a. How many people are network friends with 

three other people in the network?
b. How many people are in the network? 

16. a.  In a group of 15 people, is it possible for each 
person to have exactly 3 friends? Justify your 
answer. (Assume that friendship is a symmet-
ric relationship: If x is a friend of y, then y is a 
friend of x.)

b. In a group of 4 people, is it possible for each 
person to have exactly 3 friends? Justify your 
answer.

ExERCISE SET 4.9 

 1.  The total degree of a graph is defined as .

 2.  The handshake theorem says that the total degree 
of a graph is .

 3.  In any graph the number of vertices of odd degree 
is .

 4.  A simple graph is .

 5.  A complete graph on n vertices is a .

 6.  A complete bipartite graph on (m, n) vertices is a 
simple graph whose vertices can be divided into 
two distinct, non-overlapping sets, say V with m 
vertices and W with m vertices, in such a way that 
(1) there is  from each vertex of V to each 
vertex of W, (2) there is  from any one ver-
tex of V to any other of V, and (3) there is  
from any one vertex of W to any other vertex  
of W.

TEST YOURSELF 
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17. In a group of 25 people, is it possible for each to 
shake hands with exactly 3 other people? Justify 
your answer.

18. Is there a simple graph, each of whose vertices has 
even degree? Justify your answer.

19. Suppose that G is a graph with v vertices and e 
edges and that the degree of each vertex is at least 
dmin and at most dmax. Show that

1

2
 d min ?v # e #

1

2
 d max ?v.

20. a.  Draw K6, a complete graph on six vertices.
b. Use the result of Example 4.9.9 to show that 

the number of edges of a simple graph with n 

vertices is less than or equal to 
n(n 2 1)

2 .

21. a.  In a simple graph, must every vertex have 
degree that is less than the number of vertices 
in the graph? Why?

b. Can there be a simple graph that has four verti-
ces all of different degrees? Why?

c. For any integer n $ 5, can there be a simple 
graph that has n vertices all of different de-
grees? Why?

22. In a group of two or more people, must there 
always be at least two people who are acquainted 
with the same number of people within the group? 
Why?

23. Recall that Km,n denotes a complete bipartite graph 
on (m, n) vertices.
a. Draw K4,2.
b. Draw K1,3.
c. Draw K3,4.
d. How many vertices of Km,n have degree m? 

degree n?
e. What is the total degree of Km,n?
f. Find a formula in terms of m and n for the 

number of edges of Km,n. Justify your answer. 
24. A (general) bipartite graph G is a simple graph 

whose vertex set can be partitioned into two 

disjoint nonempty subsets V1 and V2 such that 
vertices in V1 may be connected to vertices in 
V2, but no vertices in V1 are connected to other 
vertices in V1 and no vertices in V2 are connected 
to other vertices in V2. For example, the bipartite 
graph G illustrated in (i) can be redrawn as shown 
in (ii). From the drawing in (ii), you can see that 
G is bipartite with mutually disjoint vertex sets 
V1 5 {v1, v3, v5} and V2 5 {v2, v4, v6}.

(i)

�1

�6

�3

�2

�5

�4

(ii)
�1

�3

�5

�2

�4

�6

Find which of the following graphs are bipartite. 
Redraw the bipartite graphs so that their bipartite 
nature is evident.

a. �1

�4

�2

�3

b. �1

�3

�2

c.

�1

�4

�3

�6

�2

�5

d.

�1

�2

�6

�5

�4

�3

e. �1

�5

�2

�3

�4

f.

�1

�5

�3

�4

�2

25. Suppose r and s are any positive integers. Does 
there exist a graph G with the property that G 
has vertices of degrees r and s and of no other 
degrees? Explain.

H

H

1. the sum of the degrees of all the vertices of the graph  
2. equal to the number of edges of the graph 3. an even 
number 4. a graph with no loops or parallel edges  

5. simple graph with n vertices whose set of edges contains 
exactly one edge for each pain of vertices 6. one edge; no 
edge, no edge

ANSwERS FOR TEST YOURSELF 
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Application: Algorithms
Begin at the beginning . . . and go on till you come to the end: then stop. 
—Lewis Carroll, Alice’s Adventures in Wonderland, 1865

In this section we will show how the number theory facts developed in this chapter form 
the basis for some useful computer algorithms.

The word algorithm refers to a step-by-step method for performing some action. Some 
examples of algorithms in everyday life are food preparation recipes, directions for as-
sembling equipment or hobby kits, sewing pattern instructions, and instructions for filling 
out income tax forms. Part of elementary school mathematics is devoted to learning algo-
rithms for doing arithmetic such as multidigit addition and subtraction, multidigit (long) 
multiplication, and long division.

The idea of a computer algorithm is credited to Ada Augusta, Countess of Lovelace. 
Trained as a mathematician, she became very interested in Charles Babbage’s design for an 
“Analytical Engine,” a machine similar in concept to a modern computer. Lady Lovelace 
extended Babbage’s explorations of how such a machine would operate, recognizing that 
its importance lay “in the possibility of using a given sequence of instructions repeatedly, 
the number of times being either preassigned or dependent on the results of the computa-
tion.” This is the essence of a modern computer algorithm.

An Algorithmic Language
The algorithmic language used in this book is a kind of pseudocode, combining elements 
of Python, C, C11, and Java, and ordinary, but fairly precise, English. We will use some of 
the formal constructs of computer languages—such as assignment statements, loops, and 
so forth—but we will ignore the more technical details, such as the requirement for explicit 
end-of-statement delimiters, the range of integer values available on a particular installa-
tion, and so forth. The algorithms presented in this text are intended to be precise enough 
to be easily translated into virtually any high-level computer language.

In high-level computer languages, the term variable is used to refer to a specific storage 
location in a computer’s memory. To say that the variable x has the value 3 means that the 
memory location corresponding to x contains the number 3. A given storage location can 
hold only one value at a time. So if a variable is given a new value during program execu-
tion, then the old value is erased. The data type of a variable indicates the set in which the 
variable takes its values, whether the set of integers, or real numbers, or character strings, 
or the set {0, 1} (for a Boolean variable), and so forth.

An assignment statement gives a value to a variable. It has the form

x :5 e,

where x is a variable and e is an expression. This is read “x is assigned the value e” or “let 
x be e.” When an assignment statement is executed, the expression e is evaluated (using 
the current values of all the variables in the expression), and then its value is placed in the 
memory location corresponding to x (replacing any previous contents of this location).

Ordinarily, algorithm statements are executed one after another in the order in which 
they are written. Conditional statements allow this natural order to be overridden by us-
ing the current values of program variables to determine which algorithm statement will 
be executed next. Conditional statements are denoted either

 a. if (condition) or b. if (condition) then s1

 then s1

 else s2

4.10

Lady Lovelace 
(1815–1852)
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where condition is a predicate involving algorithm variables and where s1 and s2 are al-
gorithm statements or groups of algorithm statements. We generally use indentation to 
indicate that statements belong together as a unit. When ambiguity is possible, however, we 
may explicitly bind a group of statements together into a unit by preceding the group with 
the word do and following it with the words end do.

Execution of an if-then-else statement occurs as follows:

1. The condition is evaluated by substituting the current values of all algorithm vari-
ables appearing in it and evaluating the truth or falsity of the resulting statement.

2. If condition is true, then s1 is executed and execution moves to the next algo-
rithm statement following the if-then-else statement.

3. If condition is false, then s2 is executed and execution moves to the next algo-
rithm statement following the if-then-else statement.

Execution of an if-then statement is similar to execution of an if-then-else statement, 
except that if condition is false, execution passes immediately to the next algorithm state-
ment following the if-then statement.

Often condition is called a guard because it is stationed before s1 and s2 and restricts 
access to them.

Execution of if-then-else and if-then Statements

Consider the following algorithm segments:

a. if x . 2
  then y :5 x11
  else do x :5 x21
     y :5 3?x end do

b. y :5 0
if x . 2 then y :5 2x

What is the value of y after execution of these segments for the following values of x?
 i. x 5 5  ii. x 5 2

Solution
a. (i)  Because the value of x is 5 before execution, the guard condition x . 2 is true at 

the time it is evaluated. Hence the statement following then is executed, and so the 
value of x11 5 511 is computed and placed in the storage location correspond-
ing to y. So after execution, y 5 6.

(ii)  Because the value of x is 2 before execution, the guard condition x . 2 is false at 
the time it is evaluated. Hence the statement following else is executed. The value 
of x21 5 221 is computed and placed in the storage location corresponding to 
x, and the value of 3?x 5 3?1 is computed and placed in the storage location cor-
responding to y. So after execution, y 5 3.

b. (i)  Since x 5 5 initially, the condition x . 2 is true at the time it is evaluated. So the 
statement following then is executed, and y obtains the value 25 5 32.

(ii)  Since x 5 2 initially, the condition x . 2 is false at the time it is evaluated. Execu-
tion, therefore, moves to the next statement following the if-then statement, and 
the value of y does not change from its initial value of 0. ■

Iterative statements are used when a sequence of algorithm statements is to be execut-
ed over and over again. We will use two types of iterative statements: while loops and  
for-next loops.

Example 4.10.1
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A while loop has the form

while (condition)
[statements that make up  
the body of the loop]

end while

where condition is a predicate involving algorithm variables. The word while marks the 
beginning of the loop, and the words end while mark its end. 

Execution of a while loop occurs as follows:

1. The condition is evaluated by substituting the current values of all the algorithm 
variables and evaluating the truth or falsity of the resulting statement.

2. If condition is true, all the statements in the body of the loop are executed in 
order. Then execution moves back to the beginning of the loop and the process 
repeats.

3. If condition is false, execution passes to the next algorithm statement following 
the loop.

The loop is said to be iterated (IT-a-rate-ed) each time the statements in the body of the 
loop are executed. Each execution of the body of the loop is called an iteration (it-er-AY-
shun) of the loop.

Tracing Execution of a while Loop

Trace the execution of the following algorithm segment by finding the values of all the 
algorithm variables each time they are changed during execution:

i :5 1, s :5 0

while (i # 2)

s :5 s1 i

i :5 i11

end while

Solution Since i is given an initial value of 1, the condition i # 2 is true when the while 
loop is entered. So the statements within the loop are executed in order:

s 5 011 5 1 and i 5 111 5 2.

Then execution passes back to the beginning of the loop.
The condition i # 2 is evaluated using the current value of i, which is 2. The condition 

is true, and so the statements within the loop are executed again:

s 5 112 5 3 and i 5 211 5 3.

Then execution passes back to the beginning of the loop.
The condition i # 2 is evaluated using the current value of i, which is 3. This time the 

condition is false, and so execution passes beyond the loop to the next statement of the 
algorithm.

This discussion can be summarized in a table, called a trace table, that shows the cur-
rent values of algorithm variables at various points during execution. The trace table for 

Example 4.10.2
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a while loop generally gives all values immediately following each iteration of the loop. 
(“After the zeroth iteration” means the same as “before the first iteration.”)

Trace Table

Iteration Number
0 1 2

Variable Name
i 1 2 3

s 0 1 3

 ■

The second form of iteration we will use is a for-next loop. A for-next loop has the 
following form:

 for variable :5 initial expression to final expression

 [statements that make up  
 the body of the loop]
 next (same) variable

A for-next loop is executed as follows:

1. The for-next loop variable is set equal to the value of initial expression.

2. A check is made to determine whether the value of variable is less than or equal 
to the value of final expression.

3. If the value of variable is less than or equal to the value of final expression, 
then the statements in the body of the loop are executed in order, variable is 
increased by 1, and execution returns back to step 2.

4. If the value of variable is greater than the value of final expression, then execu-
tion passes to the next algorithm statement following the loop.

Trace Table for a for-next Loop

Convert the for-next loop shown below into a while loop. Construct a trace table for the 
loop.

for i :5 1 to 4

x :5 i2

next i

Solution The given for-next loop is equivalent to the following:

i :5 1

while (i # 4)

x :5 i2

i :5 i11
end while

Example 4.10.3
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Its trace table is as follows:

Trace Table

Iteration Number
0 1 2 3 4

Variable Name
x 1 4 9 16

i 1 2 3 4 5

A Notation for Algorithms
We will express algorithms as subroutines that can be called upon by other algorithms 
as needed and used to transform a set of input variables with given values into a set of 
output variables with specific values. The output variables and their values are assumed 
to be returned to the calling algorithm. For example, the division algorithm specifies a 
procedure for taking any two positive integers as input and producing the quotient and 
remainder of the division of one number by the other as output. Whenever an algorithm 
requires such a computation, the algorithm can just “call” the division algorithm to do 
the job.

We generally include the following information when describing algorithms formally:

1. The name of the algorithm, together with a list of input and output variables.

2. A brief description of how the algorithm works.

3. The input variable names, labeled by data type (whether integer, real number, and so 
forth).

4. The statements that make up the body of the algorithm, possibly with explanatory  
comments.

5. The output variable names, labeled by data type.

You may wonder where the word algorithm came from. It evolved from the last part of 
the name of the Persian mathematician Abu Ja’far Mohammed ibn Mûsâ al-Khowârizmî. 
During Europe’s Dark Ages, the Arabic world enjoyed a period of intense intellectual 
activity. One of the great mathematical works of that period was a book written by al-
Khowârizmî that contained foundational ideas for the subject of algebra. The translation of 
this book into Latin in the thirteenth century had a profound influence on the development 
of mathematics during the European Renaissance.

The Division Algorithm
For an integer a and a positive integer d, the quotient-remainder theorem guarantees the 
existence of integers q and r such that

a 5 dq1 r and 0 # r , d.

In this section, we give an algorithm to calculate q and r for given a and d where a is 
nonnegative. (The extension to negative a is left to the exercises at the end of this sec-
tion.) The following example illustrates the idea behind the algorithm. Consider trying 
to find the quotient and the remainder of the division of 32 by 9, but suppose that you 
do not remember your multiplication table and have to figure out the answer from basic 

■

Note Programming lan-
guages have various terms 
for subroutines: proce-
dures, functions, routines, 
and subprograms.
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principles. The quotient represents that number of 9’s that are contained in 32. The re-
mainder is the number left over when all possible groups of 9 are subtracted. Thus you 
can calculate the quotient and remainder by repeatedly subtracting 9 from 32 until you 
obtain a number less than 9:

 3229 5 23 $ 9, and

 322929 5 14 $ 9, and
 32292929 5 5 , 9.

This shows that 3 groups of 9 can be subtracted from 32 with 5 left over. Thus the quotient 
is 3 and the remainder is 5.

Algorithm 4.10.1 Division Algorithm

[Given a nonnegative integer a and a positive integer d, the aim of the algorithm is 
to find integers q and r that satisfy the conditions a 5 dq1 r and 0 # r , d. This 
is done by subtracting d repeatedly from a until the result is less than d but is still 
nonnegative.

0 # a2d2d2d2 Á 2d 5 a2dq , d.

The total number of d’s that are subtracted is the quotient q. The quantity a 2 dq equals 
the remainder r.]
Input: a [a nonnegative integer], d [a positive integer]

Algorithm Body:

r :5 a, q :5 0
[Repeatedly subtract d from r until a number less than d is obtained. Add 1 to q each 
time d is subtracted.]
while (r $ d)

r :5 r2d
q :5 q11

end while
[After execution of the while loop, a 5 dq1 r.]

Output: q, r [nonnegative integers]

Note that the values of q and r obtained from the division algorithm are the same as 
those computed by the div and mod functions built into a number of computer languages. 
That is, if q and r are the quotient and remainder obtained from the division algorithm with 
input a and d, then the output variables q and r satisfy

q 5 a div d and r 5 a mod d.

The next example asks for a trace table for the division algorithm.

Tracing the Division Algorithm

Trace the action of Algorithm 4.10.1 on the input variables a 5 19 and d 5 4.

Solution Make a trace table as shown on the next page. The column under the kth itera-
tion gives the states of the variables after the kth iteration of the loop.

Example 4.10.4
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Iteration Number
0 1 2 3 4

Variable Name

a 19

d 4

r 19 15 11 7 3

q 0 1 2 3 4

The Euclidean Algorithm
The greatest common divisor of two integers a and b is the largest integer that divides 
both a and b. For example, the greatest common divisor of 12 and 30 is 6. The Euclidean 
algorithm provides a very efficient way to compute the greatest common divisor of two 
integers.

Definition

Let a and b be integers that are not both zero. The greatest common divisor of a 
and b, denoted gcd(a, b), is that integer d with the following properties:

1. d is a common divisor of both a and b. In other words,

d ua    and    d ub.

2. For every integer c, if c is a common divisor of both a and b, then c is less than or 
equal to d. In other words,

for every integer c, if c ua and c ub then c # d.

Calculating Some gcd’s

a. Find gcd(72, 63).

b. Find gcd(1020, 630).

c. In the definition of greatest common divisor, gcd(0, 0) is not allowed. Why not? What 
would gcd(0, 0) equal if it were found in the same way as the greatest common divi-
sors for other pairs of numbers?

Solution
a. 72 5 9?8 and 63 5 9?7. So 9 u72 and 9 u63, and no integer larger than 9 divides both 

72 and 63. Hence gcd(72, 63) 5 9.

b. By the laws of exponents, 1020 5 220?520 and 630 5 230?330 5 220?210?330. It follows 
that

220 u1020    and    220 u630,

and by the unique factorization of integers theorem, no integer larger than 220 divides 
both 1020 and 630 (because no more than twenty 2’s divide 1020, no 3’s divide 1020, and 
no 5’s divide 630). Hence gcd(1020, 630) 5 220.

c. Suppose gcd(0, 0) were defined to be the largest common factor that divides 0 and 0. 
The problem is that every positive integer divides 0 and there is no largest integer. So 
there is no largest common divisor! ■

■

Example 4.10.5
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Calculating gcd’s using the approach illustrated in Example 4.10.5 works only when the 
numbers can be factored completely. By the unique factorization of integers theorem, all 
numbers can, in principle, be factored completely. But, in practice, even using the highest-
speed computers, the process is unfeasibly long for very large integers. Over 2,000 years 
ago, Euclid devised a method for finding greatest common divisors that is easy to use and 
is much more efficient than either factoring the numbers or repeatedly testing both num-
bers for divisibility by successively larger integers.

The Euclidean algorithm is based on the following two facts, which are stated as 
lemmas.

Lemma 4.10.2

If a and b are any integers not both zero, and if q and r are any integers such that

a 5 bq1 r,

then

gcd(a, b) 5 gcd(b, r).

Proof: [The proof is divided into two sections: (1) proof that gcd(a, b) # gcd(b, r), and 
(2) proof that gcd(b, r) # gcd(a, b). Since each gcd is less than or equal to the other, the 
two must be equal.]

1. gcd(a, b) # gcd(b, r):
a. [We will first show that any common divisor of a and b is also a common divi-

sor of b and r.]
Let a and b be integers, not both zero, and let c be a common divisor of 

a and b. Then c ua and c ub, and so, by definition of divisibility, a 5 nc and 
b 5 mc, for some integers n and m. Substitute into the equation

a 5 bq1 r

to obtain

nc 5 (mc)q1 r.

(continued on page 252)

Lemma 4.10.1

If r is a positive integer, then gcd(r, 0) 5 r.

Proof: Suppose r is a positive integer. [We must show that the greatest common divisor 
of both r and 0 is r.] Certainly, r is a common divisor of both r and 0 because r divides 
itself and also r divides 0 (since every positive integer divides 0). Also no integer 
larger than r can be a common divisor of r and 0 (since no integer larger than r can 
divide r). Hence r is the greatest common divisor of r and 0.

The proof of the second lemma is based on a clever pattern of argument that is used 
in many different areas of mathematics: To prove that A 5 B, prove that A # B and that 
B # A.
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252  CHAPTER 4 elementarY numBer tHeorY anD metHoDS of Proof

The Euclidean algorithm can be described as follows:

Then solve for r:

r 5 nc2 (mc)q 5 (n2mq)c.

 Now n2mq is an integer, and so, by definition of divisibility, c ur. Because 
we already know that c ub, we can conclude that c is a common divisor of b 
and r [as was to be shown].

b. [Next we show that gcd(a, b) # gcd(b, r).]
Now the greatest common divisor of a and b is defined because a and 

b are not both zero. Also, by part (a), every common divisor of a and b 
is a common divisor of b and r, and so the greatest common divisor of a 
and b is a common divisor of b and r. But then gcd(a, b) (being one of the 
common divisors of b and r) is less than or equal to the greatest common 
divisor of b and r:

gcd(a, b) # gcd(b, r).

2. gcd(b, r) # gcd(a, b):
The second part of the proof is very similar to the first part. It is left as an 

exercise.

Euclidean Algorithm Description

1. Let A and B be integers with A . B $ 0.

2. To find the greatest common divisor of A and B, first check whether B 5 0. If it 
is, then gcd(A, B) 5 A by Lemma 4.10.1. If it isn’t, then B . 0 and the quotient- 
remainder theorem can be used to divide A by B to obtain a quotient q and a 
remainder r:

A 5 Bq1 r    where 0 # r , B.

By Lemma 4.10.2, gcd(A, B) 5 gcd(B, r). Thus the problem of finding the great-
est common divisor of A and B is reduced to the problem of finding the greatest 
common divisor of B and r.

[What makes this information useful is the fact that the larger number of the pair 
(B, r) is smaller than the larger number of the pair (A, B). The reason is that the value 
of r found by the quotient-remainder theorem satisfies

0 # r , B.

And, since by assumption B , A, we have that

0 # r , B , A.]

3. Now just repeat the process, starting again at (2), but use B instead of A and 
r instead of B. The repetitions are guaranteed to terminate eventually with 
r 5 0 because each new remainder is less than the preceding one and all are 
nonnegative.

Note Strictly speaking, 
the fact that the repeti-
tions eventually termi-
nate is justified by the 
well-ordering principle 
for the integers, which is 
discussed in Section 5.4.
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By the way, it is always the case that the number of steps required in the Euclidean al-
gorithm is at most five times the number of digits in the smaller integer. This was proved 
by the French mathematician Gabriel Lamé (1795–1870).

The following example illustrates how to use the Euclidean algorithm.

Hand-Calculation of gcd’s Using the Euclidean Algorithm

Use the Euclidean algorithm to find gcd(330, 156).

Solution

1. Divide 330 by 156:

2

156 ) 330

312

18

Thus 330 5 156?2118, and hence gcd(330, 156) 5 gcd(156, 18) by Lemma 4.10.2.

2. Divide 156 by 18:

8

18 ) 156

144

12

Thus 156 5 18?8112, and hence gcd(156, 18) 5 gcd(18, 12) by Lemma 4.10.2.

3. Divide 18 by 12:

1

12 ) 18

12

6

Thus 18 5 12?116, and hence gcd(18, 12) 5 gcd(12, 6) by Lemma 4.10.2.

4. Divide 12 by 6:

2

6 ) 12

12

0

Thus 12 5 6?210, and hence gcd(12, 6) 5 gcd(6, 0) by Lemma 4.10.2.
Putting all the equations above together gives

 gcd(330, 156) 5 gcd(156, 18)

 5 gcd(18, 12)

 5 gcd(12, 6)

 5 gcd(6, 0)

 5 6   by Lemma 4.10.1.

Therefore, gcd(330, 156) 5 6. ■

Example 4.10.6

d quotient

d remainder

d quotient

d remainder

d quotient

d remainder

d quotient

d remainder
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The following is a version of the Euclidean algorithm written using formal algorithm 
notation.

 1. When an algorithm statement of the form x : 5 e 
is executed, .

 2. Consider an algorithm statement of the following 
form.

  if (condition)

  then s1

  else s2

TEST YOURSELF  

Algorithm 4.10.2 Euclidean Algorithm

[Given two integers A and B with A . B $ 0, this algorithm computes gcd(A, B). It is 
based on two facts:

1. gcd(a, b) 5 gcd(b, r) if a, b, q, and r are integers with a 5 b?q1 r and 0 # r , b.

2. gcd(a, 0) 5 a.]

Input: A, B [integers with A . B $ 0]

Algorithm Body:

a :5 A, b :5 B, r :5 B
[If b Þ 0, compute a mod b, the remainder of the integer division of a by b, and set r 
equal to this value. Then repeat the process using b in place of a and r in place of b.]
while (b Þ 0)

r :5 a mod b
[The value of a mod b can be obtained by calling the division algorithm.]

a :5 b
b :5 r

end while
[After execution of the while loop, gcd(A, B) 5 a.]
gcd:5 a

Output: gcd [a positive integer]

A Trace Table for the Euclidean Algorithm

Construct a trace table for Algorithm 4.10.2 using A 5 330 and B 5 156, the same num-
bers as in Example 4.10.6.

Solution

A 330

B 156

a 330 156 18 12 6

b 156 18 12 6 0

r 156 18 12 6 0

gcd 6

Example 4.10.7

■
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  When such a statement is executed, the truth or 
falsity of the condition is evaluated. If condition is 
true, . If condition is false, .

 3. Consider an algorithm statement of the following 
form.

  while (condition)
  [statements that make up the body of the loop]
  end while

  When such a statement is executed, the truth or 
falsity of the condition is evaluated. If condition is 
true, . If condition is false, .

 4. Consider an algorithm statement of the following 
form.

  for variable : 5 initial expression to final  
expression.

  [statements that make up the body of the loop]
  next (same) variable

  When such a statement is executed, variable is set 
equal to the value of the initial expression, and a 
check is made to determine whether the value of 
variable is less than or equal to the value of final 
expression. If so, . If not, .

 5. Given a nonnegative integer a and a positive inte-
ger d the division algorithm computes .

 6. Given integers a and b, not both zero, gcd(a, b) is 
the integer d that satisfies the following two condi-
tions:  and .

 7. If r is a positive integer, then gcd(r, 0) 5 .

 8. If a and b are integers not both zero and if q and r 
are nonnegative integers such that a 5 bq1 r then 
gcd(a, b) 5 .

 9. Given positive integers A and B with A . B, the 
Euclidean algorithm computes .

Find the value of z when each of the algorithm segments 
in 1 and 2 is executed.

1. i :5 2
if (i . 3 or i # 0)

then z :5 1
else z :5 0

2. i :5 3
if (i # 3 or i . 6)

then z :5 2
else z :5 0

3. Consider the following algorithm segment:
if x?y . 0 then do y :5 3?x

   x :5 x11 end do
z :5 x?y

Find the value of z if prior to execution x and y 
have the values given below.
a. x 5 2, y 5 3
b. x 5 1, y 5 1

Find the values of a and e after execution of the loops in 4 
and 5 by first making trace tables for them.

4. a :5 2
for i :5 1 to 3

a :5 3a11
next i

5. e :5 2, f :5 0
for k :5 1 to 3
    e :5 e?k
    f :5 e1 f

next k
Make a trace table to trace the action of algorithm 4.10.1 
for the input variables given in 6 and 7.

6. a 5 26, d 5 7 7. a 5 59, d 5 13

8. The following algorithm segment makes change; 
given an amount of money A between 1¢ and 99¢, 

it determines a breakdown of A into quarters (q), 
dimes (d), nickels (n), and pennies (p).

q :5 A div 25
A :5 A mod 25
d :5 A div 10
A :5 A mod 10
n :5 A div 5
p :5 A mod 5

a. Trace this algorithm segment for A 5 69.
b. Trace this algorithm segment for A 5 87. 

Find the greatest common divisor of each of the pairs of 
integers in 9–12. (Use any method you wish.)

9. 27 and 72 10. 5 and 9

11. 7 and 21 12. 48 and 54

Use the euclidean algorithm to hand-calculate the greatest 
common divisors of each of the pairs of integers in 13–16.

13. 1,188 and 385 14. 509 and 1,177

15. 832 and 10,933 16. 4,131 and 2,431

Make a trace table to trace the action of algorithm 4.10.2 
for the input variables given in 17–19.

17. 1,001 and 871

18. 5,859 and 1,232

19. 1,570 and 488

ExERCISE SET 4.10 
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Definition: Integers a and b are said to be relatively 
prime if, and only if, their greatest common divisor is 1.

In 20 and 21 trace the action of algorithm 4.10.2 to deter-
mine whether the integers are relatively prime.

20. 4,617 and 2,563 21. 34,391 and 6,728.

22. Prove that for all positive integers a and b, a ub if, 
and only if, gcd(a, b) 5 a. (Note that to prove “A 
if, and only if, B,” you need to prove “if A then B” 
and “if B then A.”)

23. a.  Prove that if a and b are integers, not both zero, 
and d 5 gcd(a, b), then ayd and byd are integers 
with no common divisor that is greater than 1.

b. Write an algorithm that accepts the numerator 
and denominator of a fraction as input 
and produces as output the numerator and 
denominator of that fraction written in lowest 
terms. (The algorithm may call upon the 
Euclidean algorithm as needed.)

24. Complete the proof of Lemma 4.10.2 by proving 
the following: If a and b are any integers with 
b Þ 0 and q and r are any integers such that

a 5 bq1 r.

then   gcd(b, r) # gcd(a, b).

25. a.  Prove: If a and d are positive integers and q 
and r are integers such that a 5 dq1 r and 
0 , r , d, then

2a 5 d(2(q11))1 (d2 r)

and 0 , d2 r , d.

b. Indicate how to modify Algorithm 4.10.1 to 
allow for the input a to be negative.

26. a.  Prove that if a, d, q, and r are integers such 
that a 5 dq1 r and 0 # r , d, then

q 5 :ayd; and r 5 a2 :ayd;?d.

b. In a computer language with a built-in-floor 
function, div and mod can be calculated as 
follows:

a  div d 5 :ayd; and a mod d 5 a2 :ayd;?d.

Rewrite the steps of Algorithm 4.10.2 for a 
computer language with a built-in floor func-
tion but without div and mod.

27. An alternative to the Euclidean algorithm uses 
subtraction rather than division to compute greatest 

common divisors. (After all, division is repeated 
subtraction.) It is based on the following lemma.

Lemma 4.10.3
If  a $ b . 0,  then  gcd(a, b) 5 gcd(b, a2b).

Algorithm 4.10.3 Computing gcd’s by Subtraction
[Given two positive integers A and B, variables a and b are 
set equal to A and B. Then a repetitive process begins. If 
a Þ 0, and b Þ 0, then the larger of a and b is set equal to 
a2b (if a $ b) or to b2a (if a , b), and the smaller of a 
and b is left unchanged. This process is repeated over and 
over until eventually a or b becomes 0. By Lemma 4.10.3, 
after each repetition of the process,

gcd(A, B) 5 gcd(a, b).

After the last repetition,

gcd(A, B) 5 gcd(a, 0) or gcd(A, B) 5 gcd(0, b)

depending on whether a or b is nonzero. But by Lemma 
4.10.1,

gcd(a, 0) 5 a    and    gcd(0, b) 5 b.

Hence, after the last repetition,

gcd(A, B) 5 a if a Þ 0 or gcd(A, B) 5 b if b Þ 0.]

Input: A, B [positive integers]

Algorithm Body:
a :5 A, b :5 B
while (a Þ 0 and b Þ 0)

if a $ b then a :5 a2b
else b :5 b2a

end while
if a 5 0 then gcd :5 b
else gcd :5 a
[After execution of the if-then-else statement, gcd 5

gcd(A, B).]

Output: gcd [a positive integer]

a. Prove Lemma 4.10.3.
b. Trace the execution of Algorithm 4.10.3 for 

A 5 630 and B 5 336.
c. Trace the execution of Algorithm 4.10.3 for 

A 5 768 and B 5 348.

exercises 28–32 refer to the following definition.

Definition: The least common multiple of two nonzero 
integers a and b, denoted lcm(a, b), is the positive integer 
c such that
a. a uc and b uc
b.  for all positive integers m, if a um and b um, then 

c # m.

H

H
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28. Find
a. lcm(12, 18)
b. lcm(22?3?5, 23?32)
c. lcm(2800, 6125) 

29. Prove that for all positive integers a and b,  
gcd(a, b) 5 lcm(a, b) if, and only if, a 5 b.

30. Prove that for all positive integers a and b, a ub if, 
and only if, lcm(a, b) 5 b.

31. Prove that for all integers a and b,  
gcd(a, b) u lcm(a, b).

32. Prove that for all positive integers a and b,  
gcd(a, b)?lcm(a, b) 5 ab.

1. the expression e is evaluated (using the current values of 
all the variables in the expression), and this value is placed 
in the memory location corresponding to x (replacing 
any previous contents of the location) 2. statement s1 is 
executed; statement s2 is executed 3. all statements in the 
body of the loop are executed in order and then execution 
moves back to the beginning of the loop and the process 
repeats; execution passes to the next algorithm statement 

following the loop 4. the statements in the body of the 
loop are executed in order, variable is increased by 1, and 
execution returns to the top of the loop; execution passes to 
the next algorithm statement following the loop 5. integers 
q and r with the property that n 5 dq1 r and 0 # r , d  
6. d divides both a and b; if c is a common divisor of both 
a and b, then c # d 7. r 8. gcd(b, r) 9. the greatest 
common divisor of A and B (Or: gcd(A, B))

ANSwERS FOR TEST YOURSELF 
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Chapter 5

258

Chapter 5 SEQUENCES, 
MATHEMATICAL 
INDUCTION, AND 
RECURSION
One of the most important tasks of mathematics is to discover and characterize regular 
patterns, such as those associated with processes that are repeated. The main mathemati-
cal structure used in the study of repeated processes is the sequence, and the main math-
ematical tool used to verify conjectures about sequences is mathematical induction. In 
this chapter we introduce the notation and terminology of sequences, show how to use 
both ordinary and strong mathematical induction to prove properties about them, illus-
trate the various ways recursively defined sequences arise, describe a method for obtain-
ing an explicit formula for a recursively defined sequence, and explain how to verify the 
correctness of such a formula. We also discuss a principle—the well-ordering principle 
for the integers—that is logically equivalent to the two forms of mathematical induction, 
and we show how to adapt mathematical induction to prove the correctness of computer 
algorithms. In the final section we discuss more general recursive definitions, includ-
ing those for Boolean expressions and recursive functions, and we introduce a variation 
of mathematical induction, called structural induction, which is especially important in 
computer science.

Sequences
A mathematician, like a painter or poet, is a maker of patterns.  
—G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-
ents, eight great-grandparents, and so forth. These numbers can be written in a row as

2, 4, 8, 16, 32, 64, 128, Á  

To express the pattern of the numbers, suppose that each is labeled by an integer giving 
its position in the row.

Position in the row 1 2 3  4  5  6 7 Á

Number of ancestors 2 4 8 16 32 64 128 Á

The number corresponding to position 1 is 2, which equals 21. The number correspond-
ing to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding 
numbers are 8, 16, 32, 64, and 128, which equal 23, 24, 25, 26, and 27, respectively. For a 
general value of k, let Ak be the number of ancestors in the kth generation back. The pattern 
of computed values strongly suggests the following for each k:

Ak 5 2k.

5.1

Note Strictly speaking, 
the true value of Ak is less 
than 2k when k is large, 
because ancestors from 
one branch of the family 
tree may also appear on 
other branches of the tree.

Note The symbol “. . .”  
is called an ellipsis. It 
is shorthand for “and so 
forth.”
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Definition

A sequence is a function whose domain is either all the integers between two given 
integers or all the integers greater than or equal to a given integer.

We typically represent a sequence as a set of elements written in a row. In the sequence 
denoted

am, am11, am12, Á , an,

each individual element ak (read “a sub k”) is called a term. The k in ak is called a sub-
script or index, m (which may be any integer) is the subscript of the initial term, and n 
(which must be an integer that is greater than or equal to m) is the subscript of the final 
term. The notation

am, am11, am12, Á  

denotes an infinite sequence. An explicit formula or general formula for a sequence is a 
rule that shows how the values of ak depend on k.

The following example shows that it is possible for two different formulas to give se-
quences with the same terms.

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3, Á and b2, b3, b4, Á by the following explicit formulas:

ak 5
k

k11
 for every integer k $ 1,

bi 5
i21

i
  for every integer i $ 2.

Compute the first five terms of both sequences.

Solution

a1 5
1

111
5

1

2
   b2 5

221

2
5

1

2

a2 5
2

211
5

2

3
   b3 5

321

3
5

2

3

a3 5
3

311
5

3

4
   b4 5

421

4
5

3

4

a4 5
4

411
5

4

5
   b5 5

521

5
5

4

5

a5 5
5

511
5

5

6
   b6 5

621

6
5

5

6

As you can see, the first terms of both sequences are 12 , 23 , 34 , 45 , 56 ; in fact, it can be shown 
that all terms of both sequences are identical. ■

The next example shows that an infinite sequence may have a finite number of values.

Example 5.1.1
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An Alternating Sequence

Compute the first six terms of the sequence c0, c1, c2, Á defined as follows:

cj 5 (21)j for every integer j $ 0.

Solution c0 5 (21)0 5 1

c1 5 (21)1 5 21

c2 5 (21)2 5 1

c3 5 (21)3 5 21

c4 5 (21)4 5 1

c5 5 (21)5 5 21

Thus the first six terms are 1, 21, 1, 21, 1, 21. By exercises 10 and 11 of Section 4.2, even 
powers of 21 equal 1 and odd powers of 21 equal 21. It follows that the sequence oscil-
lates endlessly between 1 and 21. ■

In Examples 5.1.1 and 5.1.2 the task was to compute the first few terms of a sequence 
given by an explicit formula. The next example treats the question of how to find an explicit 
formula for a sequence with given initial terms. Any such formula is a guess, but it is useful 
to be able to make such guesses.

Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence with the following initial terms:

1, 2
1

4
, 1

9
, 2

1

16
, 1

25
, 2

1

36
, Á .

Solution Denote the general term of the sequence by ak and suppose the first term is a1. 
Next observe that the denominator of each term is a perfect square. Thus the terms can be 
rewritten as

1

12,
(21)

22 ,
1

32,
(21)

42 ,
1

52,
(21)

62 .

D D D D D D
a1  a2  a3  a4  a5  a6

Now note that the denominator of each term equals the square of the subscript of that term, 
and that the numerator equals 61. Hence

ak 5
61

k2 .

Also the numerator oscillates back and forth between 11 and 21; it is 11 when k is odd 
and 21 when k is even. To achieve this oscillation, insert a factor of (21)k11 (or (21)k−1) 
into the formula for ak. [For when k is odd, k11 is even and thus (21)k11 5 11; and when 
k is even, k11 is odd and thus (21)k11 5 21.] Consequently, an explicit formula that gives 
the correct first six terms is

ak 5
(21)k11

k2  for every integer k $ 1.

Example 5.1.2

Example 5.1.3
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Note that making the first term a0 would have led to the alternative formula

ak 5
(21)k

(k11)2 for every integer k $ 0.

You should check that this formula also gives the correct first six terms. ■

Summation Notation
Consider again the example in which Ak 5 2k represents the number of ancestors a person 
has in the kth generation back. What is the total number of ancestors for the past six gen-
erations? The answer is

A1 1A2 1A3 1A4 1A5 1A6 
5

 
21 122 123 124 125 126 5  126.

It is convenient to use a shorthand notation to write such sums. In 1772 the French math-
ematician Joseph Louis Lagrange introduced the capital Greek letter sigma, o, to denote 
the word sum (or summation), and defined the summation notation as follows:

Definition

If m and n are integers and m # n, the symbol o
n

k5m

 ak,  read the summation from k

equals m to n of a-sub-k, is the sum of all the terms am, am11, am12, Á , an. We 
say that am 1am11 1am12 1 Á 1an is the expanded form of the sum, and we write

o
n

k5m

ak 5 am 1am11 1am12 1 Á 1an.

We call k the index of the summation, m the lower limit of the summation, and n the 
upper limit of the summation.

Computing Summations

Let a1 5 22, a2 5 21, a3 5 0, a4 5 1, and a5 5 2. Compute the following:

a. o
5

k51

ak b. o
2

k52

ak c. o
2

k51

a2k

Solution

a. o
5

k51

ak 5 a1 1a2 1a3 1a4 1a5 5 (22)1 (21)101112 5 0

b. o
2

k52

ak 5 a2 5 21

c. o
2

k51

a2k 5 a2?1 1a2?2 5 a2 1a4 5 2111 5 0 ■

Oftentimes, the terms of a summation are expressed using an explicit formula. For in-
stance, it is common to see summations such as

o
5

k51

k2 or o
8

i50

(21)i

i11
.

!
Caution! It is also pos-
sible for two sequences 
to start off with the same 
initial values but diverge 
later on. See exercise 5 at 
the end of this section.

Hi
st

or
ic

al
/G

et
ty

 Im
ag

es

Joseph Louis Lagrange 
(1736–1813)

Example 5.1.4
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When the terms of a Summation are Given by a Formula

Compute o
5

k51

k2.

Solution o
5

k51

k2 5 12 122 132 142 152 5 55. ■

When the upper limit of a summation is a variable, an ellipsis is used to write the sum-
mation in expanded form.

Changing from Summation Notation to expanded Form

Write o
n

i50

(21)i

i11
 in expanded form:

Solution

 o
n

i50

(21)i

i11
5

(21)0

011
1

(21)1

111
1

(21)2

211
1

(21)3

311
1 Á 1

(21)n

n11

 5
1

1
1

(21)

2
1

1

3
1

(21)

4
1 Á 1

(21)n

n11

  5 12
1

2
1

1

3
2

1

4
1 Á 1

(21)n

n11
 ■

Changing from expanded Form to Summation Notation

Express the following using summation notation:

1
n

1
2

n11
1

3

n12
1 Á 1

n11

2n
.

Solution The general term of this summation can be expressed as i 1 1
n 1 i for each integer 

i from 0 to n. Hence

 
1
n

1
2

n11
1

3

n12
1 Á 1

n11

2n
5 o

n

i50

i11

n1 i
. ■

In Examples 5.1.6 and 5.1.7, the top index n of the summation is a free variable because 
it may be replaced by any integer greater than or equal to the bottom index, and each such 
replacement leads to a different summation. For any particular summation the top index 
acts like a constant. Thus when the top index also appears in the terms of the summation, 
as in Example 5.1.7, its value does not change from term to term. By contrast, the index 
variable in these examples is bound by the summation symbol. It must take every value 
from the bottom limit to the top limit in succession. The binding of an index variable in 
a summation is similar to the binding of a variable in a quantified statement or of a local 
variable in a computer program.

Writing a summation in expanded form helps relate it to our previous experience of 
working with sums. But for small values of n the expanded form may be misleading. For 
instance, consider trying to evaluate the following expression for n 5 1:

12 122 132 1 Á 1n2.

It may be tempting to write that when n 5 1, 12 122 132 1 Á 1n2 equals

12 122 132 1 Á 112.  This is wrong!

example 5.1.5

example 5.1.6

example 5.1.7

!
Caution! 
Don’t write this
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5.1 SequenceS  263

The reason is that 12 122 132 1 Á 1n2 is simply a way of representing the sum of 
squares of consecutive integers starting with 12 and ending with n2. Thus, when n 5 1 the 
sum starts and ends with 1, and so it is just 12. If n 5 2 the sum is 12 122, and if n 5 3 the 
sum is 12 122 132.

Evaluating a1 1 a2 1 a3 1 Á 1 an for Small n

What is the value of 20 121 122 1 Á 12n when n 5 0, n 5 1, and n 5 2?

Solution When you evaluate a summation like 20 121 122 1 Á 12n for small values of 
n, you can avoid a mistake by imagining it in summation notation. For instance,

20 121 122 1 Á 12n 5 o
n

i50

2i.

So when n 5 0, 20 121 122 1 Á 12n has the value o
0

i50

2i 5 20 5 1.

When n 5 1, 20 121 122 1 Á 12n has the value o
1

i50

2i 5 20 121 5 112.

When n 5 2, 20 121 122 1 Á 12n has the value o
2

i50

2i 5 20 121 122 5 11214. ■

A more mathematically precise definition of summation, called a recursive definition, 
is the following:* If m is any integer, then

o
m

k5m

ak 5 am and o
n

k5m

ak 5 o
n21

k5m

ak 1an for every integer n . m.

When solving problems, it is often useful to rewrite a summation using the recursive form 
of the definition, either by grouping summands using a single summation sign or by sepa-
rating off the final term of a summation.

Using a Single Summation Sign and Separating Off a Final Term

a. Write o
n

k50

2k 12n11 as a single summation.

b. Rewrite o
n11

i51

 
1

i2
 by separating off the final term.

Solution

a. o
n

k50

2k 12k11 5 (20 121 122 1 Á 12n)12n11 5 o
n11

k50

2k

b. o
n11

i51

 

1

i2
5

1

12 1
1

22 1
1

32 1 Á 1
1

n2 1
1

(n11)2 5 o
n

i51

1

i2
1

1

(n11)2 ■

In certain sums each term is a difference of two quantities. When you write such 
sums in expanded form, you sometimes see that all the terms cancel except the first 
and the last.

Example 5.1.8

*Other recursively defined sequences are discussed later in this section and, in greater detail, in Section 5.6.

Example 5.1.9
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A Telescoping Sum

Some sums can be transformed so that successive cancellation of terms collapses the final 
result like a telescope. For instance, observe that for every integer k $ 1,

1

k
2

1

k11
5

(k11)2k

k(k11)
5

1

k(k11)
.

Use this identity to find a simple expression for o
n

k51

 

1

k(k11)
.

Solution

o
n

k51

 
1

k(k11)
5 o

n

k51
11

k
2

1

k112
 5 11

1
2

1

22111

2
2

1

32111

3
2

1

421 Á 11 1

n21
2

1
n2111

n
2

1

n112
5 12

1

n11
 ■

Product Notation
The notation for the product of a sequence of numbers is analogous to the notation for their 
sum. The Greek capital letter pi, P, denotes a product. For example,

P
5

k51

ak 5 a1a2a3a4a5.

Definition

If m and n are integers and m # n, the symbol P
n

k5m

ak, read the product from k

equals m to n of a-sub-k, is the product of all the terms am, am11, am12, Á , an.

We write

P
n

k5m

ak 5 am?am11?am12
Á an.

A recursive definition for the product notation is the following: If m is any integer, then

P
m

k5m

ak 5 am and P
n

k5m

ak 5 1P
n21

k5m

ak2?an for  every  integer n . m.

Computing products

Compute the following products:

a. P
5

k51

k b. P
1

k51

 

k

k11

Solution

a. P
5

k51

k 5 1?2?3?4?5 5 120 b. P
1

k51

 

k

k11
5

1

111
5

1

2
 ■

Example 5.1.10

Example 5.1.11
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Properties of Summations and Products
The following theorem states general properties of summations and products. The proof of 
the theorem is discussed in Section 5.6.

Theorem 5.1.1

If am, am11, am12, Á and bm, bm11, bm12, Á are sequences of real numbers and c is 
any real number, then the following equations hold for any integer n $ m:

1. o
n

k5m

ak 1 o
n

k5m

bk 5 o
n

k5m

(ak 1bk)

2. c? o
n

k5m

ak 5 o
n

k5m

c?ak generalized distributive law

3. 1P
n

k5m

ak2?1P
n

k5m

bk2 5 P
n

k5m

(ak?bk).

Using properties of Summation and product

Let ak 5 k11 and bk 5 k21 for every integer k. Write each of the following expressions 
as a single summation or product:

a. o
n

k5m

ak 12? o
n

k5m

bk

b. 1P
n

k5m

ak2?1P
n

k5m

bk2
Solution

a.  o
n

k5m

ak 12? o
n

k5m

bk 5 o
n

k5m

(k11)12? o
n

k5m

(k21) by substitution

 5 o
n

k5m

(k11)1 o
n

k5m

2?(k21) by Theorem 5.1.1 (2)

 5 o
n

k5m

((k11)12?(k21)) by Theorem 5.1.1 (1)

 5 o
n

k5m

(3k21) by algebraic simplification

b.  1P
n

k5m

ak2?1P
n

k5m

bk2 5 SPn

k5m

(k11)D?SPn

k5m

(k21)D by substitution

  5 P
n

k5m

((k11)?(k21)) by Theorem 5.1.1 (3)

  5 P
n

k5m

(k2 21) by algebraic simplification ■

Change of Variable

Observe that o
3

k51

k2 5 12 122 132

Example 5.1.12
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and also that o
3

i51

i2 5 12 122 132.

Hence o
3

k51

k2 5 o
3

i51

i2.

The symbol used to represent an index of a summation is an example of a local variable, of-
ten called a dummy variable, because, as illustrated above, it can be replaced by any other 
symbol as long as the replacement is made in each location where it occurs. Outside of that 
context (both before and after), the symbol may have another meaning entirely. In the same 
way, a symbol used to represent a variable in a universally or existentially quantified state 
can be replaced by any other symbol as long as the replacements are made consistently.

The appearance of a summation can be altered by more complicated changes of variable 
as well. For example, observe that

 o
4

j52

(j21)2 5 (221)2 1 (321)2 1 (421)2

 5 12 122 132

 5 o
3

k51

k2.

A general procedure to transform the first summation into the second is illustrated in 
Example 5.1.13.

Transforming a Sum by a Change of Variable

Transform the following summation by making the specified change of variable:

summation: o
6

k50

 

1

k11
  change of variable: j 5 k11

Solution First calculate the lower and upper limits of the new summation:

When k 5 0, j 5 k11 5 011 5 1.

When k 5 6, j 5 k11 5 611 5 7.

Thus the new sum goes from j 5 1 to j 5 7.
Next calculate the general term of the new summation. You will need to replace each 

occurrence of k by an expression in j:

Since j 5 k11, then k 5 j21.

Hence 
1

k11
5

1

(j21)11
5

1

j
.

Finally, put the steps together to obtain

 o
6

k50

 

1

k11
5 o

7

j51

1

j
. 5.1.1

 
■

Equation (5.1.1) can be transformed further by noting that because the j in the right-
hand summation is a dummy variable, it may be replaced by any other variable name, as 

Example 5.1.13

94193_ch05_ptg01.indd   266 12/11/18   4:26 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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long as the substitution is made in every location where j occurs. In particular, it is legal to 
substitute k in place of j to obtain

 o
7

j51

1

j
5 o

7

k51

1

k
. 5.1.2

Putting equations (5.1.1) and (5.1.2) together gives

o
6

k50

 

1

k11
5 o

7

k51

1

k
.

Sometimes it is necessary to shift the limits of one summation in order to add it to an-
other. An example is the algebraic proof of the binomial theorem, given in Section 9.7. A 
general procedure for making such a shift when the upper limit is part of the summand is 
illustrated in the next example.

When the Upper Limit Appears in the Expression to Be Summed

Rewrite the summation o
n11

k51
1 k

n1k2 so that the lower limit becomes 0 and the upper limit 

becomes n but the index of the summation remains k.

a. First, transform the summation by making the change of variable j 5 k21.

b. Second, transform the summation obtained in part (a) by changing all j’s to k’s.

Solution
a. The index variable k is bound by the summation symbol to take each of the values 

from 1 to n11 in succession.
When k 5 1, then j 5 121 5 0, and when k 5 n11, then j 5 (n11)21 5 n.
So the new lower limit is 0 and the new upper limit is n.
Now n is a constant with respect to the terms of the sum. Unlike k, its value does 

not change from one term to the next. In addition, since j 5 k21, then k 5 j11. 
Thus

k

n1k
5

j11

n1 ( j11)

and so the general term of the new summation is

j11

n1 ( j11)
.

Therefore,

 o
n11

k51

 

k

n1k
5 o

n

j50 

 

j11

n1 ( j11)
. 5.1.3

b. Changing all the j’s to k’s in the right-hand side of equation (5.1.3) gives

 o
n

j50

j11

n1 (j11)
5 o

n

k50

k11

n1 (k11)
. 5.1.4

Combining equations (5.1.3) and (5.1.4) results in

 o
n11

k51

 

k

n1k
5 o

n

k50

 

k11

n1 (k11)
. ■

Example 5.1.14
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Factorial and “n Choose r” Notation
The product of all consecutive integers up to a given integer occurs so often in mathematics 
that it is given a special notation—factorial notation.

Definition

For each positive integer n, the quantity n factorial denoted n!, is defined to be the 
product of all the integers from 1 to n:

n! 5 n?(n21) Á 3?2?1.

Zero factorial, denoted 0!, is defined to be 1:

0! 5 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read 
Chapter 9, it is convenient for many mathematical formulas.

the First ten Factorials

 

0! 5 1 1! 5 1

2! 5 2?1 5 2 3! 5 3?2?1 5 6

4! 5 4?3?2?1 5 24 5! 5 5?4?3?2?1 5 120

6! 5 6?5?4?3?2?1 5 720 7! 5 7?6?5?4?3?2?1 5 5,040

8! 5 8?7?6?5?4?3?2?1 9! 5 9?8?7?6?5?4?3?2?1

5 40,320 5 362,880

 

■

As you can see from the example above, the values of n! grow very rapidly. For instance, 
40! > 8.16 3 1047, which is a number that is too large to be computed exactly using the 
standard integer arithmetic of the machine-specific implementations of many computer 
languages. (The symbol > means “is approximately equal to.”)

A recursive definition for factorial is the following: Given any nonnegative integer n,

n! 5 51 if n 5 0

n?(n21)! if n $ 1.

The next example illustrates the usefulness of the recursive definition for making 
computations.

Computing with Factorials

Simplify the following expressions:

a. 
8!

7!
   b. 

5!

2!?3!
   c. 

1

2!?4!
1

1

3!?3!
   d. 

(n11)!

n!
   e. 

n!

(n23)!

Solution

a. 
8!

7!
5

8?7!

7!
5 8

b. 
5!

2!?3!
5

5?4?3!

2!?3!
5

5?4

2?1
5 10

example 5.1.15

!
Caution! Note that 
n?(n21)! is to be inter-
preted as n?[(n21)!].

example 5.1.16
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c. 
1

2!?4!
1

1

3!?3!
5

1

2!?4!
?
3

3
1

1

3!?3!
?
4

4

  5
3

3?2!?4!
1

4

3!?4?3!
 by rearranging factors

  5
3

3!?4!
1

4

3!?4!
 because 3?2! 5 3! and 4?3! 5 4!

  5
7

144

d. 
(n11)!

n!
5

(n11)?n!

n!
5 n11

e.  
n!

(n23)!
5

n?(n21)?(n22)?(n23)!

(n23)!
5 n?(n21)?(n22)

 5 n3 23n2 12n ■

An important use for the factorial notation is in calculating values of quantities, called 
n choose r, that occur in many branches of mathematics, especially those connected with 
the study of counting techniques and probability.

Definition

Let n and r be integers with 0 # r # n. The symbol

1n

r2
is read “n choose r” and represents the number of subsets of size r that can be chosen 
from a set with n elements.

Observe that the definition implies that sn
rd will always be an integer because it is a num-

ber of subsets. In Section 9.5 we will explore many uses of n choose r for solving problems 
involving counting, and we will prove the following computational formula:

Formula for Computing _nr+
For all integers n and r with 0 # r # n,

1n

r2 5
n!

r!(n2 r)!
.

In this chapter, we show how to compute its values. Because n choose r is always an inte-
ger, you can be sure that all the factors in the denominator of the formula will be canceled 
out by factors in the numerator. Many electronic calculators have keys for computing val-
ues of sn

rd. These are denoted in various ways such as nCr, C(n, r), nCr, and Cn,r. The letter 
C is used because the quantities sn

rd are also called combinations. Sometimes they are 
referred to as binomial coefficients because of the connection with the binomial theorem 
discussed in Section 9.7.

by multiplying each numerator and denominator by just 
what is necessary to obtain a common denominator

by the rule for adding fractions with a com-
mon denominator
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Computing _nr+ 
Use the formula for computing sn

rd to evaluate the following expressions:

a. 18

52     b. 14

42     c. 1n11

n 2
Solution

a.  18

52 5
8!

5!(825)!

  5
8?7?6?5?4?3?2?1

(5?4?3?2?1)?(3?2?1)
 always cancel common factors before multiplying

  5 56.

b. 14

42 5
4!

4!(424)!
5

4!

4!0!
5

4?3?2?1

(4?3?2?1)(1)
5 1

The fact that 0! 5 1 makes this formula computable. It gives the correct value because a 
set of size 4 has exactly one subset of size 4, namely itself.

c. 1n11

n 2 5
(n11)!

n!((n11)2n)!
5

(n11)!

n!1!
5

(n11)?n!

n!
5 n11 ■

Sequences in Computer Programming
An important data type in computer programming consists of finite sequences. In com-
puter programming contexts, these are usually referred to as one-dimensional arrays. For 
example, consider a program that analyzes the wages paid to a sample of 50 workers. Such 
a program might compute the average wage and the difference between each individual 
wage and the average. This would require that each wage be stored in memory for retrieval 
later in the calculation. To avoid the use of entirely separate variable names for all of the 
50 wages, each is written as a term of a one-dimensional array:

W[1], W[2], W[3], Á , W[50].

Note that the subscript labels are written inside square brackets. The reason is that until 
relatively recently, it was impossible to type actual dropped subscripts on most computer 
keyboards.

Dummy Variable in a Loop

The index variable for a for-next loop is a local, or dummy, variable. For example, the fol-
lowing three algorithm segments all produce the same output:

1. for i :5 1 to n 
  print a[i] 
next i

2. for j :5 0 to n21 
  print a[j11] 
next j

3. for k :5 2 to n11 
  print a[k21] 
next k

 ■

The recursive definitions for summation, product, and factorial lead naturally to com-
putational algorithms. For instance, here are two sets of pseudocode to find the sum of a[1], 
a[2], Á , a[n]. The one on the left exactly mimics the recursive definition by initializing 

Example 5.1.17

Example 5.1.18
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the sum to equal a[1]; the one on the right initializes the sum to equal 0. In both cases the 
output is on

k51afkg.

s :5 a[1] 
for k :5 2 to n 
   s :5 s1a[k] 
next k

s :5 0 
for k :5 1 to n 
   s :5 s1a[k] 
next k

Application: Algorithm to Convert from Base 10  
to Base 2 Using Repeated Division by 2
Section 2.5 contains some examples of converting integers from decimal to binary nota-
tion. The method shown there, however, is only convenient to use with small numbers. A 
systematic algorithm to convert any nonnegative integer to binary notation uses repeated 
division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the quotient-remainder theorem 
to obtain a quotient q[0] and a remainder r[0]. If the quotient is nonzero, divide by 2 again 
to obtain a quotient q[1] and a remainder r[1]. Continue this process until a quotient of 0 is 
obtained. At each stage, the remainder must be less than the divisor, which is 2. Thus each 
remainder is always either 0 or 1. The process is illustrated below for a 5 38. (Read the 
divisions from the bottom up.)

0 remainder 5 1 5 r[5]

2 1 remainder 5 0 5 r[4]

2 2 remainder 5 0 5 r[3]

2 4 remainder 5 1 5 r[2]

2 9 remainder 5 1 5 r[1]

2 19 remainder 5 0 5 r[0]

2 38

The results of all these divisions can be written as a sequence of equations:

 38 5 19?210,

 19 5 9?211,

 9 5 4?211,

 4 5 2?210,

 2 5 1?210,

 1 5 0?211.

By repeated substitution, then

38 5 19?210 5 (9?211)?210 5 9?22 11?210 5 (4?211)?22 11?210 5 4?23 11?22 11?210 5 (2?210)?23 11?22 11?210 5 2?24 10?23 11?22 11?210 5 (1?210)?24 10?23 11?22 11?210 5 1?25 10?24 10?23 11?22 11?210.
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Note that each coefficient of a power of 2 on the right-hand side of the previous page 
is one of the remainders obtained in the repeated division of 38 by 2. This is true for the 
left-most 1 as well, because 1 5 0?211. Thus

3810 5 1001102 5 (r[5]r[4]r[3]r[2]r[1]r[0])2.

In general, if a nonnegative integer a is repeatedly divided by 2 until a quotient of zero 
is obtained and the remainders are found to be r[0], r[1], Á , r[k], then by the quotient-
remainder theorem each r[i] equals 0 or 1, and by repeated substitution from the theorem,

  a 5 2k?rfkg12k21?rfk21g1 Á 122?rf2g121?rf1g120?rf0g. 5.1.5

Thus the binary representation for a can be read from equation (5.1.5):

a10 5 (rfkgrfk21g Á rf2grf1grf0g)2.

Converting from Decimal to Binary Notation Using Repeated Division by 2

Use repeated division by 2 to write the number 2910 in binary notation.

Solution
0 remainder 5 r[4] 5 1

2 1 remainder 5 r[3] 5 1

2 3 remainder 5 r[2] 5 1

2 7 remainder 5 r[1] 5 0

2 14 remainder 5 r[0] 5 1

2 29

Hence 2910 5 (r[4]r[3]r[2]r[1]r[0])2 5 111012. ■

The procedure we have described for converting from base 10 to base 2 is formalized 
in the following algorithm:

Algorithm 5.1.1  Decimal to Binary Conversion Using Repeated Division by 2

[In Algorithm 5.1.1 the input is a nonnegative integer a. The aim of the algorithm is to 
produce a sequence of binary digits r[0], r[1], r[2], Á , r[k] so that the binary represen-
tation of n is

(rfkgrfk21g Á rf2grf1grf0g)2.

That is,

a 5 2k?rfkg12k21?rfk21g1 Á 122?rf2g121?rf1g120?rf0g.]

Input: a [a nonnegative integer]

Algorithm Body:
q :5 a, i :5 0
[Repeatedly perform the integer division of q by 2 until q becomes 0. Store succes-
sive remainders in a one-dimensional array r[0], r[1], r[2], Á , r[k]. Even if the ini-
tial-value of q equals 0, the loop should execute one time (so that r[0] is computed). 

Example 5.1.19
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Thus the guard condition for the while loop is i 5 0 or q Þ 0.]

while (i 5 0 or q Þ 0)
 r[i] :5 q mod 2
 q :5 q div 2
 [r[i] and q can be obtained by calling the division algorithm.]
 i :5 i11
end while

[After execution of this step, the values of r[0], r[1], Á , r[i21] are all 0’s and 1’s, 
and a 5 (rfi21grfi22g Á rf2grf1grf0g)2.]

Output: r[0], r[1], r[2], Á , r [i21] [a sequence of integers]

1. The notation o
n

k5m

ak is read “ .”

2. The expanded form of o
n

k5m

ak is .

3. The value of a1 1a2 1a3 1 Á 1an when n 5 2 is 
“ .”

4. The notation P
n

k5m

ak is read “ .”

5. If n is a positive integer, then n! 5 .

6. o
n

k5m

ak 1co
n

k5m

bk 5 .

7. 1P
n

k5m

ak21P
n

k5m

bk2 5 .

TEST YOURSELF
answers to test Yourself questions are located at the end of each section.

Write the first four terms of the sequences defined by the 
formulas in 1–6.

1. ak 5
k

101k
, for every integer k $ 1.

2. bj 5
52 j

51 j
, for every integer j $ 1.

3. ci 5
(21)i

3i , for every integer i $ 0.

4. dm 5 1111

22
m

 for every integer m $ 0.

5. en 5 jn
2
k?2, for every integer n $ 0.

6. fn 5 jn
4
k?4, for every integer n $ 1.

7. Let ak 5 2k11 and bk 5 (k21)3 1k12 for every 
integer k $ 0. Show that the first three terms of 
these sequences are identical but that their fourth 
terms differ. 

Compute the first fifteen terms of each of the sequences 
in 8 and 9, and describe the general behavior of these 
sequences in words. (a definition of logarithm is given in 
Section 7.1.)

8. gn 5 :log2 
n; for every integer n $ 1.

9. hn 5 n:log2 
n; for every integer n $ 1. 

Find explicit formulas for sequences of the form a1, a2,  
a3, Á with the initial terms given in 10–16.

10. 21, 1, 21, 1, 21, 1

11. 0, 1, 22, 3, 24, 5

12. 
1

4
, 

2

9
, 

3

16
, 

4

25
, 

5

36
, 

6

49

13. 12
1

2
, 

1

2
2

1

3
, 

1

3
2

1

4
, 

1

4
2

1

5
, 

1

5
2

1

6
, 

1

6
2

1

7

14. 
1

3
, 

4

9
, 

9

27
, 

16

81
, 

25

243
, 

36

729

15. 0, 2
1

2
, 

2

3
, 2

3

4
, 

4

5
, 2

5

6
, 

6

7

ExERCISE SET 5.1*

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.
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16. 3, 6, 12, 24, 48, 96

17. Consider the sequence defined by an 5
2n 1 (21)n 2 1

4  
for every integer n $ 0. Find an alternative explicit 
formula for an that uses the floor notation.

18. Let a0 5 2, a1 5 3, a2 5 22, a3 5 1, a4 5 0, 
a5 5 21, and a6 5 22. Compute each of the sum-
mations and products below.

a. o
6

i50

ai  b. o
0

i50

ai  c. o
3

j51

a2j  d. P
6

k50

ak  e. P
2

k52

ak

Compute the summations and products in 19–28.

19. o
5

k51

(k11) 20. P
4

k52

k2 21. o
3

k51

(k2 11)

22. P
4

j50

(21)j 23. o
1

i51

i(i11) 24. o
0

j50

(j11)?2j

25. P
2

k52
112

1

k2 26. o
1

k521

(k2 13)

27. o
6

n51
11

n
2

1

n112 28. P
5

i52

i(i12)

(i21)?(i11)

Write the summations in 29–32 in expanded form.

*

29. o
n

i51

(22)i 30. o
n

j51

j(j11) 31. o
n11

k50

1

k!
  32. o

k11

i51

i(i!) 

evaluate the summations and products in 33–36 for the 
indicated values of the variable.

33. 
1

12 1
1

22 1
1

32 1 Á 1
1

n2; n 5 1

34. 1(1!)12(2!)13(3!)1 Á 1m(m!); m 5 2

35. S 1

111D1 2

21121 3

3112 Á S k

k11D; k 5 3

36. 11?2

3?4214?5

6?7216?7

8?92 Á 1 m?(m11)

(m12)?(m13)2; m 5 1

Write each of 37–39 as a single summation.

37. o
k

i51

i3 1 (k11)3 38. o
m

k51

k

k11
1

m11

m12

39. o
n

m50

(m11)2m 1 (n12)2n11

rewrite 40–42 by separating off the final term.

40. o
k11

i51

i(i!) 41. o
m11

k51

k2 42. o
n11

m51

m(m11)

H

Write each of 43–52 using summation or product  
notation.

43. 12 222 132 242 152 262 172

44. (13 21)2 (23 21)1 (33 21)2 (43 21)1 (53 21)

45. (22 21)?(32 21)?(42 21)

46. 
2

3?4
2

3

4?5
1

4

5?6
2

5

6?7
1

6

7?8

47. 12 r1 r2 2 r3 1 r4 2 r5

48. (12 t)?(12 t2)?(12 t3)?(12 t4)

49. 13 123 133 1 Á 1n3

50. 
1

2!
1

2

3!
1

3

4!
1 Á 1

n

(n11)!

51. n1 (n21)1 (n22)1 Á 11

52. n1
n21

2!
1

n22

3!
1

n23

4!
1 Á 1

1

n!

transform each of 53 and 54 by making the change of 
variable i 5 k 1 1.

53. o
5

k50

k(k21) 54. P
n

k51

k

k2 14

transform each of 55–58 by making the change of vari-
able j 5 i 2 1.

55. o
n11

i51

(i21)2

i?n 56. o
n

i53

i

i1n21

57. o
n21

i51

i

(n2 i)2 58. P
2n

i5n

n2 i11

n1 i

Write each of 59–61 as a single summation or product.

59. 3? o
n

k51

(2k23)1 o
n

k51

(425k)

60. 2? o
n

k51

(3k2 14)15? o
n

k51

(2k2 21)

61. SPn

k51

k

k11D?SPn

k51

k11

k12D
Compute each of 62–76. assume the values of the  
variables are restricted so that the expressions are  
defined.

62. 
4!

3!
63. 

6!

8! 64. 
4!

0!

65. 
n!

(n21)! 66. 
(n21)!

(n11)!
67. 

n!

(n22)!
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68. 
((n11)!)2

(n!)2
69. 

n!

(n2k)!
70. 

n!

(n2k11)!

71. 15

32 72. 17

42 73. 13

02
74. 15

52 75. 1 n

n212 76. 1n11

n212
77. a.  Prove that n!12 is divisible by 2, for every 

integer n $ 2.
b. Prove that n!1k is divisible by k, for every 

integer n $ 2 and k 5 2, 3, Á , n.
c. Given any integer m $ 2, is it possible to find a 

sequence of m21 consecutive positive integers 
none of which is prime? Explain your answer.

78. Prove that for all nonnegative integers n and r with 

r11 # n, S n

r11D 5
n2 r

r11Sn

rD.

79. Prove that if p is a prime number and r is an inte-

ger with 0 , r , p, then Sp

rD is divisible by p.

80. Suppose a[1], a[2], a[3], Á , a[m] is a one-
dimensional array and consider the following 
algorithm segment:

sum :5 0 
for k :5 1 to m 
  sum :5 sum1a[k] 
next k

Fill in the blanks below so that each algorithm 
segment performs the same job as the one shown 
in the exercise statement.
a. sum :5 0 

for i :5 0 to  
   sum :5  
next i

b. sum :5 0 
for j :5 2 to  
   sum :5  
next j

Use repeated division by 2 to convert (by hand) the inte-
gers in 81–83 from base 10 to base 2.

81. 90 82. 98 83. 205

Make a trace table to trace the action of algorithm 5.1.1 
on the input in 84–86.

84. 23 85. 28 86. 44

87. Write an informal description of an algorithm (us-
ing repeated division by 16) to convert a nonnega-
tive integer from decimal notation to hexadecimal 
notation (base 16). 

Use the algorithm you developed for exercise 87 to con-
vert the integers in 88–90 to hexadecimal notation.

88. 287 89. 693 90. 2,301

91. Write a formal version of the algorithm you devel-
oped for exercise 87. 

H

Mathematical Induction I: proving Formulas
A good proof is one which makes us wiser. —I. Manin,  A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes of 
thought—deduction being to infer a conclusion from general principles using the laws of 
logical reasoning, and induction being to enunciate a general principle after observing it 
to hold in a large number of specific instances. Discovery of new mathematical facts often 
occurs through experimentation with examples, but mathematical induction as a proof 
technique is not inductive but deductive. Once proved by mathematical induction, a theo-
rem is known just as certainly as if were proved by any other mathematical method. Thus, 

5.2

1. the summation from k equals m to n of a-sub-k  
2. am 1am11 1am12 1 Á 1an 3. a1 1a2  
4. the product from k equals m to n of a-sub-k  

5. n?(n21) Á 3?2?1(Or: n?(n21)!) 6. o
n

k5m

(ak 1cbk)  

7. P
n

k5m

akbk

ANSWERS FOR TEST YOURSELF

94193_ch05_ptg01.indd   275 12/11/18   4:26 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



276  CHApTER 5 SequenceS, MATHeMATIcAL InDucTIOn, AnD RecuRSIOn

in mathematics, inductive reasoning is used in the natural sciences sense, but only to make 
conjectures, not to prove them. For example, observe that

row 1 12
1

2
5

1

2

row 2 112
1

22112
1

32 5
1

3

row 3 112
1

22112
1

32112
1

42 5
1

4

This pattern seems so unlikely to occur by pure chance that it is reasonable to conjecture 
(though it is by no means certain) that the pattern holds true in general. To use mathemati-
cal induction to explore the conjecture, ask yourself: Is there something about the form of 
the pattern in one row that insures the pattern will be true in the next row? For instance, 
does the fact that the pattern is true in row 3 imply that it will also be true in a new row 4? 
To answer this question try substituting the right-hand side of the equation in row 3, namely
1
4, into the expression _12

1
2+_12

1
3+_12

1
4+_12

1
5+. That is,

replace 112
1

22112
1

32112
1

42 by 1

4
 in 112

1

22112
1

32112
1

42112
1

52.

When you do this, you obtain

 112
1

22112
1

32112
1

42112
1

52 5
1

4
 112

1

52 5
1

4
?
4

5

 5
1

5
.

So the pattern does extend to row 4! Does the process also work for going from row 1 to 
row 2? Yes! When you substitute the right-hand side of the equation in row 1, namely 12, in 
place of _12 1

2+ in the left-hand side of the equation in row 2, the result is

 112
1

22112
1

32 5
1

2
 112

1

32
 5

1

3
.

So the truth of the pattern in row 1 implies the truth of the pattern in row 2. Stop reading 
for a moment and use the same procedure to derive the truth of the pattern in row 3 from 
its truth in row 2 and then show that the same pattern extends to a new row 5. (This is ex-
ercise 1 at the end of this section.)

With this background you are ready to check out the general case. If you suppose that 
the pattern holds for an arbitrarily chosen row, can you show that the pattern holds for the 
next row? Suppose that k is any integer that is at least 2, and assume

112
1

22112
1

32 Á 112
1

k2 5
1

k
.

Then

112
1

22112
1

32 Á 112
1

k112 5 112
1

22112
1

32 Á 112
1

k2112
1

k112
 5

1

k
 112

1

k112 5
1

k1k11

k11
2

1

k112 5
1

k1 k

k112 5
1

k11
.
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Thus for any integer k greater than or equal to 2,

if 112
1

22112
1

32 Á 112
1

k2 5
1

k
 then 112

1

22112
1

32 Á 112
1

k112 5
1

k11
.

This example illustrates the basic idea of the principle of mathematical induction. It shows 
that as long as the pattern holds in one row, then it has to hold in the next larger row. But 
this implies that the pattern holds in every row no matter how far down the table it might 
be. The reason is that since the pattern holds in row 1, it holds in row 2. And since it  
holds in row 2, it holds in row 3. And since it holds in row 3, it holds in row 4. And since it holds  
in row 4, it holds in row 5. And so on, and so on, forever!

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Sup-
pose the following two statements are true:

1. P(a) is true.

2. For every integer k $ a, if P(k) is true then P(k11) is true.

Then the statement

for every integer n $ a, P(n)

is true.

The first known use of mathematical induction occurs in the work of the Italian scientist 
Francesco Maurolico in 1575. In 1653 Blaise Pascal gave a clear description of the tech-
nique, and in 1883 Augustus De Morgan (best known for De Morgan’s laws) gave the pro-
cess the name mathematical induction. An equivalent logical inference rule, now known 
as the well-ordering principle (see Section 5.4), was used implicitly by mathematicians in 
ancient Greece, in the middle ages by Campanus of Novara, and in the seventeenth century 
by Pierre de Fermat, who called it the “method of infinite descent.”  

To visualize the idea of mathematical induction, imagine an infinite collection of domi-
noes positioned one behind the other in such a way that if any given domino falls back-
ward, it makes the one behind it fall backward also. (See Figure 5.2.1.) Then imagine that 
the first domino falls backward. What happens? Á  They all fall down!

1
2

3
4

k k + 1

FIgure 5.2.1 If the kth domino falls backward, it pushes the (k11)st domino backward also.

To see the connection between this image and the principle of mathematical induction, 
let P(n) be the sentence “The nth domino falls backward.” It is given that for each k $ 1, if 
P(k) is true (the kth domino falls backward), then P(k11) is also true (the (k11)st domino 
falls backward). It is also given that P(1) is true (the first domino falls backward). Thus by 
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the principle of mathematical induction, P(n) (the nth domino falls backward) is true for 
every integer n $ 1.

The validity of proof by mathematical induction is generally taken as an axiom. That is 
why it is referred to as the principle of mathematical induction rather than as a theorem. It 
is equivalent to the following property of the integers, which is easy to accept on intuitive 
grounds:

Suppose S is any set of integers satisfying (1) a is in S, and (2) for every 
integer k $ a, if k is in S then k11 is in S. Then S contains every inte-
ger greater than or equal to a.

To understand the equivalence of this formulation and the one given earlier, let S be the set 
of all integers for which P(n) is true.

Proving a statement by mathematical induction is a two-step process. The first step is 
called the basis step, and the second step is called the inductive step.

Method of proof by Mathematical Induction

Consider a statement of the form, “For every integer n $ a, a property P(n) is true.” 
To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that P(a) is true.

Step 2  (inductive step): Show that for every integer k $ a, if P(k) is true then 
P(k11) is true. To perform this step,

suppose that P(k) is true, where k is any  
particular but arbitrarily chosen integer with k $ a.

[This supposition is called the inductive hypothesis.]
Then

show that P(k11) is true.

The following example shows how to use mathematical induction to prove a formula for 
the sum of the first n integers.

Sum of the First n Integers

Use mathematical induction to prove that

1121 Á 1n 5
n(n11)

2
 for every integer n $ 1.

Solution To construct a proof by induction, you must first identify the property P(n). In 
this case, P(n) is the equation

1121 Á 1n 5
n(n11)

2
. d the property (P(n))

[To see that P(n) is a sentence, note that its subject is “the sum of the integers from 1 to n” and 
its verb is “equals.”]

In the basis step of the proof, you must show that the property is true for n 5 1, or, in 
other words, that P(1) is true. Now P(1) is obtained by substituting 1 in place of n in P(n). 
The left-hand side of P(1) is the sum of all the successive integers starting at 1 and ending 
at 1. This is just 1. Thus P(1) is

1 5
1(111)

2
. d basis (P(1))

Example 5.2.1

Note The property is 
just the equation. The 
proof will show that the 
equation is true for every 
integer n $ 1.

Note To write P(1), just 
copy P(n) and replace 
each n by 1.
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Of course, this equation is true because the right-hand side is

1(111)

2
5

1?2

2
5 1,

which equals the left-hand side.
In the inductive step, you assume that P(k) is true, for a particular but arbitrarily chosen 

integer k with k $ 1. [This assumption is the inductive hypothesis.] You must then show that 
P(k11) is true. What are P(k) and P(k11)? P(k) is obtained by substituting k for every n 
in P(n). Thus P(k) is

1121 Á 1k 5
k(k11)

2
. d inductive hypothesis (P(k))

Similarly, P(k11) is obtained by substituting the quantity (k11) for every n that appears 
in P(n). Thus P(k11) is

1121 Á 1 (k11) 5
(k11)((k11)11)

2
,

or, equivalently,

1121 Á 1 (k11) 5
(k11)(k12)

2
. d to show (P(k11))

Now the inductive hypothesis is the supposition that P(k) is true. How can this sup-
position be used to show that P(k11) is true? P(k11) is an equation, and the truth of an 
equation can be shown in a variety of ways. One of the most straightforward is to use the 
inductive hypothesis along with algebra and other known facts to separately transform the 
left-hand and right-hand sides until you see that they are the same. In this case, the left-
hand side of P(k11) is

1121 Á 1 (k11),

which equals

(1121 Á 1k)1 (k11)

By substitution from the inductive hypothesis,

(1121 Á 1k)1 (k11)

5
k(k11)

2
1 (k11)

5
k(k11)

2
1

2(k11)

2

5
k2 1k

2
1

2k12

2

5
k2 13k12

2

So the left-hand side of P(k11) is k
2 1 3k 1 2

2 . Now the right-hand side of P(k11) is

(k11)(k12)

2
5

k2 13k12

2
  by multiplying out the numerator.

Thus the two sides of P(k11) are equal to each other, and so the equation P(k11) is true.

Note To write P(k), just 
copy P(n) and replace 
each n by k.

Note To write P(k11), 
just copy P(n) and replace 
each n by (k11).

The next-to-last term is k because the terms are 
successive integers and the last term is k11.

since the inductive hypothesis says that 

1121 Á 1k 5
k(k 1 1)

2

by multiplying the numerator and denominator  
of the second term by 2 to obtain a common 
denominator

by multiplying out the two numerators

by adding fractions with the same denominator 
and combining like terms.
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This discussion is summarized as follows:

Theorem 5.2.1 Sum of the First n Integers

For every integer n $ 1,

1121 Á 1n 5
n(n11)

2
.

proof (by mathematical induction): Let the property P(n) be the equation

112131 Á 1n 5
n(n11)

2
. d P(n)

Show that P(1) is true:

To establish P(1), we must show that

1 5
1(111)

2
. d P(1)

But the left-hand side of this equation is 1 and the right-hand side is
1(111)

2
5

2

2
5 1

also. Hence P(1) is true.

Show that for every integer k $ 1, if P(k) is true then P(k11) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 1. That is:] 
Suppose that k is any integer with k $ 1 such that

112131 Á 1k 5
k(k11)

2
. 

[We must show that P(k11) is true. That is:] We must show that

112131 Á 1 (k11) 5
(k11)f(k11)11g

2
,

or, equivalently, that

112131 Á 1 (k11) 5
(k11)(k12)

2
. d P(k11)

[We will show that the left-hand side and the right-hand side of P(k11) are equal to 
the same quantity and thus are equal to each other.]

The left-hand side of P(k11) is

112131 Á 1 (k11)
   5112131 Á 1k1 (k11)

5
k(k11)

2
1 (k11)

5
k(k11)

2
1

2(k11)

2

5
k2 1k

2
1

2k12

2

5
k2 13k12

2

d P(k)  
inductive hypothesis

by making the next-to-last  
term explicit

by substitution from the  
inductive hypothesis

by algebra.
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And the right-hand side of P(k11) is

(k11)(k12)

2
5

k2 13k12

2
.

Thus the two sides of P(k11) are equal to the same quantity and so they are equal 
to each other. Therefore, the equation P(k11) is true [as was to be shown].

[Since we have proved both the basis step and the inductive step, we conclude that the 
theorem is true.]

 ■

The story is told that one of the greatest mathematicians of all time, Carl Friedrich 
Gauss (1777–1855), was given the problem of adding the numbers from 1 to 100 by his 
teacher when he was a young child. The teacher had asked his students to compute the sum, 
supposedly to gain himself some time to grade papers. But after just a few moments, Gauss 
produced the correct answer. Needless to say, the teacher was dumbfounded. How could 
young Gauss have calculated the quantity so rapidly? In his later years, Gauss explained 
that he had imagined the numbers paired according to the following schema.

1 2 3 . . . . . . 50 51 . . . . . . 98 99 100

sum is 101
sum is 101
sum is 101
sum is 101

The sum of the numbers in each pair is 101, and there are 50 pairs in all; hence the total 
sum is 50?101 5 5,050.

Definition

If a sum with a variable number of terms is shown to equal an expression that does 
not contain either an ellipsis or a summation symbol, we say that the sum is written 
in closed form.

For example, writing 112131 Á 1n 5
n(n11)

2
 expresses the sum 112131 Á 1n 

in closed form.

Applying the Formula for the Sum of the First n Integers

a. Evaluate 214161 Á 1500.

b. Evaluate 51617181 Á 150.

c. For an integer h $ 2, write 112131 Á 1 (h21) in closed form.

Solution

a.  214161 Á 1500 5 2?(112131 Á 1250)

 5 2?1250?251

2 2
 5 62,750

Example 5.2.2

by applying the formula for the sum 
of the first n integers with n 5 250.
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b.  51617181 Á 150 5 (112131 Á 150)2 (1121314)

 5
50?51

2
210

 5 1,265

c.  112131 Á 1 (h21) 5
(h21)?f(h21)11g

2

 5
(h21)?h

2 

■

The next example asks for a proof of another famous and important formula in math-
ematics—the formula for the sum of a geometric sequence. In a geometric sequence, each 
term is obtained from the preceding one by multiplying by a constant factor. If the first 
term is 1 and the constant factor is r, then the sequence is 1, r, r2, r3, Á , rn, Á . The sum 
of the first n terms of this sequence is given by the formula

o
n

i5

ri 5
rn11 21

r21

for every integer n $ 0 and every real number r not equal to 1. The expanded form of the  
formula is

r0 1 r1 1 r2 1 Á 1 rn 5
rn11 21

r21
,

and because r0 5 1 and r1 5 r, the formula for n $ 1 can be rewritten as

11 r1 r2 1 Á 1 rn 5
rn11 21

r21
.

In some mathematical contexts 00 is regarded as indeterminate. In discrete mathematics 

we usually define 00 5 1 so that when we write o
n

i50

ri we do not need to give special atten-
tion to the case r 5 0.

Sum of a Geometric Sequence

Prove that o
n

i50

ri 5
rn11 2 1

r 2 1 , for every integer n $ 0 and every real number r except 1.

Solution In this example the property P(n) is again an equation, although in this case it 
contains a real variable r.

o
n

i50

ri 5
rn11 21

r21
. d the property (P(n))

Because r can be any real number other than 1, the proof begins by supposing that r is a 
particular but arbitrarily chosen real number not equal to 1. Then the proof continues by 
mathematical induction on n, starting with n 5 0. In the basis step, you must show that P(0) 
is true; that is, you show the property is true for n 5 0. So you substitute 0 for each n in P(n):

o
0

i50

ri 5
r011 21

r21
. d basis (P(0))

by applying the formula for the sum 
of the first n integers with n 5 50.

by applying the formula for the sum 
of the first n integers with n 5 h21

since (h21)11 5 h.

Note This is the defini-
tion of 00 given by Donald 
E. Knuth in The Art of 
Computer Programming, 
Volume 1: Fundamental 
Algorithms, 3rd Edi-
tion (Reading, Mass.: 
Addison-Wesley, 1997), 
p. 57.

Example 5.2.3
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In the inductive step, you suppose k is any integer with k $ 0 for which P(k) is true; that is, 
you suppose the property is true for n 5 k. So you substitute k for each n in P(n):

o
k

i50

ri 5
rk11 21

r21
. d inductive hypothesis (P(k))

Then you show that P(k11) is true; that is, you show the property is true for n 5 k11. So 
you substitute k11 for each n in P(n):

o
k11

i50

ri 5
r(k11)11 21

r21
,

or, equivalently,

o
k11

i50

ri 5
rk12 21

r21
. d to show (P(k11))

In the inductive step for this proof we use another common technique for showing that 
an equation is true: We start with the left-hand side and transform it step-by-step into the 
right-hand side. To do so, we use the inductive hypothesis together with algebra and other 
known facts.

Theorem 5.2.2 Sum of a Geometric Sequence

For any real number r except 1, and any integer n $ 0,

o
n

i50

ri 5
rn11 21

r21
.

proof (by mathematical induction): Suppose r is a particular but arbitrarily cho-
sen real number that is not equal to 1, and let the property P(n) be the equation

o
n

i50

ri 5
rn11 21

r21
. d P(n)

We must show that P(n) is true for every integer n $ 0. We do this by mathematical 
induction on n.

Show that P(0) is true:

To establish P(0), we must show that

o
0

i50

ri 5
r01121

r21
. d P(0)

The left-hand side of this equation is r0 5 1 and the right-hand side is

r011 21

r21
5

r21

r21
5 1

also because r1 5 r and, since r Þ 1, r21 Þ 0. Hence P(0) is true.

Show that for every integer k $ 0, if P(k) is true then P(k11) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 0. That is:]

(continued on page 284)

Note To write P(0), copy 
P(n) and replace each n 
by 0.
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Let k be any integer with k $ 0, and suppose that

o
k

i50

ri 5
rk11 21

r21
 d P(k) inductive hypothesis

[We must show that P(k11) is true. That is:] We must show that

o
k11

i50

ri 5
r(k11)11 21

r21
,

or, equivalently, that

o
k11

i50

ri 5
rk12 21

r21
. d P(k11)

[We will show that the left-hand side of P(k11) equals the right-hand side.]

The left-hand side of P(k11) is

 o
k11

i50

ri 5 o
k

i50

ri 1 rk11

 5
rk11 21

r21
1 rk11

 5
rk11 21

r21
1

rk11(r21)

r21

 5
(rk11 21)1 rk11(r21)

r21

 5
rk11 211 rk12 2 rk11

r21

 5
rk12 21

r21

which is the right-hand side of P(k11) [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the theorem 
is true.]

Note To write P(k), copy 
P(n) and replace each n 
by k.

Note To write P(k11), 
copy P(n) and replace  
each n by k11

by writing the (k11)st term 
separately from the first k terms

by substitution from the inductive 
hypothesis

by multiplying the numerator and 
denominator of the second term 
by (r21) to obtain a common 
denominator
by adding fractions

by multiplying out and using the fact 
that rk11?r 5 rk11?r1 5  rk12

by canceling the rk11’s.

■

Proving an Equality
The proofs of the basis and inductive steps in Examples 5.2.1 and 5.2.3 illustrate two dif-
ferent ways to show that an equation is true: (1) transforming the left-hand side and the 
right-hand side independently until they are seen to be equal, and (2) transforming one side 
of the equation until it is seen to be the same as the other side of the equation.

Sometimes people use a method that they believe proves equality but that is actually in-
valid. For example, to prove the basis step for Theorem 5.2.2, they perform the following steps:

 o
0

i50

ri 5
r011 21

r21

 r0 5
r1 21

r21

 1 5
r21

r21
 1 5 1.
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The problem with this method is that starting from a statement and deducing a true conclu-
sion does not prove that the statement is true. A true conclusion can also be deduced from a 
false statement. For instance, the steps below show how to deduce the true conclusion that 
1 5 1 from the false statement that 1 5 0:

1 5 0

0 5 1

110 5 011

1 5 1

When using mathematical induction to prove formulas, be sure to use a method that 
avoids invalid reasoning, both for the basis step and for the inductive step.

Deducing Additional Formulas
The formula for the sum of a geometric sequence can be thought of as a family of different 
formulas in r, one for each real number r except 1.

Applying the Formula for the Sum of a Geometric Sequence

In each of (a) and (b) below, assume that m is an integer that is greater than or equal to 3. 
Write each of the sums in closed form.

a. 113132 1 Á 13m22

b. 32 133 134 1 Á 13m

Solution

a. 113132 1 Á 13m22 5
3(m22)11 21

321
  

by applying the formula for the sum of a  
geometric sequence with r 5 3 and n 5 m22

5
3m21 21

2
 

b. 32 133 134 1 Á 13m 5 32?(113132 1 Á 13m22)  by factoring out 3
2

5 9?S3m21 21

2 D by part (a). ■

As with the formula for the sum of the first n integers, there is a way to think of the 
formula for the sum of the terms of a geometric sequence that makes it seem simple and 
intuitive. Let

Sn 5 11 r1 r2 1 Á 1 rn.

Then

r Sn 5 r1 r2 1 r3 1 Á 1 rn11,

and so

r Sn 2Sn 5 (r1 r2 1 r3 1 Á 1 rn11)2 (11 r1 r2 1 Á 1 rn)

 5 rn11 21. 5.2.1
Now

 r Sn 2Sn 5 (r21)Sn. 5.2.2

d false

d true

Example 5.2.4

!
Caution! Don’t try to 
prove an equality by 
assuming it is true and 
deducing a true statement; 
that form of argument is 
invalid!
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Equating the right-hand sides of equations (5.2.1) and (5.2.2) and dividing by r21 gives

Sn 5
rn11 21

r21
.

This derivation of the formula is quite convincing. However, it is not as logically airtight 
as the proof by mathematical induction. To go from one step to another in the previous cal-
culations, the argument is made that each term among those indicated by the ellipsis (Á)  
has such-and-such an appearance and when these are canceled such-and-such occurs. But 
it is impossible actually to see each such term and each such calculation, and so the ac-
curacy of these claims cannot be fully checked. With mathematical induction it is possible 
to focus exactly on what happens in the middle of the ellipsis and verify without doubt that 
the calculations are correct.

1. Mathematical induction is a method for proving 
that a property defined for integers n is true for all 
values of n that are .

2. Let P(n) be a property defined for integers n and 
consider constructing a proof by mathematical in-
duction for the statement “P(n) is true for all n $ a.”

(a) In the basis step one must show that .
(b) In the inductive step one supposes that 

 for a particular but arbitrarily chosen 
value of an integer k $ a. This supposition is 
called the . One then has to show  
that  .

TEST YOURSELF 

1. Use the technique illustrated at the beginning of 
this section to show that the statements in (a) and 
(b) are true.

a. If 112
1

22112
1

32112
1

42112
1

52 5
1

5
 then 

112
1

22112
1

32112
1

42112
1

52112
1

62 5
1

6
.

b. If 112
1

22112
1

32112
1

42112
1

52S12
1

625
1

6
 then 

112
1

22112
1

32112
1

42112
1

52112
1

62S12
1

7D 5
1

7
.

2. For each positive integer n, let P(n) be the formula

113151 Á 1 (2n21) 5 n2.

a. Write P(1). Is P(1) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that the 

formula holds for every integer n $ 1, what 
must be shown in the inductive step? 

3. For each positive integer n, let P(n) be the formula

12 122 1 Á 1n2 5
n(n11)(2n11)

6
.

a. Write P(1). Is P(1) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that the 

formula holds for every integer n $ 1, what 
must be shown in the inductive step? 

4. For each integer n with n $ 2, let P(n) be the 
formula

o
n21

i51

i(i11) 5
n(n21)(n11)

3
.

a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that the 

formula holds for every integer n $ 2, what 
must be shown in the inductive step? 

ExERCISE SET 5.2
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5. Fill in the missing pieces in the following proof 
that

113151 Á 1 (2n21) 5 n2

for every integer n $ 1.
Proof: Let the property P(n) be the equation

113151 Á 1 (2n21) 5 n2. d P(n)

Show that P(1) is true: To establish P(1), we must 
show that when 1 is substituted in place of n, the 
left-hand side equals the right-hand side. But when 
n 5 1, the left-hand side is the sum of all the odd 
integers from 1 to 2?121, which is the sum of the 
odd integers from 1 to 1 and is just 1. The right-hand 
side is  , which also equals 1. So P(1) is true.

Show that for every integer k $ 1, if P(k) is true 
then P(k11) is true: Let k be any integer with 
k $ 1.

[Suppose P(k) is true. That is:] Suppose 

113151 Á 1 (2k21) 5 . d P(k)

[This is the inductive hypothesis.]

[We must show that P(k11) is true. That is:] We 
must show that

5 . d P(k11)

Now the left-hand side of P(k11) is

113151 Á 1 (2(k11)21)

5 113151 Á 1 (2k11) by algebra

5 [113151 Á 1 (2k21)]1 (2k11)

the next-to-last term is 2k21 because 

5 k2 1 (2k11) by 

5 (k11)2 by algebra,

which is the right-hand side of P(k11) [as was to 
be shown].

[Since we have proved the basis step and the induc-
tive step, we conclude that the given statement is 
true.]

Note: This proof was annotated to help make its 
logical flow more obvious. In standard mathemati-
cal writing, such annotation is omitted.

prove each statement in 6–9 using mathematical 
induction. Do not derive them from theorem 5.2.1 or 
theorem 5.2.2.

6. For every integer n $ 1,

 214161 Á 12n 5 n2 1n.

7. For every integer n $ 1,

1161111161 Á 1 (5n24) 5
n(5n23)

2
.

8. For every integer n $ 0,

112122 1 Á 12n 5 2n11 21.

9. For every integer n $ 3,

43 144 145 1 Á 14n 5
4(4n 216)

3
.

prove each of the statements in 10–18 by mathematical 
induction.

10. 12 122 1 Á 1n2 5
n(n11)(2n11)

6
, for every 

integer n $ 1.

11. 13 123 1 Á 1n3 5 3n(n11)

2 4
2

, for every integer 

n $ 1.

12. 
1

1?2
1

1

2?3
1 Á 1

1

n(n11)
5

n

n11
, for every 

integer n $ 1.

13. o
n21

i51

i(i11) 5
n(n21)(n11)

3
, for every integer 

n $ 2.

14. o
n11

i51

i?2i 5 n?2n12 12, for every integer n $ 0.

15. o
n

i51

i(i!) 5 (n11)!21, for every integer n $ 1.

16. 112
1

222112
1

322 Á 112
1

n22 5
n11

2n
, for every 

integer n $ 2.

17. P
n

i50
1 1

2i11
?

1

2i122 5
1

(2n12)!
, for every integer 

n $ 0.

18. P
n

i52
112

1

i 2 5
1
n

 for every integer n $ 2.

Hint: See the discussion at the beginning of this 
section.

19. (For students who have studied calculus) Use 
mathematical induction, the product rule from 

calculus, and the facts that 
d(x)
dx 5 1 and that 

xk11 5 x?xk to prove that for every integer n $ 1, 
d(xn)

dx 5 nxn21.

(a)

(b)

(c) (d)

(e)

(f)

H
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Use the formula for the sum of the first n integers and/or 
the formula for the sum of a geometric sequence to evalu-
ate the sums in 20–29 or to write them in closed form.

20. 4181121161 Á 1200

21. 51101151201 Á 1300

22. a. 31415161 Á 11000
b. 31415161 Á 1m

23. a. 718191101 Á 1600
b. 718191101 Á 1k

24. 112131 Á 1 (k21), where k is any integer with 
k $ 2.

25. a. 112122 1 Á 1225

b. 2122 123 1 Á 1226

c. 2122 123 1 Á 12n

26. 3132 133 1 Á 13n, where n is any integer with 
n $ 1.

27. 53 154 155 1 Á 15k, where k is any integer with 
k $ 3.

28. 11
1

2
1

1

22 1 Á 1
1

2n, where n is any positive integer.

29. 122122 223 1 Á 1 (21)n 2n, where n is any 
positive integer.

30. Observe that

 
1

1?3
5

1

3

 
1

1?3
1

1

3?5
5

2

5

 
1

1?3
1

1

3?5
1

1

5?7
5

3

7

 
1

1?3
1

1

3?5
1

1

5?7
1

1

7?9
5

4

9
.

Guess a general formula and prove it by mathemati-
cal induction.

31. Compute values of the product

 S11
1

1DS11
1

2DS11
1

3DÁ S11
1
nD 

for small values of n in order to conjecture a general 
formula for the product. Prove your conjecture by 
mathematical induction.

32. Observe that

 1 5 1
 124 5 2(112)

 12419 5 11213
 12419216 5 2(1121314)

 12419216125 5 112131415.

Guess a general formula and prove it by mathemati-
cal induction.

33. Find a formula in n, a, m, and d for the sum 
(a1md)1 (a1 (m11)d)1 (a1 (m12)d)1 Á 1
(a1 (m1n)d), where m and n are integers, n $ 0, 
and a and d are real numbers. Justify your answer.

34. Find a formula in a, r, m, and n for the sum

arm 1arm11 1arm12 1 Á 1arm1n,

where m and n are integers, n $ 0, and a and r are 
real numbers. Justify your answer.

35. You have two parents, four grandparents, eight 
great-grandparents, and so forth.
a. If all your ancestors were distinct, what would 

be the total number of your ancestors for the 
past 40 generations (counting your parents’ gen-
eration as number one)? (Hint: Use the formula 
for the sum of a geometric sequence.)

b. Assuming that each generation represents 
25 years, how long is 40 generations?

c. The total number of people who have ever lived 
is approximately 10 billion, which equals 1010 
people. Compare this fact with the answer to 
part (a). What can you deduce?

Find the mistakes in the proof fragments in 36–38.

36. Theorem: For any integer n $ 1,

12 122 1 Á 1n2 5
n(n11)(2n11)

6
.

“Proof (by mathematical induction): Certainly 
the theorem is true for n 5 1 because 12 5 1 and 
1(1 1 1)(2 ?1 1 1)

6 5 1. So the basis step is true. For 
the inductive step, suppose that k is any integer with 

k $ 1, k2 5
k(k 1 1)(2k 1 1)

6 . We must show 

that (k11)2 5
(k 1 1)((k 1 1) 1 1)(2(k 1 1) 1 1)

6 .”

37. Theorem: For any integer n $ 0,

112122 1 Á 12n 5 2n11 21.

“Proof (by mathematical induction): 
Let the property P(n) be 

112122 1 Á 12n 5 2n11 21.

Show that P(0) is true:
The left-hand side of P(0) is 112122 1 Á 120 5 1  
and the right-hand side is 2011 21 5 221 5 1 also. 
So P(0) is true.”

H

H

H
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38. Theorem: For any integer n $ 1,

o
n

i51

i(i!) 5 (n11)!21.

“Proof (by mathematical induction): Let the 
property

P(n) be o
n

i51

i(i!) 5 (n11)!21.

Show that P(1) is true: When n 5 1,

o
i

i51

i(i!) 5 (111)!21.

So 1(1!) 5 2!21
and 1 5 1.
Thus P(1) is true.”

39. Use Theorem 5.2.1 to prove that if m and n are any 
positive integers and m is odd, then om21

k50  
(n1k) 

is divisible by m. Does the conclusion hold if m is 
even? Justify your answer.

40. Use Theorem 5.2.1 and the result of exercise 10 to 
prove that if p is any prime number with p $ 5, 
then the sum of the squares of any p consecutive 
integers is divisible by p. 

H

*

H*

Mathematical Induction II: Applications
[Mathematical induction is] the standard proof technique in computer science.  
—Anthony Ralston, 1984

In Section 5.2 we showed how to use mathematical induction to prove formulas. In this 
section we will show how to apply it in a broader variety of situations.

As a first example consider the argument that the U.S. penny should be eliminated be-
cause it isn’t profitable to produce. Due to inflation and the rising cost of metals, it actually 
costs more than one cent to produce a penny. If the penny were eliminated and another 
coin worth 3¢ were introduced, what prices could be paid using only 3¢ and 5¢ coins? The 
table below shows some examples.

Number of Cents How to Obtain It

3¢ 3¢

5¢ 5¢

8¢ 3¢15¢

9¢ 3¢13¢13¢

10¢ 5¢15¢

11¢ 3¢13¢15¢

12¢ 3¢13¢13¢13¢

13¢ 3¢15¢15¢

14¢ 3¢13¢13¢15¢

15¢ 5¢15¢15¢

16¢ 3¢13¢15¢15¢

17¢ 3¢13¢13¢13¢15¢

5.3

1. greater than or equal to some initial value 2. (a) P(a) is true (b) P(k) is true; inductive hypothesis; P(k11) is true

ANSWERS FOR TEST YOURSELF 
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290  CHApTER 5 SequenceS, MATHeMATIcAL InDucTIOn, AnD RecuRSIOn

Can the table be continued indefinitely to show that every larger price could be paid 
with the two coins? This question is similar to the one raised in the opening example in 
Section 5.2, which involved showing that if the property illustrated in the table was true for 
an arbitrarily chosen row k, then it was also true for row k11. To use a similar technique 
for this example, suppose that a collection of coins worth k¢ can be obtained using 3¢ and 
5¢ coins. The challenge is to show that a collection of coins worth (k11)¢ can be obtained 
using 3¢ and 5¢ coins.

To meet the challenge observe that just one of two situations must occur: either the col-
lection worth k¢ contains a 5¢ coin or it does not. If you can obtain k¢ using at least one 
5¢ coin, then you can obtain (k11)¢ by replacing the 5¢ coin by two 3¢ coins, as shown 
in Figure 5.3.1.

k¢ (k + 1)¢

3¢ 3¢5¢

Replace a 5¢ coin by
two 3¢ coins.

Remove Add

FIGURE 5.3.1

On the other hand, if you can obtain k¢ without using a 5¢ coin, then you need to use 3¢ 
coins exclusively. If the total is more than 8¢, then three or more 3¢ coins must be included, 
in which case you can replace three of the 3¢ coins by two 5¢ coins to obtain a total of (k11)¢,  
as shown in Figure 5.3.2.

5¢

k¢ (k + 1)¢

Remove Add

k¢ (k + 1)¢

5¢
3¢ 3¢

3¢

Replace three 3¢ coins
by two 5¢ coins.

Remove Add

FIGURE 5.3.2

This discussion shows that for any integer k that is at least 8, if you can obtain k¢ using 
3¢ and 5¢ coins, then you can obtain (k11)¢ using 3¢ and 5¢ coins. This is essentially the 
inductive step of a proof by mathematical induction, and the fact that you can obtain 8¢ 
using one 3¢ and one 5¢ coin provides the basis step for the induction.

In Section 5.2 the properties proved by mathematical induction were all equations. In 
this section the properties are more general sentences. For this example the sentence is “n¢ 
can be obtained using 3¢ and 5¢ coins,” and the proof by mathematical induction shows 
that the sentence is true for every integer greater than or equal to 8.
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5.3 MATHeMATIcAL InDucTIOn II: APPLIcATIOnS  291

proposition 5.3.1

For every integer n $ 8, n¢ can be obtained using 3¢ and 5¢ coins.

proof (by mathematical induction):
Let the property P(n) be the sentence

n¢ can be obtained using 3¢ and 5¢ coins. d P(n)

Show that P(8) is true:

P(8) is true because 8¢ can be obtained using one 3¢ coin and one 5¢ coin.

Show that for every integer k $ 8, if P(k) is true then P(k11) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 8. That is:] 
Suppose that k is any integer with k $ 8 such that

k¢ can be obtained using 3¢ and 5¢ coins. d P(k)  
inductive hypothesis

[We must show that P(k11) is true. That is:] We must show that

(k11)¢ can be obtained using 3¢ and 5¢ coins. d P(k11)

Case 1 (There is a 5¢ coin among those used to make up the k¢.): In this case re-
place the 5¢ coin by two 3¢ coins; the result will be (k11)¢.

Case 2 (There is not a 5¢ coin among those used to make up the k¢.): In this case, 
because k $ 8, at least three 3¢ coins must have been used. So remove three 3¢ coins 
and replace them by two 5¢ coins; the result will be (k11)¢.

Thus in either case (k11)¢ can be obtained using 3¢ and 5¢ coins [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

The basic outlines of the proofs in the remainder of this section are the same in all 
cases, but the details of the basis and inductive steps differ quite a lot from one to another.

proving a Divisibility property

Use mathematical induction to prove that for each integer n $ 0, 22n 21 is divisible by 3.

Solution As in the previous proofs by mathematical induction, you need to identify the 
property P(n). In this example, P(n) is the sentence

22n 21 is divisible by 3. d the property (P(n))

By substitution, the statement for the basis step, P(0), is

22?0 21 is divisible by 3. d basis (P(0))

The supposition for the inductive step, P(k), is

22k 21 is divisible by 3, d inductive hypothesis (P(k))

and the conclusion to be shown, P(k11), is

22(k11) 21 is divisible by 3. d to show (P(k11))

Example 5.3.1

Note To write P(8), just 
copy P(n) and replace 
each n by 8.

Note To write P(k), just 
copy P(n) and replace 
each n by k.

Note To write P(k11), 
just copy P(n) and replace 
each n by k11.
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Recall that an integer m is divisible by 3 if, and only if, m 5 3r for some integer r. Now 
the statement P(0) is true because 22?0 21 5 20 21 5 121 5 0, which is divisible by 3 
because 0 5 3?0.

To prove the inductive step, you suppose that k is any integer greater than or equal to 0 
such that P(k) is true. In other words, you suppose that 22k 21 is divisible by 3. You must 
then prove the truth of P(k11). Thus, you must show that 22(k11) 21 is divisible by 3. Now

 22(k11) 21 5 22k12 21

 5 22k?22 21 by the laws of exponents.

 5 22k?421.

Your aim is to show that 22k?421 is divisible by 3, but why should that be so? Both 
22k?421 and 22k 21 have a lot in common, and, by the inductive hypothesis, 22k 21 is 
divisible by 3. Observe what happens if you subtract 22k 21 from 22k?421:

22k?4212 (22k 21) 5 22k?3.   

 divisible by 3? divisible by 3 divisible by 3

Adding 22k 21 to both sides gives

22k?421 5 22k?31 (22k 21).   

 divisible by 3? divisible by 3 divisible by 3

Both terms of the sum on the right-hand side of this equation are divisible by 3; hence 
the sum is divisible by 3. (See exercise 15 of Section 4.3.) Therefore, the left-hand side of 
the equation is also divisible by 3, which is what was to be shown.

This discussion is summarized as follows:

proposition 5.3.2

For each integer n $ 0, 22n 21 is divisible by 3.

proof (by mathematical induction): Let the property P(n) be the sentence “22n 21 
is divisible by 3.”

22n 21 is divisible by 3. d P(n)

Show that P(0) is true:
To establish P(0), we must show that

22?0 21 is divisible by 3. d P(0)

But

22?0 21 5 20 21 5 121 5 0,

and 0 is divisible by 3 because 0 5 3?0. Hence P(0) is true.

Show that for any integer k $ 0, if P(k) is true then P(k11) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 0. That is:] 
Let k be any integer with k $ 0, and suppose that

22k 21 is divisible by 3. d P(k) inductive hypothesis

c c c

c c c

Note To write P(0), just 
copy P(n) and replace 
each n by 0.

Note To write P(k), just 
copy P(n) and replace 
each n by k.
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5.3 MATHeMATIcAL InDucTIOn II: APPLIcATIOnS  293

By definition of divisibility, this means that

22k 21 5 3r for some integer r.

[We must show that P(k11) is true. That is:] We must show that

22(k11) 21 is divisible by 3. d P(k11)

Now

 22(k11) 21 5 22k12 21

 5 22k?22 21

 5 22k?421

 5 22k(311)21

 5 22k?31 (22k 21)

 5 22k?313r

 5 3(22k 1 r)

But 22k 1 r is an integer because it is a sum of products of integers, and so, by defini-
tion of divisibility, 22(k11) 21 is divisible by 3 [as was to be shown].
[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

by the laws of exponents

by the laws of algebra

by inductive hypothesis

by factoring out the 3.

 ■

Another way to prove the inductive step for a divisibility property is illustrated in the 
answer for exercise 11 at the end of this section. It is shown in Appendix B.

proving an Inequality

Use mathematical induction to prove that for each integer n $ 3,

2n 11 , 2n.

Solution In this example the property P(n) is the inequality

2n11 , 2n. d the property (P(n))

By substitution, the statement for the basis step, P(3), is

2?311 , 23. d basis (P(3))

The supposition for the inductive step, P(k), is

2k11 , 2k, d inductive hypothesis (P(k))

and the conclusion to be shown is

2(k11)11 , 2k11. d to show (P(k11))

To prove the basis step, observe that the statement P(3) is true because 2?311 5 7, 23 5 8, 
and 7 , 8.

For the inductive step you assume the inductive hypothesis that for a particular but 
arbitrarily chosen integer k $ 3, 2k11 , 2k, and then you must show that 2k11 , 2k11. 
With inequality proofs you can often apply the inductive hypothesis at an early stage. In 
this case, you can substitute from the induction hypothesis to obtain

2(k11)11 5  (2k11)12 , 2k 12.

Example 5.3.2

Note To write P(k11), 
just copy P(n) and replace 
each n by k11.
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At this point you need to think about your goal. You want the right-hand side of the in-
equality to be 2k11. Since you already know that 2(k11)11 , 2k 12, an easy way to 
complete your job would be to show that

2k 12 , 2k11.

But this inequality is true because 2 , 2k for k $ 3, and thus

2k 12 , 2k 12k 5 2?2k 5 2k11

by algebra and a law of exponents. Transitivity of order then implies that 2(k11)11 , 2k11.
This discussion is summarized in the following formal proof. 

Note Properties of order 
are listed in Appendix A.

proposition 5.3.3

For every integer n $ 3, 2n11 , 2n.

proof (by mathematical induction):
Let the property P(n) be the inequality

2n11 , 2n. d P(n)

Show that P(3) is true:
To establish P(3), we must show that

2?311 , 23.  d P(3)

Now

2?311 5 7 and 23 5 8 and 7 , 8.

Hence P(3) is true.

Show that for every integer k $ 3, if P(k) is true then P(k11) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 3. That is:]
Suppose that k is any integer with k $ 3 such that

2k11 , 2k. d P(k)  
inductive hypothesis

[We must show that P(k11) is true. That is:] We must show that

2(k11)11 , 2(k11). d P(k+1)

Now

2(k11)11 5 2k1112 by algebra

, 2k 12 because, by the inductive 
hypothesis, 2k11 , 2k

, 2k 12k because 2 , 2k since k $ 3

5 2?2k by algebra

5 2k11 by the laws of exponents.

Thus by transitivity of order 2(k11)11 , 2k11  [as was to be shown].
[Since we have proved the basis step and the inductive step, we conclude that the 
proposition is true.]

Note For P(3), copy P(n) 
and replace each n by 3.

Note For P(k), copy P(n) 
and replace each n by k.

Note For P(k11), copy 
P(n) and replace each n 
by k11.

 ■
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The next example demonstrates how to use mathematical induction to show that the 
terms of a sequence satisfy a certain explicit formula.

proving a property of a Sequence

Define a sequence a1, a2, a3, Á as follows:*

a1 5 2

ak 5 5ak21 for every integer k $ 2.

a. Write the first four terms of the sequence.

b. It is claimed that for each integer n $ 0, the nth term of the sequence has the same 
value as that given by the formula 2?5n21. In other words, the claim is that the terms 
of the sequence satisfy the equation an 5 2?5n21. Prove that this is true.

Solution
a. a1 5 2

a2 5 5a221 5 5a1 5 5?2 5 10

a3 5 5a321 5 5a2 5 5?10 5 50

a4 5 5a421 5 5a3 5 5?50 5 250

b. To use mathematical induction to show that every term of the sequence satisfies the 
equation, begin by showing that the first term of the sequence satisfies the equation. 
Then suppose that an arbitrarily chosen term ak satisfies the equation and prove that 
the next term ak11 also satisfies the equation. 

proof (by mathematical induction):
Let a1, a2, a3, Á be the sequence defined by specifying that a1 5 2 and ak 5 5ak21 for 
every integer k $ 2, and let the property P(n) be the equation

an 5 2?5n21.  d P(n)

We will use mathematical induction to prove that for every integer n $ 1, P(n) is true.

Show that P(1) is true:
To establish P(1), we must show that

a1 5 2?5121. d P(1)

Now the left-hand side of P(1) is

a1 5 2 by definition of a1, a2, a3, Á ,

and the right-hand side of P(1) is

2?5121 5 2?50 5 2?1 5 2.

Thus the two sides of P(1) are equal to the same quantity, and hence P(1) is true.

Show that for each integer k $ 1, if P(k) is true then P(k11) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 1. That is:] Let k 
be any integer with k $ 1, and suppose that

ak 5 2?5k21. d P(k)  
inductive hypothesis

[We must show that P(k11) is true. That is:] We must show that

ak11 5 2?5(k11)21,

Example 5.3.3

Note For P(1), copy P(n) 
and replace each n by 1.

Note For P(k), copy P(n) 
and replace each n by k.

*This is another example of a recursive definition. The general subject of recursion is discussed in Section 5.6.
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or, equivalently,

ak11 5 2?5k.  d P(k11)

But the left-hand side of P(k11) is

ak11 5 5a(k11)21 by definition of a1, a2, a3, Á

5 5ak since (k11)21 5 k

5 5?(2?5k21) by inductive hypothesis

5 2?(5?5k21) by regrouping

5 2?5k by the laws of exponents,

which is the right-hand side of P(k11) [as was to be shown].

[Since we have proved the basis step and the inductive step, we conclude that the formula 
holds for all terms of the sequence.] ■

A Problem with Trominoes
The word polyomino, a generalization of domino, was introduced by Solomon Golomb in 
1954 when he was a 22-year-old university student. Subsequently, he and others proved 
many interesting properties about them, and they became the basis for the popular com-
puter game Tetris. A particular type of polyomino, called a tromino, is made up of three 
attached squares, which can be of two types:

straight and L-shaped

Call a checkerboard that is formed using m squares on a side an m 3 m (“m by m”) check-
erboard. Observe that if one square is removed from a 4 3 4 checkerboard, the remaining 
squares can be completely covered by L-shaped trominoes. For instance, a covering for 
one such board is illustrated in the figure to the left.

In his first article about polyominoes, Golomb included a proof of the following theo-
rem. It is a beautiful example of an argument by mathematical induction.

Note For P(k11), copy 
P(n) and replace each n 
by k11.

Theorem 5.3.4 Covering a Board with Trominoes

For any integer n $ 1, if one square is removed from a 2n 3 2n checkerboard, the 
remaining squares can be completely covered by L-shaped trominoes.

The main insight leading to a proof of this theorem is the observation that because 

2k11 5 2?2k, when a 2k11 3 2k11 board is split in half both vertically and horizon-

tally, each half side will have length 2k and so each resulting quadrant will be a 

2k 3 2k checkerboard.

proof (by mathematical induction):
Let the property P(n) be the sentence

If any square is removed from a 2n 3 2n checkerboard, then 
the remaining squares can be completely covered by L-shaped 
trominoes.

d P(n)

Note Even when P(n) is a 
long sentence, P(1), P(k), 
and P(k11) are each 
obtained by copying P(n) 
and replacing each n by 1, 
k, k11, respectively.
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Show that P(1) is true:
A 21 3 3 21 checkerboard just consists of four squares. If one square is removed, 
the remaining squares form an L, which can be covered by a single L-shaped tro-
mino, as illustrated in the figure to the left. Hence P(1) is true.

Show that for every integer k $ 1, if P(k) is true then P(k11) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 3. That is:]
Let k be any integer such that k $ 1, and suppose that

If any square is removed from a 2k 3 2k checkerboard, then 
the remaining squares can be completely covered by L-shaped 
trominoes.

P(k) is the inductive hypothesis.
[We must show that P(k11) is true. That is:] We must show that

If any square is removed from a 2k11 3 2k11 checkerboard, 
then the remaining squares can be completely covered by  
L-shaped trominoes.

Consider a 2k11 3 2k11 checkerboard with one square removed. Divide it into four 
equal quadrants: Each will consist of a 2k 3 2k checkerboard. In one of the quad-
rants, one square will have been removed, and so, by inductive hypothesis, all the re-
maining squares in this quadrant can be completely covered by L-shaped trominoes. 

The other three quadrants meet at the center of the checkerboard, and the center 
of the checkerboard serves as a corner of a square from each of those quadrants. An 
L-shaped tromino can, therefore, be placed on those three central squares. This situ-
ation is illustrated in the figure to the left. 

By inductive hypothesis, the remaining squares in each of the three quadrants can 
be completely covered by L-shaped trominoes. Thus every square in the 2k11 3 2k11 
checkerboard except the one that was removed can be completely covered by  
L-shaped trominoes [as was to be shown].

d P(k)

d P(k11)

2k 2k

2k + 2k = 2k + 1

1. Mathematical induction differs from the kind of 
induction used in the natural sciences because it is 
actually a form of  reasoning.

2. Mathematical induction can be used to  
conjectures that have been made using inductive 
reasoning.

TEST YOURSELF

1. Use mathematical induction (and the proof of 
proposition 5.3.1 as a model) to show that any 
amount of money of at least 14¢ can be made up 
using 3¢ and 8¢ coins.

2. Use mathematical induction to show that any post-
age of at least 12¢ can be obtained using 3¢ and 7¢ 
stamps.

3. Stamps are sold in packages containing either 
5 stamps or 8 stamps.
a. Show that a person can obtain 5, 8, 10, 13, 15, 

16, 20, 21, 24, or 25 stamps by buying a collec-
tion of 5-stamp packages and 8-stamp packages.

b. Use mathematical induction to show that any 
quantity of at least 28 stamps can be obtained 

ExERCISE SET 5.3 
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by buying a collection of 5-stamp packages 
and 8-stamp packages. 

4. For each positive integer n, let P(n) be the sentence 
that describes the following divisibility property:

5n 21 is divisible by 4.  

a. Write P(0). Is P(0) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that this di-

visibility property holds for every integer n $ 0, 
what must be shown in the inductive step? 

5. For each positive integer n, let P(n) be the inequality

2n , (n11)!.

a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that this 

inequality holds for every integer n $ 2, what 
must be shown in the inductive step? 

6. For each positive integer n, let P(n) be the sentence

Any checkerboard with dimensions 2 3 3n can 
be completely covered with L-shaped trominoes.

a. Write P(1). Is P(1) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that P(n) 

is true for each integer n $ 1, what must be 
shown in the inductive step? 

7. For each positive integer n, let P(n) be the sentence

In any round-robin tournament involving n 
teams, the teams can be labeled T1, T2, T3, Á , Tn, 
so that Ti beats Ti11 for every i 5 1, 2, Á , n.

a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k11).
d. In a proof by mathematical induction that P(n) 

is true for each integer n $ 2, what must be 
shown in the inductive step? 

prove each statement in 8–23 by mathematical induction.

8. 5n 21 is divisible by 4, for every integer n $ 0.

9. 7n 21 is divisible by 6, for each integer n $ 0.

10. n3 27n13 is divisible by 3, for each integer n $ 0.

11. 32n 21 is divisible by 8, for each integer n $ 0.

12. For any integer n $ 0, 7n 22n is divisible by 5.

13. For any integer n $ 0, xn 2yn is divisible by x2y, 
where x and y are any integers with x Þ y.

14. n3 2n is divisible by 6, for each integer n $ 0.

15. n(n2 15) is divisible by 6, for each integer n $ 0.

16. 2n , (n11)!, for every integer n $ 2.

17. 113n # 4n, for every integer n $ 0.

18. 5n 19 , 6n, for each integer n $ 2.

19. n2 , 2n, for every integer n $ 5.

20. 2n , (n12)!, for each integer n $ 0.

21. Ïn ,
1

Ï1
1

1
Ï2

1 Á 1
1

Ïn
, for every integer 

n $ 2.

22. 11nx # (11x)n, for every real number x . 21 
and every integer n $ 2.

23. a. n3 . 2n11, for each integer n $ 2.
b. n! . n2, for each integer n $ 4.

24. A sequence a1, a2, a3, Á is defined by letting 
a1 5 3 and ak 5 7ak−1 for each integer k $ 2. 
Show that an 5 3?7n21 for every integer n $ 1.

25. A sequence b0, b1, b2, Á  is defined by letting 
b0 5 5 and bk 5 41bk21 for each integer k $ 1. 
Show that bn . 4n for every integer n $ 0.

26. A sequence c0, c1, c2, Á  is defined by letting 
c0 5 3 and ck 5 (ck21)

2 for every integer k $ 1. 
Show that cn 5 32n for each integer n $ 0.

27. A sequence d1, d2, d3, Á  is defined by letting 

d1 5 2 and dk 5
dk21

k  for each integer k $ 2. Show 

that for every integer n $ 1, dn 5
2
n!. 

28. Prove that for every integer n $ 1,

1

3
5

113151 Á 1 (2n21)

(2n11)(2n13)1 Á 1 (2n1 (2n21))
.

exercises 29 and 30 use the definition of string and string 
length from page 13 in Section 1.4. recursive definitions 
for these terms are given in Section 5.9.

29. A set L consists of strings obtained by juxtaposing 
one or more of abb, bab, and bba. Use mathemati-
cal induction to prove that for every integer n $ 1, 
if a string s in L has length 3n, then s contains an 
even number of b’s.

H

H
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30. A set S consists of strings obtained by juxtapos-
ing one or more copies of 1110 and 0111.  
Use mathematical induction to prove that for ev-
ery integer n $ 1, if a string s in S has length 4n, 
then the number of 1’s in s is a multiple of 3.

31. Use mathematical induction to give an alternative 
proof for the statement proved in Example 4.9.9: 
For any positive integer n, a complete graph on n 

vertices has 
n(n 2 1)

2  edges. Hint: Let P(n) be the 
sentence, “the number of edges in a complete graph 

on n vertices is 
n(n 2 1)

2 .” 

32. Some 5 3 5 checkerboards with one square 
removed can be completely covered by L-shaped 
trominoes, whereas other 5 3 5 checkerboards 
cannot. Find examples of both kinds of checker-
boards. Justify your answers.

33. Consider a 4 3 6 checkerboard. Draw a covering 
of the board by L-shaped trominoes.

34. a.  Use mathematical induction to prove that for 
each integer n $ 1, any checkerboard with 
dimensions 2 3 3n can be completely covered 
with L-shaped trominoes.

b. Let n be any integer greater than or equal 
to 1. Use the result of part (a) to prove by 
mathematical induction that for every inte-
ger m, any checkerboard with dimensions 
2m 3 3n can be completely covered with 
L-shaped trominoes.

35. Let m and n be any integers that are greater than 
or equal to 1.
a. Prove that a necessary condition for an m 3 n 

checkerboard to be completely coverable by  
L-shaped trominoes is that mn be divisible by 3.

b. Prove that having mn be divisible by 3 is not 
a sufficient condition for an m 3 n checker-
board to be completely coverable by L-shaped 
trominoes.

36. In a round-robin tournament each team plays every 
other team exactly once with ties not allowed. If 
the teams are labeled T1, T2, Á , Tn, then the out-
come of such a tournament can be represented by a 
directed graph, in which the teams are represented 
as dots and an arrow is drawn from one dot to an-
other if, and only if, the following team represented 
by the first dot beats the team represented by the 
second dot. For example, the following directed 
graph shows one outcome of a round-robin tourna-
ment involving five teams, A, B, C, D, and E.

A
B

C

D
E

Use mathematical induction to show that in 
any round-robin tournament involving n teams, 
where n $ 2, it is possible to label the teams  
T1, T2, Á , Tn so that Ti beats Ti11 for all i 5 1, 
2, Á , n21. (For instance, one such labeling in 
the example above is T1 5 A, T2 5 B, T3 5 C, 
T4 5 E, T5 5 D.) (Hint: Given k11 teams, 
pick one—say T9—and apply the inductive 
hypothesis to the remaining teams to obtain an 
ordering T1, T2, Á , Tk. Consider three cases: 
T9 beats T1, T9 loses to the first m teams (where 
1 # m # k21) and beats the (m11)st team, 
and T9 loses to all the other teams.)

37. On the outside rim of a circular disk the integers 
from 1 through 30 are painted in random order. 
Show that no matter what this order is, there must be 
three successive integers whose sum is at least 45.

38. Suppose that n a’s and n b’s are distributed around 
the outside of a circle. Use mathematical induction 
to prove that for any integer n $ 1, given any such 
arrangement, it is possible to find a starting point 
so that if you travel around the circle in a clock-
wise direction, the number of a’s you pass is never 
less than the number of b’s you have passed. For 
example, in the diagram shown below, you could 
start at the a with an asterisk.

a
a

a

b

b

b
b

b

a*

a

a

b

39. For a polygon to be convex means that given any 
two points on or inside the polygon, the line join-
ing the points lies entirely inside the polygon. Use 
mathematical induction to prove that for every 
integer n $ 3, the angles of any n-sided convex 
polygon add up to 180(n22) degrees.

40. a.  Prove that in an 8 3 8 checkerboard with alter-
nating black and white squares, if the squares 
in the top right and bottom left corners are  

H

H

H

H*

H
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removed the remaining board cannot be 
covered with dominoes. (Hint: Mathematical 
induction is not needed for this proof.)

b. Use mathematical induction to prove that for 
each positive integer n, if a 2n 3 2n checker-
board with alternating black and white squares 
has one white square and one black square 
removed anywhere on the board, the remaining 
squares can be covered with dominoes.

41. A group of people are positioned so that the dis-
tance between any two people is different from the 
distance between any other two people. Suppose 
that the group contains an odd number of people 
and each person sends a message to their nearest 
neighbor. Use mathematical induction to prove 
that at least one person does not receive a mes-
sage from anyone. [This exercise is inspired by 
the article “Odd Pie Fights” by L. Carmony, The 
Mathematics Teacher, 72(1), 1979, 61–64.]

42. Show that for any even integer n, it is possible to 
find a group of n people who are all positioned so 
that the distance between any two people is differ-
ent from the distance between any other two people, 
so that each person sends a message to their nearest 
neighbor, and so that every person in the group re-
ceives a message from another person in the group.

43. Define a game as follows: You begin with an urn 
that contains a mixture of white and black balls, 
and during the game you have access to as many 
additional white and black balls as you might 
need. In each move you remove two balls from 
the urn without looking at their colors. If the balls 
are the same color, you put in one black ball. If 
the balls are different colors, you put the white 
ball back into the urn and keep the black ball out. 
Because each move reduces the number of balls 
in the urn by one, the game will end with a single 
ball in the urn. If you know how many white balls 
and how many black balls are initially in the urn, 
can you predict the color of the ball at the end of 
the game? [This exercise is based on one described 
in “Why correctness must be a mathematical con-
cern” by E. W. Dijkstra, www.cs.utexas.edu/users 
/EWD/transcriptions/EWD07xx/EWD720.html.]
a. Map out all possibilities for playing the game 

starting with two balls in the urn, then three 
balls, and then four balls. For each case keep 
track of the number of white and black balls 
you start with and the color of the ball at the 
end of the game.

b. Does the number of white balls seem to be pre-
dictive? Does the number of black balls seem to 
be predictive? Make a conjecture about the color 
of the ball at the end of the game given the num-
bers of white and black balls at the beginning.

c. Use mathematical induction to prove the con-
jecture you made in part (b).

44. Let P(n) be the following sentence: Given any 
graph G with n vertices satisfying the condition 
that every vertex of G has degree at most M, then 
the vertices of G can be colored with at most M11 
colors in such a way that no two adjacent vertices 
have the same color. Use mathematical induction to 
prove this statement is true for every integer n $ 1. 

In order for a proof by mathematical induction to be valid, 
the basis statement must be true for n 5 a and the argu-
ment of the inductive step must be correct for every inte-
ger k $ a. In 45 and 46 find the mistakes in the “proofs” 
by mathematical induction.

45. “Theorem:” For any integer n $ 1, all the num-
bers in a set of n numbers are equal to each other.

“Proof (by mathematical induction): It is obvi-
ously true that all the numbers in a set consisting 
of just one number are equal to each other, so 
the basis step is true. For the inductive step, let 
A 5 {a1, a2, Á , ak, ak11} be any set of k11 num-
bers. Form two subsets each of size k:

B 5 {a1, a2, a3, Á , ak} and
C 5 {a1, a3, a4, Á , ak11}.

(B consists of all the numbers in A except ak11, 
and C consists of all the numbers in A except a2.) 
By inductive hypothesis, all the numbers in B 
equal a1 and all the numbers in C equal a1 (since 
both sets have only k numbers). But every number 
in A is in B or C, so all the numbers in A equal a1; 
hence all are equal to each other.”

46. “Theorem:” For every integer n $ 1, 3n 22 is even.
“Proof (by mathematical induction): Suppose 
the theorem is true for an integer k, where k $ 1. 
That is, suppose that 3k 22 is even. We must show 
that 3k11 22 is even. Observe that

3k11 22 5 3k?322 5 3k(112)22

5 (3k 22)13k?2.

Now 3k 22 is even by inductive hypothesis and 
3k?2 is even by inspection. Hence the sum of 
the two quantities is even (by Theorem 4.1.1). It 
follows that 3k11 22 is even, which is what we 
needed to show.” 

H

H

H

H

H
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Strong Mathematical Induction  
and the Well-Ordering principle  
for the Integers
Mathematics takes us still further from what is human into the region of absolute 
necessity, to which not only the actual world, but every possible world, must conform. 
—Bertrand Russell, 1902

Strong mathematical induction is similar to ordinary mathematical induction in that it is 
a technique for establishing the truth of a sequence of statements about integers. Also, 
a proof by strong mathematical induction consists of a basis step and an inductive step. 
However, the basis step may contain proofs for several initial values, and in the inductive 
step the truth of the predicate P(n) is assumed not just for one value of n but for all values 
through k, and then the truth of P(k11) is proved.

5.4

1. deductive 2. prove

ANSWERS FOR TEST YOURSELF 

principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers 
with a # b. Suppose the following two statements are true:

1. P(a), P(a11), Á , and P(b) are all true. (basis step)

2. For every integer k $ b, if P(i) is true for each integer i from a through k, then 
P(k11) is true. (inductive step)

Then the statement

for every integer n $ a, P(n)

is true. (The supposition that P(i) is true for each integer i from a through k is called 
the inductive hypothesis. Another way to state the inductive hypothesis is to say 
that P(a), P(a11), Á , P(k) are all true.)

Any statement that can be proved with ordinary mathematical induction can be proved 
with strong mathematical induction. The reason is that given any integer k $ b, if the truth 
of P(k) alone implies the truth of P(k11), then certainly the truth of P(a), P(a11), Á , and 
P(k) implies the truth of P(k11). It is also the case that any statement that can be proved 
with strong mathematical induction can be proved with ordinary mathematical induction. A 
proof is sketched in exercise 27 at the end of this section.

Strictly speaking, the principle of strong mathematical induction can be written without 
a basis step if the inductive step is changed to “For every integer k $ a21, if P(i) is true 
for each integer i from a through k, then P(k11) is true.” The reason for this is that the 
statement “P(i) is true for each integer i from a through k” is vacuously true for k 5 a21. 
Hence, if the implication in the inductive step is true, then the conclusion P(a) must also 
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be true,* which proves the basis step. However, in many cases the proof of the implication 
for k . b does not work for a # k # b. So it is a good idea to get into the habit of thinking 
separately about the cases where a # k # b by explicitly including a basis step.

The principle of strong mathematical induction is known under a variety of different 
names including the second principle of induction, the second principle of finite induc-
tion, and the principle of complete induction.

Applying Strong Mathematical Induction
The divisibility-by-a-prime theorem states that any integer greater than 1 is divisible by a 
prime number. We prove this theorem using strong mathematical induction.

Divisibility by a prime

Prove Theorem 4.4.4: Any integer greater than 1 is divisible by a prime number.

Solution The idea for the inductive step is this: If you are given an integer greater than 1 
that is not itself prime, then it is a product of two smaller positive integers, each of which 
is greater than 1. By inductive hypothesis, you are assuming that each of these smaller 
integers is divisible by a prime number, and so, by transitivity of divisibility, those prime 
numbers also divide the integer you started with.

Example 5.4.1

proof (by strong mathematical induction):

Let the property P(n) be the sentence

n is divisible by a prime number.  d P(n)

Show that P(2) is true:
To establish P(2), we must show that

2 is divisible by a prime number.  d P(2)

But this is true because 2 is divisible by 2 and 2 is a prime number.

Show that for every integer k $ 2, if P(i) is true for each integer from 2 through 
k, then P(k11) is also true:
Let k be any integer with k $ 2 and suppose that

i is divisible by a prime number for each integer

i from 2 through k. d inductive hypothesis

We must show that

k11 is divisible by a prime number.  d P(k11)

Case 1 (k11 is prime): In this case k11 is divisible by a prime number, namely, itself.

Case 2 (k11 is not prime): In this case k11 5 ab where a and b are integers with 
1 , a , k11 and 1 , b , k11. Thus, in particular, 2 # a # k, and so by induc-
tive hypothesis, a is divisible by a prime number p. In addition because k11 5 ab, 
we have that k11 is divisible by a. Hence, since k11 is divisible by a and a is 
divisible by p, by transitivity of divisibility, k11 is divisible by the prime number p.

*If you have proved that a certain if-then statement is true and if you also know that the hypothesis is true, 
then the conclusion must be true.
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Both ordinary and strong mathematical induction can be used to show that the terms 
of certain sequences satisfy certain properties. The next example shows how this is done 
using strong induction.

proving a property of a Sequence with Strong Induction

Define a sequence s0, s1, s2, Á  as follows:

s0 5 0, s1 5 4, sk 5 6ak21 25ak22  for every integer k $ 2.

a. Find the first four terms of this sequence.

b. It is claimed that for each integer n $ 0, the nth term of the sequence has the same 
value as that given by the formula 5n 21. In other words, the claim is that all the terms 
of the sequence satisfy the equation sn 5 5n 21. Prove that this is true.

Solution
a. s0 5 0, s1 5 4, s2 5 6s1 25s0 5 6?425?0 5 24,

s3 5 6s2 25s1 5 6?2425?4 5 144220 5 124

b. To use strong mathematical induction to show that every term of the sequence satisfies 
the equation, the basis step must show that the first two terms satisfy it. This is necessary 
because, according to the definition of the sequence, computing values of later terms 
requires knowing the values of the two previous terms. So if the basis step only shows 
that the first term satisfies the equation, it would not be possible to use the inductive step 
to deduce that the second term satisfies the equation. In the inductive step you suppose 
that for an arbitrarily chosen integer k $ 1, all the terms of the sequence from s0 through 
sk satisfy the given equation and you then deduce that sk11 must also satisfy the equation.

Example 5.4.2

Therefore, regardless of whether k11 is prime or not, it is divisible by a prime 
number [as was to be shown].
[Since we have proved both the basis and the inductive step of the strong mathematical 
induction, we conclude that the given statement is true.]

■

proof:

Let s0, s1, s2, Á be the sequence defined by specifying that s0 5 0, s1 5 4, and 
sk 5 6ak21 25ak22 for every integer k $ 2, and let the property P(n) be the formula

sn 5 5n 21.    d P(n)

We will use strong mathematical induction to prove that for every integer n $ 0, 
P(n) is true.

Show that P(0) and P(1) are true:
To establish P(0) and P(1), we must show that

s0 5 50 21 and s1 5 51 21.  d P(0) and P(1)

But, by definition of s0, s1, s2, Á , we have that s0 5 0 and s1 5 4. Since 
50 21 5 121 5 0 and 51 21 5 521 5 4, the values of s0 and s1 agree with the 
values given by the formula.

(continued on page 304)
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A Sequence That Involves the Floor Function

Define a sequence a1, a2, a3, Á as follows:

a1 5 0,

a2 5 2,

ak 5 3a:ky2;12 for each integer k $ 3.

a. Find the first seven terms of the sequence.

b. Prove that an is even for every integer n $ 1.

Solution

a. a1 5 0

a2 5 2

a3 5 3a:3y2;12 5 3a1 12 5 3?012 5 2

a4 5 3a:4y2;12 5 3a2 12 5 3?212 5 8

a5 5 3a:5y2;12 5 3a2 12 5 3?212 5 8

a6 5 3a:6y2;12 5 3a3 12 5 3?212 5 8

a7 5 3a:7y2;12 5 3a3 12 5 3?212 5 8

b. Let the property P(n) be the sentence “an is even.” We use strong mathematical induc-
tion to show that the property holds for every integer n $ 1.

Show that P(1) and P(2) are true: The property is true for n 5 1 and n 5 2 because a1 5 0 
and a2 5 2 and both 0 and 2 are even integers.

Example 5.4.3

Show that for every integer k $ 1, if P(i) is true for each integer i from 0 through k, 
then P(k11) is also true:
Let k be any integer with k $ 1 and suppose that

si 5 5i 21 for each integer i with 0 # i # k.  d inductive hypothesis

We must show that

sk11 5 5k11 21.  d P(k11)

But since k $ 1, we have that k11 $ 2, and so

sk11 5 6sk 25sk21 by definition of s0, s1, s2, Á

5 6(5k 21)25(5k21 21) by definition hypothesis

5 6?5k 2625k 15 by multiplying out and applying a law of exponents

5 (621)5k 21 by factoring out 6 and arithmetic

5 5?5k 21 by arithmetic

5 5k11 21 by applying a law of exponents,

[as was to be shown].
[Since we have proved both the basis and the inductive step of the strong mathematical 
induction, we conclude that the given statement is true.]

■

94193_ch05_ptg01.indd   304 12/11/18   4:27 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.4 STROng MATHeMATIcAL InDucTIOn AnD THe WeLL-ORDeRIng PRIncIPLe FOR THe InTegeRS  305

Show that for every integer k $ 1, if P(i) is true for each integer i from 1 through k, then 
P(k11) is also true: Let k be any integer with k $ 1 and suppose that

ai is even for each integer i with 1 # i # k.  d inductive hypothesis

[We must show that ak is even.] By definition of a1, a2, a3, Á

ak 5 3a:ky2;12 for every integer k $ 3.  d P(k11)

Now a:ky2; is even by the inductive hypothesis [because k $ 1 and so 1 # :ky2; # k]. Thus 
3a:ky2; is even [because it is a product of an odd and an even integer], and hence 3a:ky2;12 is 
even [because a sum of two even integers is even]. Consequently, ak, which equals 3a:ky2;12, 
is even [as was to be shown].

[Since we have proved the basis step and the inductive step of the strong mathematical 
induction, we conclude that the given statement is true.] ■

Another use of strong induction concerns the computation of products. A product of 
four numbers may be computed in a variety of different ways as indicated by the placement 
of parentheses. For instance,

((x1x2)x3)x4 means multiply x1 and x2, multiply the result by x3,  
and then multiply that number by x4,

and

(x1x2)(x3x4) means multiply x1 and x2, multiply x3 and x4,  
and then take the product of the two.

Note that in both examples above, although the factors are multiplied in a different order, 
the number of multiplications—three—is the same. Strong mathematical induction is used 
to prove a generalization of this fact.

The Number of Multiplications Needed to Multiply n Numbers

Prove that for any integer n $ 1, if x1, x2, Á , xn are n numbers, then no matter how the 
parentheses are inserted into their product, the number of multiplications used to compute 
the product is n21.

Solution The truth of the basis step follows immediately from the convention about a 
product with one factor. The inductive step is based on the fact that when several numbers 
are multiplied together, each step of the process involves multiplying two individual quan-
tities. For instance, the final step for computing ((x1x2)x3)(x4x5) is to multiply (x1x2)x3 and 
x4x5. In general, when k11 numbers are multiplied, the two quantities in the final step 
each consist of fewer than k11 factors. This is what makes it possible to use the inductive 
hypothesis.

Example 5.4.4

Convention

Let us agree to say that a single number x1 is a product with one factor and can be 
computed with zero multiplications.

Note Like many 
definitions, this may 
look strange but it makes 
things work out nicely for 
extreme cases.
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proof (by strong mathematical induction):

Let the property P(n) be the sentence

If x1, x2, Á , xn are n numbers, then no matter  
how parentheses are inserted into their product,  
the number of multiplications used to compute  
the product is n21.

Show that P(1) is true:
To establish P(1), we must show that

The number of multiplications needed to compute  
the product of x1 is 121.

This is true because, by convention, x1 is a product that can be computed with 0 
multiplications, and 0 5 121.

Show that for every integer k $ 1, if P(i) is true for each integer i from 1 through 
k, then P(k11) is also true:
Let k be any integer with k $ 1 and suppose that

For each integer i from 1 through k, if x1, x2, Á , xi are 
numbers, then no matter how parentheses are inserted 
into their product, the number of multiplications used to 
compute the product is i21.

We must show that

If x1, x2, Á , xk11 are k11 numbers, then no matter 
how parentheses are inserted into their product, the 
number of multiplications used to compute the product 
is (k11)21 5 k.

Consider a product of k11 factors: x1, x2 Á , xk11. When parentheses are inserted 
in order to compute the product, some multiplication is the final one and each of 
the two factors making up the final multiplication is a product of fewer than k11 
factors. Let L be the product of the left-hand factors and R be the product of the 
right-hand factors, and suppose that L is composed of l factors and R is composed of 
r factors. Then l1 r 5 k11, the total number of factors in the product, and

1 # l # k and 1 # r # k.

By inductive hypothesis, evaluating L takes l21 multiplications and evaluating R 
takes r21 multiplications. Because one final multiplication is needed to evaluate L?R, 
the number of multiplications needed to evaluate the product of all k11 factors is

(l21)1 (r21)11 5 (l1 r)21 5 (k11)21 5 k

[as was to be shown].
[Since we have proved the basis step and the inductive step of the strong mathematical 
induction, we conclude that the given statement is true.]

d P(n)

d P(1)

d inductive hypothesis

d P(k11)

■

Strong mathematical induction makes possible a proof of the fact used frequently in com-
puter science that every positive integer n has a unique binary integer representation. The 
proof looks complicated because of all the notation needed to write down the various steps. 
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But the idea of the proof is simple. It is that if integers smaller than n have unique repre-
sentations as sums of powers of 2, then the unique representation for n as a sum of powers 
of 2 can be found by taking the representation for ny2 (or for (n21)y2 if n is odd) and 
multiplying it by 2.

Theorem 5.4.1 Existence and Uniqueness of Binary Integer Representations

Given any positive integer n, n has a unique representation in the form

n 5 cr?2r 1cr21?2r 21 1 Á 1c2?22 1c1?21c0,

where r is a nonnegative integer, cr 5 1, and cj 5 1 or 0 for each j 5 0, 1, 2, Á , 
r21.

proof:
We give separate proofs by strong mathematical induction to show first the existence 
and second the uniqueness of the binary representation.

Existence (proof by strong mathematical induction): Let the property P(n) be the 
equation

n 5 cr?2r 1cr21?2r21 1 Á 1c2?22 1c1?21c0,  d P(n)

where r is a nonnegative integer, cr 5 1, and cj 5 1 or 0 for each j 5 0, 1, 2, Á , 
r21.

Show that P(1) is true:
Let r 5 0 and c0 5 1. Then 1 5 cr?2r, and so n 5 1 can be written in the required 
form.

Show that for every integer k $ 1, if P(i) is true for each integer i from 1 through 
k, then P(k11) is also true:
Let k be an integer with k $ 1. Suppose that for each integer i from 1 through k,

i 5 cr?2r 1cr21?2r21 1 Á 1c2?22 1c1?21c0,  d inductive hypothesis

where r is a nonnegative integer, cr 5 1, and cj 5 1 or 0 for each j 5 0, 1, 2, Á , 
r21. We must show that k11 can be written as a sum of powers of 2 in the required 
form.

Case 1 (k11 is even): In this case (k11)y2 is an integer, and by inductive hypoth-
esis, since 1 # (k11)y2 # k, then

k11

2
5 cr?2r 1cr21?2r21 1 Á 1c2?22 1c1?21c0,

where r is a nonnegative integer, cr 5 1, and cj 5 1 or 0 for each j 5 0, 1, 2, Á , 
r21. Multiplying both sides of the equation by 2 gives

k11 5 cr?2r11 1cr21?2r 1 Á 1c2?23 1c1?22 1c0?2,

which is a sum of powers of 2 of the required form.

Case 2 (k11 is odd): In this case ky2 is an integer, and by inductive hypothesis, 
since 1 # ky2 5 k, then

k

2
5 cr?2r 1cr21?2r21 1 Á 1c2?22 1c1?21c0,

(continued on page 308)
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where r is a nonnegative integer, cr 5 1, and cj 5 1 or 0 for each j 5 0, 1, 2, Á , 
r21. Multiplying both sides of the equation by 2 and adding 1 gives

k11 5 cr?2r11 1cr21?2r 1 Á 1c2?23 1c1?22 1c0?211,

which is also a sum of powers of 2 of the required form.

The preceding arguments show that regardless of whether k11 is even or odd, k11 
has a representation of the required form. [Or, in other words, P(k11) is true as was 
to be shown.]

[Since we have proved the basis step and the inductive step of the strong mathematical 
induction, the existence half of the theorem is true.]

Uniqueness: To prove uniqueness, suppose that there is an integer n with two dif-
ferent representations as a sum of nonnegative integer powers of 2. Equating the two 
representations and canceling all identical terms gives

 2r 1cr21?2r21 1 Á 1c1?21c0 5 2s 1ds21?2s21 1 Á 1d1?21d0 5.4.1

where r and s are nonnegative integers and each ci and each di equal 0 or 1. With-
out loss of generality, we may assume that r , s. Now by the formula for the sum 
of a geometric sequence (Theorem 5.2.2) and because r , s (which implies that 
r11 # s),

2r 1cr21?2r21 1 Á 1c1?21c0 # 2r 12r21 1 Á 1211 5 2r11 21

, 2s.

Thus

2r 1cr21?2r21 1 Á 1c1?21c0 , 2s 1ds21?2s21 1 Á 1d1?21d0,

which contradicts equation (5.4.1). Hence the supposition is false, so any integer n 
has only one representation as a sum of nonnegative integer powers of 2.

The Well-Ordering Principle for the Integers
The well-ordering principle for the integers looks very different from both the ordinary and 
the strong principles of mathematical induction, but it can be shown that all three principles 
are equivalent. In other words, if any one of the three is true, then so are both of the others.

Well-Ordering principle for the Integers

Let S be a set of integers containing one or more integers all of which are greater 
than some fixed integer. Then S has a least element.

When the context makes the reference clear, we will write simply “the well-ordering 
principle” rather than “the well-ordering principle for the integers.”

Finding Least Elements

In each case, if the set has a least element, state what it is. If not, explain why the well-
ordering principle is not violated.

Example 5.4.5
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a. The set of all positive real numbers

b. The set of all nonnegative integers n such that n2 , n

c. The set of all nonnegative integers of the form 4627k, where k is an integer

Solution
a. There is no least positive real number. For if x is any positive real number, then xy2 is 

a positive real number that is less than x. No violation of the well-ordering principle 
occurs because the well-ordering principle refers only to sets of integers, and this set 
is not a set of integers.

b. There is no least nonnegative integer n such that n2 , n because there is no nonnega-
tive integer that satisfies this inequality. The well-ordering principle is not violated be-
cause the well-ordering principle refers only to sets that contain at least one element.

c. The following table shows values of 4627k for various values of k.

k 0 1 2 3 4 5 6 7 21 22 23

46 2 7k 46 39 32 25 18 11 4 23 53 60 67

The table suggests, and you can easily confirm, that 4627k , 0 for k $ 7 and that 
4627k $ 46 for k # 0. Therefore, from the other values in the table it is clear that 4 is the 
least nonnegative integer of the form 4627k. This corresponds to k 5 6. ■

Another way to look at the analysis of Example 5.4.5(c) is to observe that subtracting six 
7’s from 46 leaves 4 left over and this is the least nonnegative integer obtained by repeated 
subtraction of 7’s from 46. In other words, 6 is the quotient and 4 is the remainder for the 
division of 46 by 7. More generally, in the division of any integer n by any positive integer d, 
the remainder r is the least nonnegative integer of the form n2dk. This is the heart of the fol-
lowing proof of the existence part of the quotient-remainder theorem (the part that guarantees 
the existence of a quotient and a remainder of the division of an integer by a positive integer). 
For a proof of the uniqueness of the quotient and remainder, see exercise 21 of Section 4.8.

Quotient-Remainder Theorem (Existence part)

Given any integer n and any positive integer d, there exist integers q and r such that

n 5 dq1 r and 0 # r , d.

proof: Let S be the set of all nonnegative integers of the form

n2dk,

where k is an integer. This set has at least one element. [For if n is nonnegative, then

n20?d 5 n $ 0,

and so n20?d is in S. And if n is negative, then

n2nd 5 n(12d) $ 0,()*
c

, 0   # 0 since d is a positive integer

(continued on page 310)
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Another consequence of the well-ordering principle is the fact that any strictly decreas-
ing sequence of nonnegative integers is finite. That is, if r1, r2, r3, Á is a sequence of non-
negative integers satisfying

ri . ri11

for every i $ 1, then r1, r2, r3, Á is a finite sequence. [For by the well-ordering principle 
such a sequence has a least element, say rk. It follows that rk is the final term of the sequence 
because if there were an additional term rk11, then since the sequence is strictly decreasing, 
rk11 , rk, which would be a contradiction.] This fact is frequently used in computer science 
to prove that algorithms terminate after a finite number of steps.

and so n2nd is in S.] It follows by the well-ordering principle for the integers that S 
contains a least element r. Then, for some specific integer value of k, say q,

n2dq 5 r

[because every integer in S can be written in this form]. Adding dq to both sides gives

n 5 dq1 r.

Furthermore, r , d. [For suppose r $ d. Then

n2d(q11) 5 n2dq2d 5 r2d $ 0,

and so n2d(q11) would be a nonnegative integer in S that would be smaller than r. But 
r is the smallest integer in S. This contradiction shows that the supposition r $ d must 
be false.] The preceding arguments prove that there exist integers r and q for which

n 5 dq1 r and 0 # r , d

[as was to be shown].

1. In a proof by strong mathematical induction the 
basis step may require checking a property P(n) 
for more  value of n.

2. Suppose that in the basis step for a proof by strong 
mathematical induction the property P(n) was 
checked for every integer n from a through b. 
Then in the inductive step one assumes that for 

any integer k $ b, the property P(n) is true for 
all values of i from  through  and one 
shows that  is true.

3. According to the well-ordering principle for the 
integers, if a set S of integers contains at least 

 and if there is some integer that is less than 
or equal to every , then .

TEST YOURSELF 

1. Suppose a1, a2, a3, Á is a sequence defined as 
follows:

a1 5 1,  a2 5 3,

ak 5 ak22 12ak21 for each integer k $ 3.

Prove that an is odd for every integer n $ 1.

2. Suppose b1, b2, b3, Á is a sequence defined as fol-
lows:

b1 5 4,  b2 5 12,

bk 5 bk22 1bk21 for each integer k $ 3.

Prove that bn is divisible by 4 for every integer n $ 1.

ExERCISE SET 5.4 

94193_ch05_ptg01.indd   310 12/11/18   4:27 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.4 STROng MATHeMATIcAL InDucTIOn AnD THe WeLL-ORDeRIng PRIncIPLe FOR THe InTegeRS  311

3. Suppose that c0, c1, c2, Á  is a sequence defined 
as follows:

c0 5 2,  c1 5 2,  c2 5 6,

ck 5 3ck−3 for every integer k $ 3.

Prove that cn is even for each integer n $ 0.

4. Suppose that d1, d2, d3, Á  is a sequence defined 
as follows:

d1 5
9

10
,  d2

10

11
,

dk 5 dk21?dk22 for every integer k $ 3.

Prove that 0 , dn # 1 for each integer n $ 1.

5. Suppose that e0, e1, e2, Á  is a sequence defined 
as follows:

e0 5 12,  e1 5 29,

ek 5 5ek21 26ek22 for each integer k $ 2.

Prove that en 5 5?3n 17?2n for every integer 
n $ 0.

6. Suppose that f0, f1, f2, Á  is a sequence defined as 
follows:

f0 5 5,  f1 5 16,

fk 5 7fk21 210 fk22 for every integer k $ 2.

Prove that fn 5 3?2n 12?5n for each integer 
n $ 0.

7. Suppose that g1, g2, g3, Á  is a sequence defined 
as follows:

g1 5 3,  g2 5 5,
gk 5 3gk21 22gk22 for each integer k $ 3.

Prove that gn 5 2n 11 for every integer n $ 1.

8. Suppose that h0, h1, h2, Á  is a sequence defined 
as follows:

h0 5 1,  h1 5 2,  h2 5 3,

hk 5 hk21 1hk22 1hk23 for each integer k $ 3.

a. Prove that hn # 3n for every integer n $ 0.
b. Suppose that s is any real number such 

that s3 $ s2 1 s11. (This implies that 
2 . s . 1.83.) Prove that hn # sn for every 
integer n $ 2.

9. Define a sequence a1, a2, a3, Á  as follows: 
a1 5 1, a2 5 3, and ak 5 ak21 1ak22 for every  

integer k $ 3. (This sequence is known as the 
Lucas sequence.) Use strong mathematical induc-
tion to prove that an # _74+

n
for every integer n $ 1.

10. The introductory example solved with ordinary 
mathematical induction in Section 5.3 can also be 
solved using strong mathematical induction. Let P(n) 
be “any n¢ can be obtained using a combination of 
3¢ and 5¢ coins.” Use strong mathematical induction 
to prove that P(n) is true for every integer n $ 8.

11. You begin solving a jigsaw puzzle by finding two 
pieces that match and fitting them together. Every 
subsequent step of the solution consists of fitting 
together two blocks, each of which is made up 
of one or more pieces that have previously been 
assembled. Use strong mathematical induction 
to prove that for every integer n $ 1, the number 
of steps required to put together all n pieces of a 
jigsaw puzzle is n21.

12. The sides of a circular track contain a sequence 
of n cans of gasoline. For each integer n $ 1, the 
total amount in the cans is sufficient to enable a 
certain car to make one complete circuit of the 
track. In addition, all the gasoline could fit into 
the car’s gas tank at one time. Use mathematical 
induction to prove that it is possible to find an 
initial location for placing the car so that it will 
be able to traverse the entire track by using the 
various amounts of gasoline in the cans that it 
encounters along the way.

13. Use strong mathematical induction to prove the 
existence part of the unique factorization of 
integers theorem (Theorem 4.4.5). In other words, 
prove that every integer greater than 1 is either a 
prime number or a product of prime numbers.

14. Any product of two or more integers is a result 
of successive multiplications of two integers at a 
time. For instance, here are a few of the ways in 
which a1a2a3a4 might be computed: (a1a2)(a3a4) 
or ((a1a2)a3)a4) or a1((a2a3)a4). Use strong math-
ematical induction to prove that any product of 
two or more odd integers is odd.

15. Define the “sum” of one integer to be that integer, 
and use strong mathematical induction to prove 
that for every integer n $ 1, any sum of n even 
integers is even.

16. Use strong mathematical induction to prove that 
for every integer n $ 2, if n is even, then any sum 

H

H

H

H
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of n odd integers is even, and if n is odd, then any 
sum of n odd integers is odd.

17. Compute 41, 42, 43, 44, 45, 46, 47, and 48. Make a 
conjecture about the units digit of 4n where n is a 
positive integer. Use strong mathematical induc-
tion to prove your conjecture.

18. Compute 90, 91, 92, 93, 94, and 95. Make a conjec-
ture about the units digit of 9n where n is a posi-
tive integer. Use strong mathematical induction to 
prove your conjecture.

19. Suppose that a1, a2, a3, Á is a sequence defined as 
follows:

a1 5 1  ak 5 2?a:ky2; for every integer k $ 2.

Prove that an # n for each integer n $ 1.

20. Suppose that b1, b2, b3, Á is a sequence defined as 
follows:

b1 5 0,  b2 5 3  bk 5 5?b:ky2;16  for every integer  
k $ 3.

Prove that bn is divisible by 3 for each integer 
n $ 1.

21. Suppose that c1, c2, c3, Á is a sequence defined as 
follows:

c0 5 1,  c1 5 1  ck 5 c:ky2;1c<ky2=  for every 
integer k $ 2.

Prove that cn 5 n for each integer n $ 1.

22. One version of the game NIM starts with two piles 
of objects such as coins, stones, or matchsticks. 
In each turn a player is required to remove from 
one to three objects from one of the piles. The 
two players take turns doing this until both piles 
are empty. The loser is the first player who can’t 
make a move. Use strong mathematical induction 
to show that if both piles contain the same number 
of objects at the start of the game, the player who 
goes second can always win.

23. Define a game G as follows: Begin with a pile of n 
stones and 0 points. In the first move split the pile into 
two possibly unequal sub-piles, multiply the number 
of stones in one sub-pile times the number of stones in 
the other sub-pile, and add the product to your score. 
In the second move, split each of the newly created 
piles into a pair of possibly unequal sub-piles, mul-
tiply the number of stones in each sub-pile times the 
number of stones in the paired sub-pile, and add the 

new products to your score. Continue by successively 
splitting each newly created pile of stones that has at 
least two stones into a pair of sub-piles, multiplying 
the number of stones in each sub-pile times the num-
ber of stones in the paired sub-pile, and adding the 
new products to your score. The game G ends when 
no pile contains more than one stone.
a. Play G starting with 10 stones and using the fol-

lowing initial moves. In move 1 split the pile of 
10 stones into two sub-piles with 3 and 7 stones 
respectively, compute 3?7 5 21, and find that 
your score is 21. In move 2 split the pile of 
3 stones into two sub-piles, with 1 and 2 stones 
respectively, and split the pile of 7 stones into 
two sub-piles, with 4 and 3 stones respectively, 
compute 1?2 5 2 and 4?3 5 12, and find that 
your score is 2112112 5 35. In move 3 split 
the pile of 4 stones into two sub-piles, each 
with 2 stones, and split the pile of 3 stones into 
two sub-piles, with 1 and 2 stones respectively, 
and find your new score. Continue splitting 
piles and computing your score until no pile 
has more than one stone. Show your final score 
along with a record of the numbers of stones in 
the piles you created with your moves.

b. Play G again starting with 10 stones, but use a 
different initial move from the one in part (a). 
Show your final score along with a record of 
the numbers of stones in the piles you created 
with your moves.

c. Show that you can use strong mathematical 
induction to prove that for every integer n $ 1, 
given the set-up of game G, no matter how you 
split the piles in the various moves, your final 
score is (n(n21))y2. The basis step may look 
a little strange because a pile consisting of one 
stone cannot be spilt into any sub-piles. Anoth-
er way to say this is that it can only be split into 
zero piles, and that gives an answer that agrees 
with the general formula for the final score. 

24. Imagine a situation in which eight people, num-
bered consecutively 1–8, are arranged in a circle. 
Starting from person #1, every second person in the 
circle is eliminated. The elimination process con-
tinues until only one person remains. In the first 
round the people numbered 2, 4, 6, and 8 are elimi-
nated, in the second round the people numbered 3 
and 7 are eliminated, and in the third round person 
#5 is eliminated, so after the third round only per-
son #1 remains, as shown on the next page.
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1

Initial State After the 1st Round After the 2nd Round After the 3rd Round

2

3

4
5

6

7

8
1

3

5

7

1

5

1

a. Given a set of sixteen people arranged in a 
circle and numbered, consecutively 1–16, list 
the numbers of the people who are eliminated 
in each round if every second person is elimi-
nated and the elimination process continues 
until only one person remains. Assume that the 
starting point is person #1.

b. Use ordinary mathematical induction to prove 
that for every integer n $ 1, given any set of 
2n people arranged in a circle and numbered 
consecutively 1 through 2n, if one starts from 
person #1 and goes repeatedly around the 
circle successively eliminating every second 
person, eventually only person #1 will remain.

c. Use the result of part (b) to prove that for 
any nonnegative integers n and m with 
2n # 2n 1m , 2n11, if r 5 2n 1m, then given 
any set of r people arranged in a circle and num-
bered consecutively 1 through r, if one starts from 
person #1 and goes repeatedly around the circle 
successively eliminating every second person, 
eventually only person #(2m11) will remain.

25. Find the mistake in the following “proof” that 
purports to show that every nonnegative integer 
power of every nonzero real number is 1.

“Proof: Let r be any nonzero real number and let 
the property P(n) be the equation rn 5 1.

Show that P(0) is true: P(0) is true because r0 5 1 
by definition of zeroth power.

Show that for every integer k $ 0, if P(i) is 
true for each integer i from 0 through k, then 
P(k11) is also true: Let k be any integer with  
k $ 0 and suppose that ri 5 1 for each integer i 
from 0 through k. This is the inductive hypothesis. 
We must show that rk11 5 1. Now

rk11 5 rk1k2 (k21)  because k1k2 (k21) 5

k1k2k11 5 k11

5
rk?rk

rk21  by the laws of exponents

5
1?1

1
 by inductive hypothesis

5 1.

Thus rk11 5 1 [as was to be shown].

[Since we have proved the basis step and the inductive 
step of the strong mathematical induction, we conclude 
that the given statement is true.]”

26. Use the well-ordering principle for the integers to 
prove Theorem 4.4.4: Every integer greater than 1 
is divisible by a prime number.

27. Use the well-ordering principle for the integers to 
prove the existence part of the unique factoriza-
tion of integers theorem. In other words, prove 
that every integer greater than 1 is either prime or 
a product of prime numbers.

28. a.  The Archimedean property for the rational 
numbers states that for every rational number 
r, there is an integer n such that n . r. Prove 
this property.

b. Prove that given any rational number r, the 
number 2r is also rational.

c. Use the results of parts (a) and (b) to prove that 
given any rational number r, there is an integer 
m such that m , r.

29. Use the results of exercise 28 and the well-ordering 
principle for the integers to show that given any 
rational number r, there is an integer m such that 
m # r , m11.

30. Use the well-ordering principle to prove that 
given any integer n $ 1, there exists an odd 
integer m and a nonnegative integer k such that 
n 5 2k?m.

31. Give examples to illustrate the proof of  
Theorem 5.4.1.

32. Suppose P(n) is a property such that
1. P(0), P(1), P(2) are all true,
2. for each integer k $ 0, if P(k) is true, then 

P(3k) is true. Must it follow that P(n) is true for 
every integer n $ 0? If yes, explain why; if no, 
give a counterexample.

33. Prove that if a statement can be proved by strong 
mathematical induction, then it can be proved by 
ordinary mathematical induction. To do this, let 
P(n) be a property that is defined for each integer 
n, and suppose the following two statements are 
true:
1. P(a), P(a11), P(a12), Á , P(b).
2. For any integer k $ b, if P(i) is true for each 

integer i from a through k, then P(k11) is true. 

The principle of strong mathematical induction 
would allow us to conclude immediately that P(n) 

H
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is true for every integer n $ a. Can we reach the 
same conclusion using the principle of ordinary 
mathematical induction? Yes! To see this, let Q(n) 
be the property

P( j) is true for each integer j with a # j # n.

Then use ordinary mathematical induction to 
show that Q(n) is true for every integer n $ b. 
That is, prove:
1. Q(b) is true.
2.  For each integer k $ b, if Q(k) is true then 

Q(k11) is true.

34. It is a fact that every integer n $ 1 can be written 
in the form

cr?3r 1cr21?3r21 1 Á 1c2?32 1c1?31c0,

where cr 5 1 or 2 and ci 5 0, 1, or 2 for each 
integer i 5 0, 1, 2, Á , r21. Sketch a proof of this 
fact.

35. Use mathematical induction to prove the existence 
part of the quotient-remainder theorem. In other 
words, use mathematical induction to prove that 
given any integer n and any positive integer d, there 
exist integers q and r such that n 5 dq1 r and 
0 # r , d. 

36. Prove that if a statement can be proved by ordi-
nary mathematical induction, then it can be proved 
by the well-ordering principle.

37. Use the principle of ordinary mathematical induc-
tion to prove the well-ordering principle for the 
integers. 

H

H*

H*

H

1. than one 2. a; k; P(k11) 3. one integer; integer in S; S contains a least element

ANSWERS FOR TEST YOURSELF 

Application: Correctness of Algorithms
[P]rogramming reliably—must be an activity of an undeniably mathematical nature Á . 
You see, mathematics is about thinking, and doing mathematics is always trying to think 
as well as possible. —Edsger W. Dijkstra (1981)

What does it mean for a computer program to be correct? Each program is designed 
to do a specific task—calculate the mean or median of a set of numbers, compute the 
size of the paychecks for a company payroll, rearrange names in alphabetical order, 
and so forth. We will say that a program is correct if it produces the output specified in 
its accompanying documentation for each set of input data of the type specified in the 
documentation.*

Most computer programmers write their programs using a combination of logical anal-
ysis and trial and error. In order to get a program to run at all, the programmer must first 
fix all syntax errors (such as writing ik instead of if, failing to declare a variable, or using 
a restricted keyword for a variable name). When the syntax errors have been removed, 
however, the program may still contain logical errors that prevent it from producing cor-
rect output. Frequently, programs are tested using sets of sample data for which the cor-
rect output is known in advance. And often the sample data are deliberately chosen to test 
the correctness of the program under extreme circumstances. But for most programs the 
number of possible sets of input data is either infinite or unmanageably large, and so no 
amount of program testing can give perfect confidence that the program will be correct for 
all possible sets of legal input data.

5.5

Edsger W. Dijkstra 
(1930–2002)

*Consumers of computer programs want an even more stringent definition of correctness. If a user puts in data 
of the wrong type, the user wants a decent error message, not a system crash.
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Since 1967, with the publication of a paper by Robert W. Floyd,* considerable effort 
has gone into developing methods for proving programs correct at the time they are com-
posed. One of the pioneers in this effort, Edsger W. Dijkstra, asserted that “we now take 
the position that it is not only the programmer’s task to produce a correct program but 
also to demonstrate its correctness in a convincing manner.”† Another leader in the field, 
David Gries, went so far as to say that “a program and its proof should be developed hand-
in-hand, with the proof usually leading the way.”** In this section we give an overview of 
the general format of correctness proofs and the details of one crucial technique, the loop 
invariant procedure, and we switch from using the term program to using the more general 
term algorithm.

Assertions
Consider an algorithm that is designed to produce a certain final state from a certain 
initial state. Both the initial and final states can be expressed as predicates involv-
ing the input and output variables. Often the predicate describing the initial state is 
called  the pre-condition for the algorithm, and the predicate describing the final state 
is called the post-condition for the algorithm.

Algorithm pre-Conditions and post-Conditions

Here are pre- and post-conditions for some typical algorithms.

a. Algorithm to compute a product of nonnegative integers

Pre-condition: The input variables m and n are nonnegative integers.

Post-condition: The output variable p equals mn.

b. Algorithm to find quotient and remainder of the division of one positive integer by 
another

Pre-condition: The input variables a and b are positive integers.
Post-condition:  The output variables q and r are integers such that a 5 bq1 r and 

0 # r , b.

c. Algorithm to sort a one-dimensional array of real numbers

Pre-condition:  The input variable A[1], A[2], Á , A[n] is a one-dimensional array of 
real numbers.

Post-condition:  The output variable B[1], B[2], Á , B[n] is a one-dimensional array 
of real numbers with same elements as A[1], A[2], Á , A[n] but with 
the property that B[i] # B[ j] whenever i # j. ■

A proof of algorithm correctness consists of showing that if the pre-condition for the 
algorithm is true for a collection of values for the input variables and if the statements of 
the algorithms are executed, then the post-condition is also true.

Example 5.5.1

Robert W. Floyd 
(1936–2002)
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*R. W. Floyd, “Assigning meanings to programs,” Proc. Symp. Appl. Math., Amer. Math. Soc. 19 (1967), 
19–32.
†Edsger Dijkstra in O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming (London: Aca-
demic Press, 1972), p. 5.
**David Gries, The Science of Programming (New York: Springer-Verlag, 1981), p. 164.
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The steps of an algorithm are divided into sections with assertions about the current 
state of algorithm variables inserted at strategically chosen points:

[Assertion 1: pre-condition for the algorithm]

{Algorithm statements}

[Assertion 2]

{Algorithm statements}
...

[Assertion k21]

{Algorithm statements}

[Assertion k: post-condition for the algorithm]

Successive pairs of assertions are then treated as pre- and post-conditions for the al-
gorithm statements between them. For each i 5 1, 2, Á , k21, one proves that if Asser-
tion i is true and all the algorithm statements between Assertion i and Assertion (i11) 
are executed, then Assertion (i11) is true. Once all these individual proofs have been 
completed, one knows that Assertion k is true. And since Assertion 1 is the same as the 
pre-condition for the algorithm and Assertion k is the same as the post-condition for the 
algorithm, one concludes that the entire algorithm is correct with respect to its pre- and 
post-conditions.

Loop Invariants
The method of loop invariants is used to prove correctness of a loop with respect to certain 
pre- and post-conditions. It is based on the principle of mathematical induction. Suppose 
that an algorithm contains a while loop and that entry to this loop is restricted by a con-
dition G, called the guard. Suppose also that assertions describing the current states of 
algorithm variables have been placed immediately preceding and immediately following 
the loop. The assertion just preceding the loop is called the pre-condition for the loop 
and the one just following is called the post-condition for the loop. The annotated loop 
has the following appearance:

[Pre-condition for the loop]

while (G)

[Statements in the body of the loop.  
None contain branching statements  
that lead outside the loop.] 

end while

[Post-condition for the loop] 

Definition

A loop is defined as correct with respect to its pre- and post-conditions if, and 
only if, whenever the algorithm variables satisfy the pre-condition for the loop and 
the loop terminates after a finite number of steps, the algorithm variables satisfy the 
post-condition for the loop.

Establishing the correctness of a loop uses the concept of loop invariant. A loop invari-
ant is a predicate with domain a set of integers, which satisfies the following condition: For 
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each iteration of the loop, if the predicate is true before the iteration, then it is true after the 
iteration. Furthermore, if the predicate satisfies the following two additional conditions, 
the loop will be correct with respect to its pre- and post-conditions:

1. The predicate is true before the first iteration of the loop.

2. If the loop terminates after a finite number of iterations, the truth of the loop invariant 
ensures the truth of the post-condition for the loop.

The following theorem, called the loop invariant theorem, formalizes these ideas. It was 
first developed by C. A. R. Hoare in 1969.

C. A. R. Hoare 
(born 1934)
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Theorem 5.5.1 Loop Invariant Theorem

Let a while loop with guard G be given, together with pre- and post-conditions that 
are predicates in the algorithm variables. Also let a predicate I(n), called the loop 
invariant, be given. If the following four properties are true, then the loop is correct 
with respect to its pre- and post-conditions.

I. Basis Property: The pre-condition for the loop implies that I(0) is true before 
the first iteration of the loop.

II. Inductive Property: For every integer k $ 0, if the guard G and the loop in-
variant I(k) are both true before an iteration of the loop, then I(k11) is true after 
an iteration of the loop.

III. Eventual Falsity of Guard: After a finite number of iterations of the loop, the 
guard G becomes false.

IV. Correctness of the Post-Condition: If N is the least number of iterations after 
which G is false and I(N) is true, then the values of the algorithm variables will 
be as specified in the post-condition of the loop.

proof: The loop invariant theorem follows easily from the principle of mathematical 
induction. Assume that I(n) is a predicate that satisfies properties I–IV of the loop 
invariant theorem. [We will prove that the loop is correct with respect to its pre- and 
post-conditions.] Properties I and II are the basis and inductive steps needed to prove 
the truth of the following statement:

For every integer n $ 0, if the while loop 
iterates n times, then I(n) is true. 

5.5.1

Thus, by the principle of mathematical induction, since both I and II are true, state-
ment (5.5.1) is also true.

Property III says that the guard G eventually becomes false. At that point 
the loop will have been iterated some number, say N, of times. Since I(n) is true 
after the nth iteration for every n $ 0, then I(n) is true after the Nth iteration. 
That is, after the Nth iteration the guard is false and I(N) is true. But this is the 
hypothesis of property IV, which is an if-then statement. Since statement IV is 
true (by assumption) and its hypothesis is true (by the argument just given), it 
follows (by modus ponens) that its conclusion is also true. That is, the values of 
all algorithm variables after execution of the loop are as specified in the post-
condition for the loop.
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Developing a good loop invariant is a tricky process. Although learning how to do it is 
beyond the scope of this book, it is worth pursuing in a more advanced course.

Another tricky aspect of handling correctness proofs arises from the fact that execution 
of an algorithm is a dynamic process—it takes place in time. As execution progresses, the 
values of variables keep changing, yet often their names stay the same. In the following 
discussion, when we need to make a distinction between the values of a variable just before 
execution of an algorithm statement and just after execution of the statement, we will at-
tach the subscripts old and new to the variable name.

Correctness of a Loop to Compute a product

The following loop is designed to compute the product mx for a nonnegative integer 
m and a real number x, without using a built-in multiplication operation. Prior to the 
loop, variables i and product have been introduced and given initial values i 5 0 and 
product 5 0.

[Pre-condition: m is a nonnegative integer, 
x is a real number, i 5 0, and product 5 0.]

while (i Þ m)

1. product :5 product1x

2. i :5 i11

end while

[Post-condition: product 5 mx] 

Let the loop invariant be

I(n): i 5 n and product 5 nx

The guard condition G of the while loop is

G: i Þ m

Use the loop invariant theorem to prove that the while loop is correct with respect to the 
given pre- and post-conditions.

Solution

I. Basis Property: [I(0) is true before the first iteration of the loop.]
I(0) is “i 5 0 and product 5 0?x,” which is true before the first iteration of the 

loop because 0?x 5 0.

II. Inductive Property: [If G ` I(k) is true before a loop iteration (where k $ 0), then 
I(k11) is true after the loop iteration.]

Suppose k is a nonnegative integer such that G ` I(k) is true before an iteration 
of the loop. Then as execution reaches the top of the loop, i Þ m, product 5 kx, and 
i 5 k. Since i Þ m, the guard is passed and statement 1 is executed. Before execution 
of statement 1,

productold 5 kx.

Thus execution of statement 1 has the following effect:

productnew 5 productold 1x 5 kx1x 5 (k11)x.

Example 5.5.2
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Similarly, before statement 2 is executed,

iold 5 k,

so after execution of statement 2,

inew 5 iold 11 5 k11.

Hence after the loop iteration, the statement I(k11), namely, (i 5 k11 and  
product 5 (k11)x), is true. This is what we needed to show.

III. Eventual Falsity of Guard: [After a finite number of iterations of the loop, G  
becomes false.]

The guard G is the condition i Þ m, and m is a nonnegative integer. By I and II, it 
is known that

for every integer n $ 0, if the loop is iterated 
n times, then i 5 n and product 5 nx.

So after m iterations of the loop, i 5 m. Thus G becomes false after m iterations of 
the loop.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after which 
G is false and I(N) is true, then the value of the algorithm variables will be as specified in 
the post-condition of the loop.]

According to the post-condition, the value of product after execution of the loop 
should be mx. But if G becomes false after N iterations, i 5 m. And if I(N) is true, 
i 5 N and product 5 Nx. Since both conditions (G false and I(N) true) are satisfied, 
m 5 i 5 N and product 5 mx as required.  ■

In the remainder of this section, we present proofs of the correctness of the crucial loops 
in the division algorithm and the Euclidean algorithm. (These algorithms were given in 
Section 4.10.)

Correctness of the Division Algorithm
The division algorithm is supposed to take a nonnegative integer a and a positive integer d 
and compute nonnegative integers q and r such that a 5 dq1 r and 0 # r , d. Initially, the 
variables r and q are introduced and given the values r 5 a and q 5 0. The crucial loop, 
annotated with pre- and post-conditions, is the following:

[Pre-condition: a is a nonnegative integer 
and d is a positive integer, r 5 a, and q 5 0.]

while (r $ d)

1. r :5 r2d

2. q :5 q11

end while

[Post-condition: q and r are nonnegative integers 
with the property that a 5 qd1 r and 0 # r , d.] 

proof:
To prove the correctness of the loop, let the loop invariant be

I(n): r 5 a2nd $ 0 and n 5 q.
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The guard of the while loop is

G: r $ d.

I. Basis Property: [I(0) is true before the first iteration of the loop.]
I(0) is “r 5 a20?d $ 0 and q 5 0.” But by the pre-condition, r 5 a, a $ 0, and 

q 5 0. So since a 5 a20?d, then r 5 a20?d and I(0) is true before the first iteration 
of the loop.

II. Inductive Property: [If G ` I(k) is true before an iteration of the loop (where k $ 0), 
then I(k11) is true after iteration of the loop.]

Suppose k is a nonnegative integer such that G ` I(k) is true before an iteration 
of the loop. Since G is true, r $ d and the loop is entered. Also since I(k) is true, 
r 5 a2kd $ 0 and k 5 q. Hence, before execution of statements 1 and 2,

rold $ d and rold 5 a2kd and qold 5 k.

When statements 1 and 2 are executed, then

 rnew 5 rold 2d 5 (a2kd)2d 5 a2 (k11)d 5.5.2

and

 qnew 5 qold 11 5 k11. 5.5.3

In addition, since rold $ d before execution of statements 1 and 2, after execution of 
these statements,

 rnew 5 rold 2d $ d2d $ 0. 5.5.4

Putting equations (5.5.2), (5.5.3), and (5.5.4) together shows that after iteration of the 
loop,

rnew $ 0 and rnew 5 a2 (k11)d and qnew 5 k11.

Hence I(k11) is true.

III. Eventual Falsity of the Guard: [After a finite number of iterations of the loop, G be-
comes false.]

The guard G is the condition r $ d. Each iteration of the loop reduces the value 
of r by d and yet leaves r nonnegative. Thus the values of r form a decreasing se-
quence of nonnegative integers, and so (by the well-ordering principle) there must be 
a smallest such r, say rmin. Then rmin , d. [If rmin were greater than d, the loop would 
iterate another time, and a new value of r equal to rmin 2d would be obtained. But this 
new value would be smaller than rmin, which would contradict the fact that rmin is the 
smallest remainder obtained by repeated iteration of the loop.] Hence as soon as the 
value r 5 rmin is computed, the value of r becomes less than d, and so the guard G 
is false.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after which 
G is false and I(N) is true, then the values of the algorithm variables will be as specified 
in the post-condition of the loop.]

Suppose that for some nonnegative integer N, G is false and I(N) is true. Then 
r , d, r 5 a2Nd, r $ 0, and q 5 N. Since q 5 N, substitution gives

r 5 a2qd,
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and adding qd to both sides produces

a 5 qd1 r.

Combining the two inequalities involving r gives

0 # r , d.

Because these are the values of q and r specified in the post-condition, the proof is 
complete.  ■

Correctness of the Euclidean Theorem
The Euclidean algorithm is supposed to take integers A and B with A . B $ 0 and com-
pute their greatest common divisor. Just before the crucial loop, variables a, b, and r have 
been introduced with a 5 A, b 5 B, and r 5 B. The crucial loop, annotated with pre- and 
post-conditions, is the following:

[Pre-condition: A and B are integers 
with A . B $ 0, a 5 A, b 5 B, r 5 B.]

while (b Þ 0)

1. r :5 a mod b

2. a :5 b

3. b :5 r

end while

[Post-condition: a 5 gcd(A, B).] 

proof:
To prove the correctness of the loop, let the invariant be

I(n): gcd(a, b) 5 gcd(A, B) and 0 # b , a.

The guard of the while loop is

G: b Þ 0.

I. Basis Property: [I(0) is true before the first iteration of the loop.]
I(0) is

gcd(A, B) 5 gcd(a, b) and 0 # b , a.

According to the pre-condition,

a 5 A, b 5 B, r 5 B, and 0 # B , A.

Hence gcd(A, B) 5 gcd(a, b). Since 0 # B , A, b 5 B, and a 5 A then 0 # b , a. 
Hence I(0) is true.

II. Inductive Property: [If G ` I(k) is true before an iteration of the loop (where k $ 0),  
then I(k11) is true after iteration of the loop.]

Suppose k is a nonnegative integer such that G ` I(k) is true before an iteration of 
the loop. [We must show that I(k11) is true after iteration of the loop.] Since G is true, 
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bold Þ 0 and the loop is entered. And since I(k) is true, immediately before statement 1 
is executed,

 gcd(aold, bold) 5 gcd(A, B) and 0 # bold , aold. 5.5.5

After execution of statement 1,

rnew 5 aold mod bold.

Thus, by the quotient-remainder theorem,

aold 5 bold?q1 rnew for some integer q

and rnew has the property that

 0 # rnew , bold. 5.5.6

By Lemma 4.10.2,

gcd(aold, bold) 5 gcd(bold, rnew).

So by the equation of (5.5.5),

 gcd(bold, rnew) 5 gcd(A, B). 5.5.7

When statements 2 and 3 are executed,

 anew 5 bold and bnew 5 rnew. 5.5.8

Substituting equations (5.5.8) into equation (5.5.7) yields

 gcd(anew, bnew) 5 gcd(A, B). 5.5.9

And substituting the values from the equations in (5.5.8) into inequality (5.5.6) gives

 0 # bnew , anew. 5.5.10

Hence after the iteration of the loop, by equation (5.5.9) and inequality (5.5.10),

gcd(a, b) 5 gcd(A, B) and 0 # b , a,

which is I(k11). [This is what we needed to show.]

III. Eventual Falsity of the Guard: [After a finite number of iterations of the loop, G be-
comes false.]

Each value of b obtained by repeated iteration of the loop is nonnegative and less 
than the previous value of b. Thus, by the well-ordering principle, there is a least value 
bmin. The fact is that bmin 5 0. [If bmin is not 0, then the guard is true, and so the loop 
is iterated another time. In this iteration a value of r is calculated that is less than the 
previous value of b, bmin. Then the value of b is changed to r, which is less than bmin. 
This contradicts the fact that bmin is the least value of b obtained by repeated iteration 
of the loop. Hence bmin 5 0.] Since bmin 5 0, the guard is false immediately following 
the loop iteration in which bmin is calculated.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after which 
G is false and I(N) is true, then the values of the algorithm variables will be as specified 
in the post-condition.]

Suppose that for some nonnegative integer N, G is false and I(N) is true. [We must 
show the truth of the post-condition: a 5 gcd(A, B).] Since G is false, b 5 0, and since 
I(N) is true,

 gcd(a, b) 5 gcd(A, B). 5.5.11

94193_ch05_ptg01.indd   322 12/11/18   4:27 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.5 APPLIcATIOn: cORRecTneSS OF ALgORITHMS  323

Substituting b 5 0 into equation (5.5.11) gives

gcd(a, 0) 5 gcd(A, B).

But by Lemma 4.10.1,

gcd(a, 0) 5 a.

Hence a 5 gcd(A, B) [as was to be shown]. 

1. A pre-condition for an algorithm is  and a 
post-condition for an algorithm is .

2. A loop is defined as correct with respect to its 
pre- and post-conditions if, and only if, whenever 
the algorithm variables satisfy the pre-condition 
for the loop and the loop terminates after a finite 
number of steps, then .

3. For each iteration of a loop, if a loop invariant is 
true before iteration of the loop, then .

4. Given a while loop with guard G and a predicate 
I(n) if the following four properties are true, then 

the loop is correct with respect to its pre- and 
post-conditions:

(a) The pre-condition for the loop implies that 
 before the first iteration of the loop.

(b) For every integer k $ 0, if the guard G and the 
predicate I(k) are both true before an iteration 
of the loop, then .

(c) After a finite number of iterations of the  
loop, .

(d) If N is the least number of iterations after 
which G is false and I(N) is true, then the 
values of the algorithm variables will be as 
specified .

TEST YOURSELF 

exercises 1–5 contain a while loop and a predicate. In 
each case show that if the predicate is true before entry 
to the loop, then it is also true after exit from the loop.

1. loop: while (m $ 0 and m # 100)

m :5 m11

n :5 n21

end while

predicate: m1n 5 100

2. loop: while (m $ 0 and m # 100)

m :5 m14

n :5 n22

end while

predicate: m1n is odd

3. loop: while (m $ 0 and m # 100)

m :5 3?m

n :5 5?n

end while

predicate: m3 . n2

4. loop: while (n $ 0 and n # 100)

n :5 n11

end while

predicate: 2n , (n12)!

5. loop: while (n $ 3 and n # 100)

n :5 n11

end while

predicate: 2n11 # 2n 

exercises 6–9 each contain a while loop annotated with a 
pre- and a post-condition and also a loop invariant. In each 
case, use the loop invariant theorem to prove the correct-
ness of the loop with respect to the pre- and post-conditions.

6. [Pre-condition: m is a nonnegative integer, x is a 
real number, i 5 0, and exp 5 1.]

while (i Þ m)

1. exp :5 exp?x

2. i :5 i11

end while

[Post-condition: exp 5 xm]
loop invariant: I(n) is “exp 5 xn and i 5 n.”

ExERCISE SET 5.5 
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7. [Pre-condition: largest 5 A[1] and i 5 1]

while (i Þ m)

1. i :5 i11

2. if A[i] . largest then largest :5 A[i]

end while

[Post-condition: largest 5 maximum value of 
A[1], A[2], Á , A[m]]
loop invariant: I (n) is “largest 5 maximum value 
of A[1], A[2], Á , A[n11] and i 5 n11.”

8. [Pre-condition: sum 5 A[1] and i 5 1]

while (i Þ m)

1. i :5 i11

2. sum: 5 sum1A[i]

end while

[Post-condition: sum 5 A[1]1A[2]1 Á 1A[m]]

loop invariant: I(n) is “i 5 n11 and sum 5 A[1]1  
A[2]1 Á 1A[n11].”

9. [Pre-condition: a 5 A and A is a positive integer.]

while (a . 0)

a :5 a22

end while

[Post-condition: a 5 0 if A is even and a 5 21 if A 
is odd.]

loop invariant: I(n) is “Both a and A are even in-
tegers or both are odd integers and, in either case, 
a $21.”

10. Prove correctness of the while loop of Algorithm 
4.10.3 (in exercise 27 of Exercise Set 4.10) with 
respect to the following pre- and post-conditions:

Pre-condition:  A and B are positive integers, 
a 5 A, and b 5 B.

Post-condition:  One of a or b is zero and the 
other is nonzero. Whichever is 
nonzero equals gcd(A, B).

Use the loop invariant

I(n) “(1)  a and b are nonnegative integers with 
gcd(a, b) 5 gcd(A, B),

(2) at most one of a and b equals 0,
(3) 0 # a1b # A1B2n.”

11. The following while loop implements a way to 
multiply two numbers that was developed by the 
ancient Egyptians.

[Pre-condition: A and B are positive integers, 
x 5 A, y 5 B, and product 5 0.]

while (y Þ 0)

r :5 y mod 2

if r 5 0

then do x :5 2?x

y :5 y div 2

end do

if r 5 1

then do product :5 product1x

y :5 y21

end do

end while

[Post-condition: product 5 A?B]
a.  Make a trace table to show that the algorithm 

gives the correct answer for multiplying 
A 5 13 times B 5 18.

b.  Prove the correctness of this loop with respect 
to its pre- and post-conditions by using the 
loop invariant

I(n): “xy1product 5 A?B.”

12. The following sentence could be added to the loop 
invariant for the Euclidean algorithm:

 There exist integers u, v, s, and t such that 
a 5 uA1vB and b 5 sA1 tB. 5.5.12

a.  Show that this sentence is a loop invariant for

while (b Þ 0)

r :5 a mod b

a :5 b

b :5 r

end while

b.  Show that if initially a 5 A and b 5 B, then 
sentence (5.5.12) is true before the first itera-
tion of the loop.

c.  Explain how the correctness proof for the Eu-
clidean algorithm together with the results of (a) 
and (b) above allow you to conclude that given 
any integers A and B with A . B $ 0, there ex-
ist integers u and v so that gcd(A, B) 5 uA1vB.

d.  By actually calculating u, v, s, and t at each  
stage of execution of the Euclidean algorithm, 
find integers u and v so that gcd(330, 156) 5
330u1156v.  

H*

*
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1. a predicate that describes the initial state of the input 
variables for the algorithm; a predicate that describes the 
final state of the output variables for the algorithm  
2. the algorithm variables satisfy the post-condition for 

the loop 3. it is true after iteration of the loop 4. (a) I(0) 
is true (b) I(k11) is true after the iteration of the loop 
(c) the guard G becomes false (d) in the post-condition of 
the loop

ANSWERS FOR TEST YOURSELF  

Defining Sequences Recursively
So, Nat’ralists observe, a Flea/Hath smaller Fleas that on him prey,/And these have 
smaller Fleas to bite ’em,/And so proceed ad infinitum. —Jonathan Swift, 1733

A sequence can be defined in a variety of different ways. One informal way is to write the 
first few terms with the expectation that the general pattern will be obvious. We might say, 
for instance, “consider the sequence 3, 5, 7, Á .” Unfortunately, misunderstandings can 
occur when this approach is used. The next term of the sequence could be 9 if we mean a 
sequence of odd integers, or it could be 11 if we mean the sequence of odd prime numbers.

The second way to define a sequence is to give an explicit formula for its nth term. For 
example, a sequence a0, a1, a2 Á can be specified by writing

an 5
(21)n

n11
 for every integer n $ 0.

The advantage of defining a sequence by such an explicit formula is that each term of the 
sequence is uniquely determined and can be computed in a fixed, finite number of steps 
by substitution.

The third way to define a sequence is to use recursion, as was done in Examples 5.3.3, 
5.4.2, and 5.4.3. This requires giving both an equation, called a recurrence relation, that 
defines each later term in the sequence by reference to earlier terms and also one or more 
initial values for the sequence. Sometimes it is very difficult or impossible to find an 
explicit formula for a sequence, but it is possible to define the sequence using recursion. 
Defining sequences recursively is similar to proving theorems by mathematical induction. 
The recurrence relation is like the inductive step and providing initial values is like proving 
the basis step. Indeed, the fact that sequences can be defined recursively is equivalent to 
the fact that mathematical induction works as a method of proof.

Definition

A recurrence relation for a sequence a0, a1, a2, Á is a formula that relates each 
term ak to certain of its predecessors ak−1, ak−2, Á , ak−i, where i is an integer with 
k2 i $ 0. If i is a fixed integer, the initial conditions for such a recurrence relation 
specify the values of a0, a1, a2, Á , ai−1. If i depends on k, the initial conditions 
specify the values of a0, a1, Á , am, where m is an integer with m $ 0.

Computing Terms of a Recursively Defined Sequence

Define a sequence c0, c1, c2, Á recursively as follows: For every integer k $ 2,

(1) ck 5 ck−1 1kck−2 11 recurrence relation

(2) c0 5 1 and c1 5 2 initial conditions

Find c2, c3, and c4.

5.6

Example 5.6.1
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Solution c2 5 c1 12c0 11 by substituting k 5 2 into (1)

5 212?111 since c1 5 2 and c0 5 1 by (2)

(3) [ c2 5 5
c3 5 c2 13c1 11  by substituting k 5 3 into (1)

 5 513?211 since c2 5 5 by (3) and c1 5 2 by (2)

(4) [ c3 5 12
c4 5  c3 14c2 11 by substituting k 5 4 into (1)

5 1214?511 since c3 5 12 by (4) and c2 5 5 by (3)

(5) [ c4 5 33 ■

A given recurrence relation may be expressed in several different ways.

Writing a Recurrence Relation in More Than One Way

Let s0, s1, s2, Á be a sequence that satisfies the following recurrence relation:

For every integer k $ 1, sk 5 3sk−1 21.

Explain why the following statement is true:

For every integer k $ 0, sk11 5 3sk 21.

Solution In informal language, the recurrence relation says that any term of the se-
quence equals 3 times the previous term minus 1. Now for any integer k $ 0, the term 
previous to sk11 is sk. Thus for any integer k $ 0, sk11 5 3sk 21. ■

A sequence defined recursively need not start with a subscript of zero. Also, a given 
recurrence relation may be satisfied by many different sequences; the actual values of the 
sequence are determined by the initial conditions.

Sequences That Satisfy the Same Recurrence Relation

Let a1, a2, a3, Á and b1, b2, b3, Á satisfy the recurrence relation that the kth term equals 3 
times the (k21)st term for every integer k $ 2:

(1) ak 5 3ak−1 and bk 5 3bk−1.

But suppose that the initial conditions for the sequences are different:

(2)   a1 5 2 and b1 5 1.

Find (a) a2, a3, a4 and (b) b2, b3, b4.

Solution
a. a2 5 3a1 5 3?2 5 6

a3 5 3a2 5 3?6 5 18

a4 5 3a3 5 3?18 5 54

b. b2 5 3b1 5 3?1 5 3

b3 5 3b2 5 3?3 5 9

b4 5 3b3 5 3?9 5 27

Thus

a1, a2, a3, Á begins 2, 6, 18, 54, Á and
b1, b2, b3, Á begins 1, 3, 9, 27, Á . ■

Example 5.6.2

Note Think of the 
recurrence relation as 
su 5 3su−1 21, where 
any positive integer ex-
pression may be placed in 
the box u.

Example 5.6.3
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Showing That a Sequence Given by an Explicit Formula Satisfies  
a Certain Recurrence Relation

The sequence of Catalan numbers, named after the Belgian mathematician Eugène 
Catalan (1814–1894), arises in a remarkable variety of different contexts in discrete math-
ematics. It can be defined as follows: For each integer n $ 1,

Cn 5
1

n11S2n

n D.

a. Find C1, C2, and C3.

b. Show that this sequence satisfies the recurrence relation Ck 5
4k 2 2
k 1 1 Ck21 for every 

integer k $ 2. 

Solution

a. C1 5
1

2S2

1D 5
1

2
?2 5 1, C2 5

1

3S4

2D 5
1

3
?6 5 2, C3 5

1

4S6

3D 5
1

4
?20 5 5

b. To obtain the kth and (k21)st terms of the sequence, just substitute k and k21 in 
place of n in the explicit formula for C1, C2, C3, Á .

Ck 5
1

k11S2k

k D
Ck21 5

1

(k21)11S2(k21)

k21 D 5
1

kS2k22

k21 D.

Then start with the right-hand side of the recurrence relation and transform it into the left-
hand side: For each integer k $ 2,

4k22

k11
Ck21 5

4k22

k11 31

kS2k22

k21 D4 by substituting

5
2(2k21)

k11
?
1

k
?

(2k22)!

(k21)!s2k222 (k21)d!
 by the formula for n choose r

5
1

k11
?(2(2k21))?

(2k22)!

(k(k21)!)(k21)!
 by rearranging the factors

5
1

k11
?(2(2k21))?

1

k!(k21)!
?(2k22)!?

1

2
?
1

k
?2k because 

1

2
?
1

k
?2k 5 1 

5
1

k11
?
2

2
?

1

k!
?

1

(k21)!
?
1

k
?(2k)?(2k21)?(2k22)!  by rearranging the factors

5
1

k11
?
(2k)!

k!k!
 because k(k21)! 5 k!, 

2

2
5 1, 

and 2k?(2k21)?(2k22)! 5 (2k)!

5
1

k11S2k

k D by the formula for n choose r

5 Ck by definition of C1, C2, C3, Á .

� ■

Example 5.6.4
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Eugène Catalan   
(1814–1894)
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Examples of Recursively Defined Sequences
Recursion is one of the central ideas of computer science. To solve a problem recursively 
means to find a way to break it down into smaller subproblems each having the same form 
as the original problem—and to do this in such a way that when the process is repeated 
many times, the last of the subproblems are small and easy to solve and the solutions of the 
subproblems can be woven together to form a solution to the original problem.

Probably the most difficult part of solving problems recursively is to figure out how 
knowing the solution to smaller subproblems of the same type as the original problem 
will give you a solution to the problem as a whole. You suppose you know the solutions to 
smaller subproblems and ask yourself how you would best make use of that knowledge to 
solve the larger problem. The supposition that the smaller subproblems have already been 
solved has been called the recursive paradigm or the recursive leap of faith. Once you take 
this leap, you are right in the middle of the most difficult part of the problem, but generally, 
the path to a solution from this point, though difficult, is short. The recursive leap of faith 
is similar to the inductive hypothesis in a proof by mathematical induction.

The Tower of Hanoi

In 1883 a French mathematician, Édouard Lucas, invented a puzzle that he called the Tower 
of Hanoi (La Tour D’Hanoï). The puzzle consisted of eight disks of wood with holes in their 
centers, which were piled in order of decreasing size on one pole in a row of three. A facsimile 
of the cover of the box is shown in the figure below. Those who played the game were sup-
posed to move all the disks one by one from one pole to another, never placing a larger disk on 
top of a smaller one. The directions to the puzzle claimed it was based on an old Indian legend:

On the steps of the altar in the temple of Benares, for many, many years Brahmins have 
been moving a tower of 64 golden disks from one pole to another; one by one, never plac-
ing a larger on top of a smaller. When all the disks have been transferred the Tower and 
the Brahmins will fall, and it will be the end of the world.

The puzzle offered a prize of ten thousand francs (about $45,000 US today) to anyone 
who could move a tower of 64 disks by hand while following the rules of the game. (See 
Figure 5.6.1 on the following page.) Assuming that you transferred the disks as efficiently 
as possible, how many moves would be required to win the prize?

Example 5.6.5

Édouard Lucas 
(1842–1891)
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64
golden
disks

B CA

FIGURE 5.6.1 

Solution An elegant and efficient way to solve this problem is to think recursively. Sup-
pose that you, somehow or other, have found the most efficient way possible to transfer a 
tower of k21 disks one by one from one pole to another, obeying the restriction that you 
never place a larger disk on top of a smaller one. What is the most efficient way to transfer 
a tower of k disks from one pole to another? The answer is sketched in Figure 5.6.2, where 
pole A is the initial pole and pole C is the target pole.

Step 1 :  Transfer the top k21 disks from pole A to pole B. If k . 2, execution of this step 
will require a number of moves of individual disks among the three poles. But the 
point of thinking recursively is not to get caught up in imagining the details of how 
those moves will occur.

Step 2 :  Move the bottom disk from pole A to pole C.

Step 3 :  Transfer the top k21 disks from pole B to pole C. (Again, if k . 2, execution of 
this step will require more than one move.) 

To see that this sequence of moves is most efficient, observe that to move the bottom 
disk of a stack of k disks from one pole to another, you must first transfer the top k21 disks 
to a third pole to get them out of the way. Thus transferring the stack of k disks from pole A 
to pole C requires at least two transfers of the top k21 disks: one to transfer them off the 
bottom disk to free the bottom disk so that it can be moved and another to transfer them 
back on top of the bottom disk after the bottom disk has been moved to pole C. If the bot-
tom disk were not moved directly from pole A to pole C but were moved to pole B first, at 
least two additional transfers of the top k21 disks would be necessary: one to move them 
from pole A to pole C so that the bottom disk could be moved from pole A to pole B and 
another to move them off pole C so that the bottom disk could be moved onto pole C. This 
would increase the total number of moves and result in a less efficient transfer.

Hence the minimum sequence of moves must include going from the initial position (a) 
to position (b) to position (c) to position (d). It follows that

3
the minimum

number of moves

needed to tranfer

a tower of k disks

from pole A to

pole C

45 3
the minimum

number of

moves needed

to go from

position (a)

to position (b)

413
the minimum

number of

moves needed

to go from

position (b)

to position (c)

413
the minimum

number of

moves needed

to go from

position (c)

to position (d)

4. 5.6.1

Note Defining the 
sequence symbolically is 
a crucial step in solving 
the problem. The recur-
rence relation and initial 
conditions are specified 
in terms of the sequence.
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Tower of
k disks

B

Position after Transferring k – 1 Disks from B to C

(d)

CA

Tower of k – 1
disks

B

Position after Moving the Bottom Disk from A to C

(c)

CA

Tower of k – 1
disks

Bottom
disk

B

Position after Transferring k – 1 Disks from A to B

(b)

CA

Bottom
disk

Tower of
k disks

B

Initial Position

(a)

CA

FIGURE 5.6.2  Moves for the Tower of Hanoi
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For each integer n $ 1, let

mn 5 3the minimum number of moves needed to transfer
a tower of n disks from one pole to another 4.

Note that the numbers mn are independent of the labeling of the poles; it takes the same 
minimum number of moves to transfer n disks from pole A to pole C as to transfer n disks 
from pole A to pole B, for example. Also the values of mn are independent of the number of 
larger disks that may lie below the top n, provided these remain stationary while the top n 
are moved. Because the disks on the bottom are all larger than the ones on the top, the top 
disks can be moved from pole to pole as though the bottom disks were not present.

Going from position (a) to position (b) requires mk21 moves, going from position (b) to 
position (c) requires just one move, and going from position (c) to position (d) requires mk21 
moves. By substitution into equation (5.6.1), therefore,

mk 5 mk−1 111mk−1

5 2mk−1 11 for every integer k $ 2. 

The initial condition, or base, of this recursion is found by using the definition of the se-
quence. Because just one move is needed to move one disk from one pole to another,

m1 5 3the minimum number of moves needed to move
a tower of one disk from one pole to another 4 5 1.

Hence the complete recursive specification of the sequence m1, m2, m3, Á is as follows: 
For every integer k $ 2,

(1) mk 5 2mk−1 11  recurrence relation

(2) m1 5 1 initial conditions.

Here is a computation of the next five terms of the sequence:

(3) m2 5 2m1 11 5 2?111 5 3 by (1) and (2)

(4) m3 5 2m2 11 5 2?311 5 7 by (1) and (3)

(5) m4 5 2m3 11 5 2?711 5 15 by (1) and (4)

(6) m5 5 2m4 11 5 2?1511 5 31 by (1) and (5)

(7) m6 5 2m5 11 5 2?3111 5 63 by (1) and (6).

Going back to the legend, suppose the priests work rapidly and move one disk every 
second. Then the time from the beginning of creation to the end of the world would be 
m64 seconds. In the next section we derive an explicit formula for mn. Meanwhile, we can 
compute m64 on a calculator or a computer by continuing the process started above. (Try 
it!) The approximate result is

1.844674 3 1019 seconds > 5.84542 3 1011 years

> 584.5 billion years,

which is obtained by the estimate of

60 ? 60 ? 24 ? (365.25) 5 31,557,600
c     c      a   a     c

minutes hours  days   seconds
seconds per per      per   per       per
minute     hour     day    year   year

seconds in a year (figuring 365.25 days in a year to take leap years into account). ■
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The Fibonacci Numbers

One of the earliest examples of a recursively defined sequence occurs in the writings of 
Leonardo of Pisa, commonly known as Fibonacci, who was the greatest European math-
ematician of the Middle Ages and promoted the use of Hindu-Arabic numerals for calcula-
tion. In 1202 Fibonacci posed the following problem:

A single pair of rabbits (male and female) is born at the beginning of a year. Assume 
the following conditions:

1. Rabbit pairs are not fertile during their first month of life but thereafter give birth to one 
new male/female pair at the end of every month.

2. No rabbits die. 
How many rabbits will there be at the end of the year?

Solution One way to solve this problem is to plunge right into the middle of it using 
recursion. Suppose you know how many rabbit pairs there were at the ends of previous 
months. How many will there be at the end of the current month?

The crucial observation is that the number of rabbit pairs born at the end of month k is 
the same as the number of pairs alive at the end of month k22. Why? Because it is exactly 
the rabbit pairs that were alive at the end of month k22 that were fertile during month k. 
The rabbits born at the end of month k21 were not.

month   k22    k21     k

Each pair alive here  c gives birth to a pair here  c

Now the number of rabbit pairs alive at the end of month k equals the ones alive at the end 
of month k21 plus the pairs newly born at the end of the month. Thus

3
the number
of rabbit
pairs alive
at the end
of month k

45 3
the number
of rabbit
pairs alive
at the end
of month k21

413
the number
of rabbit
pairs born
at the end
of month k

4
5 3

the number
of rabbit
pairs alive
at the end
of month k21

413
the number
of rabbit
pairs alive
at the end
of month k22

4. 5.6.2

For each integer n $ 1, let

Fn 5 3the number of rabbit pairs
alive at the end of month n4

and let

F0 5 the initial number of rabbit pairs

5 1.

Then by substitution into equation (5.6.2), for every integer k $ 2,

Fk 5 Fk21 1Fk22.

Example 5.6.6

Note It is essential to 
rephrase this observation 
in terms of a sequence.

Fibonacci (Leonardo of 
Pisa) (ca. 1175–1250)
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Now F0 5 1, as already noted, and F1 5 1 also, because the first pair of rabbits is not fer-
tile until the second month. Hence the complete specification of the Fibonacci sequence is 
as follows: For every integer k $ 2,

(1) Fk 5 Fk21 1Fk22 recurrence relation

(2) F0 5 1, F1 5 1 initial conditions.

To answer Fibonacci’s question, compute F2, F3, and so forth through F12:

(3) F2 5 F1 1F0 5 111 5 2 by (1) and (2)

(4) F3 5 F2 1F1 5 211 5 3 by (1), (2), and (3)

(5) F4 5 F3 1F2 5 312 5 5 by (1), (3), and (4)

(6) F5 5 F4 1F3 5 513 5 8 by (1), (4), and (5)

(7) F6 5 F5 1F4 5 815 5 13 by (1), (5), and (6)

(8) F7 5 F6 1F5 5 1318 5 21 by (1), (6), and (7)

(9) F8 5 F7 1F6 5 21113 5 34 by (1), (7), and (8)

(10) F9 5 F8 1F7 5 34121 5 55 by (1), (8), and (9)

(11) F10 5 F9 1F8 5 55134 5 89 by (1), (9), and (10)

(12) F11 5 F10 1F9 5 89155 5 144 by (1), (10), and (11)

(13) F12 5 F11 1F10 5 144189 5 233 by (1), (11), and (12)

At the end of the twelfth month there are 233 rabbit pairs, or 466 rabbits in all. ■

Compound Interest

On your twenty-first birthday you get a letter informing you that on the day you were born 
an eccentric rich aunt deposited $100,000 in a bank account earning 4% interest com-
pounded annually and she now intends to turn the account over to you, provided you can 
figure out how much it is worth. What is the amount currently in the account?

Solution To approach this problem recursively, observe that

3the amount in
the account at
the end of any
particular year4 5 3the amount in

the account at
the end of the
previous year413the interest

earned on the
account during
the year 4.

Now the interest earned during the year equals the interest rate, 4% 5 0.04 times the 
amount in the account at the end of the previous year. Thus

 3the amount in
the account at
the end of any
particular year4 5 3the amount in

the account at
the end of the
previous year41 (0.04).3the amount in

the account at
the end of the
previous year4.  5.6.3

For each positive integer n, let

An 5 3the amount in the account
at the end of year n 4

and let

A0 5 3the initial amount
in the account 4 5 $100,000.

Example 5.6.7

Note Again, a crucial 
step is to define the  
sequence symbolically.
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Then for any particular year k, substitution into equation (5.6.3) gives

Ak 5 Ak21 1 (0.04)?Ak21

5 (110.04)?Ak21 5 (1.04)?Ak21  by factoring out Ak21.

Consequently, the values of the sequence A0, A1, A2, Á are completely specified as follows: 
for each integer k $ 1,

(1) Ak 5 (1.04)?Ak21 recurrence relation

(2) A0 5 $100,000 initial condition.

The number 1.04 is called the growth factor of the sequence.
In the next section we derive an explicit formula for the value of the account in any 

year n. The value on your twenty-first birthday can also be computed by repeated substitu-
tion as follows:

(3) A1 5 1.04?A0 5 (1.04)?$100,000 5 $104,000 by (1) and (2)

(4) A2 5 1.04?A1 5 (1.04)?$104,000 5 $108,160 by (1) and (3)

(5) A3 5 1.04?A2 5 (1.04)?$108,160 5 $112,486.40 by (1) and (4)
. . .  

. . .
(22) A20 5 1.04?A19 > (1.04)?$210,684.92 > $219,112.31 by (1) and (21)

(23) A21 5 1.04?A20 > (1.04)?$219,112.31 > $227,876.81 by (1) and (22)

The amount in the account is $227,876.81 (to the nearest cent). Fill in the dots (to check the 
arithmetic) and collect your money! ■

Compound Interest with Compounding Several Times a Year

When an annual interest rate of i is compounded m times per year, the interest rate paid per 
period is iym. (For instance, if 3% 5 0.03 annual interest is compounded quarterly, then 
the interest rate paid per quarter is 0.03y4 5 0.0075.)

For each integer k $ 1, let Pk 5 the amount on deposit at the end of the kth period, 
assuming no additional deposits or withdrawals. Then the interest earned during the kth 
period equals the amount on deposit at the end of the (k21)st period times the interest 
rate for the period:

interest earned during kth period 5 Pk21S i
mD.

The amount on deposit at the end of the kth period, Pk, equals the amount at the end of the 
(k21)st period, Pk21, plus the interest earned during the kth period:

 Pk 5 Pk21 1Pk21S i
mD 5 Pk21S11

i
mD. 5.6.4

Suppose $10,000 is left on deposit at 3% compounded quarterly.

a. How much will the account be worth at the end of one year, assuming no additional 
deposits or withdrawals?

b. The annual percentage yield (APY) is the percentage increase in the value of the ac-
count over a one-year period. What is the APY for this account? 

Solution
a. For each integer n $ 1, let Pn 5 the amount on deposit after n consecutive quarters, 

assuming no additional deposits or withdrawals, and let P0 be the initial $10,000. Then 

Example 5.6.8
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by equation (5.6.4) with i 5 0.03 and m 5 4, a recurrence relation for the sequence  
P0, P1, P2, Á is

(1) Pk 5 Pk21(110.0075) 5 (1.0075)?Pk21  for every integer k $ 1.

The amount on deposit at the end of one year (four quarters), P4, can be found by 
successive substitution:

(2) P0 5 $10,000

(3) P1 5 1.0075?P0 5 (1.0075)?$10,000.00 5 $10,075.00 by (1) and (2)

(4) P2 5 1.0075?P1 5 (1.0075)?$10,075.00 > $10,150.56 by (1) and (3)

(5) P3 5 1.0075?P2 > (1.0075)?$10,150.56 > $10,226.69 by (1) and (4)

(6) P4 5 1.0075?P3 > (1.0075)?$10,226.69 > $10,303.39 by (1) and (5)

Hence after one year there is $10,303.39 (to the nearest cent) in the account.

b. The percentage increase in the value of the account, or APY, is

 
10,303.39210,000

10,000
5 0.03034 5 3.034%. ■

Recursive Definitions of Sum and Product
Addition and multiplication are called binary operations because only two numbers can be 
added or multiplied at a time. Careful definitions of sums and products of more than two 
numbers use recursion.

Definition

Given numbers a1, a2, Á , an, where n is a positive integer, the summation from 
i 5 1 to n of the ai, denoted on

i51 ai, is defined as follows:

o
1

i51

ai 5 a1 and o
n

i51

ai 5 So
n21

i51

aiD1an, if n . 1.

The product from i 5 1 to n of the ai, denoted Pn
i51ai, is defined by

P
1

i51

ai 5 a1 and P
n

i51

ai 5 SPn21

i51

aiD?an, if n . 1.

The effect of these definitions is to specify an order in which sums and products of 
more than two numbers are computed. For example,

o
4

i51

ai 5 So
3

i51

aiD1a4 5 SSo
2

i51

aiD1a3D1a4 5 ((a1 1a2)1a3)1a4.

The recursive definitions are used with mathematical induction to establish various 
properties of general finite sums and products.

A Sum of Sums

Prove that for any positive integer n, if a1, a2, Á , an and b1, b2, Á , bn are real numbers, then

o
n

i51

(ai 1bi) 5 o
n

i51

ai 1 o
n

i51

bi.

Example 5.6.9
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Solution The proof is by mathematical induction. Let the property P(n) be the equation

o
n

i51

(ai 1bi) 5 o
n

i51

ai 1 o
n

i51

bi. d P(n)

We must show that P(n) is true for every integer n $ 1. We do this by mathematical induc-
tion on n.

Show that P(1) is true: To establish P(1), we must show that

o
1

i51

(ai 1bi) 5 o
1

i51

ai 1 o
1

i51

bi. d P(1)

Now

o
1

i51

(ai 1bi) 5 a1 1b1 by definition of o

5 o
1

i51

ai 1 o
1

i51

bi also by definition of o.

Hence P(1) is true.

Show that for every integer k $ 1, if P(k) is true then P(k11) is also true:
Suppose that k is any integer with k $ 1 and that a1, a2, Á , ak, ak11 and b1, b2, Á , bk, bk11 
are real numbers such that

o
k

i51

(ai 1bi) 5 o
k

i51

ai 1 o
k

i51

bi. d P(k) inductive hypothesis

We must show that

o
k11

i51

(ai 1bi) 5 o
k11

i51

ai 1 o
k11

i51

bi.  d P(k+1)

[We will show that the left-hand side of this equation equals the right-hand side.]

Now the left-hand side of the equation is

o
k11

i51

sai 1bid 5 o
k

i51

sai 1bid1 sak11 1bk11d by definition of o

5 So
k

i51

ai 1 o
k

i51

biD1 sak11 1bk11d by inductive hypothesis

5 So
k

i51

ai 1ak11D1So
k

i51

bi 1bk11D 
by the associative and 
commutative laws of algebra

5 o
k11

i51

ai 1 o
k11

i51

bi by definition of o

which equals the right-hand side of the equation. [This is what was to be shown.] ■

1. A recursive definition for a sequence consists of a 
 and .

2. A recurrence relation is an equation that defines 
each later term of a sequence by reference to 

 in the sequence.

TEST YOURSELF 
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3. Initial conditions for a recursive definition of a 
sequence consist of one or more of the  of 
the sequence.

4. To solve a problem recursively means to divide 
the problem into smaller subproblems of the same 
type as the initial problem, to suppose ,  

and to figure out how to use the supposition to 
.

5. A crucial step for solving a problem recursively 
is to define a  in terms of which the 
recurrence relation and initial conditions can be 
specified. 

Find the first four terms of each of the recursively defined 
sequences in 1–8.

1. ak 5 2ak21 1k, for every integer k $ 2
a1 5 1

2. bk 5 bk21 13k, for every integer k $ 2
b1 5 1

3. ck 5 k(ck21)
2, for every integer k $ 1

c0 5 1

4. dk 5 k(dk21)
2, for every integer k $ 1

d0 5 3

5. sk 5 sk21 12sk22, for every integer k $ 2
s0 5 1,  s1 5 1

6. tk 5 tk21 12tk22, for every integer k $ 2
t0 5 21,  t1 5 2

7. uk 5 kuk21 2uk22, for every integer k $ 3
u1 5 1,  u2 5 1

8. vk 5 vk21 1vk22 11, for every integer k $ 3
v1 5 1,  v2 5 3

9. Let a0, a1, a2, Á be defined by the formula 
an 5 3n11, for every integer n $ 0. Show that 
this sequence satisfies the recurrence relation 
ak 5 ak21 13, for every integer k $ 1.

10. Let b0, b1, b2, Á be defined by the formula 
bn 5 4n, for every integer n $ 0. Show that 
this sequence satisfies the recurrence relation 
bk 5 4bk21, for every integer k $ 1.

11. Let c0, c1, c2, Á be defined by the formula 
cn 5 2n 21 for every integer n $ 0. Show that 
this sequence satisfies the recurrence relation 
ck 5 2ck21 11 for every integer k $ 1.

12. Let s0, s1, s2, Á be defined by the formula sn 5
(21)n

n!  
for every integer n $ 0. Show that this sequence satis-
fies the following recurrence relation for every integer 
k $ 1:

sk 5
2sk21

k

13. Let t0, t1, t2, Á be defined by the formula 
tn 5 21n for every integer n $ 0. Show that this 
sequence satisfies the following recurrence rela-
tion for every integer k $ 2:

tk 5 2tk21 2 tk22

14. Let d0, d1, d2, Á be defined by the formula 
dn 5 3n 22n for every integer n $ 0. Show that 
this sequence satisfies the following recurrence 
relation for every integer k $ 2:

dk 5 5dk21 26dk22

15. For the sequence of Catalan numbers defined in 
Example 5.6.4, prove that for each integer n $ 1,

Cn 5
1

4n12S2n12

n11 D.

16. Use the recurrence relation and values for the 
Tower of Hanoi sequence m1, m2, m3, Á discussed 
in Example 5.6.5 to compute m7 and m8.

17. Tower of Hanoi with Adjacency Requirement: 
Suppose that in addition to the requirement that 
they never move a larger disk on top of a smaller 
one, the priests who move the disks of the Tower 
of Hanoi are also allowed only to move disks one 
by one from one pole to an adjacent pole. Assume 
poles A and C are at the two ends of the row and 
pole B is in the middle. Let

an 5 3the minimum number of moves
needed to transfer a tower of n
disks from pole A to pole C

4.

a. Find a1, a2, and a3.  b.  Find a4.
c. Find a recurrence relation for a1, a2, a3, Á . 

Justify your answer. 

18. Tower of Hanoi with Adjacency Requirement: 
Suppose the same situation as in exercise 17. Let

bn 5 3the minimum number of moves
needed to transfer a tower of n
disks from pole A to pole B

4.

H

ExERCISE SET 5.6 

94193_ch05_ptg01.indd   337 12/11/18   4:28 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



338  CHApTER 5 SequenceS, MATHeMATIcAL InDucTIOn, AnD RecuRSIOn

a. Find b1, b2, and b3.
b. Find b4.
c. Show that bk 5 ak21 111bk21 for each inte-

ger k $ 2, where a1, a2, a3, Á is the sequence 
defined in exercise 17.

d. Show that bk # 3bk21 11 for each integer 
k $ 2.

e. Show that bk 5 3bk21 11 for each integer k $ 2. 

19. Four-Pole Tower of Hanoi: Suppose that the 
Tower of Hanoi problem has four poles in a row 
instead of three. Disks can be transferred one by 
one from one pole to any other pole, but at no time 
may a larger disk be placed on top of a smaller 
disk. Let sn be the minimum number of moves 
needed to transfer the entire tower of n disks from 
the left-most to the right-most pole.
a. Find s1, s2, and s3. b. Find s4.
c. Show that sk # 2sk22 13 for every integer 

k $ 3. 

20. Tower of Hanoi Poles in a Circle: Suppose that 
instead of being lined up in a row, the three poles 
for the original Tower of Hanoi are placed in a 
circle. The monks move the disks one by one from 
one pole to another, but they may only move disks 
one over in a clockwise direction and they may 
never move a larger disk on top of a smaller one. 
Let cn be the minimum number of moves needed 
to transfer a pile of n disks from one pole to the 
next adjacent pole in the clockwise direction.
a. Justify the inequality ck # 4ck21 11 for each 

integer k $ 2.
b. The expression 4ck21 11 is not the minimum 

number of moves needed to transfer a pile of 
k disks from one pole to another. Explain, for 
example, why c3 Þ 4c2 11. 

21. Double Tower of Hanoi: In this variation of the 
Tower of Hanoi there are three poles in a row and 
2n disks, two each of n different sizes, where n is 
any positive integer. Initially one of the poles con-
tains all the disks placed on top of each other in 
pairs of decreasing size. Disks are transferred one 
by one from one pole to another, but at no time 
may a larger disk be placed on top of a smaller 
disk. However, a disk may be placed on top of one 
of the same size. Let tn be the minimum number 
of moves needed to transfer a tower of 2n disks 
from one pole to another.
a. Find t1 and t2. b. Find t3.
c. Find a recurrence relation for t1, t2, t3, Á .

22. Fibonacci Variation: A single pair of rabbits 
(male and female) is born at the beginning of a 
year. Assume the following conditions (which are 
somewhat more realistic than Fibonacci’s):
(1)  Rabbit pairs are not fertile during their first 

months of life but thereafter give birth to four 
new male/female pairs at the end of every 
month.

(2) No rabbits die.

a. Let rn 5 the number of pairs of rabbits alive at 
the end of month n, for each integer n $ 1, and 
let r0 5 1. Find a recurrence relation for r0, r1, 
r2, Á . Justify your answer.

b. Compute r0, r1, r2, r3, r4, r5, and r6.
c. How many rabbits will there be at the end of 

the year? 

23. Fibonacci Variation: A single pair of rabbits 
(male and female) is born at the beginning of a 
year. Assume the following conditions:
(1)  Rabbit pairs are not fertile during their first 

two months of life, but thereafter give birth 
to three new male/female pairs at the end of 
every month.

(2) No rabbits die.

a. Let sn 5 the number of pairs of rabbits alive at 
the end of month n, for each integer n $ 1, and 
let s0 5 1. Find a recurrence relation for s0, s1,  
s2, Á . Justify your answer.

b. Compute s0, s1, s2, s3, s4, and s5.
c. How many rabbits will there be at the end of 

the year? 

In 24–34, F0, F1, F2, Á is the Fibonacci sequence.

24. Use the recurrence relation and values for F0, F1, 
F2, Á given in Example 5.6.6 to compute F13 and 
F14.

25. The Fibonacci sequence satisfies the recurrence 
relation Fk 5 Fk21 1Fk22, for every integer k $ 2.
a. Explain why the following is true:

Fk11 5 Fk 1Fk21 for each integer k $ 1.

b. Write an equation expressing Fk12 in terms of 
Fk11 and Fk.

c. Write an equation expressing Fk13 in terms 
Fk12 and Fk11.

26. Prove that Fk 5 3Fk23 12Fk24 for every integer 
k $ 4.

27. Prove that F2
k 2F2

k21 5 FkFk11 2Fk21Fk11, for 
every integer k $ 1.

H*
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28. Prove that F2
k11 2F2

k 2F2
k21 5 2FkFk21, for each 

integer k $ 1.

29. Prove that F2
k11 2F2

k 5 Fk21Fk12, for every integer 
k $ 1.

30. Use mathematical induction to prove that for each 
integer n $ 0, Fn12Fn 2F2

n11 5 (21)n.

31. Use strong mathematical induction to prove that 
Fn , 2n for every integer n $ 1.

32. Prove that for each integer n $ 0, gcd(Fn11, Fn) 5 1. 
(The definition of gcd is given in Section 4.10.)

33. It turns out that the Fibonacci sequence satisfies 
the following explicit formula: For every integer 
Fn $ 0,

Fn 5
1

Ï5
 3S11Ï5

2 Dn11

2S12Ï5

2 Dn11

4.

Verify that the sequence defined by this formula 
satisfies the recurrence relation Fk 5 Fk21 1Fk22 
for every integer k $ 2.

34. (For students who have studied calculus) Find  

lim
nS`

_Fn11

Fn
+, assuming that the limit exists.

35. (For students who have studied calculus) Prove 

that lim
nS`

_Fn11

Fn
+ exists.

36. (For students who have studied calculus) Define 
x0, x1, x2, Á as follows:

xk 5 Ï21xk21 for each integer k $ 1

x0 5 0.

Find limnS ` xn. (Assume that the limit exists.)

37. Compound Interest: Suppose a certain amount of 
money is deposited in an account paying 4% an-
nual interest compounded quarterly. For each posi-
tive integer n, let Rn 5 the amount on deposit at 
the end of the nth quarter, assuming no additional 
deposits or withdrawals, and let R0 be the initial 
amount deposited.
a. Find a recurrence relation for R0, R1, R2, Á . 

Justify your answer.
b. If R0 5 $5,000, find the amount of money on 

deposit at the end of one year.
c. Find the APY for the account.

38. Compound Interest: Suppose a certain amount of 
money is deposited in an account paying 3% an-
nual interest compounded monthly. For each  

positive integer n, let Sn 5 the amount on deposit 
at the end of the nth month, and let S0 be the ini-
tial amount deposited.
a. Find a recurrence relation for S0, S1, S2, Á ,  

assuming no additional deposits or withdraw-
als during the year. Justify your answer.

b. If S0 5 $10,000, find the amount of money on 
deposit at the end of one year.

c. Find the APY for the account.

39. With each step you take when climbing a stair-
case, you can move up either one stair or two 
stairs. As a result, you can climb the entire 
staircase taking one stair at a time, taking two at a 
time, or taking a combination of one- and two-
stair increments. For each integer n $ 1, if the 
staircase consists of n stairs, let cn be the number 
of different ways to climb the staircase. Find a 
recurrence relation for c1, c2, c3, Á . Justify your 
answer.

40. A set of blocks contains blocks of heights 1, 2, 
and 4 centimeters. Imagine constructing towers by 
piling blocks of different heights directly on top 
of one another. (A tower of height 6 cm could be 
obtained using six 1-cm blocks, three 2-cm blocks 
one 2-cm block with one 4-cm block on top, one 
4-cm block with one 2-cm block on top, and so 
forth.) Let tn be the number of ways to construct 
a tower of height n cm using blocks from the set. 
(Assume an unlimited supply of blocks of each 
size.) Find a recurrence relation for t1, t2, t3, Á . 
Justify your answer.

41. Assume the truth of the distributive law (Ap-
pendix A, F3), and use the recursive definition of 
summation, together with mathematical induction, 
to prove the generalized distributive law that for 
every positive integer n, if a1, a2, Á , an and c are 
real numbers, then

o
n

i51

cai 5 cSo
n

i51

aiD.

42. Assume the truth of the commutative and as-
sociative laws (Appendix A, F1 and F2), and use 
the recursive definition of product, together with 
mathematical induction, to prove that for every 
positive integer n, if a1, a2, Á , an and b1, b2, Á , 
bn are real numbers, then

P
n

i51

saibid 5 SPn

i51

aiDSPn

i51

biD.

*

H*

H

H*
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43. Assume the truth of the commutative and as-
sociative laws (Appendix A, F1 and F2), and use 
the recursive definition of product, together with 
mathematical induction, to prove that for each 
positive integer n, if a1, a2, Á , an and c are real 
numbers, then

P
n

i51

(cai) 5 cnSPn

i51

aiD.

44. The triangle inequality for absolute value states that 
for all real numbers a and b, ua1b u # ua u 1 ub u . 
Use the recursive definition of summation, the 
triangle inequality, the definition of absolute value, 

and mathematical induction to prove that for each 
positive integer n, if a1, a2, Á , an are real numbers, 
then

*on

i51

ai* # o
n

i51

uai u .

45. Prove that any sum of even integers is even.

46. Prove that any sum of an odd number of odd 
integers is odd.

47. Deduce from exercise 46 that for any positive 
integer n if there is a sum of n odd integers that is 
even, then n is even.

H
H

1. recurrence relation; initial conditions 2. earlier terms 3. values of the first few terms 4. that the smaller subproblems 
have already been solved; solve the initial problem 5. sequence

ANSWERS FOR TEST YOURSELF 

Solving Recurrence Relations by Iteration
The keener one’s sense of logical deduction, the less often one makes hard and fast 
inferences. —Bertrand Russell, 1872–1970

Suppose you have a sequence that satisfies a certain recurrence relation and initial condi-
tions. It is often helpful to know an explicit formula for the sequence, especially if you need 
to compute terms with very large subscripts or if you need to examine general properties 
of the sequence. Such an explicit formula is called a solution to the recurrence relation. In 
this section, we discuss methods for solving recurrence relations. For example, in the text 
and exercises of this section, we will show that the Tower of Hanoi sequence of Example 
5.6.5 satisfies the formula

mn 5 2n 21,

and that the compound interest sequence of Example 5.6.7 satisfies

An 5 (1.04)n?$100,000.

The Method of Iteration
The most basic method for finding an explicit formula for a recursively defined sequence 
is iteration. Iteration works as follows: Given a sequence a0, a1, a2, Á defined by a recur-
rence relation and initial conditions, you start from the initial conditions and calculate suc-
cessive terms of the sequence until you see a pattern developing. At that point you guess 
an explicit formula.

Finding an Explicit Formula

Let a0, a1, a2, Á be the sequence defined recursively as follows: For each integer k $ 1,

(1) ak 5 ak21 12  recurrence relation

(2) a0 5 1 initial condition. 

Use iteration to guess an explicit formula for the sequence.

5.7

Example 5.7.1
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Solution Recall that to say

ak 5 ak21 12 for each integer k $ 1

means

ah 5 ah21 12  no matter what positive integer is 
placed into the box h.

In particular,

a1 5 a0 12,

a2 5 a1 12,

a3 5 a2 12,

and so forth. Now use the initial condition to begin a process of successive substitutions 
into these equations, not just of numbers (as was done in Section 5.6) but of numerical 
expressions.

The reason for using numerical expressions rather than numbers is that in these prob-
lems you are seeking a numerical pattern that underlies a general formula. The secret 
of success is to leave most of the arithmetic undone. However, you do need to eliminate 
parentheses as you go from one step to the next. Otherwise, you will soon end up with a 
bewilderingly large nest of parentheses. Also, it is nearly always helpful to use shorthand 
notations for regrouping additions, subtractions, and multiplications of numbers that re-
peat. Thus, for instance, you would write

5?2 instead of 212121212

and 25 instead of 2?2?2?2?2.

Notice that you don’t lose any information about the number patterns when you use these 
shorthand notations.

Here’s how the process works for the given sequence:

a0 1

a1 a0 2 1 2

a2 a1 2 1 2 2 1 2 2

a3 a2 2 1 2 2 2 1 2 2 2

a4 a3 2 1 2 2 2 2 1 2 2 2 2111111111

1 1 1 1 1 1 1

1111

11

15

5

5

5

5

5

5

5

5

5

5

5

the initial condition

by substitution

eliminate parentheses

eliminate parentheses again; write
3? 2 instead of 2 1 2 1 2?

eliminate parentheses again;
de�nitely write 4? 2 instead of
2 1 2 1 2 1 2—the length of the
string of 2’s is getting out of hand.

Since it appears helpful to use the shorthand k?2 in place of 2121 Á 12 (k times), we 
do so, starting again from a0.

Tip Do no arithmetic 
except
  replace n?1 and 1?n 
by n,

  reformat repeated 
numbers,

 eliminate parentheses.
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a0 1 1 0 2

a1 a0 2 1 2 1 1 2

a2 a1 2 1 2 2 1 2 2

a3 a2 2 1 2 2 2 1 3 2

a4 a3 2 1 3 2 2 1 4 2

a5 a4 2 1 4 2 2 1 5 2

5

5 1

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

5

1

1

1

1

1 1

1

1 1

1 1

1 1

1 1 1

1

1

1

1

1 the initial condition

by substitution

At this point it certainly seems likely that
the general pattern is 1 1 n ? 2; check
whether the next calculation supports this.

It does! So go ahead and write an answer.
It’s only a guess, after all.

Guess: n 1 n 2 1 2n  for every integer n.a

The answer obtained for this problem is just a guess. To be sure of the correctness of this 
guess, you will need to check it by mathematical induction. Later in this section, we will 
show how to do this. ■

A sequence like the one in Example 5.7.1, in which each term equals the previous term 
plus a fixed constant, is called an arithmetic sequence. In the exercises at the end of this 
section you are asked to show that the nth term of an arithmetic sequence always equals 
the initial value of the sequence plus n times the fixed constant.

Definition

A sequence a0, a1, a2, Á is called an arithmetic sequence if, and only if, there is a 
constant d such that

ak 5 ak21 1d for each integer k $ 1.

It follows that

an 5 a0 1dn   for every integer n $ 0.

An Arithmetic Sequence

Under the force of gravity, an object falling in a vacuum falls about 9.8 meters per second 
(m/sec) faster each second than it fell the second before. Thus, neglecting air resistance, a 
skydiver’s speed upon leaving an airplane is approximately 9.8 m/sec one second after de-
parture, 9.819.8 5 19.6 m/sec two seconds after departure, and so forth. If air resistance 
is neglected, how fast would the skydiver be falling 60 seconds after leaving the airplane?

Solution Let sn be the skydiver’s speed in m/sec n seconds after exiting the airplane, 
assuming there is no air resistance. Then s0 is the initial speed, and since the diver would 
travel 9.8 m/sec faster each second than the second before,

sk 5 sk21 19.8 m/sec for every integer k $ 1.

Example 5.7.2
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It follows that s0, s1, s2, Á is an arithmetic sequence with a fixed constant of 9.8, and thus

sn 5 s0 1 (9.8)n  for each integer n $ 0.

Hence sixty seconds after exiting and neglecting air resistance, the skydiver would travel 
at a speed of

s60 5 01 (9.8)(60) 5 588 m/sec.

Now 588 m/sec is over half a kilometer per second or over a third of a mile per second, 
which is very fast for a human being to travel. Fortunately for the skydiver, taking air re-
sistance into account reduces the speed considerably. ■

In an arithmetic sequence, each term equals the previous term plus a fixed constant. In 
a geometric sequence, each term equals the previous term times a fixed constant. Geomet-
ric sequences arise in a large variety of applications, such as compound interest, certain 
models of population growth, radioactive decay, and the number of operations needed to 
execute certain computer algorithms.

The Explicit Formula for a Geometric Sequence

Let r be a fixed nonzero constant, and suppose a sequence a0, a1, a2, Á is defined recur-
sively as follows:

ak 5 rak21  for each integer k $ 1,

a0 5 a.

Use iteration to guess an explicit formula for this sequence.

Solution 

In the exercises at the end of this section, you are asked to prove that this formula is 
correct. ■

Example 5.7.3

Definition

A sequence a0, a1, a2, Á is called a geometric sequence if, and only if, there is a 
constant r such that

ak 5 rak21 for each integer k $ 1.

It follows that

an 5 a0r
n for each integer n $ 0.
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A Geometric Sequence

As shown in Example 5.6.7, if a bank pays interest at a rate of 4% per year compounded an-
nually and An denotes the amount in the account at the end of year n, then Ak 5 (1.04) Ak21, 
for each integer k $ 1, assuming no deposits or withdrawals during the year. Suppose the 
initial amount deposited is $100,000, and assume that no additional deposits or withdraw-
als are made.

a. How much will the account be worth at the end of 21 years?

b. In how many years will the account be worth $1,000,000? 
Solution
a. A0, A1, A2, Á is a geometric sequence with initial value 100,000 and constant multi-

plier 1.04. Hence,

An 5 $100,000?(1.04)n for every integer n $ 0.

After 21 years, the amount in the account will be

A21 5 $100,000?(1.04)21 > $227,876.81.

This is the same answer as that obtained in Example 5.6.7 but is computed much more 
easily (at least if a calculator with a powering key, such as `  or xy , is used).

b. Let t be the number of years needed for the account to grow to $1,000,000. Then

$1,000,000 5 $100,000?(1.04)t.

Dividing both sides by 100,000 gives

10 5 (1.04)t,

and taking natural logarithms of both sides results in

ln(10) 5 ln(1.04)t.

Then

ln(10) > t ln(1.04) because logb 
(xa) 5 a logb 

(x) (see 
exercise 35 of Section 7.2)

and so

t 5
ln(10)

ln(1.04)
> 58.7.

Hence the account will grow to $1,000,000 in approximately 58.7 years.  ■

An important property of a geometric sequence with constant multiplier greater 
than 1 is that its terms increase very rapidly in size as the subscripts get larger and 
larger. For instance, the first ten terms of a geometric sequence with a constant multi-
plier of 10 are

1, 10, 102, 103, 104, 105, 106, 107, 108, 109.

Thus, by its tenth term, the sequence already has the value 109 5 1,000,000,000 5 1 billion. 
The following box indicates some quantities that are approximately equal to certain powers 
of 10.

Example 5.7.4

Note Properties of loga-
rithms are reviewed in  
Section 7.2.
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Using Formulas to Simplify Solutions Obtained by Iteration
Explicit formulas obtained by iteration can often be simplified by using formulas such as 
those developed in Section 5.2. For instance, according to the formula for the sum of a geo-
metric sequence with initial term 1 (Theorem 5.2.2), for each real number r except r 5 1,

11 r1 r2 1 Á 1 rn 5
rn11 21

r21
 for every integer n $ 0.

And according to the formula for the sum of the first n integers (Theorem 5.2.1),

112131 Á 1n 5
n(n11)

2
 for every integer n $ 1.

An Explicit Formula for the Tower of Hanoi Sequence

Recall that the Tower of Hanoi sequence m1, m2, m3, Á of Example 5.6.5 satisfies the 
recurrence relation

mk 5 2mk21 11 for each integer k $ 2

and has the initial condition

m1 5 1.

Use iteration to guess an explicit formula for this sequence, and make use of a formula 
from Section 5.2 to simplify the answer.

Solution By iteration,

m1 1

m 2 2m1 1 2 1 1 2 1 1,

m 3 2m2 1 2 2 1 1 2 2 2 1,

m 4 2m3 1 2 22 2 1 1 2 3 22 2 1,

m 5 2m4 1 2 23 22 2 1 1 2 4 23 22 2 1

5

5

5

5

5

5

5

5

5

5

5

5

5

1

1

1

1

1

1 1

1 1 1

1 1 1 1

1

1 1

1 1 1

1 1 1 1

Example 5.7.5

107 > number of seconds in a year

109 > number of bytes of memory in a personal computer

1011 > number of neurons in a human brain

1017 > age of the universe in seconds (according to one theory)

1031 >  number of seconds to process all possible positions of a checkers game if 
moves are processed at a rate of 1 per billionth of a second

1081 > number of atoms in the universe

10111 >  number of seconds to process all possible positions of a chess game if moves 
are processed at a rate of 1 per billionth of a second
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These calculations show that each term up to m5 is a sum of successive powers of 2, start-
ing with 20 5 1 and going up to 2k, where k is 1 less than the subscript of the term. The 
pattern would seem to continue to higher terms because each term is obtained from the 
preceding one by multiplying by 2 and adding 1; multiplying by 2 raises the exponent of 
each component of the sum by 1, and adding 1 adds back the 1 that was lost when the previ-
ous 1 was multiplied by 2. For instance, for n 5 6,

m6 5 2m5 11 5 2(24 123 122 1211)11 5 25 124 123 122 1211.

Thus it seems that, in general,

mn 5 2n21 12n22 1 Á 122 1211.

By the formula for the sum of a geometric sequence (Theorem 5.2.2),

2n21 12n22 1 Á 122 1211 5
2n 21

221
5 2n 21.

Hence the explicit formula seems to be

 mn 5 2n 21 for every integer n $ 1. ■

Using recursion to Compute the Number of edges of Kn

In Example 4.9.9 the handshake theorem was used to prove that the number of edges of Kn is 
n(n 2 1)

2 , and in exercise 31 of Section 5.3 you were asked to prove it using mathematical in-
duction. This result can also be obtained using recursion and the formula for the sum of the 
first n positive integers. Observe that the first few values of Kn can be pictured as follows:

K1 K2 K3 K4

You can obtain K5 from K4 by adding one new vertex and drawing four new edges, one 
each between the new vertex and each vertex of K4.

New vertex

K5

Thus

the number of edges of K5 5 the number of edges of K4 1 the 4 new edges.

By the same reasoning, if for each integer n $ 1, sn is the number of edges of Kn then

sk 5 sk21 1 (k21) for each integer k $ 2  recurrence relation

s1 5 the number of edges in K1 5 0 initial condition.

Use iteration to find an explicit formula for s1, s2, s3, Á .

example 5.7.6

!
Caution! Be careful 
when you use the distribu-
tive law. For instance,

2(211)11 Þ 22 1111

because

2(211)11 5 2?311 5 7,

whereas

22 1111 5 412 5 6.
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Solution Because

sk 5 sk21 1 (k21) for each integer k $ 2
Because

and

then, in particular,

for each integers

Guess:

By Theorem 5.2.1,

01112131 Á 1 (n21) 5
(n21)n

2
5

n(n21)

2
.

Hence it appears that

sn 5
n(n21)

2
 for every integer n $ 1,

which agrees with the results obtained in Sections 4.9 and 5.3. ■

Checking the Correctness of a Formula  
by Mathematical Induction
As you can see from some of the previous examples, the process of solving a recurrence re-
lation by iteration can involve complicated calculations. It is all too easy to make a mistake 
and come up with the wrong formula. That is why it is important to confirm your calcula-
tions by checking the correctness of your formula. The most common way to do this is to 
use mathematical induction.

Using Mathematical Induction to Verify the Correctness of a Solution  
to a Recurrence Relation

In Example 5.6.5 we obtained a formula for the Tower of Hanoi sequence. Use mathemati-
cal induction to show that this formula is correct.

Solution What does it mean to show the correctness of a formula for a recursively de-
fined sequence? Given a sequence of numbers that satisfies a certain recurrence relation 

Example 5.7.7
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and initial condition, the job is to show that each term of the sequence satisfies the pro-
posed explicit formula. In this case, you need to prove the following statement:

If m1, m2, m3, Á is the sequence defined by

mk 5 2mk21 11 for each integer k $ 2, and

m1 5 1,

then mn 5 2n 21 for every integer n $ 1. 

proof of Correctness: Let m1, m2, m3, Á be the sequence defined by specifying that 
m1 5 1 and mk 5 2mk21 11 for each integer k $ 2, and let the property P(n) be the 
equation

mn 5 2n 21. d P(n)

We will use mathematical induction to prove that for every integer n $ 1, P(n) is true.

Show that P(1) is true:
To establish P(1), we must show that

m1 5 21 21. d P(1)

Now the left-hand side of P(1) is

m1 5 1 by definition of m1, m2, m3, Á ,

and the right-hand side of P(1) is

21 21 5 221 5 1.

Thus the two sides of P(1) equal the same quantity, and hence P(1) is true.

Show that for every integer k $ 1, if P(k) is true then P(k11) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 1. That is:]
Suppose that k is any integer with k $ 1 such that

mk 5 2k 21. d P(k) inductive hypothesis

[We must show that P(k11) is true. That is:] We must show that

mk11 5 2k11 21.  d P(k11)

But the left-hand side of P(k11) is

mk11 5 2m(k11)21 11 by definition of m1, m2, m3, Á
5 2mk 11

5 2(2k 21)11 by substitution from the inductive hypothesis

5 2k11 2211 by the distributive law and the fact that 2?2k 5 2k11

5 2k11 21 by basic algebra

which equals the right-hand side of P(k11). [Since the basis and inductive steps have been 
proved, it follows by mathematical induction that the given formula holds for every integer 
n $ 1.] ■

Discovering That an Explicit Formula Is Incorrect
The following example shows how the process of trying to verify a formula by mathemati-
cal induction may reveal a mistake.
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Using Verification by Mathematical Induction to Find a Mistake

Let c0, c1, c2, Á be the sequence defined as follows:

ck 5 2ck21 1k for each integer k $ 1,

c0 5 1.

Suppose your calculations suggest that c0, c1, c2, . . . satisfies the following explicit 
formula:

cn 5 2n 1n for every integer n $ 0.

Is this formula correct?

Solution Start to prove the statement by mathematical induction and see what develops. 
The proposed formula satisfies the basis step of the inductive proof since on the one hand, 
c0 5 1 by definition and on the other hand, 20 10 5 110 5 1.

In the inductive step, you suppose that k is any integer with k $ 0 such that

ck 5 2k 1k,  This is the inductive hypothesis.

and then you must show that

ck11 5 2k11 1 (k11).

To do this, you start with ck11, substitute from the recurrence relation, and use the induc-
tive hypothesis:

ck11 5 2ck 1 (k11) by the recurrence relation

5 2(2k 1k)1 (k11) by substitution from the inductive hypothesis

5 2(k11) 13k11 by basic algebra.

To finish the verification, therefore, you need to show that

2k11 13k11 5 2k11 1 (k11).

Now this equation is equivalent to

2k 5 0  by subtracting 2k11 1k11 from both sides

which is equivalent to

k 5 0  by dividing both sides by 2.

But this is false since k may be any nonnegative integer. For instance, when k 5 1, then 
k11 5 2, and

c2 5 2?312 5 8 whereas 22 12 5 412 5 6.

So the formula does not give the correct value for c2. Hence the sequence c0, c1, c2, Á   
does not satisfy the proposed formula. ■

Once you have found a proposed formula to be false, you should look back at your cal-
culations to see where you made a mistake, correct it, and try again.

Example 5.7.8

1. To use iteration to find an explicit formula for a 
recursively defined sequence, start with the  
and use successive substitution into the  to 
look for a numerical pattern.

2. At every step of the iteration process, it is impor-
tant to eliminate .

3. If a single number, say a, is added to itself k times 
in one of the steps of the iteration, replace the sum 
by the expression .

TEST YOURSELF 
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4. If a single number, say a, is multiplied by itself k 
times in one of the steps of the iteration, replace 
the product by the expression .

5. A general arithmetic sequence a0, a1, a2, Á with 
initial value a0 and fixed constant summand d 
satisfies the recurrence relation  and has the 
explicit formula .

6. A general geometric sequence a0, a1, a2, Á with 
initial value a0 and fixed constant multiplier r 
satisfies the recurrence relation  and has the 
explicit formula .

7. When an explicit formula for a recursively defined 
sequence has been obtained by iteration, its cor-
rectness can be checked by .

1. The formula

112131 Á 1n 5
n(n11)

2

is true for every integer n $ 1. Use this fact to 
solve each of the following problems:
a. If k is an integer and k $ 2, find a formula for 

the expression 112131 Á 1 (k21).
b. If n is an integer and n $ 1, find a formula for 

the expression 5121416181 Á 12n.
c. If n is an integer and n $ 1, find a formula for 

the expression 313?213?31 Á 13?n1n. 

2. The formula

11 r1 r2 1 Á 1 rn 5
rn11 21

r21

is true for every real number r except r 5 1 and 
for every integer n $ 0. Use this fact to solve each 
of the following problems:
a. If i is an integer and i $ 1, find a formula for 

the expression 112122 1 Á 12i21.
b. If n is an integer and n $ 1, find a formula for 

the expression 3n21 13n22 1 Á 132 1311.
c. If n is an integer and n $ 2, find a formula for 

the expression 2n 12n22?312n23?31 Á 1
22?312?313.

d. If n is an integer and n $ 1, find a formula for 
the expression

2n 22n21 12n22 22n23 1 Á 1 (21)n21?21 (21)n. 

In each of 3–15 a sequence is defined recursively. Use 
iteration to guess an explicit formula for the sequence. 
Use formulas from Section 5.2 to simplify your answers 
whenever possible.

3. ak 5 kak21, for each integer k $ 1
a0 5 1

4. bk 5
bk21

1 1 bk21
, for each integer k $ 1

b0 5 1

5. ck 5 3ck21 11, for each integer k $ 2
c1 5 1

6. dk 5 2dk21 13, for each integer k $ 2
d1 5 2

7. ek 5 4ek21 15, for each integer k $ 1
e0 5 2

8. fk 5 fk21 12k, for each integer k $ 2
f1 5 1

9. gk 5
gk21

gk21 1 2, for each integer k $ 2
g1 5 1

10. hk 5 2k 2hk21, for each integer k $ 1
h0 5 1

11. pk 5 pk21 12?3k for each integer k $ 2
p1 5 2

12. sk 5 sk21 12k, for each integer k $ 1
s0 5 3

13. tk 5 tk21 13k11, for each integer k $ 1
t0 5 0

14. xk 5 3xk21 1k, for each integer k $ 2
x1 5 1

15. yk 5 yk21 1k2, for each integer k $ 2
y1 5 1

16. Solve the recurrence relation obtained as the an-
swer to exercise 17(c) of Section 5.6.

17. Solve the recurrence relation obtained as the an-
swer to exercise 21(c) of Section 5.6.

18. Suppose d is a fixed constant and a0, a1, a2, Á  
is a sequence that satisfies the recurrence relation 
ak 5 ak21 1d, for each integer k $ 1. Use math-
ematical induction to prove that an 5 a0 1nd, for 
every integer n $ 0.

19. A worker is promised a bonus if he can increase 
his productivity by 2 units a day every day for a  

H

H

*

ExERCISE SET 5.7 
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period of 30 days. If on day 0 he produces 
170 units, how many units must he produce on day 
30 to qualify for the bonus?

20. A runner targets herself to improve her time on a 
certain course by 3 seconds a day. If on day 0 she 
runs the course in 3 minutes, how fast must she 
run it on day 14 to stay on target?

21. Suppose r is a fixed constant and a0, a1, a2 Á is 
a sequence that satisfies the recurrence relation 
ak 5 rak21, for each integer k $ 1 and a0 5 a. Use 
mathematical induction to prove that an 5 arn, for 
every integer n $ 0.

22. As shown in Example 5.6.8, if a bank pays interest 
at a rate of i compounded m times a year, then the 
amount of money Pk at the end of k time periods 
(where one time period 5 1ymth of a year) satis-
fies the recurrence relation Pk 5 [11 (iym)] Pk21 
with initial condition P0 5 the initial amount 
deposited. Find an explicit formula for Pn.

23. Suppose the population of a country increases 
at a steady rate of 3% per year. If the population 
is 50 million at a certain time, what will it be 
25 years later?

24. A chain letter works as follows: One person sends 
a copy of the letter to five friends, each of whom 
sends a copy to five friends, each of whom sends 
a copy to five friends, and so forth. How many 
people will have received copies of the letter after 
the twentieth repetition of this process, assuming 
no person receives more than one copy?

25. A certain computer algorithm executes twice 
as many operations when it is run with an input 
of size k as when it is run with an input of size 
k21 (where k is an integer that is greater than 1). 
When the algorithm is run with an input of size 1, 
it executes seven operations. How many opera-
tions does it execute when it is run with an input 
of size 25?

26. A person saving for retirement makes an initial 
deposit of $1,000 to a bank account earning inter-
est at a rate of 3% per year compounded monthly, 
and each month she adds an additional $200 to the 
account.
a. For each nonnegative integer n, let An be the 

amount in the account at the end of n months. 
Find a recurrence relation relating Ak to Ak21.

b. Use iteration to find an explicit formula for An.

c. Use mathematical induction to prove the cor-
rectness of the formula you obtained in part (b).

d. How much will the account be worth at the 
end of 20 years? At the end of 40 years?

e. In how many years will the account be worth 
$10,000?

27. A person borrows $3,000 on a bank credit card at 
a nominal rate of 18% per year, which is actually 
charged at a rate of 1.5% per month.
a. What is the annual percentage yield (APY) for 

the card? (See Example 5.6.8 for a definition 
of APY.)

b. Assume that the person does not place any ad-
ditional charges on the card and pays the bank 
$150 each month to pay off the loan. Let Bn be 
the balance owed on the card after n months. 
Find an explicit formula for Bn.

c. How long will be required to pay off the debt?
d. What is the total amount of money the person 

will have paid for the loan? 

In 28–42 use mathematical induction to verify the cor-
rectness of the formula you obtained in the referenced 
exercise.

28. Exercise 3 29. Exercise 4 30. Exercise 5

31. Exercise 6 32. Exercise 7 33. Exercise 8

34. Exercise 9 35. Exercise 10 36. Exercise 11

37. Exercise 12 38. Exercise 13 39. Exercise 14

40. Exercise 15 41. Exercise 16 42. Exercise 17

In each of 43–49 a sequence is defined recursively. (a) Use 
iteration to guess an explicit formula for the sequence. 
(b) Use strong mathematical induction to verify that the 
formula of part (a) is correct.

43. ak 5
ak21

2ak21 2 1, for each integer k $ 1

a0 5 2

44. bk 5
2

bk21
, for each integer k $ 2

b1 5 1

45. vk 5 v:ky2;1v:(k11)y2;12, for each integer k $ 2
v1 5 1

46. sk 5 2sk22, for each integer k $ 2
s0 5 1, s1 5 2

47. tk 5 k2 tk21, for each integer k $ 1
t0 5 0

48. wk 5 wk22 1k, for each integer k $ 3
w1 5 1, w2 5 2H

H

H

H

H

H

H

H
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49. uk 5 uk22?uk21, for each integer k $ 2
u0 5 u1 5 2

In 50 and 51 determine whether the given recursively de-
fined sequence satisfies the explicit formula an 5 (n21)2, 
for every integer n $ 1.

50. ak 5 2ak21 1k21, for each integer k $ 2
a1 5 0

51. ak 5 4ak21– k13, for each integer k $ 2
a1 5 0

52. A single line divides a plane into two regions. 
Two lines (by crossing) can divide a plane  
into four regions; three lines can divide it  
into seven regions (see the figure). Let Pn  
be the maximum number of regions into which 
n lines divide a plane, where n is a positive 
integer.

Line 3

Line 2

Line 1

5
1 2

3 4

6

7

a. Derive a recurrence relation for Pk in terms of 
Pk21, for each integer k $ 2.

b. Use iteration to guess an explicit formula for Pn.

53. Compute 31 1
1 04

n

 for small values of n (up to 

about 5 or 6). Conjecture explicit formulas for the 
entries in this matrix, and prove your conjecture 
using mathematical induction.

54. In economics the behavior of an economy from one 
period to another is often modeled by recurrence 
relations. Let Yk be the income in period k and Ck be 
the consumption in period k. In one economic mod-
el, income in any period is assumed to be the sum 
of consumption in that period plus investment and 
government expenditures (which are assumed to be 
constant from period to period), and consumption in 
each period is assumed to be a linear function of the 
income of the preceding period. That is,

Yk 5 Ck 1E  where E is the sum  
of investment plus  
government expenditures

Ck 5 c1mYk21  where c and m are constants.

Substituting the second equation into the first 
gives Yk 5 E1c1mYk21.
a. Use iteration on the above recurrence relation 

to obtain

Yn 5 (E1c)Smn 21

m21 D1mnY0

for every integer n $ 1.
b. (For students who have studied calculus) Show 

that if 0 , m , 1, then lim
nS`

Yn 5
E 1 c
1 2 m.

H
H

1. initial conditions; recurrence relation 2. parentheses 3. k?a    4. ak 5. ak 5 ak21 1d; an 5 a0 1dn    6. ak 5 rak21; 
an 5 a0r

n 7. mathematical induction

ANSWERS FOR TEST YOURSELF 

Second-Order Linear Homogeneous Recurrence 
Relations with Constant Coefficients
Genius is 1% inspiration and 99% perspiration. —Thomas Alva Edison, 1932

In Section 5.7 we discussed finding explicit formulas for recursively defined sequences 
using iteration. This is a basic technique that does not require any special tools beyond 
the ability to discern patterns. In many cases, however, a pattern is not readily discern-
ible and other methods must be used. A variety of techniques are available for finding 
explicit formulas for special classes of recursively defined sequences. The method ex-
plained in this section is one that works for the Fibonacci and other similarly defined 
sequences.

5.8
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“Second-order” refers to the fact that the expression for ak contains the two previous 
terms ak21 and ak22, “linear” to the fact that ak21 and ak22 appear in separate terms and 
to the first power, “homogeneous” to the fact that the total degree of each term is the same 
(thus there is no constant term), and “constant coefficients” to the fact that A and B are 
fixed real numbers that do not depend on k.

Second-Order Linear Homogeneous Recurrence Relations  
with Constant Coefficients

State whether each of the following is a second-order linear homogeneous recurrence rela-
tion with constant coefficients:

a. ak 5 3ak21 12ak22 b. bk 5 bk21 1bk22 1bk23

c. ck 5
1
2ck21 2

3
7ck22 d. dk 5 d2

k21 1dk21?dk22

e. ek 5 2ek22 f. fk 5 2fk21 11

g. gk 5 gk21 1gk22 h. hk 5 s21)hk21 1 (k21)hk22

Solution

a. Yes; A 5 3 and B 5 2

b. No; not second-order

c. Yes; A 5
1
2 and B 5 2

3
7

d. No; not linear

e. Yes; A 5 0 and B 5 2

f. No; not homogeneous

g. Yes; A 5 1 and B 5 1

h. No; nonconstant coefficients ■

The Distinct-Roots Case
Consider a second-order linear homogeneous recurrence relation with constant coefficients:

 ak 5 Aak21 1Bak22 for every integer k $ 2, 5.8.1

where A and B are fixed real numbers. Relation (5.8.1) is satisfied when each ai 5 0, but 
it has nonzero solutions as well. Suppose that for some number t with t Þ 0, the sequence

1, t, t2, t3, Á , tn, Á

Example 5.8.1

Definition

A second-order linear homogeneous recurrence relation with constant coeffi-
cients is a recurrence relation of the form

ak 5 Aak21 1Bak22  for every integer k $ some fixed integer,

where A and B are fixed real numbers with B Þ 0.

satisfies relation (5.8.1). This means that each term of the sequence equals A times the 
previous term plus B times the term before that. So for each integer k $ 2,

tk 5 Atk21 1Btk22.
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In particular, when k 5 2, the equation becomes

t2 5 At1B,

or, equivalently,

 t2 2At2B 5 0. 5.8.2

This is a quadratic equation, and the values of t that make it true can be found either by 
factoring or by using the quadratic formula.

Now work backward. Suppose t is any number that satisfies equation (5.8.2). Does the 
sequence 1, t, t2, t3, Á , tn, Á satisfy relation (5.8.1)? To answer this question, multiply 
equation (5.8.2) by tk22 to obtain

t k22?t2 2 tk22?At2 t k22?B 5 0.

This is equivalent to

t k 2Atk21 2Btk22 5 0,

or

t k 5 Atk21 1Btk22.

Hence the answer is yes: 1, t, t2, t3, Á , tn, Á satisfies relation (5.8.1).
This discussion proves the following lemma.

Lemma 5.8.1

Let A and B be real numbers. A recurrence relation of the form

 ak 5 Aak21 1Bak22 for every integer k $ 2 5.8.1

is satisfied by the sequence

1, t, t2, t3, Á , tn, Á ,

where t is a nonzero real number, if, and only if, t satisfies the equation

 t2 2At2B 5 0. 5.8.2

Equation (5.8.2) is called the characteristic equation of the recurrence relation.

Definition

Given a second-order linear homogeneous recurrence relation with constant  
coefficients

 ak 5 Aak21 1Bak22 for every integer k $ 2, 5.8.1

the characteristic equation of the relation is

 t2 2At2B 5 0. 5.8.2
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Using the Characteristic Equation to Find Solutions to a Recurrence Relation

Consider the recurrence relation that specifies that the kth term of a sequence equals the 
sum of the (k21)st term plus twice the (k22)nd term. That is,

 ak 5 ak21 12ak22 for each integer k $ 2. 5.8.3

Find all sequences that satisfy relation (5.8.3) and have the form

1, t, t2, t3, Á , tn, Á ,

where t is nonzero.

Solution By Lemma 5.8.1, relation (5.8.3) is satisfied by a sequence 1, t, t2, t3, Á , tn, Á  
if, and only if, t satisfies the characteristic equation

t2 2 t22 5 0.

Since

t2 2 t22 5 (t22)(t11),

the only possible values of t are 2 and −1. It follows that the sequences

1, 2, 22, 23, Á , 2n, Á  and 1, 21, (21)2, (21)3, Á , (21)n, Á .

are both solutions for relation (5.8.3) and there are no other solutions of this form. Note that 
these sequences can be rewritten more simply as

 1, 2, 22, 23, Á , 2n, Á  and 1, 21, 1, 21, Á , (21)n, Á . ■

The example above shows how to find two distinct sequences that satisfy a given 
second-order linear homogeneous recurrence relation with constant coefficients. It turns 
out that any linear combination of such sequences produces another sequence that also 
satisfies the relation.

Example 5.8.2

Lemma 5.8.2

If r0, r1, r2, Á and s0, s1, s2, Á are sequences that satisfy the same second-order 
linear homogeneous recurrence relation with constant coefficients, and if C and D 
are any numbers, then the sequence a0, a1, a2, Á defined by the formula

an 5 Crn 1Dsn for every integer n $ 0

also satisfies the same recurrence relation.

proof: Suppose r0, r1, r2, Á  and s0, s1, s2, Á  are sequences that satisfy the same 
second-order linear homogeneous recurrence relation with constant coefficients. In 
other words, suppose that for some real numbers A and B,

 rk 5 Ark21 1Brk22 and sk 5 Ask21 1Bsk22 5.8.4

for every integer k $ 2. Suppose also that C and D are any numbers. Let a0, a1,  
a2, Á be the sequence defined by

 an 5 Crn 1Dsn for every integer n $ 0. 5.8.5

[We must show that a0, a1, a2, Á  satisfies the same recurrence relation as  
r0, r1, r2, Á and s0, s1, s2, Á . That is, we must show that ak 5 Aak21 1Bak22, for every 
integer k $ 2.]

(continued on page 356)
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For every integer k $ 2,

Aak21 1Bak22 5 A(Crk21 1Dsk21)1B(Crk22 1Dsk22) by substitution from (5.8.5)

5 C(Ark21 1Brk22)1D(Ask21 1Bsk22) by basic algebra

5 Crk 1Dsk by substitution from (5.8.4)

5 ak by substitution from (5.8.5).

Hence a0, a1, a2, Á satisfies the same recurrence relation as r0, r1, r2, Á and s0, s1, 
s2, Á [as was to be shown].

Given a second-order linear homogeneous recurrence relation with constant coeffi-
cients, if the characteristic equation has two distinct roots, then Lemmas 5.8.1 and 5.8.2 
can be used together to find a particular sequence that satisfies both the recurrence relation 
and two specific initial conditions.

Finding the Linear Combination That Satisfies the Initial Conditions

Find a sequence that satisfies the recurrence relation of Example 5.8.2,

 ak 5 ak21 12ak22 for every integer k $ 2, 5.8.3

and that also satisfies the initial conditions

a0 5 1 and a1 5 8.

Solution Consider the following sequences from Example 5.8.2.

1, 2, 22, 23, Á , 2n, Á  and 1, 21, 1, 21, Á , (21)n, Á

Both satisfy relation (5.8.3) although neither satisfies the given initial conditions. However, 
by Lemma 5.8.2, any sequence a0, a1, a2, Á  that satisfies the explicit formula

 an 5 C?2n 1D(21)n, 5.8.6

where C and D are numbers, also satisfies relation (5.8.3). You can find C and D so that  
a0, a1, a2, Á satisfies the initial conditions specified in this example by substituting n 5 0 
and n 5 1 into equation (5.8.6) and solving for C and D:

a0 5 1 5 C?20 1D(21)0

a1 5 8 5 C?21 1D(21)1.

When you simplify, you obtain the system

1 5 C1D

8 5 2C2D,

which can be solved in various ways. For instance, if you add the two equations, you get

9 5 3C,

and so C 5 3.

Example 5.8.3
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Then, by substituting into 1 5 C1D, you get

D 5 22.

It follows that the sequence a0, a1, a2, Á  given by

an 5 3?2n 1 (22)(21)n 5 3?2n 22(21)n,

for each integer n $ 0, satisfies both the recurrence relation and the given initial  
conditions. ■

The techniques of Examples 5.8.2 and 5.8.3 can be used to find an explicit formula for 
any sequence that satisfies a second-order linear homogeneous recurrence relation with 
constant coefficients for which the characteristic equation has distinct roots, provided that 
the first two terms of the sequence are known. This is made precise in the next theorem.

Theorem 5.8.3 Distinct-Roots Theorem

Suppose a sequence a0, a1, a2, Á  satisfies a recurrence relation

 ak 5 Aak21 1Bak22 5.8.1

for some real numbers A and B with B Þ 0 and every integer k $ 2. If the charac-
teristic equation

 t2 2At2B 5 0 5.8.2

has two distinct roots r and s, then a0, a1, a2, Á  is given by the explicit formula

an 5 Crn 1Dsn,

where C and D are the numbers whose values are determined by the values a0 and 
a1.

Note: To say “C and D are determined by the values of a0 and a1” means that C and D are 
the solutions to the system of simultaneous equations

a0 5 Cr0 1Ds0 and a1 5 Cr1 1Ds1,

or, equivalently,

a0 5 C1D and a1 5 Cr1Ds.

In exercise 19 at the end of this section you are asked to verify that this system always has 
a solution when r Þ s.

proof: Suppose that for some real numbers A and B, a sequence a0, a1, a2, Á satis-
fies the recurrence relation ak 5 Aak21 1Bak22, for every integer k $ 2, and sup-
pose the characteristic equation t2 2At2B 5 0 has two distinct roots r and s. We 
will show that

for each integer n $ 0, an 5 Crn 1Dsn,

where C and D are numbers such that

a0 5 Cr0 1Ds0 and a1 5 Cr1 1Ds1.

(continued on page 358)
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Let P(n) be the equation

an 5 Crn 1Dsn. d P(n)

We use strong mathematical induction to prove that P(n) is true for each integer 
n $ 0. In the basis step, we prove that P(0) and P(1) are true. We do this because in 
the inductive step we need the equation to hold for n 5 0 and n 5 1 in order to prove 
that it holds for n 5 2.

Show that P(0) and P(1) are true: The truth of P(0) and P(1) is automatic because C 
and D are exactly those numbers that make the following equations true:

a0 5 Cr0 1Ds0 and a1 5 Cr1 1Ds1.

Show that for every integer k $ 1, if P(i) is true for each integer i from 0 through 
k, then P(k11) is also true: Suppose that k is any integer with k $ 1 and for each 
integer i from 0 through k,

ai 5 Cri 1Dsi inductive hypothesis.

We must show that

ak11 5 Crk11 1Dsk11. d P(k11)

Now by the inductive hypothesis,

ak 5 Crk 1Dsk and ak21 5 Crk21 1Dsk21,

so

ak11 5 Aak 1Bak21 by definition of a0, a1, a2, Á

5 A(Crk 1Dsk)1B(Crk21 1Dsk21) by inductive hypothesis

5 C(Ark 1Brk21)1D(Ask 1Bsk21) by combining like terms

5 Crk11 1Dsk11 by Lemma 5.8.1.

This is what was to be shown.

[The reason the last equality follows from Lemma 5.8.1 is that since r and s satisfy the 
characteristic equation (5.8.2), the sequences r0, r1, r2, Á and s0, s1, s2, Á satisfy the 
recurrence relation (5.8.1).]

Remark The t of Lemma 5.8.1 and the C and D of Lemma 5.8.2 and Theorem 5.8.3 are 
referred to simply as numbers. This is to allow for the possibility of complex as well as real 
number values. If both roots of the characteristic equation of the recurrence relation are 
real numbers, then C and D will be real. If the roots are complex but both a0 and a1 are real 
numbers, then C and D will also be real and equal to each other.

The next example shows how to use the distinct-roots theorem to find an explicit for-
mula for the Fibonacci sequence.

A Formula for the Fibonacci Sequence

The Fibonacci sequence F0, F1, F2, Á satisfies the recurrence relation

Fk 5 Fk21 1Fk22 for every integer k $ 2

Example 5.8.4
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with initial conditions

F0 5 F1 5 1.

Find an explicit formula for this sequence.

Solution The Fibonacci sequence satisfies the first part of the hypothesis of the distinct-
roots theorem since the Fibonacci relation is a second-order linear homogeneous recur-
rence relation with constant coefficients (A 5 1 and B 5 1). To check that it satisfies the 
second part of the hypothesis, examine the characteristic equation

t2 2 t21 5 0.

By the quadratic formula, 

t 5
1 6 Ï124(21)

2
5 5

11Ï5

2

12Ï5

2

and so the roots are distinct. Thus it follows from the distinct-roots theorem that the  
Fibonacci sequence is given by the explicit formula

 Fn 5 CS11Ï5

2 Dn

1DS12Ï5

2 Dn

 for each integer n $ 0, 5.8.7

where C and D are the numbers whose values are determined by the fact that F0 5 F1 5 1. 
To find C and D, write

 F0 5 1 5 CS11Ï5

2 D0

1DS11Ï5

2 D0

5 C?11D?1 5 C1D

and

F1 5 1 5 CS11Ï5

2 D1

1DS12Ï5

2 D1

5 CS11Ï5

2 D1DS12Ï5

2 D.

Thus the problem is to find numbers C and D such that

C1D 5 1

and

CS11Ï5

2 D1DS12Ï5

2 D 5 1.

This may look complicated, but in fact it is just a system of two equations in two unknowns. 
In exercise 7 at the end of this section, you are asked to solve the system to show that

C 5
11Ï5

2Ï5
 and D 5

2(12Ï5)

2Ï5
.
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Substituting these values for C and D into formula (5.8.7) gives

Fn 5 S11Ï5

2Ï5
DS11Ï5

2 Dn

1S2(12Ï5)

2Ï5
DS12Ï5

2 Dn

,

or, simplifying,

 Fn 5
1

Ï5
S11Ï5

2 Dn11

2
1

Ï5
S12Ï5

2 Dn11

 5.8.8

for each integer n $ 0. Remarkably, even though the formula for Fn involves Ï5, all of the 
values of the Fibonacci sequence are integers. ■

The Single-Root Case
Consider again the recurrence relation

 ak 5 Aak21 1Bak22 for every integer k $ 2, 5.8.1

where A and B are real numbers, but suppose now that the characteristic equation

 t2 2At2B 5 0 5.8.2

has a single real root r. By Lemma 5.8.1, one sequence that satisfies the recurrence relation is

1, r, r2, r3, Á , rn, Á .

But another sequence that also satisfies the relation is

0, r, 2r2, 3r3, Á , nrn, Á .

To see why this is so, observe that since r is the unique root of t2 2At2B 5 0, the left-hand 
side of the equation can be written in the form (t2 r)2, and so

 t2 2At2B 5 (t2 r)2 5 t2 22rt1 r2. 5.8.9

Equating coefficients in equation (5.8.9) gives

 A 5 2r and B 5 2r2. 5.8.10

Let s0, s1, s2, Á  be the sequence defined by the formula

sn 5 nrn for each integer n $ 0.

Then

Ask21 1Bsk22 5 A(k21)rk21 1B(k22)rk22 by definition

5 2r(k21)rk21 2 r2(k22)rk22  by substitution from 5.8.10

5 2(k21)rk 2 (k22)rk

5 (2k222k12)rk

5 krk by basic algebra

5 sk by definition.

Thus s0, s1, s2, Á  satisfies the recurrence relation. This argument proves the following 
lemma.

Note The numbers 
(11Ï5)y2 and 
(12Ï5)y2 are related 
to the golden ratio of 
Greek mathematics. See 
exercise 24 at the end of 
this section.
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Lemmas 5.8.2 and 5.8.4 can be used to establish the single-root theorem, which tells 
how to find an explicit formula for any recursively defined sequence satisfying a second-
order linear homogeneous recurrence relation with constant coefficients for which the 
characteristic equation has just one root. Taken together, the distinct-roots and single-root 
theorems cover all second-order linear homogeneous recurrence relations with constant 
coefficients. The proof of the single-root theorem is very similar to that of the distinct-
roots theorem and is left as an exercise.

Lemma 5.8.4

Let A and B be real numbers and suppose the characteristic equation

t2 2At2B 5 0

has a single root r. Then the sequences 1, r1, r2, r3, Á , rn, Á and 0, r, 2r2, 3r3, Á , 
nrn, Á both satisfy the recurrence relation

ak 5 Aak21 1Bak22

for each integer k $ 2.

Theorem 5.8.5 Single-Root Theorem

Suppose a sequence a0, a1, a2, Á satisfies a recurrence relation

ak 5 Aak21 1Bak22

for some real numbers A and B with B Þ 0 and for every integer k $ 2. If the charac-
teristic equation t2 2At2B 5 0 has a single (real) root r, then a0, a1, a2, Á is given 
by the explicit formula

an 5 Crn 1Dnrn,

where C and D are the real numbers whose values are determined by the values of 
a0 and any other known value of the sequence.

Single-Root Case

Suppose a sequence b0, b1, b2, Á  satisfies the recurrence relation

 bk 5 4bk21 24bk22 for every integer k $ 2, 5.8.11

with initial conditions

b0 5 1 and b1 5 3.

Find an explicit formula for b0, b1, b2, Á .

Solution This sequence satisfies part of the hypothesis of the single-root theorem be-
cause it satisfies a second-order linear homogeneous recurrence relation with constant 
coefficients (A 5 4 and B 5 24). The single-root condition is also met because the char-
acteristic equation

t2 24t14 5 0

has the unique root r 5 2 [since t2 24t14 5 (t22)2].

Example 5.8.5
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It follows from the single-root theorem that b0, b1, b2, Á is given by the explicit formula

 bn 5 C?2n 1Dn2n for each integer n $ 0, 5.8.12

where C and D are the real numbers whose values are determined by the fact that b0 5 1 
and b1 5 3. To find C and D, write

b0 5 1 5 C?20 1D?0?20 5 C

and b1 5 3 5 C?21 1D?1?21 5 2C12D.

Hence the problem is to find numbers C and D such that

C 5 1

and 2C12D 5 3.

Substitute C 5 1 into the second equation to obtain

212D 5 3,

and so D 5
1

2
.

Now substitute C 5 1 and D 5
1
2 into formula (5.8.12) to conclude that

 bn 5 2n 1
1

2
 n2n 5 2nS11

n

2D for each integer n $ 0. ■

1. A second-order linear homogeneous recurrence 
relation with constant coefficients is a recur-
rence relation of the form  for every integer 
k $  , where .

2. Given a recurrence relation of the form 
ak 5 Aak21 1Bak22 for every integer k $ 2, the 
characteristic equation of the relation is .

3. If a sequence a1, a2, a3, Á is defined by a second-
order linear homogeneous recurrence relation 
with constant coefficients and the characteristic 

equation for the relation has two distinct roots r 
and s (which could be complex numbers), then the 
sequence is given by an explicit formula of the 
form .

4. If a sequence a1, a2, a3, Á is defined by a second-
order linear homogeneous recurrence relation with 
constant coefficients and the characteristic equa-
tion for the relation has only a single root r, then 
the sequence is given by an explicit formula of the 
form .

TEST YOURSELF 

1. Which of the following are second-order linear 
homogeneous recurrence relations with constant 
coefficients?
a. ak 5 2ak21 25ak22

b. bk 5 kbk21 1bk22

c. ck 5 3ck21?c2
k22

d. dk 5 3dk21 1dk22

e. rk 5 rk21 2 rk22 22
f. sk 5 10sk22

2. Which of the following are second-order linear 
homogeneous recurrence relations with constant 
coefficients?
a. ak 5 (k21)ak21 12kak22

b. bk 5 2bk21 17bk22

c. ck 5 3ck21 11
d. dk 5 3d2

k21 1dk22

e. rk 5 rk21 26rk23

f. sk 5 sk21 110sk22

ExERCISE SET 5.8 
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3. Let a0, a1, a2, Á be the sequence defined by the 
explicit formula

an 5 C?2n 1D for every integer n $ 0,

where C and D are real numbers.
a. Find C and D so that a0 5 1 and a1 5 3. What 

is a2 in this case?
b. Find C and D so that a0 5 0 and a1 5 2. What 

is a2 in this case?

4. Let b0, b1, b2, Á be the sequence defined by the 
explicit formula

bn 5 C?3n 1D(−2)n for each integer n $ 0,

where C and D are real numbers.
a. Find C and D so that b0 5 0 and b1 5 5. What 

is b2 in this case?
b. Find C and D so that b0 5 3 and b1 5 4. What 

is b2 in this case?

5. Let a0, a1, a2, Á be the sequence defined by the 
explicit formula

an 5 C?2n 1D for each integer n $ 0,

where C and D are real numbers. Show that for 
any choice of C and D,

ak 5 3ak21 22ak22 for every integer k $ 2.

6. Let b0, b1, b2, Á be the sequence defined by the 
explicit formula

bn 5 C?3n 1D(−2)n for every integer n $ 0,

where C and D are real numbers. Show that for 
any choice of C and D,

bk 5 bk21 16bk22 for each integer k $ 2.

7. Solve the system of equations in Example 5.8.4 to 
obtain

C 5
11Ï5

2Ï5
  and  D 5

2(12Ï5)

2Ï5
.

In each of 8–10: (a) suppose a sequence of the form  
1, t, t2, t3, Á , tn Á  where t Þ 0, satisfies the given recur-
rence relation (but not necessarily the initial conditions), 
and find all possible values of t: (b) suppose a sequence sat-
isfies the given initial conditions as well as the recurrence 
relation, and find an explicit formula for the sequence.

8. ak 5 2ak21 13ak22, for every integer k $ 2
a0 5 1, a1 5 2

9. bk 5 7bk21 210bk22, for every integer k $ 2
b0 5 2, b1 5 2

10. ck 5 ck21 16ck22, for every integer k $ 2
c0 5 0, c1 5 3

In each of 11–16 suppose a sequence satisfies the given 
recurrence relation and initial conditions. Find an explicit 
formula for the sequence.

11. dk 5 4dk22, for each integer k $ 2
d0 5 1, d1 5 21

12. ek 5 9ek22, for each integer k $ 2
e0 5 0, e1 5 2

13. rk 5 2rk21 2 rk22, for each integer k $ 2
r0 5 1, r1 5 4

14. sk 5 24sk21 24sk22, for every integer k $ 2
s0 5 0, s1 5 21

15. tk 5 6tk21 29tk22, for each integer k $ 2
t0 5 1, t1 5 3

16. sk 5 2sk21 12sk22, for every integer k $ 2
s0 5 1, s1 5 3

17. Find an explicit formula for the sequence of  
exercise 39 in Section 5.6.

18. Suppose that the sequences s0, s1, s2, Á and t0, t1, 
t2, Á both satisfy the same second-order linear 
homogeneous recurrence relation with constant 
coefficients:

sk 5 5sk21 24sk22 for each integer k $ 2

tk 5 5tk21 24tk22 for each integer k $ 2.

Show that the sequence 2s0 13t0, 2s1 13t1, 
2s2 13t2, Á also satisfies the same relation. In 
other words, show that

2sk 13tk 5 5s2sk21 13tk21d24(2sk22 13tk22d

for each integer k $ 2. Do not use Lemma 5.8.2.

19. Show that if r, s, a0, and a1 are numbers with r Þ s, 
then there exist unique numbers C and D so that

C1D 5 a0

Cr1Ds 5 a1.

20. Show that if r is a nonzero real number, k and m 
are distinct integers, and ak and am are any real 
numbers, then there exist unique real numbers C 
and D so that

Crk 1kDrk 5 ak

Crm 1mDrm 5 am.

21. Prove Theorem 5.8.5 for the case where the values 
of C and D are determined by a0 and a1. 

H

H
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exercises 22 and 23 are intended for students who are 
familiar with complex numbers.

22. Find an explicit formula for a sequence a0, a1,  
a2, Á  that satisfies

ak 5 2ak21 22ak22 for every integer k $ 2

with initial conditions a0 5 1 and a1 5 2.

23. Find an explicit formula for a sequence b0, b1,  
b2, Á that satisfies

bk 5 2bk21 25bk22 for each integer k $ 2

with initial conditions b0 5 1 and b1 5 1.

24. The numbers 
1 1 Ï5

2  and 
1 2 Ï5

2  that appear in 
the explicit formula for the Fibonacci sequence 
are related to a quantity called the golden ratio in 
Greek mathematics. Consider a rectangle of length 
� units and height 1, where � . 1.

1

1

  – 1

Divide the rectangle into a rectangle and a square 
as shown in the preceding diagram. The square 
is 1 unit on each side, and the rectangle has 
sides of lengths 1 and �21. The ancient Greeks 
considered the outer rectangle to be perfectly 
proportioned (saying that the lengths of its sides 
are in a golden ratio to each other) if the ratio 
of the length to the width of the outer rectangle 
equals the ratio of the length to the width of the 
inner rectangle. That is, if the number � satisfies 
the equation

�

1
5

1

�21
.

a. Show that if � satisfies the equation above, 
then it also satisfies the quadratic equation: 
t2 2 t21 5 0.

b. Find the two solutions of t2 2 t21 5 0 and call 
them �1 and �2.

c. Express the explicit formula for the Fibonacci 
sequence in terms of �1 and �2. 

1. ak 5 Aak21 1Bak22; 2; A and B are fixed real numbers with B Þ 0 2. t2 2At2B 5 0 3. an 5 Crn 1Dsn, where C and D 
are real or complex numbers 4. an 5 Crn 1Dnrn, where C and D are real numbers

ANSWERS FOR TEST YOURSELF 

General Recursive Definitions  
and Structural Induction
GENIE: Oh, aren’t you acquainted with recursive acronyms? I thought everybody 
knew about them. You see, “GOD” stands for “GOD Over Djinn”—which can be 
expanded as “GOD Over Djinn, Over Djinn”—and that can, in turn, be expanded 
to “GOD Over Djinn, Over Djinn, Over Djinn”—which can, in its turn, be further 
expanded…. You can go as far as you like.
ACHILLES: But I’ll never finish!
GENIE: Of course not. You can never totally expand GOD.
—Douglas Hofstadter, Gödel, Escher, Bach, 1979

Sequences of numbers are not the only objects that can be defined recursively. In this sec-
tion we discuss recursive definitions for sets and functions. We also introduce structural 
induction, which is a version of mathematical induction that is used to prove properties of 
recursively defined sets.

5.9
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Recursively Defined Sets
To define a set of objects recursively, you identify a few core objects as belonging to the set 
and give rules showing how to build new set elements from old. More formally, a recursive 
definition for a set consists of the following three components:

I. Base: A statement that certain objects belong to the set.

II. Recursion: A collection of rules indicating how to form new set objects from those 
already known to be in the set.

III. Restriction: A statement that no objects belong to the set other than those coming 
from the base and the recursion. 

Recursive Definition of Boolean Expressions

The set of Boolean expressions was introduced in Section 2.4 as “legal” expressions in-
volving letters from the English alphabet such as p, q, and r, and the symbols ` , ~ , ,, 
and ( ). To make precise which expressions are legal, the set of Boolean expressions over a 
general alphabet is defined recursively.

I. Base: Each symbol of the alphabet is a Boolean expression.

II. Recursion: If P and Q are Boolean expressions, then the following are also Boolean 
expressions:

II(a) P ` Q II(b) P ~ Q II(c) ,P  II(d) (P)

III. Restriction: There are no Boolean expressions over the alphabet other than those ob-
tained from the base and the recursion.

Derive the fact that the following is a Boolean expression over the English alphabet  
{a, b, c, Á , x, y, z}:

,(p ` q) ~ (,r ` p).

Solution (1) By I, p, q, and r are Boolean expressions.

(2) By (1), II(a), and II(c), p ` q and ,r are Boolean expressions.

(3) By (2), II(d), and II(a), (p ` q) and ,r ` p are Boolean expressions.

(4) By (3), II(c), and II(d), ,(p ` q) and (,r ` p) are Boolean expressions.

(5) By (4) and II(b), ,(p ` q) ~ (,r ` p) is a Boolean expression.  ■

Recursive Definition of parenthesis Structures

Certain configurations of parentheses in algebraic expressions are “legal” [such as (())() 
and ()()()], whereas others are not [such as )( ))) and ()))((( ]. Here is a recursive definition to 
generate the set C of legal parenthesis structures.

I. Base: ( ) is in C.

II. Recursion:
II(a) If E is in C, so is (E).
II(b) If E and F are in C, so is EF.

III. Restriction: No parenthesis structures are in P other than those obtained from the base 
and the recursion.

Show that (( ))( ) is a parenthesis structure in C.

Example 5.9.1

Note An example of 
a “legal” expression is 
p ` (q ~ ,r), and an ex-
ample of an “illegal” one 
is ` ,pqr ~.

Example 5.9.2
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Solution (1) By I, ( ) is in C.

(2) By (1) and II(a), (( )) is in C.

(3) By (2), (1), and II(b), (( ))( ) is in C.

Recursion is used to give a formal definition for the set of all strings over a finite set. ■

Recursive Definition for the Set of All Strings over a Finite Set

Let A be any finite set. Call the elements of A characters, and define the set S of all 
strings over A as follows:

I. Base: � is a string in S, where � denotes the null string, the “string” with no  
characters.

II. Recursion: New strings are formed according to the following rules:

II(a) If u is any string in S and if c is any character in A, then

uc is a string in S, 

where uc is called the concatenation of u and c, and is obtained by appending 
c on the right of u. 

II(b)  If u is any string in S, then both the concatenation of � and u, denoted  
�u, and the concatenation of u and �, denoted u�, are defined to equal 
u. Symbolically:

�u 5 u� 5 u. 

II(c)  If u and v are any strings in S, and if c is any character in A, then the con-
catenation of u and vc is defined to equal the concatenation of uv and c. 
Symbolically:

u(vc) 5 (uv)c.

III. Restriction: Nothing is a string in S other than objects obtained from the base 
and the recursion.

The base for the recursive definition of strings indicates only that one character, namely �, is 
a string. The next theorem states that each individual character in the underlying set is a string.

Theorem 5.9.1  Characters Are Strings

If A is a finite set and S is the set of all strings over A, then every character in A is a 
string in S.

proof:

(1) Suppose c is any character in A.

(2) By part I of the definition of string, � is a string in S.

(3) By part II(a) of the definition of string, �c is a string in S.

(4) By part I of the definition of string, �c 5 c.

(5) Thus c is a string in S. 
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proving a property of Strings

Suppose A is a finite set, S is the set of all strings over A, and a and b are in A. Because of 
the way the definition of string is stated, it cannot be deduced immediately that b(aa) is a 
string in S. To prove that this is true, first show that ba and (ba)a are strings in S and use 
the fact that b(aa) 5 (ba)a. 

Solution  (1)  By Theorem 5.9.1, a and b are strings in S because both a and b are in A.

(2) By (1) and II(a), ba is a string in S because b is in S and a [ A.

(3) By (2) and II(a), (ba)a is a string in S because ba [ S and a [ A.

(4) By II(c), b(aa) 5 (ba)a because b and a are strings in S and a [ A.

(5)  By (3) and (4), b(aa) is a string in S because it equals (ba)a, which is a 
string in S. ■

Sets of Strings with Certain properties

In Gödel, Escher, Bach, Douglas Hofstadter introduces the following recursively defined 
set of strings of M’s, I’s, and U’s, which he calls the M I U-system.*

I. Base: M I is in the M I U-system.

II. Recursion:

II(a)  If x I is in the M I U-system, where x is a string, then x I U is in the M I U-system. 
(In other words, you can add a U to any string that ends in I. For example, since 
M I is in the system, so is M I U.)

II(b)  If M x is in the M I U-system, where x is a string, then M x x is in the M I U-system. 
(In other words, you can repeat all the characters in a string that follow an initial 
M. For example, if M U I is in the system, so is M U I U I.)

II(c)  If x I I I y is in the M I U-system, where x and y are strings (possibly null), then x 
U y is also in the M I U-system. (In other words, you can replace I I I by U. For 
example, if M I I I I is in the system, so are M I U and M U I.)

II(d)  If x U U y is in the M I U-system, where x and y are strings (possibly null), then  
x U y is also in the M I U-system. (In other words, you can replace U U by U. For 
example, if M I I U U is in the system, so is M I I U.)

III. Restriction: No strings other than those derived from I and II are in the M I U-system.

Derive the fact that M U I U is in the M I U-system. 
Solution (1) By I, M I is in the M I U-system.

(2) By (1) and II(b), M I I is in the M I U-system.

(3) By (2) and II(b), M I I I I is in the M I U-system.

(4) By (3) and II(c), M U I is in the M I U-system.

(5) By (4) and II(a), M U I U is in the M I U-system. ■

Proving Properties about Recursively Defined Sets
When a set has been defined recursively, a version of mathematical induction, called struc-
tural induction, can be used to prove that every object in the set satisfies a given property.

Example 5.9.3

Example 5.9.4

*Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (New York: Basic Books, 1979), pp. 33–35.
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A property of the Set of Integers

Let S be the set of all integers defined recursively as follows:

I. Base: 4 is in S.

II. Recursion: Given any integer n in S, n13 is in S.

III.  Restriction: No integers are in S other than those derived from the base and the recursion. 
Use structural induction to prove that for every integer n in S, n mod 3 5 1.

Solution
Proof (by structural induction): Given any integer n in S, let property P(n) be the sen-
tence “n mod 3 5 1.”

Show that P(n) is true for each integer n in the base for S:
The only object in the base for S is 4, and P(4) is true because 4 mod 3 5 1 since 4 5 3?111.

Show that for each integer n in S, if P(n) is true and if m is obtained from n by applying 
a rule from the recursion for S, then P(m) is true:

Suppose n is any integer in S such that P(n) is true. Then n mod 3 5 1. [This is the induc-
tive hypothesis.] The recursion for S consists only of one rule, and when the rule is applied 
to n, the result is n13. To complete the inductive step, we must show that P(n13) is true. 
By inductive hypothesis,

n 5 3k11 for some integer k.

It follows that

(n13) mod 3 5 f(3k11)13g mod 3

5 (3k14) mod 3

5 f3(k11)11g mod 3

5 1

which means that P(n13) is true [as was to be shown].

Example 5.9.5

by substitution

by basic algebra

because k11 is an integer,

Structural Induction for a Recursively Defined Set

Let S be a set that has been defined recursively, and let P(x) be a property that 
objects in S may or may not satisfy. To prove that every object in S satisfies P(x), 
perform the following two steps: 

Step 1 (basis step): Show that P(a) is true for each object a in the base for S.  
Step 2 (inductive step): Show that for each x in S, if P(x) is true and if y is obtained 
from x by applying a rule from the recursion, then P(y) is true. To perform this step,

suppose that x is an arbitrarily chosen element of S  
for which P(x) is true.

[This supposition is the inductive hypothesis.]
Then

show that if y is obtained from x by applying a 

rule from the recursion for S, then P(y) is true.

Conclusion: Because no objects other than those obtained from the base and recur-
sion are contained in S, steps 1 and 2 prove that P(x) is true for every object x in S.
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Conclusion:
Because there are no integers in S other than those obtained from the base and the recur-
sion for S, every integer n in S satisfies the equation n mod 3 5 1.  ■

A property of the Set of parentheses

Consider the set C of all legal configurations of parentheses defined in Example 5.9.2. Use 
structural induction to prove that every configuration in C contains an equal number of left 
and right parentheses.

Solution
Proof (by structural induction): Given any parenthesis structure x in C, let property P(x) 
be the sentence “x has an equal number of left and right parentheses.”

Show that P(a) is true for each parenthesis structure in the base for C:
The only object a in the base for C is ( ), which has one left parenthesis and one right pa-
renthesis. Since these numbers are equal, P(a) is true. 

Show that for each parenthesis structure x in C, if P(x) is true and if y is obtained from 
x by applying a rule from the recursion for C, then P(y) is true:
The recursion for C in Example 5.9.2 consists of two rules: II(a) and II(b).

Suppose E and F are any parenthesis structures in C such that P(E) and P(F) are 
true. In other words, E has an equal number, say n, of left and right parentheses, and 
F has an equal number, say m, of left and right parentheses. [This is the inductive 
hypothesis.] 

When rule II(a) is applied to E, the result is (E), which has n11 left parentheses and 
n11 right parentheses. Since these numbers are equal, P((E)) is true. When rule II(b) is 
applied to E and F, the result is EF, which has an equal number, namely m1n, of left and 
right parentheses. So P(EF) is true. 

Thus when the recursion rules for C are applied to parenthesis structures that have an 
equal number of left and right parentheses, the results also have an equal number of left 
and right parentheses, which completes the inductive step. 

Conclusion:
Because there are no parenthesis structures in C other than those obtained from the base 
and the recursion for C, every parenthesis structure in C has an equal number of left and 
right parentheses. ■

Consider the recursive definition for the set of all strings S over a finite set A given on 
page 366. A recursive definition can also be given for the length of a string.

Example 5.9.6

Definition Length of a String

Given the set of all strings S over a finite set A, the length L of a string in S in de-
fined as follows:
1. L(�) 5 0.
2. For every string u in S and for every character a in A, the length of ua is one more 

than the length of u. Symbolically:

L(ua) 5 L(u)11 where u [ S and a [ A.

The following theorem states that the length of a concatenation of two strings is the sum 
of the lengths of the strings.
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Theorem 5.9.2 Additive property of String Length

If S is the set of all strings over a finite set A, then for all strings u and v in S,  
L(uv) 5 L(u)1L(v).

proof (by structural induction): Let S be the set of all strings over a finite set A. 
Given any string v in S, let the property P(v) be the sentence

For every string u in S, L(uv) 5 L(u)1L(v).

We will show that P(v) is true for every string v in S.

Show that P(a) is true for each string a in the base for S:
The only string in the base for S is �, and if u is any string in S, then  

L(u�) 5 L(u) by part II(b) in the definition of string

5 L(u)10 by definition of L.

5 L(u)1L(�)

This shows that P(�) is true. 

Show that for each string x in S, if P(x) is true and if y is obtained from x by ap-
plying a rule from the recursion for S, then P(y) is true:

The recursion for S consists of three rules denoted II(a), II(b), and II(c), but rule 
II(a) is the only one that generates new strings in S. Suppose v is any string in S such 
that P(v) is true. In other words, suppose that L(uv) 5 L(u)1L(v). [This is the induc-
tive hypothesis.]

When rule II(a) is applied to v, the result is vc, where c is a character in A. So, to 
complete the inductive step, we must show that P(vc) is true. Now

L(u(vc)) 5 L((uv)c) by part II(c) of the definition of string

5 L(uv)11 by definition of length of a string

5 (L(u)1L(v))11 because u is assumed to satisfy property P

5 L(u)1 (L(v)11) by the associative law for addition

5 L(u)1L(vc) by definition of length of a string.

Hence P(vc) is true [as was to be shown]. 

Conclusion:
Because there are no strings in S other than those obtained through the base and the 
recursion for S, we conclude that every string in S satisfies the additive property for 
string length.

The definition of string only defined concatenation between a string and an element of 
the underlying set. The next theorem extends the operation to pairs of strings. 
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Theorem 5.9.3  The Concatenation of Any Two Strings Is a String

If S is the set of all strings over a finite set A and u and v are any strings in S, then 
uv is a string in S.

proof (by structural induction): Let S be the set of all strings over a finite set A. 
Given any string v in S, let the property P(v) be the sentence

For every string u in S, uv is a string in S.

We will show that P(v) is true for every string v in S.

Show that P(a) is true for each string a in the base for S:
The only string in the base for S is �, and if u is any string in S, then, by rule II(b) 
in the definition of string, u� 5 u. Hence the concatenation of u and � is a string in 
S, and so P(�) is true.

Show that for each string x in S, if P(x) is true and if y is obtained from x by ap-
plying a rule from the recursion for S, then P(y) is true:
The recursive definition for S consists of three rules denoted II(a), II(b), and II(c), 
but rule II(a) is the only one that generates new strings in S. Suppose v is any string 
in S such that P(v) is true. In other words, suppose that for every string u in S, uv is a 
string in S. [This is the inductive hypothesis.] 

When rule II(a) is applied to v, the result is vc, where c is a character in A. To 
complete the inductive step, we must show that P(vc) is true. To do so, we will show 
that u(vc) is a string in S. 

Now because uv is a string in S, it follows from rule II(a) that (uv)c is also a string 
in S. In addition, by rule II(c),

(uv)c 5 u(vc).

Therefore, u(vc) is a string in S, which means that P(vc) is true [as was to be shown]. 

Conclusion:
Because there are no strings in S other than those obtained from the base and the re-
cursion for S, we conclude that the concatenation of any two strings in S is a string in S.

Part II(c) of the definition of string states that a concatenation of three strings of a cer-
tain type is associative—but only when the rightmost string is an element in the underlying 
set. The next theorem generalizes the associativity of concatenation to any three strings.

Theorem 5.9.4 Concatenation of Strings Is Associative

If S is the set of all strings over a finite set A and u, v, and w are any strings in S, then 
u(vw) 5 (uv)w.

Idea of a proof by structural induction: Let S be the set of all strings over a finite 
set A. Given any string w in S, let the property P(w) be the sentence

For all strings u and v in S, u(vw) 5 (uv)w.

(continued on page 372)

94193_ch05_ptg01.indd   371 12/11/18   4:29 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



372  CHApTER 5 SequenceS, MATHeMATIcAL InDucTIOn, AnD RecuRSIOn

Recursive Functions
A function is said to be defined recursively or to be a recursive function if its rule of defi-
nition refers to itself. Because of this self-reference, it is sometimes difficult to tell whether 
a given recursive function is well defined. Recursive functions are of great importance in 
the theory of computation in computer science.

 McCarthy’s 91 Function

The following function M : Z1 S Z was defined by John McCarthy, a pioneer in the 
theory of computation and in the study of artificial intelligence:

M(n) 5 5n210 if n . 100

M(M(n111)) if n # 100

for all positive integers n. Find M(99).

Solution By repeated use of the definition of M,

M(99) 5 M(M(110)) since 99 # 100

5 M(100)  since 110 . 100

5 M(M(111)) since 100 # 100

5 M(101)  since 111 . 100

5 91  since 101 . 100.

The remarkable thing about this function is that it takes the value 91 for all positive inte-
gers less than or equal to 101. (You are asked to show this in exercise 24 at the end of this 
section.) For n . 101, M(n) is well defined because it equals n210. ■

The Ackermann Function

In the 1920s the German logician and mathematician Wilhelm Ackermann first defined 
a version of the function that now bears his name. This function is important because its 
values are computable but cannot be evaluated using only for-next loops. The function is 
defined on the set of all pairs of nonnegative integers as follows:

 A(0, n) 5 n11 for all nonnegative integers n 5.9.1

 A(m, 0) 5 A(m21, 1) for all positive integers m 5.9.2

 A(m, n) 5 A(m21, A(m, n21))  for all positive integers m and n 5.9.3

Find A(1, 2).

Example 5.9.7

Example 5.9.8

The proof must show (1) that P(�) is true, and (2) that if w is any string in S such that 
P(w) is true and if y is obtained from w by applying a rule from the recursion for S, 
then P(y) is true. Now when rule II(a) is applied to w the result is wc for some char-
acter c in A. A crucial step is to show that u((vw)c) 5 (u(vw))c. This follows from 
the definition of string because u and vw are in S and c is in A. 

Exercise 21 at the end of this section asks you to write a complete proof.
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Solution

A(1, 2) 5 A(0, A(1, 1)) by (5.9.3) with m 5 1 and n 5 2

5 A(0, A(0, A(1, 0))) by (5.9.3) with m 5 1 and n 5 1

5 A(0, A(0, A(0, 1))) by (5.9.2) with m 5 1

5 A(0, A(0, 2)) by (5.9.1) with n 5 1

5 A(0, 3) by (5.9.1) with n 5 2

5 4 by (5.9.1) with n 5 3.

The special properties of the Ackermann function are a consequence of its phenomenal rate 
of growth. While the values of A(0, 0) 5 1, A(1, 1) 5 3, A(2, 2) 5 7, and A(3, 3) 5 61 are 
not especially impressive,

A(4, 4) > 22265536

and the values of A(n, n) continue to increase with extraordinary rapidity thereafter. ■

The argument is somewhat technical, but it is not difficult to show that the Ackermann 
function is well defined. The following is an example of a recursive “definition” that does 
not define a function.

A Recursive “Function” That Is Not Well Defined

Consider the following attempt to define a recursive function G from Z+ to Z. For each 
integer n $ 1,

G(n) 5 5
1 if n is 1

11G Sn

2D if n is even

G s3n21d if n is odd and n . 1.

Is G well defined? Why?

Solution Suppose G is a function. Then by definition of G,

G(1) 5 1,

G(2) 5 11G(1) 5 111 5 2,

G(3) 5 G(8) 5 11G(4) 5 11 (11G(2)) 5 11 (112) 5 4,

G(4) 5 11G(2) 5 112 5 3. 
However,

G(5) 5 G(14) 5 11G(7) 5 11G(20)

5 11 (11G(10)) 5 11 (11 (11G(5))) 5 31G(5).

Subtracting G(5) from both sides gives 0 5 3, which is false. Since the supposition that G 
is a function leads logically to a false statement, it follows that G is not a function. ■

A slight modification of the formula of Example 5.9.9 produces a “function” whose 
status of definition is unknown. Consider the following formula: For each integer n $ 1,

T(n) 5 5
1 if n is 1

T Sn

2D if n is even

T (3n11) if n is odd.

Example 5.9.9
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In the 1930s, a student, Luther Collatz, became interested in the behavior of a related func-
tion g, which is defined as follows: g(n) 5 ny2 if n is even, and g(n) 5 3n11 if n is odd. 
Collatz conjectured that for any initial positive number n, computation of successive values 
of g(n), g2(n), g3(n), Á  would eventually produce the number 1. Determining whether this 
conjecture is true or false is called the 3n11 problem (or the 3x11 problem). If Collatz’s 
conjecture is true, the formula for T defines a function; if the conjecture is false, T is not 
well defined. As of the publication of this book the answer is not known, although com-
puter calculation has established that it holds for extremely large values of n.

1. The base for a recursive definition of a set  
is .

2. The recursion for a recursive definition of a set  
is .

3. The restriction for a recursive definition of a set  
is .

4. One way to show that a given element is in a 
recursively defined set is to start with an element or 

elements in the  and apply the rules from  
the  until you obtain the given element.

5. To use structural induction to prove that every 
element in a recursively defined set S satisfies a 
certain property, you show that  and that, for 
each rule in the recursion, if  then .

6. A function is said to be defined recursively if, and 
only if, .

TEST YOURSELF

1. Consider the set of Boolean expressions defined in 
Example 5.9.1. Give derivations showing that each 
of the following is a Boolean expression over the 
English alphabet {a, b, c, Á , x, y, z}.

a. ,p ~ (q ` (r ~ ,s))

b. (p ~ q) ~ ,((p ` ,s) ` r) 
2. Consider the set C of parenthesis structures de-

fined in Example 5.9.2. Give derivations showing 
that each of the following is in C.
a. ( )(( ))
b. (( ))(( ))

3. Let S be the set of all strings over a finite set A 
and let a, b, and c be any characters in A.
a. Using Theorem 5.9.1 but not Theorem 5.9.3 or 

5.9.4, show that (ab)c 5 a(bc).
b. Show that ab is a string in S. Then use the result 

of part (a) to conclude that a(bc) is a string in S.

(This exercise shows that parentheses are not 
needed when writing the string abc.)

4. Consider the M I U-system discussed in Example 
5.9.4. Give derivations showing that each of the fol-
lowing is in the M I U-system.
a. M I U I
b. M U I I U

5. The set of arithmetic expressions over the real 
numbers can be defined recursively as follows:

I.  Base: Each real number r is an arithmetic 
expression.

II.  Recursion: If u and v are arithmetic expres-
sions, then the following are also arithmetic 
expressions:

II(a) (1u)

II(b) (2u)

II(c) (u1v)

II(d) (u2v)

II(e) (u?v)

II(f) Su
vD

III.  Restriction: There are no arithmetic expres-
sions over the real numbers other than those 
obtained from I and II. 

(Note that the expression Su
vD is allowed to be 

an arithmetic expression even though the value 
of v may be 0.) Give derivations showing that 
each of the following is an arithmetic expression.

a. ((2?(0.3−4.2))1 (27))  b. S(9?(6?112))

((427)?6) D

ExERCISE SET 5.9 
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6. Let S be a set of integers defined recursively as 
follows:

I. Base: 5 is in S.

II.  Recursion: Given any integer n in S, n14 is 
in S.

III.  Restriction: No integers are in S other than 
those derived from rules I and II above. 

Use structural induction to prove that for every 
integer n in S, n mod 2 5 1.

7. Define a set S of strings over the set {0, 1} recur-
sively as follows:

I. Base: 1 [ S

II. Recursion: If s [ S, then

II(a) 0s [ S

II(b) 1s [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that every string 
in S ends in a 1.

8. Define a set S of strings over the set {a, b} recur-
sively as follows:

I. Base: a [ S

II. Recursion: If s [ S, then

II(a) sa [ S

II(b) sb [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that every string 
in S begins with an a.

9. Define a set S of strings over the set {a, b} recur-
sively as follows:

I. Base: � [ S

II. Recursion: If s [ S, then

II(a) bs [ S

II(b) sb [ S

II(c) saa [ S

II(d) aas [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that every string 
in S contains an even number of a’s.

10. Define a set S of strings over the set of all integers 
recursively as follows:

I.  Base: 1 [ S, 2 [ S, 3 [ S, 4 [ S, 5 [ S, 
6 [ S, 7 [ S, 8 [ S, 9 [ S

II.  Recursion: If s [ S and t [ S, then

II(a) s0 [ S

II(b) st [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that no string in 
S represents an integer with a leading zero.

11. Define a set S of strings over the set of all integers 
recursively as follows:

I.  Base: 1 [ S, 3 [ S, 5 [ S, 7 [ S, 9 [ S

II.  Recursion: If s [ S and t [ S, then

II(a) st [ S

II(b) 2s [ S

II(c) 4s [ S

II(d) 6s [ S

II(e) 8s [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that every string 
in S represents an odd integer when written in 
decimal notation.

12. Define a set S of integers recursively as follows:

I. Base: 0 [ S, 5 [ S

II. Recursion: If k [ S and p [ S, then

II(a) k1p [ S

II(b) k2p [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that every integer 
in S is divisible by 5.

13. Define a set S of integers recursively as follows:

I. Base: 0 [ S

II. Recursion: If k [ S, then

II(a) k13 [ S

II(b) k23 [ S

III.  Restriction: Nothing is in S other than objects 
defined in I and II above.

Use structural induction to prove that every integer 
in S is divisible by 3.

14. Is the string MU in the M I U-system? Use struc-
tural induction to prove your answer.

H

H

H*
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15. Determine whether either of the following pa-
renthesis configurations is in the set C defined in 
Example 5.9.2. Use structural induction to prove 
your answers.
a. ()(()
b. (()()))(()

16. Give a recursive definition for the set of all strings of 
0’s and 1’s that have the same number of 0’s as 1’s.

17. Give a recursive definition for the set of all strings 
of 0’s and 1’s for which all the 0’s precede all the 1’s.

18. Give a recursive definition for the set of all strings 
of a’s and b’s that contain an odd number of a’s.

19. Give a recursive definition for the set of all strings 
of a’s and b’s that contain exactly one a.

20. a.  Let A be any finite set and let L be the length 
function on the set of all strings over A. Prove 
that for every character a in A, L(a) 5 1.

b. If A is a finite set, define a set S of strings over 
A as follows:

I.  Base: Every character in A is a string in S.

II.  Recursion: If s is any string in S, then for 
every character c in A, csc is a string in S. 

III.  Restriction: Nothing is in S except strings 
obtained from the base and the recursion.

Use structural induction to prove that given any 
string s in S, the length of s, L(s), is an odd integer.

21. Write a complete proof for Theorem 5.9.4. 

22. If S is the set of all strings over a finite set A and 
if u is any string in S, define the string reversal 
function, Rev, as follows:
a. Rev(�) 5 �
b. For every string u in S and for every character 

a in A, Rev(ua) 5 aRev(u).
Use structural induction to prove that for all 
strings u and v in S, Rev(uv) 5 Rev(v)Rev(u).

23. Use the definition of McCarthy’s 91 function in 
Example 5.9.7 to show the following:
a. M(86) 5 M(91)
b. M(91) 5 91

24. Prove that McCarthy’s 91 function equals 91 for 
all positive integers less than or equal to 101.

25. Use the definition of the Ackermann function in 
Example 5.9.8 to compute the following:
a. A(1, 1)
b. A(2, 1)

26. Use the definition of the Ackermann function to 
show the following:
a. A(1, n) 5 n12, for each nonnegative integer n
b. A(2, n) 5 312n, for each nonnegative integer n
c. A(3, n) 5 8 ?2n 23, for each nonnegative 

integer n

27. Compute T(2), T(3), T(4), T(5), T(6), and T(7) for 
the “function” T defined after Example 5.9.9.

28. Student A tries to define a function F : Z+ S Z by 
the rule

F(n) 5 5
1 if n is 1

FSn

2D if n is even

11F(5n29) if n is odd and n . 1

for each integer n $ 1. Student B claims that F is 
not well defined. Justify student B’s claim.

29. Student C tries to define a function G : Z+ S Z by 
the rule

G(n) 5 5
1 if n is 1

GSn

2D if n is even

21G(3n25) if n is odd and n . 1

for each integer n $ 1. Student D claims that G is 
not well defined. Justify student D’s claim. 

*

H

H

*

1. a statement that certain objects belong to the set  
2. a collection of rules indicating how to form new set objects 
from those already known to be in the set 3. a statement 
that no objects belong to the set other than those coming from 

either the base or the recursion 4. base; recursion 5. each 
object in the base satisfies the property; the rule is applied to 
objects in the base; the objects defined by the rule also satisfy 
the property 6. its rule of definition refers to itself

ANSWERS FOR TEST YOURSELF 
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CHAPTER 6 SET THEORY

In the late nineteenth century, Georg Cantor was the first to realize the potential 
usefulness of investigating properties of sets in general as distinct from properties of 
the elements that comprise them. Many mathematicians of his time resisted accept-
ing the validity of Cantor’s work. Now, however, abstract set theory is regarded as the 
foundation of mathematical thought. All mathematical objects (even numbers!) can be 
defined in terms of sets, and the language of set theory is used in every mathematical 
subject.

In this chapter we add to the basic definitions and notation of set theory introduced 
in Chapter 1 and show how to establish properties of sets through the use of proofs and 
counterexamples. We also introduce the notion of a Boolean algebra, explain how to derive 
its properties, and discuss their relationships to logical equivalencies and set identities. 
The chapter ends with a discussion of a famous “paradox” of set theory and its relation to 
computer science.

Source: David Eugene Smith Collection, Columbia University.

Set Theory: Definitions and the Element  
Method of Proof
The introduction of suitable abstractions is our only mental aid to organize and 
master complexity. —E. W. Dijkstra, 1930–2002

The words set and element are undefined terms of set theory just as sentence, true, and 
false are undefined terms of logic. The founder of set theory, Georg Cantor, suggested 
imagining a set as a “collection into a whole M of definite and separate objects of our intu-
ition or our thought. These objects are called the elements of M.” Cantor used the letter M 
because it is the first letter of the German word for set: Menge.

Following the spirit of Cantor’s notation (though not the letter), let S denote a set and a 
an element of S. Then, as indicated in Section 1.2, a [ S means that a is an element of S, 
a Ó S means that a is not an element of S, {1, 2, 3} refers to the set whose elements are 1, 
2, and 3, and {1, 2, 3, Á } refers to the set of all positive integers. If S is a set and P(x) is a 
property that elements of S may or may not satisfy, then a set A may be defined by writing

A 5 {x [ S u  P(x)},
Q   a

the set of all     such that

which is read “A is the set of all x in S such that P of x.”

6.1

!
Caution! Don’t forget to 
include the words “the set 
of all.”

Georg Cantor 
(1845–1918)

Pi
ct

or
ia

l P
re

ss
 L

td
./A

la
m

y 
St

oc
k 

Ph
ot

o

94193_ch06_ptg01.indd   377 12/11/18   4:37 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



378  CHAPTER 6 SET THEORY

Subsets: Proof and Disproof
In Section 1.2 we defined what it means for a set A to be a subset of the set B. Here we 
rewrite the definition as a formal universal conditional statement:

A # B 3 5x, if x [ A then x [ B. 

The negation is, therefore, existential:

A Ü B 3 Ex such that x [ A and x Ó B.

Recall that a proper subset of a set is a subset that is not equal to its containing set. That is: 

A is a proper subset of B 3
(1) A # B, and
(2) there is at least one element in B that is not in A.

Testing Whether One Set Is a Subset of Another

Let A 5 {1} and B 5 {1, {1}}.

a. Is A # B?

b. If so, is A a proper subset of B? 

Solution
a. Because A 5 {1}, A has only one element—namely, the symbol 1. This element is 

also one of the elements in set B. Hence every element in A is in B, and so A # B.

b. B has two distinct elements, the symbol 1 and the set {1} whose only element is 1. 
Since 1 Þ {1}, the set {1} is not an element of A, and so there is an element of B that is 
not an element of A. Hence A is a proper subset of B. ■

Because we define what it means for one set to be a subset of another by means of a uni-
versal conditional statement, we can use the method of direct proof to establish a subset 
relationship. Such a proof is called an element argument and is the fundamental proof 
technique of set theory.

Example 6.1.1

Note A set like {1}, with 
just one element, is called 
a singleton set.

Element Argument: The Basic Method for Proving That 
One Set Is a Subset of Another

Let sets X and Y be given. To prove that X # Y ,

1. suppose that x is a particular but arbitrarily chosen element of X,

2. show that x is an element of Y. 

Proving and Disproving Subset Relations

Define sets A and B as follows:

A 5 {m [ Z u  m 5 6r112 for some r [ Z}

B 5 {n [ Z u  n 5 3s for some s [ Z}.

a.  Outline a proof that A # B.  b.  Prove that A # B.  c.  Disprove that B # A. 

Example 6.1.2
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Solution
a. Proof Outline: 

Starting Point:  Suppose x is a particular but arbitrarily chosen element of A.

To Show: Therefore, x is an element of B.

b. Proof: 
Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x [ B. By definition of B, this means  
we must show that x 5 3?(some integer).]

By definition of A, there is an integer, say r, such that x 5 6r112.

[Given that x 5 6r112, can we express x as 3?(some integer)?  
That is, does 6r112 5 3?(some integer)? Yes, 6r112 5 3?(2r14).]

Let s 5 2r14.

[We must check that s is an integer.]

Then s is an integer because products and sums of integers are integers, and so 3s [ B 
by definition of B.

[Now we must check that x 5 3s.]

Also 3s 5 3(2r14) 5 6r112 5 x,
Thus, by definition of B, x is an element of B,

[as was to be shown].

c. To disprove a statement means to show that it is false. And to show that B # A is 
false, you must find an element of B that is not an element of A. By the definitions of 
A and B, this means that you must find an integer x of the form 3?(some integer) that 
cannot be written in the form 6?(some integer)112. A little experimentation reveals 
that various numbers work. For instance, you could let x 5 3. Then x [ B because 
3 5 3?1, but x Ó A because there is no integer r such that 3 5 6r112. For if there 
were such an integer, then

6r112 5 3 by assumption

1   2r14 5 1 by dividing both sides by 3

1      2r 5 23 by subtracting 4 from both sides

1      r 5 23y2 by dividing both sides by 2.

But 23y2 is not an integer. Thus 3 [ B whereas 3 Ó A, and so B Ü A.  ■

Set Equality
Recall that by the axiom of extension, sets A and B are equal if, and only if, they have 
exactly the same elements. We restate this as a definition that uses the language of subsets.

Note Recall that the 
notation P(x) 1 Q(x) 
means that every element 
that makes P(x) true also 
makes Q(x) true.

Definition

Given sets A and B, A equals B, written A 5 B, if, and only if, every element of A is 
in B and every element of B is in A.

Symbolically:

A 5 B 3 A # B and B # A.
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This version of the definition of equality implies the following:

To know that a set A equals a set B, you must know  
that A # B and you must also know that B # A.

Set Equality

Define sets A and B as follows:

A 5 {m [ Z u  m 5 2a for some integer a}

B 5 {n [ Z u  n 5 2b22 for some integer b}.

Is A 5 B? 

Solution Yes. To prove this, both subset relations A # B and B # A must be proved.

Part 1, Proof That A # B:
Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x [ B. By definition of B, this means  
we must show that x 5 2?(some integer)2  2.] 

By definition of A, there is an integer, say a, such that x 5 2a.

[Given that  x 5 2a, can x also be expressed as 2?(some integer)22?  
In other words, is there an integer—say, b—such that 2a 5 2b22?  
Solve for b to obtain b 5 (2a12)y2 5 a11. Check to see if this 
works.] 

Let b 5 a11.

[First check that b is an integer.]

Then b is an integer because it is a sum of integers.

[Then check that x 5 2b22.]

Also, 2b22 5 2(a11)22 5 2a1222 5 2a 5 x.
Thus, by definition of B, x is an element of B

[as was to be shown].

Part 2, Proof That B # A: This part of the proof is left as exercise 2 at the end of this 
section.  ■

Venn Diagrams
If sets A and B are represented as regions in the plane, relationships between A and B can 
be represented by pictures called Venn diagrams, which were introduced by the British 
mathematician John Venn in 1881. For instance, the relationship A # B can be pictured in 
one of two ways, as shown in Figure 6.1.1.

Example 6.1.3

Note A is the set of all 
integers that can be writ-
ten as 2?(some integer). 
The symbols m and a in 
the formal definition for A 
are used for convenience, 
but they can be replaced 
by any other symbols as 
long as the replacements 
are made consistently. For 
example, we can write

A 5 {n [ Z u  n 5 2b

for some integer b}.

FIguRE 6.1.1 A # B

A B A 5 B

(a) (b)John Venn  
(1834–1923)
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The relationship A Ü B can be represented in three different ways, as shown in 
Figure 6.1.2.

A B

(a)

A B

(b)

A

B

(c)

FIguRE 6.1.2 A Ü B

If we allow the possibility that some subregions of Venn diagrams do not contain any 
points, then in Figure 6.1.1 diagram (b) can be viewed as a special case of diagram (a) by 
imagining that the part of B outside A does not contain any points. Similarly, diagrams (a) 
and (c) of Figure 6.1.2 can be viewed as special cases of diagram (b). To obtain (a) from (b), 
imagine that the region of overlap between A and B does not contain any points. To obtain 
(c), imagine that the part of B that lies outside A does not contain any points. However, in 
all three diagrams it would be necessary to specify that there is a point in A that is not in B.

Relations among Sets of Numbers

Since Z, Q, and R denote the sets of integers, rational numbers, and real numbers, respec-
tively, then Z is a subset of Q because every integer is rational (any integer n can be written 
in the form n1), and Q is a subset of R because every rational number is real (any rational 
number can be represented as a length on the number line). Z is a proper subset of Q be-
cause there are rational numbers that are not integers (for example, 1

2), and Q is a proper 
subset of R because there are real numbers that are not rational (for example, Ï2). These 
relationships are shown diagrammatically in Figure 6.1.3. ■

Operations on Sets
Most mathematical discussions are carried on within some context. For example, in a certain 
situation all sets being considered might be sets of real numbers. In such a situation, the set of 
real numbers would be called a universal set or a universe of discourse for the discussion.

Example 6.1.4

Z Q R

FIguRE 6.1.3

Definition

Let A and B be subsets of a universal set U.

1. The union of A and B, denoted A : B, is the set of all elements that are in at least 
one of A or B.

2. The intersection of A and B, denoted A " B, is the set of all elements that are 
common to both A and B.

3. The difference of B minus A (or relative complement of A in B), denoted B 2 A, 
is the set of all elements that are in B and not A.

4. The complement of A, denoted Ac, is the set of all elements in U that are not in A. 

Symbolically:

A ø B 5 {x [ U u  x [ A or x [ B}

A ù B 5 {x [ U u  x [ A and x [ B}

B2A 5 {x [ U u  x [ B and x Ó A}

Ac 5 {x [ U u  x Ó A}.
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382  CHAPTER 6 SET THEORY

The symbols [, ø, and ù were introduced in 1889 by the Italian mathematician 
Giuseppe Peano.

Venn diagram representations for union, intersection, difference, and complement are 
shown in Figure 6.1.4.

U U

A B A B

Shaded region
represents B – A. 

Shaded region
represents Ac. 

U U

A B A B

Shaded region
represents A ø B. 

Shaded region
represents A ù B. 

FIguRE 6.1.4

unions, Intersections, Differences, and Complements

Let the universal set be the set U 5 {a, b, c, d, e, f, g}, and let A 5 {a, c, e, g} and 
B 5 {d, e, f, g}. Find A ø B, A ù B, B2A, and Ac.

Solution
A ø B 5 {a, c, d, e, f, g}  A ù B 5 {e, g}

B2A 5 {d, f} Ac 5 {b, d, f } ■

There is a convenient notation for subsets of real numbers that are intervals.

Example 6.1.5

Note The symbol ` 
does not represent a 
number. It just indicates 
the unboundedness of the 
interval.

Interval Notation

Given real numbers a and b with a # b:

(a, b) 5 {x [ R u  a , x , b}  [a, b] 5 {x [ R u  a # x # b}

(a, b] 5 {x [ R u  a , x # b} [a, b) 5 {x [ R u  a # x , b}.

The symbols ` and 2` are used to indicate intervals that are unbounded either on 
the right or on the left:

(a, `) 5 {x [ R u  x . a} [a, `)    5 {x [ R u  x $ a}

(2`, b) 5 {x [ R u  x , b} (2`, b] 5 {x [ R u  x # b}.

Although the notation for the interval (a, b) is identical to the notation for the ordered pair 
(a, b), context makes it unlikely that the two will be confused.

An Example with Intervals

Let the universal set be R, the set of all real numbers, and let

A 5 (21, 0] 5 {x [ R u21 , x # 0} and B 5 [0, 1) 5 {x [ R u0 # x , 1}.

These sets are shown on the number lines below.

–2 –1 0 1 2

A

–2 –1 0 1 2

B

Find A ø B, A ù B, B2A, and Ac.

Example 6.1.6

Giuseppe Peano 
(1858–1932)

fo
to

te
ca

 g
ila

rd
i/

M
ar

ka
/S

up
er

st
oc

k
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Solution
A ø B 5 {x [ R ux [ (−1, 0] or x [ [0, 1)} 5 {x [ R ux [ (21, 1)} 5 (21, 1).

A ù B 5 {x [ R ux [ (21, 0] and x [ [0, 1)} 5 {0}.

B2A 5 {x [ R ux [ [0, 1) and x Ó (21, 0]} 5 {x [ R u0 , x , 1} 5 (0, 1)

Ac 5 hx [ R u  it is not the case that x [ (21, 0]}

5 {x [ R u it is not the case that (21 , x and x # 0)} by definition of the 
double inequality

5 {x [ R ux # 21 or x . 0} 5 (2`,21] ø (0, `)    by De Morgan’s law ■

The definitions of unions and intersections for more than two sets are very similar to 
the definitions for two sets.

–2 –1 0 1 2

A ø B

–2 –1 0 1 2

A > B

–2 –1 0 1 2

B 2 A

–2 –1 0 1 2

Ac

Note ø
n

i50

 Ai is read “the 

union of the A-sub-i from 
i equals zero to n.”

Definition

Unions and Intersections of an Indexed Collection of Sets
Given sets A0, A1, A2, Á that are subsets of a universal set U and given a nonnegative 
integer n,

ø
n

i50

Ai 5 {x [ U ux [ Ai for at least one i 5 0, 1, 2, Á , n}

ø
`

i50

Ai 5 {x [ U ux [ Ai for at least one nonnegative integer i}

>
n

i50

Ai 5 {x [ U ux [ Ai for every i 5 0, 1, 2, Á , n}

>
`

i50

Ai 5 {x [ U ux [ Ai for every nonnegative integer i}.

An alternative notation for ø
n

i50

 Ai is A0 ø A1 ø Á ø An, and an alternative notation for 

>
n

i50

 Ai is A0 ù A1 ù Á ù An.

Finding unions and Intersections of More than Two Sets

For each positive integer i, let Ai 5 hx [ R u 2
1
i , x ,

1
i j 5 _21

i , 
1
i +.

a. Find A1 ø A2 ø A3 and A1 ù A2 ù A3. b. Find ø
`

i51

 Ai and >
`

i51

 Ai.

Solution 

a. A1 ø A2 ø A3 5 {x [ R ux is in at least one of the intervals (21, 1),

or _21
2, 12+, or _21

3, 13+j
5 {x [ R u 21 , x , 1} because all the elements in _21

2, 12+

5 (21, 1) and _21
3, 13+ are in (21, 1)

Example 6.1.7
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384  CHAPTER 6 SET THEORY

A1 ù A2 ù A3 5 hx [ R u  x is in all of the intervals (21, 1), and _21
2, 12+, and _21

3, 13+j
5 hx [ R u 2 1

3 , x , 1
3j  because _21

3, 13+ # _2 1
2, 12+ # (21, 1)

5 _21
3, 13+

b. ø
`

i51

Ai 5 hx [ R u  x is in at least one of the intervals _21
i , 

1
i +,

where i is a positive integerj
5 {x [ R u21 , x , 1} because all the elements in every interval

5 (21, 1) _21
i , 

1
i + are in (21, 1)

>
`

i51

Ai 5 hx [ R u  x is in all of the intervals _2 1
i , 

1
i +, where i is a positive integerj

5 {0} because the only element in every interval is 0 ■

The Empty Set
We have stated that a set is defined by the elements that compose it. This being so, 
can there be a set that has no elements? It turns out that it is convenient to allow such 
a set. Otherwise, every time we wanted to take the intersection of two sets or to define 
a set by specifying a property, we would have to check that the result had elements 
and hence could be defined as a set. For example, if A 5 {1, 3} and B 5 {2, 4}, then 
A ù B has no elements. Neither does {x [ R u  x2 5 21} because no real numbers have 
negative squares.

It may seem strange to talk about a set with no elements, but it often happens in math-
ematics that the definitions formulated to fit one set of circumstances are satisfied by some 
extreme cases not originally anticipated. Yet changing the definitions to exclude those cas-
es would seriously undermine the simplicity and elegance of the theory taken as a whole.

In Section 6.2 we will show that there is only one set with no elements. Because it is 
unique, we can give it a special name. We call it the empty set (or null set) and denote it 
by the symbol [. Thus {1, 3} ù {2, 4} 5 [ and {x [ R u  x2 5 21} 5 [.

A Set with No Elements

Describe the following sets.
a. D 5 {x [ R u  3 , x , 2}. b. E 5 {x [ Z u  2 , x , 3}.

Solution: 
a. Recall that a , x , b means that a , x and x , b. So D consists of all real numbers 

that are both greater than 3 and less than 2. Since there are no such numbers, D has no 
elements and thus D 5 [.

b. E is the set of all integers that are both greater than 2 and less than 3. Since no inte-
gers satisfy this condition, E has no elements, and so E 5 [. ■

Partitions of Sets
In many applications of set theory, sets are divided into nonoverlapping (or disjoint) pieces. 
Such a division is called a partition.

Example 6.1.8
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Disjoint Sets

Let A 5 {1, 3, 5} and B 5 {2, 4, 6}. Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words,  
{1, 3, 5} ù {2, 4, 6} 5 [. ■

Example 6.1.9

Definition

Two sets are called disjoint if, and only if, they have no elements in common.
Symbolically:

A and B are disjoint 3 A ù B 5 [.

Definition

Sets A1, A2, A3, Á are mutually disjoint (or pairwise disjoint or nonoverlapping) 
if, and only if, no two sets Ai and Aj with distinct subscripts have any elements in 
common. More precisely, for all integers i and j 5 1, 2, 3, Á

Ai ù Aj 5 [ whenever i Þ j.

Mutually Disjoint Sets

a. Let A1 5 {3, 5}, A2 5 {1, 4, 6}, and A3 5 {2}. Are A1, A2, and A3 mutually disjoint?

b. Let B1 5 {2, 4, 6}, B2 5 {3, 7}, and B3 5 {4, 5}. Are B1, B2, and B3 mutually disjoint? 

Solution
a. Yes. A1 and A2 have no elements in common, A1 and A3 have no elements in common, 

and A2 and A3 have no elements in common.

b. No. B1 and B3 both contain 4.  ■

Suppose A, A1, A2, A3, and A4 are the sets of points represented by the regions shown 
in Figure 6.1.5. Then A1, A2, A3, and A4 are subsets of A, and A 5 A1 ø A2 ø A3 ø A4.
Suppose further that boundaries are assigned to the regions representing A1, A2, A3, and 
A4 in such a way that these sets are mutually disjoint. Then A is called a union of mutual-
ly disjoint subsets, and the collection of sets {A1, A2, A3, A4} is said to be a partition of A.

Example 6.1.10

A

A2

A4A3

A1

FIguRE 6.1.5 A Parti-
tion of a Set

Definition

A finite or infinite collection of nonempty sets {A1, A2, A3, Á } is a partition of a 
set A if, and only if,

1. A is the union of all the Ai;

2. the sets A1, A2, A3, Á are mutually disjoint. 

Partitions of Sets

a. Let A 5 {1, 2, 3, 4, 5, 6}, A1 5 {1, 2}, A2 5 {3, 4}, and A3 5 {5, 6}. Is {A1, A2, A3} a 
partition of A?

Example 6.1.11
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386  CHAPTER 6 SET THEORY

b. Let Z be the set of all integers and let

T0 5 {n [ Z u  n 5 3k, for some integer k},

T1 5 {n [ Z u  n 5 3k11, for some integer k}, and

T2 5 {n [ Z u  n 5 3k12, for some integer k}.

Is {T0, T1, T2} a partition of Z? 

Solution
a. Yes. By inspection, A 5 A1 ø A2 ø A3 and the sets A1, A2, and A3 are mutually disjoint.

b. Yes. By the quotient-remainder theorem, every integer n can be represented in exactly 
one of the three forms

n 5 3k or n 5 3k11 or n 5 3k12,

for some integer k. This implies that no integer can be in any two of the sets T0, T1, or 
T2. So T0, T1, and T2 are mutually disjoint. The theorem also implies that every integer 
is in one of the sets T0, T1, or T2. So Z 5 T0 ø T1 ø T2. ■

Power Sets
There are various situations in which it is useful to consider the set of all subsets of a par-
ticular set. The power set axiom guarantees that this is a set.

Definition

Given a set A, the power set of A, denoted 3(A), is the set of all subsets of A.

Power Set of a Set

Find the power set of the set {x, y}. That is, find 3({x, y}).

Solution 3({x, y}) is the set of all subsets of {x, y}. In Section 6.2 we will show that 
[ is a subset of every set, and so [ [ 3({x, y}). Also any set is a subset of itself, so 
{x, y} [ 3({x, y}). The only other subsets of {x, y} are {x} and {y}, so 

  3({x, y}) 5 {[, {x}, {y}, {x, y}} ■

An Algorithm to Check Whether One Set Is a Subset  
of Another (Optional)
You may get some additional insight into the concept of subset by considering an algorithm 
for checking whether one finite set is a subset of another. Order the elements of both sets 
and successively compare each element of the first set with each element of the second set. 
If some element of the first set is not found to equal any element of the second, then the 
first set is not a subset of the second. But if each element of the first set is found to equal 
an element of the second set, then the first set is a subset of the second. The following 
algorithm formalizes this reasoning.

Example 6.1.12
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Tracing Algorithm 6.1.1

Trace the action of Algorithm 6.1.1 on the variables i,  j,  found, and answer for m 5 3, 
n 5 4, and sets A and B represented as the arrays a[1] 5 u, a[2] 5 v, a[3] 5 w, b[1] 5 w, 
b[2] 5 x, b[3] 5 y, and b[4] 5 u.

Solution

i 1 2 3

j 1 2 3 4 5 1 2 3 4 5

found no yes no

answer A # B A Ü B

In the exercises at the end of this section, you are asked to write an algorithm to check 
whether a given element is in a given set. To do this, you can represent the set as a one-
dimensional array and compare the given element with successive elements of the array to 
determine whether the two elements are equal. If they are, then the element is in the set; if 
the given element does not equal any element of the array, then the element is not in the set.

Example 6.1.13

■

Algorithm 6.1.1 Testing Whether A  B

[The input sets A and B are represented as one-dimensional arrays a[1], a[2], Á , a[m]  
and b[1], b[2], Á , b[n], respectively. Starting with a[1] and for each successive a[i] in 
A, a check is made to see whether a[i] is in B. To do this, a[i] is compared to successive 
elements of B. If a[i] is not equal to any element of B, then the output string, called 
answer, is given the value “A Ü B.” If a[i] equals some element of B, the next succes-
sive element in A is checked to see whether it is in B. If every successive element of 
A is found to be in B, then the answer never changes from its initial value “A # B.”]

Input:  m [a positive integer], a[1], a[2], Á , a[m] [a one-dimensional array repre-
senting the set A], n [a positive integer], b[1], b[2], Á , b[n] [a one-dimensional array 
representing the set B]

Algorithm Body:

i :5 1, answer :5 “A # B”

while (i # m and answer 5 “A # B”)

j :5 1, found :5 “no”

while (j # n and found 5 “no”)

if a[i] 5 b[j] then found :5 “yes”

j :5 j11

end while

[If found has not been given the value “yes” when execution reaches this point, 
then a[i] Ó B.]

if found 5  “no” then answer :5 “A Ü B”

i :5 i11

end while
Output: answer [a string] 
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1. The notation A # B is read “ ” and means 
that .

2. To use an element argument for proving that a set 
X is a subset of a set Y, you suppose that  and 
show that .

3. To disprove that a set X is a subset of a set Y, you 
show that there is .

4. An element x is in A ø B if, and only if, .

5. An element x is in A ù B if, and only if, .

6. An element x is in B2A if, and only if, .

7. An element x is in Ac if, and only if, .

8. The empty set is a set with .

9. The power set of a set A is .

10. Sets A and B are disjoint if, and only if, .

11. A collection of nonempty sets A1, A2, A3, Á  
is a partition of a set A if, and only if, .

TEST YOuRSElF 
Answers to Test Yourself questions are located at the end of each section.

1. In each of (a)–(f), answer the following questions: 
Is A # B? Is B # A? Is either A or B a proper 
subset of the other?
a. A 5 {2, {2}, (Ï2)2}, B 5 {2, {2}, {{2}}}

b. A 5 h3, Ï52 242, 24 mod 7j, B 5 {8 mod 5}

c. A 5 {{1, 2}, {2, 3}}, B 5 {1, 2, 3}
d. A 5 {a, b, c}, B 5 {{a}, {b}, {c}}
e. A 5 {Ï16, {4}}, B 5 {4}
f. A 5 {x [ R u  cos x [ Z}, 

B 5 {x [ R u  sin x [ Z}

2. Complete the proof from Example 6.1.3: Prove 
that B # A where

A 5 {m [ Z u  m 5 2a for some integer a}

and

B 5 {n [ Z u  n 5 2b22 for some integer b}

3. Let sets R, S, and T be defined as follows:

R 5 {x [ Z u  x is divisible by 2}

S 5 {y [ Z u  y is divisible by 3}

T 5 {z [ Z u  z is divisible by 6}.

Prove or disprove each of the following statements.
a. R # T b. T # R c. T # S

4. Let A 5 {n [ Z u  n 5 5r for some integer r} and 
B 5 {m [ Z u  m 5 20s for some integer s}. Prove 
or disprove each of the following statements.
a. A # B b. B # A

5. Let C 5 {n [ Z u  n 5 6r25 for some integer r} 
and D 5 {m [ Z u  m 5 3s11 for some integer s}.

Prove or disprove each of the following statements.
a. C # D b. D # C

6. Let A 5 {x [ Z u  x 5 5a12 for some integer a},  
B 5{y [ Z u  y 5 10b23 for some integer b}, and 
C 5 {z [ Z u  z 5 10c17 for some integer c}.

Prove or disprove each of the following statements.
a. A # B b. B # A c. B 5 C

7. Let A 5 {x [ Z u  x 5 6a14 for some integer a},  
B 5 {y [ Z u  y 5 18b22 for some integer b}, and 
C 5 {z [ Z u  z 5 18c116 for some integer c}.

Prove or disprove each of the following statements.
a. A # B b. B # A c. B 5 C

8. Write in words how to read each of the following 
out loud. Then write each set using the symbols 
for union, intersection, set difference, or set 
complement.
a. {x [ U u  x [ A and x [ B}
b. {x [ U u  x [ A or x [ B}
c. {x [ U u  x [ A and x Ó B}
d. {x [ U u  x Ó A}

9. Complete the following sentences without using 
the symbols ø, ù, or 2.
a. x Ó A ø B if, and only if, .
b. x Ó A ù B if, and only if, .
c. x Ó A2B if, and only if, .

H

ExERCISE SET 6.1*

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.
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10. Let A 5 {1, 3, 5, 7, 9}, B 5 {3, 6, 9}, and 
C 5 {2, 4, 6, 8}. Find each of the following:
a. A ø B b. A ù B c. A ø C d. A ù C
e. A2B f. B2A g. B ø C h. B ù C

11. Let the universal set be R, the set of all real 
numbers, and let A 5 {x [ R u  0 , x # 2}, B 5
{x [ R u  1 # x , 4}, and C 5{x [ R u  3 # x , 9}. 
Find each of the following:
a. A ø B b. A ù B c. Ac d. A ø C
e. A ù C   f.   B  c     g.  Ac ù Bc

h. Ac ø Bc   i.   (A ù B)c   j.  (A ø B)c

12. Let the universal set be R, the set of all real  
numbers, and let A 5 {x [ R u  −3 # x # 0}, B 5  
{x [ R u21 , x , 2}, and C 5{x [ R u  6 , x # 8}.  
Find each of the following:
a. A ø B b. A ù B c. Ac d. A ø C
e. A ù C   f.   Bc    g. Ac ù B  c

h. Ac ø Bc    i.   (A ù B)c  j.  (A ø B)c

13. Let S be the set of all strings of 0’s and 1’s of 
length 4, and let A and B be the following sub-
sets of S: A 5 {1110, 1111, 1000, 1001} and 
B 5 {1100, 0100, 1111, 0111}. Find each of the 
following:
a. A ù B b. A ø B c. A2B d. B2A 

14. In each of the following, draw a Venn diagram for 
sets A, B, and C that satisfy the given conditions.
a. A # B,  C # B,  A ù C 5 [
b. C # A,  B ù C 5 [

15. In each of the following, draw a Venn diagram for 
sets A, B, and C that satisfy the given conditions.
a. A ù B 5 [,  A # C,  C ù B Þ [
b. A # B,  C # B,  A ù C Þ [
c. A ù B Þ [,  B ù C Þ [, 

A ù C 5 [,  A Ü B,  C Ü B

16. Let A 5 {a, b, c}, B 5 {b, c, d}, and C 5 {b, c, e}.
a. Find A ø (B ù C), (A ø B) ù C, and 

(A ø B) ù (A ø C). Which of these sets are 
equal?

b. Find A ù (B ø C), (A ù B) ø C, and 
(A ù B) ø (A ù C). Which of these sets are 
equal?

c. Find (A2B)2C and A2 (B2C). Are these 
sets equal?

17. Consider the following Venn diagram. For each 
of (a)–(f), copy the diagram and shade the region 
corresponding to the indicated set.
a. A ù B b. B ø C c. Ac

d. A2 (B ø C) e. (A ø B)c f. Ac ù Bc

A B

C

U

18. a. Is the number 0 in [? Why?
b. Is [ 5 {[}? Why?
c. Is [ [ {[}? Why?
d. Is [ [ [? Why?

19. Let Ai 5 {i, i2} for each integer i 5 1, 2, 3, 4.
a. A1 ø A2 ø A3 ø A4 5 ?
b. A1 ù A2 ù A3 ù A4 5 ?
c. Are A1, A2, A3, and A4 mutually disjoint? 

Explain.

20. Let Bi 5 {x [ R u  0 # x # i} for each integer  
i 5 1, 2, 3, 4.
a. B1 ø B2 ø B3 ø B4 5 ?
b. B1 ù B2 ù B3 ù B4 5 ?
c. Are B1, B2, B3, and B4 mutually disjoint? 

Explain.

21. Let Ci 5 {i, 2i} for each nonnegative integer i.

a. ø
4

i50

Ci 5 ? b. >
4

i50

Ci 5 ?

c. Are C0, C1, C2, Á mutually disjoint? Explain.

d. ø
n

i50

Ci 5 ? e. >
n

i50

Ci 5 ?

f. ø
`

i50

Ci 5 ? g. >
`

i50

Ci 5 ?

22. Let Di 5 {x [ R u2 i # x # i} 5 [2i, i] for each 
nonnegative integer i.

a. ø
4

i50

Di 5 ? b. >
4

i50

Di 5 ?

c. Are D0, D1, D2, Á mutually disjoint? Explain.

d. ø
n

i50

Di 5 ? e. >
n

i50

Di 5 ?

f. ø
`

i50

Di 5 ? g. >
`

i50

Di 5 ?

23. Let Vi 5 hx [ R u 2 1
i # x # 1

i j 5 f21
i , 

1
i g for each 

positive integer i.

a. ø
4

i50

Vi 5 ? b. >
4

i50

Vi 5 ?
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c. Are V1, V2, V3, Á mutually disjoint? Explain.

d. ø
n

i50

Vi 5 ? e. >
n

i50

Vi 5 ?

f. ø
`

i50

Vi 5 ? g. >
`

i50

Vi 5 ?

24. Let Wi 5 {x [ R u  x . i} 5 (i, `) for each non-
negative integer i.

a. ø
4

i50

Wi 5 ? b. >
4

i50

Wi 5 ?

c. Are W0, W1, W2, Á mutually disjoint? Explain.

d. ø
n

i50

Wi 5 ? e. >
n

i50

Wi 5 ?

f. ø
`

i50

Wi 5 ? g. >
`

i50

Wi 5 ?

25. Let Ri 5 hx [ R u1 # x # 11 1
i j 5 f1, 11 1

i g for 
each positive integer i.

a. ø
4

i50

Ri 5 ? b. >
4

i50

Ri 5 ?

c. Are R1, R2, R3, Á mutually disjoint? Explain.

d. ø
n

i50

Ri 5 ? e. >
n

i50

Ri 5 ?

f. ø
`

i50

Ri 5 ? g. >
`

i50

Ri 5 ?

26. Let Si 5 hx [ R u  1 , x , 11 1
i j 5 _1, 11 1

i + for 
each positive integer i.

a. ø
4

i50

Si 5 ? b. >
4

i50

Si 5 ?

c. Are S1, S2, S3, Á mutually disjoint? Explain.

d. ø
n

i50

Si 5 ? e. >
n

i50

Si 5 ?

f. ø
`

i50

Si 5 ? g. >
`

i50

Si 5 ?

27. a.  Is {{a, d, e}, {b, c}, {d, f}} a partition of  
{a, b, c, d, e, f}?

b. Is {{w, x, v}, {u, y, q}, {p, z}} a partition of  
{p, q, u, v, w, x, y, z}?

c. Is {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}} a partition of 
{1, 2, 3, 4, 5, 6, 7, 8}?

d. Is {{3, 7, 8}, {2, 9}, {1, 4, 5}} a partition of  
{1, 2, 3, 4, 5, 6, 7, 8, 9}?

e. Is {{1, 5}, {4, 7}, {2, 8, 6, 3}} a partition of  
{1, 2, 3, 4, 5, 6, 7, 8}?

28. Let E be the set of all even integers and O the set 
of all odd integers. Is {E, O} a partition of Z, the 
set of all integers? Explain your answer.

29. Let R be the set of all real numbers. Is {R1, R2, {0}}  
a partition of R? Explain your answer.

30. Let Z be the set of all integers and let

A0 5 {n [ Z u  n 5 4k, for some integer k}

A1 5 {n [ Z u  n 5 4k11, for some integer k}

A2 5 {n [ Z u  n 5 4k12, for some integer k}

and

A3 5 {n [ Z u  n 5 4k13, for some integer k}.

Is {A0, A1, A2, A3} a partition of Z? Explain your 
answer.

31. Suppose A 5 {1, 2} and B 5 {2, 3}. Find each of 
the following:
a. 3(A ù B)
b. 3(A)
c. 3(A ø B)
d. 3(A 3 B)

32. a.  Suppose A 5 {1} and B 5 {u, v}. Find 3(A 3 B).
b. Suppose X 5 {a, b} and Y 5 {x, y}. Find  

3(X 3 Y).

33. a. Find 3([). b. Find 3(3([)).
c. Find 3(3(3([))).

34. Let A1 5 {1}, A2 5 {u, v}, and A3 5 {m, n}. Find 
each of the following sets:
a. A1 ø (A2 3 A3)
b. (A1 ø A2) 3 A3

35. Let A 5 {a, b}, B 5 {1, 2}, and C 5 {2, 3}. Find 
each of the following sets.
a. A 3 (B ø C) b. (A 3 B) ø (A 3 C)
c. A 3 (B ù C) d. (A 3 B) ù (A 3 C)

36. Trace the action of Algorithm 6.1.1 on the vari-
ables i, j, found, and answer for m 5 3, n 5 3,  
and sets A and B represented as the arrays  
a[1] 5 u, a[2] 5 v, a[3] 5 w, b[1] 5 w, b[2] 5 u,  
and b[3] 5 v.

37. Trace the action of Algorithm 6.1.1 on the vari-
ables i, j, found, and answer for m 5 4, n 5 4,  
and sets A and B represented as the arrays  
a[1] 5 u, a[2] 5 v, a[3] 5 w, a[4] 5 x, b[1] 5 r, 
b[2] 5 u, b[3] 5 y, b[4] 5 z.

38. Write an algorithm to determine whether a  
given element x belongs to a given set that is repre-
sented as the array a[1], a[2], Á , a[n]. 
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6.2 PROPERTiES Of SETS  391

1. the set A is a subset of the set B; for every x, if x [ A then 
x [ B (Or: every element of A is also an element of B)  
2. x is any [particular but arbitrarily chosen] element of X; x is 
an element of Y 3. an element in X that is not in Y 4. x is in 
A or x is in B (Or: x is in at least one of the sets A and B)  

5. x is in A and x is in B (Or: x is in both A and B) 6. x is in B 
and x is not in A 7. x is in the universal set and is not in A  
8. no elements 9. the set of all subsets of A 10. A ù B 5 [ 
(Or: A and B have no elements in common) 11. A is the union 
of all the sets A1, A2, A3, Á  and Ai ù Aj 5 [ whenever i Þ j

ANSWERS FOR TEST YOuRSElF

Properties of Sets
Á only the last line is a genuine theorem here—everything else is in the fantasy. 
—Douglas Hofstadter, Gödel, Escher, Bach, 1979

It is possible to list many relations involving unions, intersections, complements, and differ-
ences of sets. Some of these are true for all sets, whereas others fail to hold in some cases. 
In this section we show how to establish basic set properties using element arguments, and 
we discuss a variation used to prove that a set is empty. In the next section we will show how 
to disprove a proposed set property by constructing a counterexample and how to use an al-
gebraic technique to derive new set properties from set properties already known to be true.

We begin by listing some set properties that involve subset relations. As you read them, 
keep in mind that the operations of union, intersection, and difference take precedence 
over set inclusion. Thus, for example, A ù B # C means (A ù B) # C.

Theorem 6.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets A and B,

(a) A ù B # A and (b) A ù B # B.

2. Inclusion in Union: For all sets A and B,

 (a) A # A ø B and (b) B # A ø B.

3. Transitive Property of Subsets: For all sets A, B, and C,

if A # B and B # C, then A # C.

The conclusion of each part of Theorem 6.2.1 states that one set X is a subset of another 
set Y and so to prove them, you suppose that x is any [particular but arbitrarily chosen] ele-
ment of X, and you show that x is an element of Y.

In most proofs of set properties, the secret of getting from the assumption that x is in X 
to the conclusion that x is in Y is to think of the definitions of basic set operations in terms 
of how they act on elements, that is, in procedural terms. For example, the union of sets X 
and Y, X ø Y, is defined as

X ø Y 5 {x u  x [ X or x [ Y}.

This means that any time you know an element x is in X ø Y, you can conclude that x must 
be in X or x must be in Y. Conversely, any time you know that a particular x is in some set X 
or is in some set Y, you can conclude that x is in X ø Y. Thus, for any sets X and Y and any 
element x,

x [ X ø Y  if, and only if, x [ X or x [ Y.

6.2
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392  CHAPTER 6 SET THEORY

Procedural versions of the definitions of the other set operations are derived similarly and 
are summarized below.

Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

1. x [ X ø Y  3 x [ X or x [ Y

2. x [ X ù Y  3 x [ X and x [ Y

3. x [ X2Y   3 x [ X and x Ó Y

4. x [ Xc 3 x Ó X

5. (x, y) [ X 3 Y  3 x [ X and y [ Y

Proving a Subset Relation
Consider trying to prove Theorem 6.2.1(a): For all sets A and B, A ù B # A. First notice 
that the statement is universal. It makes a claim about all sets A and B. So the proof has 
the following outline:

Starting Point: Suppose A and B are any [particular but arbitrarily chosen] sets.

To Show: A ù B # A

Now to prove A ù B # A you must use the definition of subset. In other words, you must 
show that

5x, if x [ A ù B, then x [ A.

This statement is also universal, and to prove it you use an element argument:

suppose x is any element in A ù B

and

show that x is in A.

You can fill in the gap between “suppose” and the “show” by using the procedural version 
of the definition of intersection along with your knowledge of logic and the definition of 
subset. Examples 6.2.1(a) and 6.2.1(b) show proofs for Theorem 6.2.1(1)(a) and Theorem 
6.2.1(2)(a). Each contains blanks to fill in with explanations or parts of proof steps. 

Fill in the Blanks for Proofs of Subset Relations

Fill in the blanks in the proofs shown below.

a. Theorem 6.2.1(1)(a): For all sets A and B, A ù B # A.
Proof:

Statement Explanation

Suppose A and B are any sets. starting point

We must show that A ù B # A. conclusion to be shown

Let x be any element in A ù B. start of an element argument

Then x is in A and x is in B.

In particular, x is in A.

Thus every element in A ù B is in A. because x could be any element of A ù B

Therefore, A ù B # A.

Example 6.2.1

(i)

(ii)

(iii)
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6.2 PROPERTiES Of SETS  393

b. Theorem 6.2.1(2)(a): For all sets A and B, A # A ø B. 
Proof:

Statement Explanation

Suppose . starting point

We must show that A # A ø B. conclusion to be shown

start of an element argument

Then the following statement is true: 
“x is in A or x is in B.”

For an or statement to be true only  
 component needs to be true.

Thus x is in A ø B. by definition of union

Hence every element in A is in . because x could be any element of A

Therefore, . by definition of subset

Solution

a. (i) by definition of intersection (ii) If an and statement is true, then each individual 
component is true. (iii) by definition of subset

b. (i) A and B are any sets. (ii) Let x be any element in A. (Or: Suppose x is any element 
in A.) (iii) one (iv) A ø B (v) A # A ø B ■

In his book Gödel, Escher, Bach,* Douglas Hofstadter introduces the fantasy rule for 
mathematical proof. Hofstadter points out that when you start a mathematical argument 
with if, let, or suppose, you are stepping into a fantasy world where not only are all the 
facts of the real world true but whatever you are supposing is also true. Once you are in 
that world, you can suppose something else. That sends you into a subfantasy world where 
not only is everything in the fantasy world true but also the new thing you are supposing. 
Of course, you can continue stepping into new subfantasy worlds in this way indefinitely. 
You return one level closer to the real world each time you derive a conclusion that makes 
a whole if-then or universal statement true. Your aim in a proof is to continue deriving 
such conclusions until you return to the world from which you made your first supposition.

Occasionally, mathematical problems are stated in the following form:

Suppose (statement 1). Prove that (statement 2). 

When this phrasing is used, the author intends the reader to add statement 1 to his or her 
general mathematical knowledge and not to make explicit reference to it in the proof. In 
Hofstadter’s terms, the author invites the reader to enter a fantasy world where statement 1 
is known to be true and to prove statement 2 in this fantasy world. Thus the solver of such 
a problem would begin a proof with the starting point for a proof of statement 2. Consider, 
for instance, the following restatement from Example 6.2.1(a):

Suppose A and B are arbitrarily chosen sets.

Prove that A ù B # A. 

The proof would begin “Suppose x [ A ù B,” it being understood that sets A and B have 
already been chosen arbitrarily.

The proofs in Example 6.2.1 are called element arguments because they show one set to 
be a subset of another by demonstrating that every element in the one set is also an element 
in the other. In higher mathematics, element arguments are the standard method for estab-
lishing relations among sets. High-school students are often allowed to justify set properties 

(i)

(ii)

(iii)

(iv)

(v)

*Gödel, Escher, Bach: An Eternal Golden Braid (New York: Basic Books, 1979).
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394  CHAPTER 6 SET THEORY

by using Venn diagrams. This method is appealing, but for it to be mathematically rigorous 
may be more complicated than you might expect. Appropriate Venn diagrams can be drawn 
for two or three sets, but the verbal explanations needed to justify conclusions inferred from 
them are normally as long or longer than a straightforward element proof.

In general, Venn diagrams are not very helpful when the number of sets is four or more. 
For instance, if the requirement is made that a Venn diagram must show every possible 
intersection of the sets, it is impossible to draw a symmetric Venn diagram for four sets, 
or, in fact, for any nonprime number of sets. In 2002, computer scientists/mathematicians 
Carla Savage and Jerrold Griggs and undergraduate student Charles Killian solved a long-
standing open problem by proving that it is possible to draw such a symmetric Venn diagram 
for any prime number of sets. For n . 5, however, the resulting pictures are extremely com-
plicated! However, the fact that such symmetric diagrams exist has applications in the area 
of computer science called coding theory.

Set Identities
An identity is an equation that is universally true for all elements in some set. For ex-
ample, the equation a1b 5 b1a is an identity for real numbers because it is true for 
all real numbers a and b. The collection of set properties in the next theorem consists 
entirely of set identities. That is, they are equations that are true for all sets in some 
universal set.

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a)  A ø B 5 B ø A and (b)  A ù B 5 B ù A.

2. Associative Laws: For all sets A, B, and C,

   (a)  (A ø B) ø C 5 A ø (B ø C ) and

(b)  (A ù B) ù C 5 A ù (B ù C ). 

3. Distributive Laws: For all sets A, B, and C,

   (a)  A ø (B ù C) 5 (A ø B) ù (A ø C) and

(b)  A ù (B ø C ) 5 (A ù B) ø (A ù C).

4. Identity Laws: For every set A,

 (a)  A ø [ 5 A and (b)  A ù U 5 A.

5. Complement Laws: For every set A,

(a)  A ø Ac 5 U and (b)  A ù Ac 5 [.

6. Double Complement Law: For every set A,

 (Ac)c 5 A.

7. Idempotent Laws: For every set A,

 (a)  A ø A 5 A and (b)  A ù A 5 A.
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6.2 PROPERTiES Of SETS  395

8. Universal Bound Laws: For every set A,

(a)  A ø U 5 U and (b)  A ù [ 5 [.

9. De Morgan’s Laws: For all sets A and B,

 (a)  (A ø B)c 5 Ac ù Bc and (b)  (A ù B)c 5 Ac ø Bc.

10. Absorption Laws: For all sets A and B,

 (a)  A ø (A ù B) 5 A and (b)  A ù (A ø B) 5 A.

11. Complements of U and [:

(a)  Uc 5 [ and (b)  [ c 5 U.

12. Set Difference Law: For all sets A and B,

A2B 5 A ù Bc.

The conclusion of each part of Theorem 6.2.2 is that one set equals another set. As we 
noted in Section 6.1,

Two sets are equal 3 each is a subset of the other.

The method derived from this fact is the most basic way to prove equality of sets.

Basic Method for Proving That Sets Are Equal

Let sets X and Y be given. To prove that X 5 Y:

1. Prove that X # Y.

2. Prove that Y # X. 

Proof of a Distributive law

Consider trying to prove that for all sets A, B, and C,

A ø (B ù C ) 5 (A ø B) ù (A ø C ).

Solution The proof of this fact is somewhat more complicated than the proofs in Ex-
ample 6.2.1, so we first derive its logical structure, then find the core arguments, and end 
with a formal proof as a summary. As in the subset relation examples, the statement to be 
proved is universal. Thus, by the method of generalizing from the generic particular, the 
proof has the following outline:

Starting Point: Suppose A, B, and C are arbitrarily chosen sets.

To Show: A ø (B ù C) 5 (A ø B) ù (A ø C).

Now two sets are equal if, and only if, each is a subset of the other. Hence, the following 
two statements must be proved:

A ø (B ù C) # (A ø B) ù (A ø C)

and

(A ø B) ù (A ø C) # A ø (B ù C).

Showing the first subset relation requires showing that

5x, if x [ A ø (B ù C) then x [ (A ø B) ù (A ø C).

Example 6.2.2
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396  CHAPTER 6 SET THEORY

Showing the second containment requires showing that

5x, if x [ (A ø B) ù (A ø C) then x [ A ø (B ù C).

Note that both of these statements are universal. So to prove the first containment, you

suppose you have any element x in A ø (B ù C),

and then you

show that x [ (A ø B) ù (A ø C).

And to prove the second containment, you

suppose you have any element x in (A ø B) ù (A ø C),

and then you

show that x [ A ø (B ù C).

In Figure 6.2.1, the structure of the proof is illustrated by the kind of diagram that is often 
used in connection with structured programs. The analysis in the diagram reduces the proof to 
two concrete tasks: filling in the steps indicated by dots in the two center boxes of Figure 6.2.1.

Suppose A, B, and C are sets.  [Show A ø (B ù C ) 5 (A ø B) ù (A ø C ). That is, 
show A ø (B ù C ) # (A ø B) ù (A ø C ) and 
(A ø B) ù (A ø C ) # A ø (B ù C ).]

Show A ø (B ù C) # (A ø B) ù (A ø C).  [That is, show 5x, if 
x [ A ø (B ù C ) then 
x [ (A ø B) ù (A ø C ).]

Suppose x [ A ø (B ù C). [Show x [ (A ø B ) ù (A ø C ).]
. . .

Thus x [ (A ø B) ù (A ø C).

Hence A ø (B ù C) # (A ø B) ù (A ø C ).

Show (A ø B) ù (A ø C) # A ø (B ù C).  [That is, show 5x, if 
x [ (A ø B) ù (A ø C ) 
then x [ A ø (B ù C ).]

Suppose x [ (A ø B) ù (A ø C). [Show x [ A ø (B ù C ).]
. . .

Thus x [ A ø (B ù C).

Hence (A ø B) ù (A ø C) # A ø (B ù C).

Thus (A ø B) ù (A ø C) 5 A ø (B ù C).

FIguRE 6.2.1
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6.2 PROPERTiES Of SETS  397

The following proof shows the steps for filling in the two innermost boxes of Fig-
ure 6.2.1. As you read it, notice how the procedural version of the definition of union is 
used. For example:

If you know that x [ B, then you can conclude that x [ A ø B 
because the statement “x [ A or x [ B  ” is true. 

Similarly:

If you know that x [ A, then you can conclude that x [ A ø (B ù C) 
because the statement “x [ A or x [ B ù C  ” is true. 

Also suppose you know that an element—say x—is in a union of two sets but you don’t 
know which set x is in. If you want to deduce a conclusion about x, you need to show that 
the conclusion follows regardless of which set x is in. So you need to break your argument 
into two cases: x is in the first set and x is in the second set.

The proof has a few blanks for you to fill in as practice for writing set theory proofs on 
your own. To make the proof more concise, the symbols ù and ø are used in place of the 
words “intersection” and “union,” respectively.

 

Theorem 6.2.2(3)(a) A Distributive law for Sets

For all sets A, B, and C,

A ø (B ù C ) 5 (A ø B) ù (A ø C ).

Proof: Suppose A, B, and C are any sets.

(1) Proof that A ø (B ù C) # (A ø B) ù (A ø C):

Let x [ A ø (B ù C). [We must show that x [ .]

By definition of <, x [  or x [ B ù C.

Case 1 (x [ A): Since x [ A, then both statements x [ A ø B and x [ A ø C are 
true by definition of <. Hence x [ (A ø B) ù (A ø C) by definition of >.

Case 2 (x [ B ù C): Since x [ B ù C, then x [ B and x [ C by definition of >.  
Since x [ B, then x [ A ø B by definition of <. Similarly, since x [ C, then 
x [ A ø C by definition of <. Hence x [ (A ø B) ù (A ø C) by definition of >.

Therefore, in both cases 1 and 2, x [ (A ø B)  (A ø C).

Because x could be any element in A ø (B ù C), this argument shows that every 
element of A ø (B ù C) is in (A ø B) ù (A ø C). Hence,  

A ø (B ù C) # (A ø B) ù (A ø C) 

by definition of .

(2) Proof that (A ø B) ù (A ø C) # A ø (B ù C):

Let x [ (A ø B) ù (A ø C ). [We must show that x [ A ø (B ù C ).]

We consider the two cases: x [ A and x Ó A.* 

Case 1 (x [ A): In this case, because x is in A, we can conclude immediately that 
x [ A ø (B ù C) by definition of <.

(continued on page 398)

(a)

(b)

(c)

(d)

*The reason to consider the two cases x [ A and x Ó A is that when x [ (A ø B) ù (A ø C ), then, by defini-
tion of >, x [ (A ø B) and x [ (A ø C ). Now one way for this statement to be true is for x to be in A, but, 
since that may not be the case, the proof must also consider the possibility that x is not in A.
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398  CHAPTER 6 SET THEORY

Case 2 (x Ó A): In this case, we know that x [ (A ø B) ù (A ø C). Thus, by defini-
tion of , x [ A ø B and x [ A ø C.

Because x is in A ø B, then x is in at least one of A or B, and since x is not in A, then 
x is in B. Similarly, because x is in A ø C, then x is in at least one of A or C, and since 
x is not in A, then x is in C. 

It follows that x [ B  x [ C, and, thus, x [ B ù C by definition of >.

Since x [ B ù C, then by definition of , x [ A ø (B ù C). 

Therefore, in both cases 1 and 2, x [ A ø (B ù C).

Because x could be any element in (A ø B) ù (A ø C), this argument shows that every 
element of (A ø B) ù (A ø C) is in A ø (B ù C). Hence, (A ø B) ù (A ø C )  
A ø (B ù C). Thus, (A ø B) ù (A ø C)  A ø (B ù C) by definition of subset.

(3) Conclusion: Since both subset relations have been proved, it follows, by defini-
tion of set equality, that     (a)    .

Solution
(1) a. (A ø B) ù (A ø C)  b. A  c. ù  d. subset
(2) a. ù  b. and  c. ø  d. #
(3) a. A ø (B ù C) 5 (A ø B) ù (A ø C)

(a)

(b)

(c)

(d)
(d)

 ■

In the study of artificial intelligence, the types of reasoning used previously to derive 
the proof of the distributive law are called forward chaining and backward chaining. First 
what is to be shown is viewed as a goal to be reached starting from a certain initial posi-
tion: the starting point. Analysis of this goal leads to the realization that if a certain job is 
accomplished, then the goal will be reached. Call this job subgoal 1: SG1. (For instance, if 
the goal is to show that A ø (B ù C) 5 (A ø B) ù (A ø C ), then SG1 would be to show 
that each set is a subset of the other.) Analysis of SG1 shows that when yet another job is 
completed, SG1 will be reached. Call this job subgoal 2: SG2. Continuing in this way, a 
chain of argument leading backward from the goal is constructed.

  starting point   S SG3 S SG2 S SG1 S   goal  

At a certain point, backward chaining becomes difficult, but analysis of the current 
subgoal suggests it may be reachable by a direct line of argument, or, in other words, by 
forward chaining, beginning at the starting point. Using the information contained in the 
starting point, another piece of information, I1, is deduced; from that another piece of 
information, I2, is deduced; and so forth until finally one of the subgoals is reached. This 
completes the chain and proves the theorem. A completed chain is illustrated below.

  starting point   S I1 S I2 S I3 S I4 S SG3 S SG2 S SG1 S   goal  

Since  set complement is defined in terms of not, and since unions and intersections are 
defined in terms of or and and, it is not surprising that there are analogues of De Morgan’s 
laws of logic for sets.

Proof  of a De Morgan’s law for Sets

Prove that for all sets A and B, (A ø B)c 5 Ac ù Bc.

Example 6.2.3
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6.2 PROPERTiES Of SETS  399

Solution As in previous examples, the statement to be proved is universal, and so the 
starting point of the proof and the conclusion to be shown are as follows:

Starting Point: Suppose A and B are arbitrarily chosen sets.

To Show: (A ø B)c 5 Ac ù Bc

To do this, you must prove both that (A ø B)c # Ac ù Bc and that Ac ù Bc # (A ø B)c. To 
prove the first subset relation means to show that

5x, if x [ (A ø B)c then x [ Ac ù Bc.

And to prove the second subset relation means to show that

5x, if x [ Ac ù Bc then x [ (A ø B)c.

Since each of these statements is universal and conditional, for the first subset relation, you

suppose x [ (A ø B)c,

and then you

show that x [ Ac ù Bc.

And for the second subset relation, you

suppose x [ Ac ù Bc,

and then you

show that x [ (A ø B)c.

To fill in the steps of these arguments, you use the procedural versions of the definitions 
of complement, union, and intersection, and at crucial points you use De Morgan’s laws 
of logic.

Theorem 6.2.2(9)(a) A De Morgan’s law for Sets

For all sets A and B, (A ø B)c 5 Ac ù Bc.

Proof: Suppose A and B are sets.

Proof that (A : B)c   Ac " B  c:
[We must show that 5x, if x [ (A ø B)c then x [ Ac ù Bc.]

Suppose x [ (A ø B)c. [We must show that x [ Ac ù B c.] By definition of complement,

x Ó A ø B.

Now to say that x Ó A ø B means that

it is false that (x is in A or x is in B).

By De Morgan’s laws of logic, this implies that

x is not in A and x is not in B,

which can be written 

 x Ó A and x Ó B.

(continued on page 400)
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400  CHAPTER 6 SET THEORY

Hence x [ Ac and x [ Bc by definition of complement. It follows, by definition of 
intersection, that x [ Ac ù Bc [as was to be shown]. So (A ø B)c # Ac ù Bc by defi-
nition of subset.

Proof that Ac ù Bc # (A ø B)c:
[We must show that 5x, if x [ Ac ù Bc then x [ (A ø B)c.]
Suppose x [ Ac ù Bc. [We must show that x [ (A ø B)c.] By definition of intersec-
tion, x [ Ac and x [ Bc, and by definition of complement,

x Ó A and x Ó B.

In other words,

x is not in A and x is not in B.

By De Morgan’s laws of logic this implies that

it is false that (x is in A or x is in B),

which can be written

x Ó A ø B

by definition of union. Hence, by definition of complement, x [ (A ø B)c [as was to 
be shown]. It follows that Ac ù Bc # (A ø B)c by definition of subset.

Conclusion: Since both set containments have been proved, (A ø B)c 5 Ac ù Bc by 
definition of set equality.

The set property given in the next theorem says that if one set is a subset of another, then 
their intersection is the smaller of the two sets and their union is the larger of the two sets.

Theorem 6.2.3 Intersection and union with a Subset

For any sets A and B, if A # B, then

 (a) A ù B 5 A and (b) A ø B 5 B.

Proof:
Part (a): Suppose A and B are sets with A # B. To show part (a) we must show both 
that A ù B # A and that A # A ù B. We already know that A ù B # A by the in-
clusion of intersection property. To show that A # A ù B, let x be any element in A.  
[We must show that x is in  A ù B.] But, because of the hypothesis that A # B, we can 
conclude that x is also in B by definition of subset. Hence

x [ A and x [ B,

and thus

x [ A ù B

by definition of intersection [as was to be shown].

Proof: 
Part (b): The proof of part (b) is left as an exercise.

 ■
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6.2 PROPERTiES Of SETS  401

The Empty Set
In Section 6.1 we introduced the concept of a set with no elements and promised that in this 
section we would show that there is only one such set. To do so, we start with the most basic 
property of a set with no elements: It is a subset of every set. To see why this is true, just 
ask yourself, “Could it possibly be false? Could there be a set without elements that is not 
a subset of some given set?” The crucial fact is that the negation of a universal statement is 
existential: If a set B is not a subset of a set A, then there exists an element in B that is not 
in A. But if B has no elements, then no such element can exist.

Theorem 6.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then E # A.

Proof (by contradiction): Suppose not. [We take the negation of the theorem and 
suppose it to be true.] Suppose there exists a set E with no elements and a set A such 
that E Ü A. [We must deduce a contradiction.] Then there would be an element of E 
that is not an element of A [by definition of subset]. But there can be no such element 
since E has no elements. This is a contradiction. [Hence the supposition that there are 
sets E and A, where E has no elements and E Ü A, is false, and so the theorem is true.]

The truth of Theorem 6.2.4 can also be understood by appeal to the notion of vacuous 
truth. If E is a set with no elements and A is any set, then to say that E # A is the same as 
saying that

5x, if x [ E, then x [ A.

But since E has no elements, this conditional statement is vacuously true.

How many sets with no elements are there? Only one.

Corollary 6.2.5 uniqueness of the Empty Set

There is only one set with no elements.

Proof: Suppose E1 and E2 are both sets with no elements. By Theorem 6.2.4, E1 # E2 
since E1 has no elements. Also E2 # E1 since E2 has no elements. Thus E1 5 E2 by 
definition of set equality.

It follows from Corollary 6.2.5 that the set of all the pink elephants on earth is equal to the 
set of all the real numbers whose square is 21 because neither set has any elements! Since 
there is only one set with no elements, we are justified in calling it by a special name, the 
empty set (or null set) and in denoting it by the special symbol [.

Note that whereas [ is the set with no elements, the set {[} has one element, the empty 
set. This is similar to the convention in the computer programming languages Lisp and 
Scheme, in which ( ) denotes the empty list and (( )) denotes the list whose one element is 
the empty list.

Suppose you need to show that a certain set equals the empty set. By Corollary 6.2.5 
it suffices to show that the set has no elements. For since there is only one set with no ele-
ments (namely [), if the given set has no elements, then it must equal [.
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Element Method for Proving a Set Equals the Empty Set

To prove that a set X is equal to the empty set [, prove that X has no elements. To 
do this, suppose X has an element and derive a contradiction.

Proving  That a Set Is Empty

Prove Theorem 6.2.2(8)(b). That is, prove that for any set A, A ù [ 5 [.

Solution Let A be a [particular, but arbitrarily chosen] set. To show that A ù [ 5 [, it 
suffices to show that A ù [ has no elements [by the element method for proving a set equals 
the empty set]. Suppose not. That is, suppose there is at least one element—say x—such that 
x [ A ù [. Then, by definition of intersection, x [ A and x [ [. In particular, x [ [. 
But this is impossible since [ has no elements. [This contradiction shows that the suppo-
sition that there is an element x in A ù [ is false. So A ù [ has no elements, as was to be 
shown.] Thus A ù [ 5 [. ■

A  Proof for a Conditional Statement

Prove that for all sets A, B, and C, if A # B and B # C c, then A ù C 5 [.

Solution Because the statement to be proved is both universal and conditional, you start 
with the method of direct proof:

Suppose  A, B, and C are arbitrarily chosen sets  
that satisfy the condition: A # B and B # C c.

Show that A ù C 5 [.

Since the conclusion to be shown is that a certain set is empty, you can use the principle for 
proving that a set equals the empty set. A complete proof is shown below.

Proposition 6.2.6

For all sets A, B, and C, if A # B and B # Cc, then A ù C 5 [.

Proof: Suppose A, B, and C are any sets such that A # B and B # Cc. We must show 
that A ù C 5 [. Suppose not. That is, suppose there is an element x in A ù C. By 
definition of intersection, x [ A and x [ C. Then, since A # B, x [ B by definition 
of subset. Also, since B # Cc, then x [ Cc by definition of subset again. It follows 
by definition of complement that x Ó C. Thus x [ C and x Ó C, which is a con-
tradiction. So the supposition that there is an element x in A ù C is false, and thus 
A ù C 5 [ [as was to be shown].

 ■

A  generalized Distributive law

Prove that for all sets A and B1, B2, B3, . . . , Bn, where n is a positive integer,

A ø 1>
n

i51

Bi2 5 >
n

i51

(A ø Bi).

Example 6.2.4

Example 6.2.5

Example 6.2.6
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6.2 PROPERTiES Of SETS  403

Solution Compare this proof to the one given in Example 6.2.2. Although the notation 
is more complex, the basic ideas are the same.

Proof: Suppose A and B1, B2, B3, . . . , Bn are any sets and n is a positive integer.

Part 1, Proof that A : 1>
n

i51
Bi2  >

n

i51
(A : Bi):

Suppose x is any element in A ø 1>
n

i51

Bi2. [We must show that x is in >
n

i51

(A ø Bi).]

By definition of union, x [ A or x [ >
n

i51

Bi.

Case 1, x [ A: In this case, it is true by definition of union that for every integer i 5 1,  

2, . . . , n, x [ A ø Bi. Hence x [ >
n

i51

(A ø Bi).

Case 2, x [ >
n

i51
Bi: In this case, by definition of the general intersection, we have that for 

every integer i 5 1, 2, . . . , n, x [ Bi. Hence, by definition of union, for every integer i 5 1, 

2, . . . , n, x [ A ø Bi, and so, by definition of general intersection, x [ >
n

i51

(A ø Bi).

Thus, in either case, x [ >
n

i51

(A ø Bi) [as was to be shown].

Part 2, Proof that >
n

i51
(A : Bi )  A : 1>

n

i51
Bi2:

Suppose x is any element in >
n

i51

(A ø Bi) [We must show that x is in A ø >
n

i51

Bi.]

By definition of intersection, x [ A ø Bi for every integer i 5 1, 2, . . . , n. Either x [ A or  
x Ó A.

Case 1, x [ A: In this case, x [ A ø 1>
n

i51

Bi2 by definition of union.

Case 2, x Ó A: By definition of intersection, x [ A ø Bi for every integer i 5 1, 2, . . . , n. 
Since x Ó A, x must be in each Bi for every integer i 5 1, 2, . . . , n. Hence, by definition of 

intersection, x [ >
n

i51

Bi, and so, by definition of union, x [ A ø 1>
n

i51

Bi2.

Conclusion: Since both set containments have been proved, it follows by definition of set 

equality that A ø 1>
n

i51

Bi2 5 >
n

i51

(A ø Bi).  ■

1. To prove that a set X is a subset of a set A ù B,  
you suppose that x is any element of X and you 
show that x [ A  x [ B.

2. To prove that a set X is a subset of a set A ø B, 
you suppose that x is any element of X and you 
show that x [ A  x [ B.

3. To prove that a set A ø B is a subset of a set X, 
you start with any element x in A ø B and con-
sider the two cases  and . You then 
show that in either case .

4. To prove that a set A ù B is a subset of a set X, 
you suppose that  and you show that .

TEST YOuRSElF 
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404  CHAPTER 6 SET THEORY

5. To prove that a set X equals a set Y, you prove that 
 and that .

6. To prove that a set X does not equal a set Y, you 
need to find an element that is in  and not 

 or that is in  and not .

1. a.  To say that an element is in A ù (B ø C) 
means that it is in  and in .

b. To say that an element is in (A ù B) ø C 
means that it is in  or in .

c. To say that an element is in A2 (B ù C) 
means that it is in  and not in .

d. To prove that (A ø B) ù C # A ø (B ù C), 
we suppose that x is any element in . Then 
we must show that .

e. If A, B, and C are any sets such that B # C, to 
prove that A ù B # A ù C, we suppose that 
x is any element in . Then we must show 
that .

2. The following are two proofs that for all sets A 
and B, A2B # A. The first is less formal, and the 
second is more formal. Fill in the blanks.
a. Proof: Suppose A and B are any sets. To show 

that A2B # A, we must show that every ele-
ment in  is in . But any element in 
A2B is in   and not in  (by definition 
of A2B). In particular, such an element is in A.

b. Proof: Suppose A and B are any sets and 
x [ A2B. [We must show that .] By defini-
tion of set difference, x [   and x Ó . 
In particular, x [  [which is what was to be 
shown]. 

In 3 and 4, supply explanations of the steps in the given 
proofs.

3. Theorem: For all sets A, B, and C, if 
A # B, B # C, then A # C.

Proof:

Statement Explanation

Suppose A, B, and C are 
any sets such that A # B 
and B # C.

starting point

We must show that 
A # C.

conclusion to be shown

  Let x be any element 
in A.

start of an element 
proof

 Then x is in B.

 It follows that x is in C.

Thus every element in A 
is in C.

since x could be any 
element of A

Therefore, A # C [as was 
to be shown].

4. Theorem: For all sets A and B, if A # B, then 
A ø B # B.

Proof:

Statement Explanation

Suppose A, B, and C 
are any sets such that 
A # B.

starting point

We must show that 
A ø B # B.

conclusion to be shown

Let x be any element 
in A ø B.

start of an element proof

Then x is in A or x is 
in B.

In case x is in A, then 
x is in B.

In case x is in B, then 
x is in B.

tautology (p S p)

So in either case x is 
in B.

proof by division into 
cases

Thus every element in 
A ø B is in B.

since x could be any ele-
ment of A ø B

Therefore, A ø B # B 
[as was to be shown].

5. Prove that for all sets A and B, (B2A) 5 B ù Ac.

6. Let ù and ø stand for the words “intersection” 
and “union,” respectively. Fill in the blanks in 
the following proof that for all sets A, B, and C, 
A ù (B ø C) 5 (A ù B) ø (A ù C).

(1) (2)

(1) (2)

(1) (2)

(1)

(2)

(1)

(2)

(1) (2)

(3) (4)

(1)

(2) (3)

(4)

(a)

(b)

(c)

(a)

(b)

(c)

H

ExERCISE SET 6.2 
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6.2 PROPERTiES Of SETS  405

Proof: Suppose A, B, and C are any sets.

(1) Proof that A ù (B ø C) # (A ù B) ø (A ù C):

Let x [ A ù (B ø C). [We must show that x [ ].

By definition of >, x [  and x [ B ø C.

Thus x [ A and, by definition of <, x [ B or  .

Case 1 (x [ A and x [ B) : In this case, x [ A ù B 

by definition of >.

Case 2 (x [ A and x [ C ) : In this case, x [ A ù C 

by definition of >.

By cases 1 and 2, x [ A ù B or x [ A ù C, and so, 

by definition of <, .

[So A ù (B ø C ) # (A ù B) ø (A ù C ) by definition 
of subset.]

(2) Proof that (A ù B) ø (A ù C) # A ù (B ø C) :

Let x [ (A ù B) ø (A ù C). [We must show that 
x [ A ù (B ø C ).]

By definition of <, x [ A ù B  x [ A ù C.

Case 1 (x [ A ù B): In this case, by definition of 

>, x [ A and x [ B.

Since x [ B, then x [ B ø C by definition of <.

Case 2 (x [ A ù C): In this case, by definition of 

>, x [ A  x [ C.

Since x [ C, then x [ B ø C by definition of <.

In both cases x [ A and x [ B ø C, and so, by 

definition of >, .

[So (A ù B) ø (A ù C) # A ù (B ø C) by defi-
nition of .]

(3) Conclusion: [Since both subset relations have 
been proved, it follows, by definition of set equality, 
that (a).] 

Use an element argument to prove each statement in 7–22. 
Assume that all sets are subsets of a universal set U.

7. For all sets A and B, (A ù B)c 5 Ac ø Bc.

8. For all sets A and B, (A ù B) ø (A ù Bc) 5 A.

(This property is used in Section 9.9.)

9. For all sets A, B, and C,

(A2B) ø (C2B) 5 (A ø C)2B.

10. For all sets A, B, and C,  
(A ø B) ù C # A ø (B ù C).

11. For all sets A, B, and C, 
A ù (B2C) # (A ù B)2 (A ù C).

12. For all sets A, B, and C, 
(A ø B)2C # (A2C) ø (B2C ).

13. For all sets A, B, and C,

(A2B) ù (C2B) 5 (A ù C)2B.

14. For all sets A and B, A ø (A ù B) 5 A.

15. For every set A, A ø [ 5 A.

16. For all sets A, B, and C, if 
A # B then A ù C # B ù C.

17. For all sets A, B, and C, if A # B then 
A ø C # B ø C.

18. For all sets A and B, if A # B then Bc # Ac.

19. For all sets A, B, and C, if A # B and A # C then 
A # B ù C.

20. For all sets A, B, and C, if A # C and B # C then 
A ø B # C.

21. For all sets A, B, and C,

A 3 (B ø C) 5 (A 3 B) ø (A 3 C).

22. For all sets A, B, and C,

A 3 (B ù C) 5 (A 3 B) ù (A 3 C).

23. Find the mistake in the following “proof” that 
for all sets A, B, and C, if A # B and B # C then 
A # C.

“Proof: Suppose A, B, and C are any sets such that 
A # B and B # C. Since A # B, there is an element 
x such that x [ A and x [ B, and since B # C, 
there is an element x such that x [ B and x [ C. 
Hence there is an element x such that x [ A and 
x [ C and so A # C.”

24. Find the mistake in the following “proof.”

“Theorem:” For all sets A and B, Ac ø Bc #
(A ø B)c.

“Proof: Suppose A and B are any sets, and 
x [ Ac ø Bc. Then x [ Ac or x [ Bc by definition 
of union. It follows that x Ó A or x Ó B by 
definition of complement, and so x Ó A ø B 
by definition of union. Thus x [ (A ø B)c 
by definition of complement, and hence  
Ac ø Bc # (A ø B)c.”

25. Find the mistake in the following “proof” that for 
all sets A and B, (A2B) ø (A ù B) # A.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

H

H

H

H

H
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406  CHAPTER 6 SET THEORY

“Proof: Suppose A and B are any sets, and suppose 
x [ (A2B) ø (A ù B). If x [ A then x [ A2B, 
and so, by definition of difference, x [ A and 
x Ó B. In particular, x [ A, and, therefore, 
(A2B) ø (A ù B) # A by definition of subset.”

26. Consider the Venn diagram below.

A B

C

U

a. Illustrate one of the distributive laws by 
shading in the region corresponding to 
A ø (B ù C) on one copy of the diagram and 
(A ø B) ù (A ø C) on another.

b. Illustrate the other distributive law by 
shading in the region corresponding to 
A ù (B ø C) on one copy of the diagram and 
(A ù B) ø (A ù C ) on another.

c. Illustrate one of De Morgan’s laws by shading 
in the region corresponding to (A ø B)c on one 
copy of the diagram and Ac ù Bc on the other. 
(Leave the set C out of your diagrams.)

d. Illustrate the other De Morgan’s law by shad-
ing in the region corresponding to (A ù B)c on 
one copy of the diagram and Ac ø Bc on the 
other. (Leave the set C out of your diagrams.) 

27. Fill in the blanks in the following proof that for all 
sets A and B, (A2B) ù (B2A) 5 [.

Proof: Let A and B be any sets and suppose 
(A2B) ù (B2A) Þ [. That is, suppose there 
is an element x in . By definition of ,  
x [ A2B and x [ . Then by definition of 
set difference, x [ A and x Ó B and x [  and 
x Ó . In particular x [ A and x Ó , which 
is a contradiction. Hence [the supposition that 
(A2B) ù (B2A) Þ [ is false, and so] . 

Use the element method for proving a set equals the 
empty set to prove each statement in 28–38. Assume that 
all sets are subsets of a universal set U.

28. For all sets A and B, (A ù B) ù (A ù Bc) 5 [. 
(This property is used in Section 9.9.)

29. For all sets A, B, and C,

(A2C) ù (B2C) ù (A2B) 5 [.

30. For every subset A of a universal set U, 
A ù Ac 5 [.

31. If U denotes a universal set, then Uc 5 [.

32. For every set A, A 3 [ 5 [.

33. For all sets A and B, if A # B then A ù Bc 5 [.

34. For all sets A and B, if B # Ac then A ù B 5 [.

35. For all sets A, B, and C, if A # B and B ù C 5 [ 
then A ù C 5 [.

36. For all sets A, B, and C, if C # B2A, then 
A ù C 5 [.

37. For all sets A, B, and C,

if B ù C # A, then (C2A) ù (B2A) 5 [.

38. For all sets A, B, C, and D,

if A ù C 5 [ then (A 3 B) ù (C 3 D) 5 [.

Prove each statement in 39–44.

39. For all sets A and B,
a. (A2B) ø (B2A) ø (A ù B) 5 A ø B
b. The sets (A2B), (B2A), and (A ù B) are 

mutually disjoint.

40. For every positive integer n, if A and B1, B2, B3, . . . 
are any sets, then

A ù 1ø
n

i51

Bi2 5 ø
n

i51

(A ù Bi).

41. For every positive integer n, if A1, A2, A3, . . . and 
B are any sets, then

ø
n

i51

(Ai 2B) 5 1ø
n

i51

Ai22B.

42. For every positive integer n, if A1, A2, A3, . . . and 
B are any sets, then

>
n

i51

(Ai 2B) 5 1>
n

i51

Ai22B.

(a)
(c)

(d)
(e) (f)

(g)

H

H
(b)
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43. For every positive integer n, if A and B1, B2, B3, . . .  
are any sets, then

ø
n

i51

(A 3 Bi) 5 A 3 1ø
n

i51

Bi2.

44. For every positive integer n, if A and B1, B2, B3, . . .  
are any sets, then

>
n

i51

(A 3 Bi) 5 A 3 1>
n

i51

Bi2.

1. and 2. or 3. x [ A; x [ B; x [ X  
4. x [ A ù B (Or: x is an element of both  

A and B); x [ X 5. X # Y; Y # X  
6. X; in Y; Y; in X

ANSWERS FOR TEST YOuRSElF

Disproofs and Algebraic Proofs
If a fact goes against common sense, and we are nevertheless compelled to  
accept and deal with this fact, we learn to alter our notion of common sense. 
—Phillip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

In Section 6.2 we gave examples only of set properties that were true. Occasionally, however, 
a proposed set property is false. We begin this section by discussing how to disprove such 
a proposed property. Then we prove an important theorem about the power set of a set and 
go on to discuss an “algebraic” method for deriving new set properties from set properties 
already known to be true. We finish the section with an introduction to Boolean algebras.

Disproving an Alleged Set Property
Recall that to show a universal statement is false, it suffices to find one example (called a 
counterexample) for which it is false.

Finding  a Counterexample for a Set Identity

Is the following set property true?

For all sets A, B, and C, (A2B) ø (B2C) 5 A2C.

Solution Observe that the property is true if, and only if,

the given equality holds for all sets A, B, and C.

So it is false if, and only if,

there are sets A, B, and C for which the equality does not hold.

One way to solve this problem is to picture sets A, B, and C by drawing a Venn diagram 
such as that shown in Figure 6.3.1 on the next page. If you assume that any of the eight 
regions of the diagram may be empty of points, then the diagram is quite general.

Find and shade the region corresponding to (A2B) ø (B2C). Then shade the region 
corresponding to A2C. These are shown in Figure 6.3.2 on the next page.

Comparing the shaded regions seems to indicate that the property is false. For in-
stance, if there is an element in B that is not in either A or C then this element would be in 
(A2B) ø (B2C) (because of being in B and not C ), but it would not be in A2C since 
A2C contains nothing outside A. Similarly, an element that is in both A and C but not B 

6.3

Example 6.3.1
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408  CHAPTER 6 SET THEORY

would be in (A2B) ø (B2C) (because of being in A and not B ), but it would not be in  
A2C (because of being in both A and C  ).

U U
A B

C

A B

C

FIguRE 6.3.2

Construct a concrete counterexample in order to confirm your answer and make sure 
that you did not make a mistake either in drawing or analyzing your diagrams. One way is 
to put one of the integers from 1 through 7 into each of the seven subregions enclosed by 
the circles representing A, B, and C. If the proposed set property had involved set comple-
ments, it would also be helpful to label the region outside the circles, and so we place the 
number 8 there. (See Figure 6.3.3.) Then define discrete sets A, B, and C to consist of all 
the numbers in their respective subregions.

1 2 3

4 6
5

7
8

U
A B

C

FIguRE 6.3.3

Counterexample 1: Let A 5 {1, 2, 4, 5}, B 5 {2, 3, 5, 6}, and C 5 {4, 5, 6, 7}. 
Then

A2B 5  h1, 4j, B2C 5  h2, 3j, and A2C 5  h1, 2j.

Hence

(A2B) ø (B2C) 5 h1, 4j ø h2, 3j 5 h1, 2, 3, 4j,  whereas  A2C 5 h1, 2j.

Since {1, 2, 3, 4} Þ {1, 2}, we have that (A2B) ø (B2C) Þ A2C.

U
A B

C

FIguRE 6.3.1
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A more economical counterexample can be obtained by observing that as long as the 
set B contains an element, such as 3, that is not in A, then regardless of whether B con-
tains any other elements and regardless of whether A and C contain any elements at all, 
(A2B) ø (B2C) Þ A2C.

Counterexample 2: Let A 5 [, B 5 {3}, and C 5 [. Then

A2B 5 [, B2C 5 h3j, and A2C 5 [.

Hence (A2B) ø (B2C) 5 [ ø h3j 5 h3j, whereas A2C 5 [.

Since {3} Þ [, we have that (A2B) ø (B2C ) Þ A2C.

Another economical counterexample requires only that A 5 C 5 a singleton set, such 
as {4}, while B is the empty set. ■

Problem-Solving Strategy
How can you discover whether a given universal statement about sets is true or false? There 
are two basic approaches. Either you plunge in and start trying to prove the statement, ask-
ing yourself, “What do I need to show?” and “How do I show it?” or you try to find a set 
of conditions that must be fulfilled to construct a counterexample. With either approach 
you may have immediate success or you may run into difficulty. The trick is to be ready 
to switch to the other approach if the one you are working on does not look promising. 
For more difficult questions, you may alternate several times between the two approaches 
before arriving at the correct answer.

The Number of Subsets of a Set
The following theorem states the important fact that if a set has n elements then its power 
set has 2n elements. The proof uses mathematical induction and is based on the following 
observations. Suppose X is a set and z is an element of X.

1. The subsets of X can be split into two groups: those that do not contain z and those that 
do contain z.

2. The subsets of X that do not contain z are the same as the subsets of X2{z}.

3. The subsets of X that do not contain z can be matched up one for one with the subsets of X 
that do contain z by matching each subset A that does not contain z to the subset A ø {z} 
that contains z. Thus there are as many subsets of X that contain z as there are subsets of 
X that do not contain z. For instance, if X 5 {x, y, z}, the following table shows the cor-
respondence between subsets of X that do not contain z and subsets of X that contain z.

Subsets of X That  
Do Not Contain z

Subsets of X That  
Contain z

[ 4 [ ø {z} 5 {z}

{x} 4 {x} ø {z} 5 {x, z}

{y} 4 {y} ø {z} 5 {y, z}

{x, y} 4 {x, y} ø {z} 5 {x, y, z}

Note Check that when 
A 5 C 5 {4} and B 5 [, 
(A2B) ø (B2C ) Þ A2C.
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410  CHAPTER 6 SET THEORY

Theorem 6.3.1

For every integer n $ 0, if a set X has n elements, then 3(X) has 2n elements.

Proof (by mathematical induction): Let the property P(n) be the sentence

Any set with n elements has 2n subsets. d P(n)

Show that P(0) is true:
To establish P(0), we must show that

Any set with 0 elements has 20 subsets. d P(0)

Now the only set with zero elements is the empty set, and the only subset of the 
empty set is itself. Thus a set with zero elements has one subset. Since 1 5 20, we 
have that P(0) is true.

Show that for every integer k $ 0, if P(k) is true then P(k11) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k $ 0. That is:] 
Suppose that k is any integer with k $ 0 such that

Any set with k elements has 2k subsets.      d P(k) inductive hypothesis 

[We must show that P(k11) is true. That is:] We must show that

Any set with k11 elements has 2k11 subsets. d P(k11)

Let X be a set with k11 elements. Since k11 $ 1, we may pick an element 
z in X. Observe that any subset of X either contains z or does not. Furthermore, 
any subset of X that does not contain z is a subset of X2{z}. And any subset A of 
X2{z} can be matched up with a subset B, equal to A ø {z}, of X that contains z. 
Consequently, there are as many subsets of X that contain z as do not, and thus there 
are twice as many subsets of X as there are subsets of X2{z}. It follows that since 
X2{z} has k elements, then, by inductive hypothesis,

the number of subsets of X2{z} 5 2k

Therefore,

 the number of subsets of X 5 2?(the number of subsets of X2 hzj)
 5 2?(2k) by substitution

 5 2k11
     by basic algebra.

[This is what was to be shown.]
[Since we have proved both the basis step and the inductive step, we conclude that the 
theorem is true.]

“Algebraic” Proofs of Set Identities
Let U be a universal set and consider the power set of U, 3(U). The set identities given 
in Theorem 6.2.2 hold for all elements of 3(U). Once a certain number of identities and 
other properties have been established, new properties can be derived from them algebra-
ically without having to use element method arguments. It turns out that only identities 
(1–5) of Theorem 6.2.2 are needed to prove any other identity involving only unions, 
intersections, and complements. With the addition of identity (12), the set difference law, 
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any set identity involving unions, intersections, complements, and set differences can be 
established.

To use known properties to derive new ones, you need to use the fact that such proper-
ties are universal statements. Like the laws of algebra for real numbers, they apply to a 
wide variety of different situations. Assume that all sets are subsets of 3(U), then, for 
instance, one of the distributive laws states that

for all sets A, B, and C,  A ù (B ø C) 5 (A ù B) ø (A ù C).

This law can be viewed as a general template into which any three particular sets can be 
placed. Thus, for example, if A1, A2, and A3 represent particular sets, then

A1 ù (A2 ø A3) 5 (A1 ù  A2) ø (A1 ù  A3),       
 A > (B   <   C) 5 (A   >   B) < (A   >   C)

where A1  takes the place of A, A2 takes the place of B, and A3 takes the place of C. Simi-
larly, if W, X, Y, and Z are any particular sets, then, by the distributive law,

(W ù X ) ù (Y ø Z ) 5 ((W ù X) ù Y ) ø ((W ù X ) ù Z ),   

 A > (B  <  C )  5 (A          >  B) < (A         >   C )

where W ù X takes the place of A, Y takes the place of B, and Z takes the place of C.

Deriving  a Set Difference Property

Construct an algebraic proof that for all sets A, B, and C,

(A ø B)2C 5 (A2C ) ø (B2C).

Cite a property from Theorem 6.2.2 for each step of the proof.

Solution Let A, B, and C be any sets. Then

 (A ø B)2C 5 (A ø B) ù Cc by the set difference law

 5 Cc ù (A ø B) by the commutative law for >

 5 (C c ù A) ø (Cc ù B) by the distributive law

 5 (A ù Cc) ø (B ù Cc) by the commutative law for >

 5 (A2C) ø (B2C)  by the set difference law. ■

Deriving  a Set Identity using Properties of [

Construct an algebraic proof that for all sets A and B,

A2 (A ù B) 5 A2B.

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution Suppose A and B are any sets. Then

 A2 (A ù B) 5 A ù (A ù B)c by the set difference law

 5 A ù (Ac ø Bc) by De Morgan’s law

 5 (A ù Ac) ø (A ù Bc) by the distributive law

 5 [ ø (A ù Bc) by the complement law

 5 (A ù Bc) ø [ by the commutative law for <

 5 A ù Bc  by the identity law for <

 5 A2B  by the set difference law. ■

D D D D D D D

Example 6.3.2

Example 6.3.3
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412  CHAPTER 6 SET THEORY

To many people an algebraic proof seems simpler than an element proof, but often 
an element proof is actually easier to understand. For instance, in Example 6.3.3 above, 
you could see immediately that A2 (A ù B) 5 A2B because for an element to be in 
A2 (A ù B) means that it is in A and not in both A and B, and this is equivalent to saying 
that it is in A and not in B.

Deriving  a generalized Associative law

Prove that for any sets A1, A2, A3, and A4,

((A1 ø A2) ø A3) ø A4 5 A1 ø ((A2 ø A3) ø A4).

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution Let A1, A2, A3, and A4 be any sets. Then

 ((A1 ø A2) ø A3) ø A4 5 (A1 ø (A2 ø A3)) ø A4

 5 A1 ø ((A2 ø A3) ø A4)

 ■

Example 6.3.4

by the associative law for < with A1 
taking the place of A, A2 taking the place 
of B, and A3 taking the place of C

by the associative law for < with A1 
taking the place of A, A2 ø A3 taking the 
place of B, and A4 taking the place of C.

!
Caution! When do-
ing problems similar to 
Examples 6.3.2–6.3.4, be 
sure to use the set proper-
ties exactly as they are 
stated in Theorem 6.2.2.

1. Given a proposed set identity involving set vari-
ables A, B, and C, the most common way to show 
that the equation does not hold in general is to find 
concrete sets A, B, and C that, when substituted for 
the set variables in the equation, .

2. When using the algebraic method for proving a set 
identity, it is important to  for every step.

3. When applying a property from Theorem 6.2.2, it 
must be used  as it is stated. 

TEST YOuRSElF 

For each of 1–4 find a counterexample to show that the 
statement is false. Assume all sets are subsets of a univer-
sal set U.

1. For all sets A, B, and C, 

(A ø B) ù C 5 A ø (B ù C).

2. For all sets A and B, (A ø B)c 5 Ac ø Bc.

3. For all sets A, B, and C, if A Ü B and B Ü C then 
A Ü C.

4. For all sets A, B, and C, if B ø C # A then

(A2B) ù (A2C) 5 [.

For each of 5–21 prove each statement that is true and 
find a counterexample for each statement that is false. 
Assume all sets are subsets of a universal set U.

5. For all sets A, B, and C, 

A2 (B2C) 5 (A2B)2C.

6. For all sets A and B, A ù (A ø B) 5 A.

7. For all sets A, B, and C,

(A2B) ù (C2B) 5 A2 (B ø C).

8. For all sets A and B, if Ac # B then A ø B 5 U.

9. For all sets A, B, and C, if A # C and B # C then 
A ø B # C.

10. For all sets A and B, if A # B then A ù Bc 5 [.

11. For all sets A, B, and C, if A # B then 
A ù (B ù C)c 5 [.

12. For all sets A, B, and C,

A ù (B2C) 5 (A ù B)2 (A ù C).

13. For all sets A, B, and C,

A ø (B2C) 5 (A ø B)2 (A ø C).

H

H

ExERCISE SET 6.3 
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14. For all sets A, B, and C, if A ù C 5 B ù C and 
A ø C 5 B ø C, then A 5 B.

15. For all sets A, B, and C, (A2B) ø C # A ø (C2B).

16. For all sets A and B, if A ù B 5 [ then 
A 3 B 5 [.

17. For all sets A and B, if A # B then 3(A) # 3(B).

18. For all sets A and B, 3(A ø B) # 3(A) ø 3(B).

19. For all sets A and B, 3(A) ø 3(B) # 3(A ø B).

20. For all sets A and B, 3(A ù B) 5 3(A) ù 3(B).

21. For all sets A and B, 3(A 3 B) 5 3(A) 3 3(B).

22. Write a negation for each of the following state-
ments. Indicate which is true, the statement or its 
negation. Justify your answers.
a. 5 sets S, E a set T such that S ù T 5 [.
b. E a set S such that 5 sets T, S ø T 5 [.

23. Let S 5 {a, b, c}, and for each integer i 5 0, 1, 
2, 3, let Si be the set of all subsets of S that have i 
elements. List the elements in S0, S1, S2, and S3. Is 
{S0, S1, S2, S3} a partition of 3(S)?

24. Let A 5 {t, u, v, w}, and let S1 be the set of all 
subsets of A that do not contain w and S2 the set of 
all subsets of A that contain w.
a. Find S1.
b. Find S2.
c. Are S1 and S2 disjoint?
d. Compare the sizes of S1 and S2.
e. How many elements are in S1 ø S2?
f. What is the relation between S1 ø S2 and 

3(A)?

25. Use mathematical induction to prove that for every 
integer n $ 2, if a set S has n elements, then the 
number of subsets of S with an even number of 
elements equals the number of subsets of S with 
an odd number of elements.

26. The following problem, devised by Ginger Bolton, 
appeared in the January 1989 issue of the Col-
lege Mathematics Journal (Vol. 20, No. 1, p. 68): 
Given a positive integer n $ 2, let S be the set of 
all nonempty subsets of {2, 3, . . . , n}. For each 
Si [ S, let Pi be the product of the elements of Si. 
Prove or disprove that

o
2n2121

i51

Pi 5
(n11)!

2
21.

In 27 and 28 supply a reason for each step in the derivation.

27. For all sets A, B, and C,

(A ø B) ù C 5 (A ù C) ø (B ù C).

Proof: Suppose A, B, and C are any sets. Then

 (A ø B) ù C 5 C ù (A ø B)  by  (a) 

 5 (C ù A) ø (C ù B) by  (b) 

 5 (A ù C) ø (B ù C) by  (c).  

28. For all sets A, B, and C,

(A ø B)2 (C2A) 5 A ø (B2C).

Proof: Suppose A, B, and C are any sets. Then

 (A ø B)2 (C2A) 5 (A ø B) ù (C2A)c  by  (a) 

 5 (A ø B) ù (C ù Ac)c  by  (b) 

 5 (A ø B) ù (Ac ù C)c  by  (c) 

 5 (A ø B) ù ((Ac)c ø C c)    by  (d) 

 5 (A ø B) ù (A ø Cc) by  (e) 

 5 A ø (B ù Cc) by  (f) 

 5 A ø (B2C) by  (g) .

29. Some steps are missing from the following 
proof that for all sets A and B, (A ø Bc)2B 5
(A2B) ø Bc. Indicate what they are, and then 
write the proof correctly.

Proof: Let any sets A and B be given . Then

 (A ø Bc)2B 5 (A ø Bc) ù Bc  
by the set difference 
law

 5 (Bc ù A) ø (Bc ù Bc)  by the distributive 
law

 5 (Bc ù A) ø Bc  
by the idempotent 
law for <

 5 (A2B) ø Bc  
by the set differ-
ence law.

In 30–40, construct an algebraic proof for the given state-
ment. Cite a property from Theorem 6.2.2 for every step.

30. For all sets A, B, and C,

(A ù B) ø C 5 (A ø C) ù (B ø C).

31. For all sets A and B, A ø (B2A) 5 A ø B.

32. For all sets A and B, (A2B) ø (A ù B) 5 A.

33. For all sets A and B, (A2B) ù (A ù B) 5 [.

34. For all sets A, B, and C,

(A2B)2C 5 A2 (B ø C).

35. For all sets A and B, A2 (A2B) 5 A ù B.

H

H

H

H

H

H*

H

H
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36. For all sets A and B, ((Ac ø Bc )2A)c 5 A.

37. For all sets A and B, (Bc ø (Bc 2A))c 5 B.

38. For all sets A and B, (A ù B)c ù A 5 A2B.

39. For all sets A and B,

(A2B) ø (B2A) 5 (A ø B)2 (A ù B).

40. For all sets A, B, and C,

(A2B)2 (B2C) 5 A2B.

In 41–43 simplify the given expression. Cite a property 
from Theorem 6.2.2 for every step.

41. A ù ((B ø Ac) ù Bc)

42. (A2 (A ù B)) ù (B2 (A ù B))

43. ((A ù (B ø C)) ù (A2B)) ù (B ø Cc)

44. Consider the following set property: For all sets A 
and B, A2B and B are disjoint.
a. Use an element argument to derive the  

property.
b. Use an algebraic argument to derive the property 

(by applying properties from Theorem 6.2.2).
c. Comment on which method you found easier.

45. Consider the following set prop-
erty: For all sets A, B, and C, 
(A2B) ø (B2C) 5 (A ø B)2 (B ù C).
a. Use an element argument to derive the  

property.
b. Use an algebraic argument to derive the 

property (by applying properties from  
Theorem 6.2.2).

c. Comment on which method you found easier.

Definition: Given sets A and B, the symmetric differ-
ence of A and B, denoted A D B, is

A D B 5 (A2B) ø (B2A).

46. Let A 5 {1, 2, 3, 4}, B 5 {3, 4, 5, 6}, and 
C 5 {5, 6, 7, 8}. Find each of the following sets:
a. A D B
b. B D C
c. A D C
d. (A D B) D C

Refer to the definition of symmetric difference given 
above. Prove each of 47–52, assuming that A, B, and C are 
all subsets of a universal set U.

47. A D B 5 B D A

48. A D [ 5 A

49. A D Ac 5 U

50. A D A 5 [

51. If A D C 5 B D C, then A 5 B.

52. (A D B) D C 5 A D (B D C)

53. Derive the set identity A ø (A ù B) 5 A from the 
properties listed in Theorem 6.2.2(1)–(9). Start by 
showing that for every subset B of a universal set 
U,  U ø B 5 U. Then intersect both sides with A 
and deduce the identity.

54. Derive the set identity A ù (A ø B) 5 A from the 
properties listed in Theorem 6.2.2(1)–(9). Start by 
showing that for every subset B of a universal set 
U,  [ 5 [ ù B. Then take the union of both sides 
with A and deduce the identity. 

H

H*

H*

H

1. make the left-hand side unequal to the right-hand side 
(Or: result in different values on the two sides of the 

equation) 2. cite one of the properties from Theorem 6.2.2 
(Or: give a precise reason) 3. exactly

ANSWERS FOR TEST YOuRSElF 

Boolean Algebras, Russell’s Paradox,  
and the Halting Problem
From the paradise created for us by Cantor, no one will drive us out. 
—David Hilbert (1862–1943)

Table 6.4.1 summarizes the main features of the logical equivalences from Theorem 2.1.1 
and the set properties from Theorem 6.2.2. Notice how similar the entries in the two  
columns are.

6.4
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TABlE 6.4.1

Logical Equivalences Set Properties

For all statement variables p, q, and r: For all sets A, B, and C:

a. p ~ q ; q ~ p
b. p ` q ; q ` p

a. A ø B 5 B ø A
b. A ù B 5 B ù A

a. p ` (q ` r) ; (p ` q) ` r
b. p ~ (q ~ r) ; (p ~ q) ~ r

a. A ù (B ù C ) 5 (A ù B) ù C
b. A ø (B ø C) 5 (A ø B) ø C

a. p ` (q ~ r) ; (p ` q) ~ (p ` r)
b. p ~ (q ` r) ; (p ~ q) ` (p ~ r)

a. A ù (B ø C) 5 (A ù B) ø (A ù C)
b. A ø (B ù C) 5 (A ø B) ù (A ø C)

a. p ~ c ; p
b. p ` t ; p

a. A ø [ 5 A
b. A ù U 5 A

a. p ~ ,p ; t
b. p ` ,p ; c

a. A ø Ac 5 U
b. A ù Ac 5 [ 

,(,p) ; p (Ac)c 5 A

a. p ~ p ; p
b. p ` p ; p

a. A ø A 5 A
b. A ù A 5 A

a. p ~ t ; t
b. p ` c ; c

a. A ø U 5 U
b. A ù [ 5 [

a. ,(p ~ q) ; ,p ` ,q
b. ,(p ` q) ; ,p ~ ,q

a. (A ø B)c 5 Ac ù Bc

b. (A ù B)c 5 Ac ø Bc

a. p ~ (p ` q) ; p
b. p ` (p ~ q) ; p

a. A ø (A ù B) 5 A
b. A ù (A ø B) 5 A

a. ,t ; c
b. ,c ; t

a. Uc 5 [
b. [ c 5 U

If you let ~ (or) correspond to ø (union), ` (and) correspond to ù (intersection),  
t (a tautology) correspond to U (a universal set), c (a contradiction) correspond to [ (the 
empty set), and , (negation) correspond to c (complementation), then you can see that 
the structure of the set of statement forms with operations ~ and ` is essentially iden-
tical to the structure of the set of subsets of a universal set with operations ø and ù.  
In fact, both are special cases of the same general structure, known as a Boolean  
algebra. The essential idea of a Boolean algebra was introduced by the self-taught 
English mathematician/logician George Boole in 1847 in a book entitled The Math-
ematical Analysis of Logic. During the remainder of the nineteenth century, Boole 
and others amplified and clarified the concept until it reached the form in which we 
use it today.

In this section we show how to derive the various properties associated with a Boolean 
algebra from a set of five axioms.
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416  CHAPTER 6 SET THEORY

Definition and Axioms for a Boolean Algebra

A Boolean algebra is a set B together with two operations, generally denoted1and ·,  
such that for all a and b in B both a1b and a?b are in B and the following axioms 
are assumed to hold:

1. Commutative Laws: For all a and b in B,

(a) a1b 5 b1a and (b) a?b 5 b?a.

2. Associative Laws: For all a, b, and c in B,

(a) (a1b)1c 5 a1 (b1c) and (b) (a?b)?c 5 a?(b?c).

3. Distributive Laws: For all a, b, and c in B,

(a) a1 (b?c) 5 (a1b)?(a1c) and (b) a?(b1c) 5 (a?b)1 (a?c).

4. Identity Laws: There exist distinct elements 0 and 1 in B such that for each a in B,

(a) a10 5 a and (b) a?1 5 a.

5. Complement Laws: For each a in B, there exists an element in B, denoted a and 
called the complement or negation of a, such that

 (a) a1a 5 1 and (b) a?a 5 0.

 In any Boolean algebra, the complement of each element is unique, the quantities 0 and 
1 are unique, and identities analogous to those in Theorem 2.1.1 and Theorem 6.2.2 can 
be deduced.

Theorem 6.4.1 Properties of a Boolean Algebra

Let B be any Boolean algebra.

1. Uniqueness of the Complement Laws: For all a and x in B, if a1x 5 1 and 
a?x 5 0 then x 5 a.

2. Uniqueness of 0 and 1: If there exists x in B such that a1x 5 a for every a in 
B, then x 5 0, and if there exists y in B such that a?y 5 a for every a in B, then 
y 5 1.

3. Double Complement Law: For every a [ B, (a) 5 a.

4. Idempotent Laws: For every a [ B,

(a) a1a 5 a and (b) a?a 5 a.

5. Universal Bound Laws: For every a [ B,

(a) a11 5 1 and (b) a?0 5 0.

6. De Morgan’s Laws: For all a and b [ B,

(a) a1b 5 a?b and (b) a?b 5 a1b.
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You may notice that all parts of the definition of a Boolean algebra and most parts of 
Theorem 6.4.1 contain paired statements. For instance, the distributive laws state that for 
all a, b, and c in B,

(a) a1 (b?c) 5 (a1b)?(a1c) and (b) a?(b1c) 5 (a?b)1 (a?c),

and the identity laws state that for every a in B,

(a) a10 5 a and (b) a?1 5 a.

Each of the paired statements can be obtained from the other by interchanging all the 1
and?signs and interchanging 1 and 0. Such interchanges transform any Boolean identity 
into its dual identity. It can be proved that the dual of any Boolean identity is also an iden-
tity. This fact is often called the duality principle for a Boolean algebra.

Proof of the Double Complement law

Prove that for all elements a in a Boolean algebra B, (a) 5 a.

Example 6.4.1

7. Absorption Laws: For all a and b [ B,

(a) (a1b)?a 5 a and (b) (a?b)1a 5 a.

8. Complements of 0 and 1:

(a) 0 5 1 and (b) 1 5 0. 

Proof:

Part 1: Uniqueness of the Complement Law
Suppose a and x are particular, but arbitrarily chosen, elements of B that satisfy the 
following hypothesis: a1x 5 1 and a?x 5 0. Then

x 5 x?1 because 1 is an identity for?

5 x?(a1a) by the complement law for 1

5 x?a1x?a by the distributive law for?over1

5 a?x1x?a by the commutative law for?

5 01x?a by hypothesis

5 a?a1x?a by the complement law for?

5 (a?a)1 (a?x) by the commutative law for?

5 a?(a1x) by the distributive law for?over1

5 a?1 by hypothesis

5 a because 1 is an identity for?.

Proofs of the other parts of the theorem are discussed in the examples that follow 
and in the exercises.

94193_ch06_ptg01.indd   417 12/11/18   4:38 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



418  CHAPTER 6 SET THEORY

Solution Start by supposing that B is a Boolean algebra and a is any element of B. 
The basis for the proof is the uniqueness of the complement law: that each element 
in B has a unique complement, which satisfies certain equations with respect to it. 
So if a can be shown to satisfy those equations with respect to a, then a must be the 
complement of a.

Theorem 6.4.1(3) Double Complement law

For every element a in a Boolean algebra B, (a) 5 a.

Proof:
Suppose B is a Boolean algebra and a is any element of B. Then

a1a 5 a1a by the commutative law for1

5 1 by the complement law for 1

and

a?a 5 a?a by the commutative law for.

5 0 by the complement law for 0.

Thus a satisfies the two equations with respect to a that are satisfied by the com-
plement of a. From the fact that the complement of a is unique, we conclude that 
(a) 5 a.

■

Proof of an Idempotent law

Fill in the blanks in the following proof that for all elements a in a Boolean algebra B,  
a1a 5 a.

Proof:
Suppose B is a Boolean algebra and a is any element of B. Then

a 5 a10   (a)  

5 a1 (a?a)   (b)  

5 (a1a)?(a1a)   (c)  

5 (a1a)?1   (d)  

5 a1a   (e)  .

Solution

(a) because 0 is an identity for1

(b) by the complement law for ·

(c) by the distributive law for1over?

(d) by the complement law for1

(e) because 1 is an identity for? ■

Example 6.4.2
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Russell’s Paradox
By the beginning of the twentieth century, abstract set theory had gained such wide accep-
tance that a number of mathematicians were working hard to show that all of mathematics 
could be built upon a foundation of set theory. In the midst of this activity, the English 
mathematician and philosopher Bertrand Russell discovered a “paradox” (really a genuine 
contradiction) that seemed to shake the very core of the foundation. The paradox assumes 
Cantor’s definition of set as “any collection into a whole of definite and separate objects of 
our intuition or our thought.”

Russell’s Paradox: Most sets are not elements of themselves. For instance, the set of all 
integers is not an integer and the set of all horses is not a horse. However, we can imagine 
the possibility of a set’s being an element of itself. For instance, the set of all abstract ideas 
might be considered an abstract idea. If we are allowed to use any description of a property 
as the defining property of a set, we can let S be the set of all sets that are not elements of 
themselves:

S 5 {A uA is a set and A Ó A}.

Is S an element of itself?
The answer is both yes and no. For suppose S [ S. Then S satisfies the defining 

property for S, and hence S Ó S. This contradicts the supposition that S [ S and shows 
that S Ó S. Next suppose S Ó S. Then S is a set such that S Ó S and so S satisfies the 
defining property for S, which implies that S [ S. This contradicts the supposition that 
S Ó S and shows that S [ S. Thus both S [ S and S Ó S, which is impossible because a 
statement is either true or false but not both. To help explain his discovery to laypeople, 
Russell devised a puzzle, the barber puzzle, whose solution exhibits the same logic as 
his paradox.

The Barber Puzzle

In a certain town there is a male barber who shaves all those men, and only those men, who 
do not shave themselves. Question: Does the barber shave himself?

Solution The answer is both yes and no. If the barber shaves himself, he is a member 
of the class of men who shave themselves. But no member of this class is shaved by the 
barber, and so the barber does not shave himself. On the other hand, if the barber does not 
shave himself, he belongs to the class of men who do not shave themselves. But the barber 
shaves every man in this class, so the barber does shave himself. ■

How can the answer be both yes and no? Surely any barber either does or does not shave 
himself. You might try to think of circumstances that would make the paradox disappear. 
For instance, maybe the barber happens to have no beard and never shaves. But a condition 
of the puzzle is that the barber is a man who shaves all those men who do not shave them-
selves. If he does not shave, then he does not shave himself, in which case he is shaved 
by the barber and the contradiction is as present as ever. Other attempts at resolving the 
paradox by considering details of the barber’s situation are similarly doomed to failure.

So let’s accept the fact that the paradox has no easy resolution and see where that thought 
leads. Since the barber both shaves himself and doesn’t shave himself, the sentence “The 
barber shaves himself” is both true and false. Yet the sentence arose in a natural way from 
a description of a situation. If the situation actually existed, then the sentence would have 
to be either true or false but not both. Thus we are forced to conclude that the situation 
described in the puzzle simply cannot exist in the world as we know it.

Example 6.4.3

Bertrand Russell 
(1872–1970)
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420  CHAPTER 6 SET THEORY

In a similar way, the conclusion to be drawn from Russell’s paradox itself is that the 
object S is not a set. Because if it actually were a set, in the sense of satisfying the gen-
eral properties of sets that we have been assuming, then it either would be an element of 
itself or not.

In the years following Russell’s discovery, several ways were found to define the basic 
concepts of set theory so as to avoid his contradiction. The way used in this text requires 
that, except for the power set whose existence is guaranteed by an axiom, whenever a set is 
defined using a predicate as a defining property, the stipulation must also be made that the 
set is a subset of a known set. This method does not allow us to talk about “the set of all 
sets that are not elements of themselves.” We can speak only of “the set of all sets that are 
subsets of some known set and that are not elements of themselves.” When this restriction 
is made, Russell’s paradox ceases to be contradictory. Here is what happens:

Let U be a universal set and suppose that all sets under discussion are subsets of U. Let

S 5 {A uA # U and A Ó A}.

In Russell’s paradox, both implications

S [ S S S Ó S and S Ó S S S [ S

are proved, and the contradictory conclusion

both S [ S and S Ó S

is therefore deduced. In the situation in which all sets under discussion are subsets of U, 
the implication S [ S S S Ó S is proved in almost the same way as it is for Russell’s 
paradox: (Suppose S [ S. Then by definition of S, S # U and S Ó S. In particular, S Ó S.)  
On the other hand, from the supposition that S Ó S we can only deduce that the statement  
“S # U and S Ó S” is false. By one of De Morgan’s laws, this means that “S Ü U or S [ S.”  
Since S [ S would contradict the supposition that S Ó S, we eliminate it and conclude that 
S Ü U. In other words, the only conclusion we can draw is that the seeming “definition” of 
S is faulty—in other words, S is not a set in U.

Russell’s discovery had a profound impact on mathematics because even though his 
contradiction could be made to disappear by more careful definitions, its existence caused 
people to wonder whether other contradictions remained. In 1931 Kurt Gödel showed that 
it is not possible to prove, in a mathematically rigorous way, that mathematics is free of 
contradictions. You might think that Gödel’s result would have caused mathematicians to 
give up their work in despair, but that has not happened. On the contrary, there has been 
more mathematical activity since 1931 than in any other period in history.

The Halting Problem
Well before the actual construction of an electronic computer, Alan M. Turing  
(1912–1954) deduced a profound theorem about how such computers would have to 
work. The argument he used is similar to that in Russell’s paradox. It is also related 
to those used by Gödel to prove his theorem and by Cantor to prove that it is impossible 
to write all the real numbers in an infinitely long list, even given an infinitely long pe-
riod of time (see Section 7.4).

If you have some experience programming computers, you know how badly an infi-
nite loop can tie up a computer system. It would be useful to be able to preprocess a pro-
gram and its data set by running it through a checking program that determines whether 
execution of the given program with the given data set would result in an infinite loop. 
Can an algorithm for such a program be written? In other words, can an algorithm be 
written that will accept any algorithm X and any data set D as input and will then print 
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Theorem 6.4.2

There is no computer algorithm that will accept any algorithm X and data set D as 
input and then will output “halts” or “loops forever” to indicate whether or not X 
terminates in a finite number of steps when X is run with data set D.

Proof (by contradiction):
Suppose there is an algorithm, CheckHalt, such that if an algorithm X and a data set 
D are input, then

CheckHalt(X, D) prints

“halts”  if X terminates in a finite number of steps 
when run with data set D

or

“loops forever”  if X does not terminate in a finite number of 
steps when run with data set D.

[To show that no algorithm such as CheckHalt can exist, we will deduce a contradiction.]
Observe that the sequence of characters making up an algorithm X can be 

regarded as a data set itself. Thus it is possible to consider running CheckHalt 
with input (X, X). Define a new algorithm, Test, as follows: For any input algo-
rithm X,

Test(X)

loops forever if CheckHalt(X, X) prints “halts”

or

stops if CheckHalt(X, X) prints “loops forever”.

Now run algorithm Test with input Test. If Test(Test) terminates after a finite 
number of steps, then the value of CheckHalt(Test, Test) is “halts” and so Test(Test) 
loops forever.

On the other hand, if Test(Test) does not terminate after a finite number of steps, 
then CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates.

The two paragraphs above show that Test(Test) loops forever and also that it ter-
minates. This is a contradiction. But the existence of Test follows logically from the 
supposition of the existence of an algorithm CheckHalt that can check any algorithm 
and data set for termination. [Hence the supposition must be false, and there is no such 
algorithm.]

The axioms introduced into set theory to avoid Russell’s paradox are not entirely ad-
equate to deal with the full range of recursively defined objects in computer algorithms. 
One response has been to develop an extension of set theory that includes new objects 
called hypersets. In addition, the kinds of semantic issues raised by the barber paradox are 
related to problems involved in processing natural language by computers.

“halts” or “loops forever” to indicate whether X terminates in a finite number of steps or 
loops forever when run with data set D? In the 1930s, Turing proved that the answer to 
this question is no.
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1. In the comparison between the structure of the 
set of statement forms and the set of subsets of a 
universal set, the or operation ~ corresponds  

to , the and operation ` corresponds  
to , a tautology t corresponds to ,  
a contradiction c corresponds to , and the 
negation operation, denoted ,, corresponds  
to  .

2. The operations of1and?in a Boolean algebra are 
generalizations of the operations of  and 

 in the set of all statement forms in a given 
finite number of variables and the operations of 

 and  in the set of all subsets of a 
given set.

3. Russell showed that the following proposed “set 
definition” could not actually define a set: .

TEST YOuRSElF

In 1–3 assume that B is a Boolean algebra with operations
1 and?. Give the reasons needed to fill in the blanks in 
the proofs using only the axioms for a Boolean algebra.

1. Idempotent law for?: For every a in B, a?a 5 a.
Proof: Let a be any element of B. Then

a 5 a?1    (a)   

5 a?(a1a)    (b)   

5 (a?a)1 (a?a)    (c)   

5 (a?a)10    (d)   

5 a?a    (e)   
?

2. Universal bound law for 1: For every a in B, 
a11 5 1.
Proof: Let a be any element of B. Then

a11 5 a1 (a1a)    (a)   

5 (a1a)1a    (b)   

5 a1a by Example 6.4.2

5 1    (c)   
?

3. Absorption law for?over 1: For all a and b in B, 
(a1b)?a 5 a.
Proof: Let a be any element of B. Then

(a1b)?a 5 a?(a1b)   (a)   

5 a?a1a?b    (b)   

5 a1a?b by exercise 1

5 a?11a?b    (c)   

5 a?(11b)    (d)   

5 a?(b11)    (e)   

5 a?1 by exercise 2

5 a     (f )  
?

 

In 4–10 assume that B is a Boolean algebra with opera-
tions 1 and?. Prove each statement using only the axioms 

for a Boolean algebra and statements proved in the text 
or in lower-numbered exercises.

4. Universal bound for 0: For every a in B, a?0 5 0.

5. Complements of 0 and 1:
a. 0 5 1 b. 1 5 0 

6. Uniqueness of 0: There is only one element of B 
that is an identity for 1.

7. Uniqueness of 1: There is only one element of B 
that is an identity for ?.

8. De Morgan’s law for?: For all a and b in B, 
a?b 5 a1b. (Hint: Prove that (a?b)1 (a1b) 5 1 
and that (a?b)1 (a1b) 5 0, and use the fact that 
a?b has a unique complement.)

9. De Morgan’s law for 1: For all a and b in B, 
a1b 5 a?b.

10. Cancellation law: For all x, y, and z in B, if 
x1y 5 x1 z and x?y 5 x?z, then y 5 z.

11. Let S 5 {0, 1}, and define operations1and?on S 
by the following tables:

1 0 1 ? 0 1

0 0 1 0 0 0
1 1 1 1 0 1

a. Show that the elements of S satisfy the follow-
ing properties:

(i) the commutative law for 1
(ii)  the commutative law for ?

(iii) the associative law for 1
(iv) the associative law for ?
(v) the distributive law for 1 over ?

(vi) the distributive law for?over 1

H

H

H

ExERCISE SET 6.4 
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b. Show that 0 is an identity element for 1 and 
that 1 is an identity element for ?.

c. Define 0 5 1 and 1 5 0. Show that for every 
a in S, a1a 5 1 and a?a 5 0. It follows from 
parts (a)–(c) that S is a Boolean algebra with 
the operations1and ?.

Exercises 12–15 provide an outline for a proof that the asso-
ciative laws, which were included as an axiom for a Boolean 
algebra, can be derived from the other four axioms. The 
outline is from Introduction to Boolean Algebra by S. Givant 
and P. Halmos, Springer, 2009. In order to avoid unneeded 
parentheses, assume that?takes precedence over 1.

12. The universal bound law for1 states that for every 
element a in a Boolean algebra, a11 5 1. The 
proof shown in exercise 2 used the associative law 
for 1. Rederive the law without using the associa-
tive law and using only the other four axioms for a 
Boolean algebra.

13. The absorption law for 1 states that for all ele-
ments a and b in a Boolean algebra, a?b1a 5 a
. Prove this law without using the associative law 
and using only the other four axioms for a Boolean 
algebra plus the result of exercise 12.

14. Test for equality law: For all elements a, b, and c 
in a Boolean algebra,

If b?a 5 c?a and b?a 5 c?a, then b 5 c.

Without using the associative law, derive this law 
from the other four laws in the axioms for a Bool-
ean algebra plus the result of exercise 12.

15. The associative law for1 states that for all 
elements a, b, and c in a Boolean algebra, 
a1 (b1c) 5 (a1b)1c. Show that this law, as 
well as the associative law for ·, can be derived 
from the other four axioms in the definition and 
axioms for a Boolean algebra. Then explain how 
to use your work to obtain a derivation for the 
associative law for ?.

Hints: To prove this theorem, suppose a, b, and 
c are any elements in a Boolean algebra B, and 
divide the proof into three parts. Part 1: Prove 
that (a1 (b1c))?a 5 ((a1b)1c)?a. Part 2: 
Prove that (a1 (b1c))?a 5 ((a1b)1c)?a.  
Part 3: Use the results of parts 1 and 2 to prove 
that a1 (b1c) 5 (a1b)1c. You may use the 
universal bound law for 1, the absorption law 
for 1, and the test for equality law from exer-
cises 12, 13, and 14 because the associative laws 
were not used to derive these properties. 

In 16–21 determine whether each sentence is a statement. 
Explain your answers.

16. This sentence is false.

17. If 111 5 3, then 1 5 0.

18. The sentence in this box is a lie.

19. All positive integers with negative squares are prime.

20. This sentence is false or 111 5 3.

21. This sentence is false and 111 5 2.

22. a.  Assuming that the following sentence is a 
statement, prove that 111 5 3:

If this sentence is true, then 111 5 3.

b. What can you deduce from  part (a) about the 
status of “This sentence is true”? Why? (This 
example is known as Löb’s paradox.)

23. The following two sentences were devised by the 
logician Saul Kripke. While not intrinsically para-
doxical, they could be paradoxical under certain 
circumstances. Describe such circumstances.

(i)  Most of Nixon’s assertions about Watergate 
are false.

(ii)  Everything Jones says about Watergate is 
true. 

(Hint: Suppose Nixon says (ii) and the only utter-
ance Jones makes about Watergate is (i).)

24. Can there exist a computer program that has as 
output a list of all the computer programs that do 
not list themselves in their output? Explain your 
answer.

25. Can there exist a book that refers to all those 
books and only those books that do not refer to 
themselves? Explain your answer.

26. Some English adjectives are descriptive of 
themselves (for instance, the word polysyllabic is 
polysyllabic) whereas others are not (for instance, 
the word monosyllabic is not monosyllabic). The 
word heterological refers to an adjective that does 
not describe itself. Is heterological heterological? 
Explain your answer.

27. As strange as it may seem, it is possible to give a 
precise-looking verbal definition of an integer that, 
in fact, is not a definition at all. The following was 
devised by an English librarian, G. G. Berry, and 
reported by Bertrand Russell. Explain how it leads 

H

H

H

H
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to a contradiction. Let n be “the smallest integer 
not describable in fewer than 12 English words.” 
(Note that the total number of strings consisting of 
11 or fewer English words is finite.)

28. Is there an algorithm which, for a fixed quantity 
a and any input algorithm X and data set D, can 

determine whether X prints a when run with data 
set D? Explain. (This problem is called the print-
ing problem.)

29. Use a technique similar to that used to derive 
Russell’s paradox to prove that for any set A,  
3(A) Ü A. 

H

1. the operation of union ø; the operation of intersection ù; a universal set U; the empty set [; the operation of 
complementation, denoted by using the superscript c 2. ~; `; ø; ù  3. the set of all sets that are not elements of themselves

ANSWERS FOR TEST YOuRSElF 
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CHAPTER 7 PROPERTIES OF FUNCTIONS

The concept of function is essential in all areas of mathematics and computer science. Ear-
lier in this book we discussed sequences (which are functions defined on sets of integers), 
mod and div (which are functions defined on Cartesian products of integers), floor and 
ceiling (which are functions from R to Z), and truth tables and input/output tables (which 
can be regarded as Boolean functions).

In this chapter we consider an additional wide variety of functions, focusing on those 
defined on discrete sets (such as finite sets or sets of integers). We then look at properties of 
functions such as one-to-one and onto, existence of inverse functions, and the interaction 
of composition of functions and the properties of one-to-one and onto. We end the chapter 
with the surprising result that there are different sizes of infinite sets and give an applica-
tion to computability.

Functions Defined on General Sets
The theory that has had the greatest development in recent times is without any doubt 
the theory of functions. —Vito Volterra, 1888

As used in ordinary language, the word function indicates dependence of one varying 
quantity on another. If your teacher tells you that your grade in a course will be a function 
of your performance on the exams, you interpret this to mean that the teacher has some 
rule for translating exam scores into grades. To each collection of exam scores there cor-
responds a certain grade.

In Section 1.3 we defined a function as a certain type of relation. In this chapter we 
focus on the more dynamic way functions are used in mathematics. The following is a 
restatement of the definition of function that includes additional terminology associated 
with the concept.

7.1
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426  CHAPTER 7 PROPeRTIeS OF FuncTIOnS

In some mathematical contexts, the notation f (x) is used to refer both to the value 
of f at x and to the function f itself. Because using the notation this way can lead to 
confusion, we avoid it whenever possible. In this book, unless explicitly stated oth-
erwise, the symbol f (x) always refers to the value of the function f at x and not to the 
function f itself.

The concept of function was developed over a period of centuries. A definition similar 
to that given above was first formulated for sets of numbers by the German mathematician 
Lejeune Dirichlet (DEER-ish-lay) in 1837.

Arrow Diagrams
Recall from Section 1.3 that if X and Y are finite sets, you can define a function f from X to Y 
by drawing an arrow diagram. You make a list of elements in X and a list of elements in Y, and 
draw an arrow from each element in X to the corresponding 
element in Y, as shown in Figure 7.1.1.

This arrow diagram does define a function because:

1. Every element of X has an arrow that points to an element 
in Y.

2. No element of X has two arrows that point to two differ-
ent elements of Y.

!
Caution! Use f (x) to 
refer to the value of the 
function f at x. Generally 
avoid using f (x) to refer to 
the function f itself.

Johann Peter Gustav 
Lejeune Dirichlet 
(1805–1859)
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x4

y1

y2

y3

y4

y5

X Yf

FIGURE 7.1.1

Definition

A function f from a set X to a set Y, denoted f  : X S Y, is a relation from X, the domain 
of f, to Y, the co-domain of f, that satisfies two properties: (1) every element in X is relat-
ed to some element in Y, and (2) no element in X is related to more than one element in Y. 
Thus, given any element x in X, there is a unique element in Y that is related to x 
by f. If we call this element y, then we say that “f sends x to y” or “f maps x to y” 
and write x Sf

y or f  : x S y. The unique element to which f sends x is denoted

f (x) and is called f of x, or

the output of f for the input x, or

the value of f at x, or

the image of x under f.

The set of all values of f taken together is called the range of f or the image of X 
under f. Symbolically:

range of f 5 image of X under f 5 {y [ Y u  y 5 f (x), for some x in X}.

Given an element y in Y, there may exist elements in X with y as their image. When 
x is an element such that f (x) 5 y, then x is called a preimage of y or an inverse 
image of y. The set of all inverse images of y is called the inverse image of y. 
Symbolically:

the inverse image of y 5 {x [ X u  f  (x) 5 y}.
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7.1 FUNCTIONS DEFINED ON GENERal SETS  427

Functions and Nonfunctions

Which of the arrow diagrams in Figure 7.1.2 define functions from X 5 {a, b, c} to
Y 5 {1, 2, 3, 4}?

Example 7.1.1

a
b
c

1
2
3
4

a
b
c

1
2
3
4

a
b
c

1
2
3
4

(a) (b) (c)

FIGURE 7.1.2

a
b
c

1
2
3
4

X Yf

FIGURE 7.1.3

Solution Only (c) defines a function. In (a) the element b in X is not related to any ele-
ment of Y because there is no arrow that points from b to an element in Y. And in (b) the 
element c is not related to a unique element of Y because from c there are two arrows that 
point to two different elements of Y—one toward 2 and the other toward 3. ■

A Function Defined by an Arrow Diagram

Let X 5 {a, b, c} and Y 5 {1, 2, 3, 4}. Define a function f from X to Y by the arrow dia-
gram in Figure 7.1.3.

a. Write the domain and co-domain of f.

b. Find f (a), f (b), and f (c).

c. What is the range of f?

d. Is c an inverse image of 2? Is b an inverse image of 3?

e. Find the inverse images of 2, 4, and 1.

f. Represent f as a set of ordered pairs. 

Solution

a. domain of f 5 {a, b, c}, co-domain of f 5 {1, 2, 3, 4}

b. f (a) 5 2, f (b) 5 4, f (c) 5 2

c. range of f 5 {2, 4}

d. yes, no

e. inverse image of 2 5 {a, c}
inverse image of 4 5 {b}
inverse image of 1 5 [ (since no arrows point to 1)

f. {(a, 2), (b, 4), (c, 2)} ■

In Example 7.1.2 there are no arrows pointing from X to the 1 or the 3 in Y. This illus-
trates the fact that although each element of the domain of a function must have an arrow 
pointing out from it, there can be elements of the co-domain to which no arrows point. 
Note also that there are two arrows pointing to the 2—one coming from a and the other 
from c. This does not violate the definition of function.

In Section 1.3 we gave a test for determining whether two functions with the same do-
main and co-domain are equal, saying that the test results from the definition of a function 
as a relation. We formalize this justification in Theorem 7.1.1.

Example 7.1.2
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428  CHAPTER 7 PROPERTIES OF FUNCTIONS

Theorem 7.1.1 A Test for Function Equality

If F : X S Y and G : X S Y are functions, then F 5 G if, and only if, F (x) 5 G  (x) 
for every x [ X.

Proof: Suppose F  : X S Y and G  : X S Y are functions; that is, F and G are relations 
from X to Y that satisfy the two additional function properties. Then F and G are 
subsets of X 3 Y , and for (x, y) to be in F means that y is the unique element related 
to x by F, which we denote as F (x). Similarly, for (x, y) to be in G means that y is the 
unique element related to x by G, which we denote as G (x).

Now suppose that F  (x) 5 G  (x) for every x [ X. Then if x is any element of X,

(x, y) [ F 3 y 5 F  (x) 3 y 5 G  (x) 3 (x, y) [ G because F(x) 5 G(x).

So F and G consist of exactly the same elements and hence F 5 G.

Conversely, if F 5 G, then for every x [ X,

y 5 F(x) 3 (x, y) [ F 3 (x, y) [ G 3 y 5 G(x) because F and G consist  
of exactly the same  
elements.Thus, since both F(x) and G(x) equal y, we have that

F(x) 5 G(x).

Note  
(x, y) [ F 3  y 5 F  (x)  
(x, y) [ G 3 y 5 G   (x).

Equality of Functions

a. Let J3 5 {0, 1, 2}, and define functions f and g from J3 to J3 as follows: For every x in J3,

f (x) 5 (x2 1x11) mod 3 and g (x) 5 (x12)2 mod 3.

Does f 5 g?

b. Let F  : R S R and G  : R S R be functions. Define new functions F1G  : R S R and 
G1F  : R S R as follows: For every x [ R,

(F1G )( x) 5 F (x)1G (x) and (G1F  )(x) 5 G (x)1F (x).

Does F1G 5 G1F?

Solution

a. Yes, the table of values shows that f (x) 5 g(x) for every x in J3.

x x2 1x11 f (x) 5 (x2 1x11) mod 3 (x12)2 g(x) 5 (x12)2 mod 3
0 1 1 mod 3 5 1  4 4 mod 3 5 1

1 3 3 mod 3 5 0  9 9 mod 3 5 0

2 7 7 mod 3 5 1 16 16 mod 3 5 1

b. Again the answer is yes. For every real number x,

(F1G )(x) 5 F (x)1G (x) by definition of F1G

5 G (x)1F (x) by the commutative law for addition of real numbers

5 (G1F )(x) by definition of G1F.

Hence F1G 5 G1F. ■

Example 7.1.3
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7.1 FUNCTIONS DEFINED ON GENERal SETS  429

Examples of Functions
The following examples illustrate some of the wide variety of different types of functions.

The Identity Function on a Set

Given a set X, define a function IX from X to X by

IX (x) 5 x for each x in X.

The function IX is called the identity function on X because it sends each element of X to 
the element that is identical to it. Thus the identity function can be pictured as a machine 
that sends each piece of input directly to the output chute without changing it in any way.

Let X be any set, and suppose that ak
ij and f(z) are elements of X. Find IX   

_  ak
i  j  

+ and IX(f(z)).

Solution Whatever is input to the identity function comes out unchanged, so 

IX _  a  

k
i  j  

+ 5 ak
i j  and  IX(f(z)) 5 f(z). ■

Sequences

The formal definition of sequences specifies that an infinite sequence is a function defined 
on the set of integers that are greater than or equal to a particular integer. For example, the 
sequence denoted

1, 2
1

2
, 

1

3
, 2

1

4
, 

1

5
, Á , 

(21)n

n11
, Á

can be thought of as the function f from the nonnegative integers to the real numbers that 

associates 0 S 1, 1 S 2 1
2, 2 S 1

3, 3 S 2 1
4, 4 S 1

5, and, in general, n S (21)n

n 1 1 . In other 
words,   f  : Znonneg S R is the function defined as follows:

Send each integer n $ 0 to f (n) 5
(21)n

n11
.

In fact, there are many functions that can be used to define a given sequence. For in-
stance, express the sequence above as a function from the set of positive integers to the set 
of real numbers.

Solution Define g  : Z1 S R by g(n) 5
(21)n11

n , for each n [ Z1. Then g(1) 5 1, g(2) 5 21
2, 

g(3) 5 1
3, and, in general,

 g(n11) 5
(21)n12

n11
5

(21)n

n11
5 f (n). ■

A Function Defined on a Power Set

Recall from Section 6.1 that 3(A) denotes the set of all subsets of the set A. Define a func-
tion F  : 3({a, b, c}) S Znonneg as follows: For each X [ 3({a, b, c}),

F  (X) 5 the number of elements in X.

Draw an arrow diagram for F.

Example 7.1.4

Example 7.1.5

Example 7.1.6
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430  CHAPTER 7 PROPERTIES OF FUNCTIONS

Solution

{a}

{b}

{c}

{a, b}

{a, c}

0

1

2

3

4

5

{b, c}

{a, b, c}

({a, b, c}) Znonneg

 ■

Functions Defined on a Cartesian Product

Define functions M  : R 3  R S R and R  : R 3 R S R 3 R as follows: For each ordered 
pair (a, b) of integers,

M(a, b) 5 ab and R (a, b) 5 (2a, b).

Then M is the multiplication function that sends each pair of real numbers to the product of 
the two, and R is the reflection function that sends each point in the plane that corresponds 
to a pair of real numbers to the mirror image of the point across the vertical axis. Find the 
following:

a. M (21, 21) b. M  _  

1
2, 12  

+ c. M sÏ2, Ï2d

d. R ( 2, 5) e. R (22, 5 ) f. R (3, 24) 
Solution
a. (21)(21) 5 1 b. (1y2)(1y2) 5 1y4 c. Ï2?Ï2 5 2

d. (22, 5) e. (2(22), 5) 5 (2, 5) f. (23, 24)  ■

Example 7.1.7

Note It is customary to 
omit one set of parenthe-
ses for functions defined 
on Cartesian products. For 
example, we write M (a, b) 
rather than M ((a, b)).

Note It is not obvious, 
but it is true, that for 
any positive real num-
ber x there is a unique 
real number y such that 
b y 5 x. Most calculus 
books contain a discus-
sion of this result.

Definition Logarithms and Logarithmic Functions

Let b be a positive real number with b Þ 1. For each positive real number x, the 
logarithm with base b of x, written log   b x, is the exponent to which b must be raised 
to obtain x. Symbolically:

log  b x 5 y 3 by 5 x.

The logarithmic function with base b is the function from R1 to R that takes each 
positive real number x to log  b x.

The Logarithmic Function with Base b

Find the following:

a. log3 9   b. log2 _12+   c. log10 (1)   d. log2 (2
m  ) (m is any real number)

e. 2log2 (m) (m . 0)

Example 7.1.8
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7.1 FUNCTIONS DEFINED ON GENERal SETS  431

Solution
a. log3 9 5 2 because 32 5 9.   b. log2 _12+ 5 21 because 221 5 1

2.

c. log10 (1) 5 0 because 100 5 1.

d. log2 (2
m ) 5 m because the exponent to which 2 must be raised to obtain 2m is m.

e. 2log2(m) 5 m because log2 (m) is the exponent to which 2 must be raised to obtain m.   ■

Recall that if S is a nonempty, finite set of characters, then a string over S can be regarded 
as a finite sequence of elements of S. The number of characters in a string is called the 
length of the string. The null string over S is the “string” with no characters. It is usually 
denoted l and is said to have length 0.

Encoding and Decoding Functions

Digital messages consist of finite sequences of 0’s and 1’s. When they are communicated 
across a transmission channel, they are frequently coded in special ways to reduce the pos-
sibility that they will be garbled by interfering noise in the transmission lines. For example, 
suppose a message consists of a sequence of 0’s and 1’s. A simple way to encode the mes-
sage is to write each bit three times. Thus the message

00101111

would be encoded as

000000111000111111111111.

The receiver of the message decodes it by replacing each section of three identical bits by 
the one bit to which all three are equal.

Let A be the set of all strings of 0’s and 1’s, and let T be the set of all strings of 0’s and 1’s 
that consist of consecutive triples of identical bits. The encoding and decoding processes 
described above are actually functions from A to T and from T to A. The encoding function 
E is the function from A to T defined as follows: For each string s [ A,

E  (s) 5 the string obtained from s by replacing each

bit of s by the same bit written three times.

The decoding function D is defined as follows: For each string t [ T ,

D  (t) 5 the string obtained from t by replacing each consecutive

triple of three identical bits of t by a single copy of that bit.

The advantage of this particular coding scheme is that it makes it possible to do a cer-
tain amount of error correction when interference in the transmission channels has intro-
duced errors into the stream of bits. If the receiver of the coded message observes that one 
of the sections of three consecutive bits that should be identical does not consist of identical 
bits, then one bit differs from the other two. In this case, if errors are rare, it is likely that 
the single bit that is different is the one in error, and this bit is changed to agree with the 
other two before applying the decoding function.  ■

The Hamming Distance Function

The Hamming distance function, named after the computer scientist Richard W. Hamming, 
is very important in coding theory. It gives a measure of the “difference” between two 
strings of 0’s and 1’s that have the same length. Let Sn be the set of all strings of 0’s and 1’s  

Example 7.1.9

Example 7.1.10
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432  CHAPTER 7 PROPERTIES OF FUNCTIONS

of length n. Define a function H   : Sn 3 Sn S Znonneg as follows: For each pair of strings  
(s, t) [ Sn 3 Sn,

H (s, t) 5 the number of positions in which s and t have different values.

Thus, letting n 5 5,

 H (11111, 00000) 5 5

because 11111 and 00000 differ in all five positions, whereas

H (11000, 00000) 5 2

because 11000 and 00000 differ only in the first two positions.

a. Find H (00101, 01110).  b. Find H (10001, 01111). 

Solution

a. 3    b. 4 ■

Boolean Functions
In Section 2.4 we showed how to find input/output tables for certain digital logic circuits. 
Any such input/output table defines a function in the following way: The elements in the 
input column can be regarded as ordered tuples of 0’s and 1’s; the set of all such ordered 
tuples is the domain of the function. The elements in the output column are all either 0 or 
1; thus {0, 1} is taken to be the co-domain of the function. The relation sends each input 
element to the output element in the same row. Thus, for instance, the input/output table 
of Figure 7.1.4(a) defines the function with the arrow diagram shown in Figure 7.1.4(b).

More generally, the input/output table corresponding to a circuit with n input wires has 
n input columns. Such a table defines a function from the set of all n-tuples of 0’s and 1’s 
to the set {0, 1}.

Input Output

P Q R S

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

 (a)                                                               (b) 

FIGURE 7.1.4 Two Representations of a Boolean Function

(1, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 0, 0)
(0, 1, 1)
(0, 1, 0)
(0, 0, 1)
(0, 0, 0)

1

0

Richard Hamming 
(1915–1998)
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Definition

An (n-place) Boolean function f is a function whose domain is the set of all ordered 
n-tuples of 0’s and 1’s and whose co-domain is the set {0, 1}. More formally, the 
domain of a Boolean function can be described as the Cartesian product of n copies 
of the set {0, 1}, which is denoted {0, 1}n. Thus f  : {0, 1}n S {0, 1}.
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7.1 FUNCTIONS DEFINED ON GENERal SETS  433

A Boolean Function

Consider the three-place Boolean function defined from the set of all 3-tuples of 0’s and 1’s 
to {0, 1} as follows: For each triple (x1, x2, x3) of 0’s and 1’s,

f (x1, x2, x3) 5 (x1 1x2 1x3) mod 2.

Describe f using an input/output table.

Solution f (1, 1, 1) 5 (11111) mod 2 5 3 mod 2 5 1

 f (1, 1, 0) 5 (11110) mod 2 5 2 mod 2 5 0

The rest of the values of f can be calculated similarly to obtain the following table.

Input Output

x1 x2 x3 (x1 1x2 1x3) mod 2

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

 ■

Checking Whether a Function Is Well Defined
It can sometimes happen that what appears to be a function defined by a rule is not really 
a function at all. To give an example, suppose we wrote, “Define a function f  : R S R by 
specifying that for each real number x,

f (x) is the real number y such that x2 1y2 5 1.”

There are two distinct reasons why this description does not define a function. For almost 
all values of x, either (1) there is no y that satisfies the given equation or (2) there are two 
different values of y that satisfy the equation. For instance, when x 5 2, there is no real 
number y such that 22 1y2 5 1, and when x 5 0, both y 5 21 and y 5 1 satisfy the equa-
tion 02 1y2 5 1. In general, we say that a “function” is not well defined if it fails to satisfy 
at least one of the requirements for being a function.

A Function That Is Not Well Defined

Recall that Q represents the set of all rational numbers. Suppose you read that a function  
f  : Q S Z is to be defined by the formula

f Sm
nD 5 m for all integers m and n with n Þ 0.

That is, the integer associated by f to the number 
m
n

 is m. Is f well defined? Why?

Solution The function f is not well defined. The reason is that fractions have more than 
one representation as quotients of integers. For instance, 12 5

3
6. Now if f were a function, 

Example 7.1.11

Example 7.1.12
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434  CHAPTER 7 PROPERTIES OF FUNCTIONS

then the definition of a function would imply that f  _12+ 5 _36+ since 12 5
3
6. But applying the 

formula for f, you find that

f S1

2D 5 1 and f S3

6D 5 3,

and so

f S1

2D Þ S3

6D.

This contradiction shows that f is not well defined and, therefore, is not a function. ■

Note that the phrase well-defined function is actually redundant; for a function to be 
well defined really means that it is worthy of being called a function.

Functions Acting on Sets
Given a function from a set X to a set Y, you can consider the set of images in Y of all the el-
ements in a subset of X and the set of inverse images in X of all the elements in a subset of Y.

Note For y [ Y, 
f 21(y) 5 f 21({y}).

Definition

If f  : X S Y is a function and A # X and C # Y , then

f  (A) 5 {y [ Y  u   y 5 f  (x) for some x in A}

and f  

21(C  ) 5 {x [ X u   f (x) [ C}.

f  (A) is called the image of A, and f  

21(C) is called the inverse image of C.

The Action of a Function on Subsets of a Set

Let X 5 {1, 2, 3, 4} and Y 5 {a, b, c, d, e}, and define F  : X S Y by the following arrow 
diagram:

a
b
c
d
e

1

2

3

4

Let A 5 {1, 4}, C 5 {a, b}, and D 5 {c, e}.  Find F(A), F(X), F 21(C), and F 21(D).

Solution

F (A) 5 {b} F (X  ) 5 {a, b, d} F21(C) 5 {1, 2, 4} F21(D) 5 [ 
 ■

Interaction of a Function with Union

Let X and Y be sets, let F be a function from X to Y, and let A and B be any subsets of X. 
Prove that F  (A ø B ) # F  (A) ø F  (B).

Example 7.1.13

Example 7.1.14
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Solution
The fact that X, Y, F, A, and B were formally introduced prior to the word “Prove” allows 
you to regard their existence and relationships as part of your background knowledge. 
Thus to prove that F (A ø B) # F (A) ø F (B), you only need show that if y is any element 
in F (A ø B), then y is an element of F (A) ø F (B).

Proof:
Suppose y [ F (A ø B). [We must show that y [ F  (A) ø F  (B).] By definition of function, 
y 5 F (x) for some x [ A ø B. By definition of union, x [ A or x [ B.

Case 1, x  A: In this case, y 5 F  (x) for some x in A. Hence y [ F (A), and so by definition 
of union, y [ F (A) ø F (B).

Case 2, x  B: In this case, y 5 F (x) for some x in B. Hence y [ F (B ), and so by definition 
of union, y [ F  (A) ø F  (B).

Thus in either case y [ F  (A) ø F  (B) [as was to be shown].  ■

Exercise 40 asks you to prove the opposite containment from the one in Example 7.1.14. 
Taken together, the example and the solution to the exercise establish the full equality that 
F (A ø B) 5 F (A) ø F (B).

1. Given a function f from a set X to a set Y, f (x)  
is  .

2. Given a function f from a set X to a set Y, if 
f (x) 5 y then y is called  or  or 

.

3. Given a function f from a set X to a set Y, the range 
of f (or the image of X under f   ) is .

4. Given a function f from a set X to a set Y, if 
f (x) 5 y then x is called  or .

5. Given a function f from a set X to a set Y, if y [ Y  
then f 21(y) 5  and is called .

6. Given functions f and g from a set X to a set Y, 
f 5 g if, and only if, .

7. Given positive real numbers x and b with b Þ 1, 
log b (x) 5 .

8. Given a function f from a set X to a set Y and a 
subset A of X, f (A) 5 .

9. Given a function f from a set X to a set Y and a 
subset C of Y, f 21(C) 5 .

TEST YOURSELF 
Answers to Test Yourself questions are located at the end of each section.

1. Let X 5 {1, 3, 5} and Y 5 {s, t, u, v}. Define  
f  : X S Y  by the following arrow diagram.

1
3
5

X Y

s
t
u

f

a. Write the domain of f and the co-domain of f.
b. Find f (1), f (3), and f (5).
c. What is the range of f ?
d. Is 3 an inverse image of s? Is 1 an inverse im-

age of u?
e. What is the inverse image of s? of u? of v?
f. Represent f as a set of ordered pairs. 

ExERCISE SET 7.1* 

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.
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436  CHAPTER 7 PROPERTIES OF FUNCTIONS

2. Let X 5 {1, 3, 5} and Y 5 {a, b, c, d}. Define  
g  : X S Y by the following arrow diagram.

1
3
5

X Y

a
b
c
d

g

a. Write the domain of g and the co-domain of g.
b. Find g (1), g (3), and g (5).
c. What is the range of g?
d. Is 3 an inverse image of a? Is 1 an inverse im-

age of b?
e. What is the inverse image of b? of c?
f. Represent g as a set of ordered pairs.

3. Indicate whether the statements in parts (a)–(d) 
are true or false for all functions. Justify your 
answers.
a. If two elements in the domain of a function are 

equal, then their images in the co-domain are 
equal.

b. If two elements in the co-domain of a function 
are equal, then their preimages in the domain 
are also equal.

c. A function can have the same output for more 
than one input.

d. A function can have the same input for more 
than one output.

4. a.  Find all functions from X 5 {a, b} to Y 5 {u, v}.
b. Find all functions from X 5 {a, b, c} to Y 5 {u}.
c. Find all functions from X 5 {a, b, c} to Y 5 {u, v}.

5. Let IZ be the identity function defined on the set 
of all integers, and suppose that e, bjk

i , K(t), and ukj 
all represent integers. Find the following:
a. IZ  (e) b. IZ 

(bjk
i ) c. IZ  (K(t)) d. IZ  (ukj)

6. Find functions defined on the set of nonnegative 
integers that can be used to define the sequences 
whose first six terms are given below.

a. 1, 2
1

3
, 

1

5
, 2

1

7
, 

1

9
, 2

1

11
 b. 0, 22, 4, 26, 8, 210

7. Let A 5 {1, 2, 3, 4, 5}, and define a function
F  : 3(A) S Z as follows: For each set X in 3(A),

F (X) 5 5 

0 if X has an even 
  number of elements

1 if X has an odd 
  number of elements.

Find the following:
a. F ({1, 3, 4})  b. F ([)
c. F ({2, 3}) d. F ({2, 3, 4, 5})

8. Let J5 5 {0, 1, 2, 3, 4}, and define a function 
F  : J5 S J5 as follows: For each x [ J5, F (x) 5
(x3 12x14) mod 5.
Find the following:
a. F (0)  b.  F (1)  c.  F (2)  d.  F (3)  e.  F (4)

9. Define a function S  : Z1 S Z1 as follows: For 
each positive integer n,

S  (n) 5 the sum of the positive divisors of n.

Find the following:
a. S  (1) b. S  (15) c. S  (17)
d. S  (5) e. S  (18) f. S  (21)

10. Let D be the set of all finite subsets of positive 
integers.

Define a function T  : Z1 S D as follows: For each 
positive integer n, T  (n) 5 the set of positive divi-
sors of n.

Find the following:
a. T   (1) b. T   (15) c. T  (17)
d. T   (5) e. T    (18) f. T   (21)

11. Define F  : Z 3 Z S Z 3 Z as follows: For every 
ordered pair (a, b) of integers, F(a, b) 5 (2a11,
3b22).

Find the following:
a. F (4, 4)  b.  F (2, 1)  c.  F (3, 2)  d.  F (1, 5)

12. Let J5 5 {0, 1, 2, 3, 4}, and define G  : J5 3 J5 S 
J5 3 J5 as follows: For each (a, b) [ J5 3 J5,

G (a, b) 5 ((2 a11) mod 5, (3b22) mod 5).

Find the following:
a. G (4, 4) b.   G (2, 1) c.   G (3, 2) d.   G (1, 5)

13.  Let J5 5 {0, 1, 2, 3, 4}, and define functions  
f  : J5 S J5 and g  : J5 S J5 as follows: For each  
x [ J5,

f (x) 5 (x14)2 mod 5 and 

g (x) 5 (x2 13x11) mod 5.

Is f 5 g? Explain.

14. Define functions H and K from R to R by the  
following formulas:

For every x [ R,

H (x) 5 :x;11 and K (x) 5 <x=.

Does H 5 K? Explain.
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7.1 FUNCTIONS DEFINED ON GENERal SETS  437

15. Let F and G be functions from the set of all real 
numbers to itself. Define the product functions  
F?G  : R S R and G?F  : R S R as follows: For 
every x [ R,

(F?G ) ( x) 5 F (x)?G (x)

(G?F  ) (x) 5 G  (x)?F (x).

Does F?G 5 G?F? Explain.

16. Let F and G be functions from the set of all 
real numbers to itself. Define new functions  
F2G  : R S R and G2F  : R S R as follows: For 
every x [ R,

(F2G ) (x) 5 F (x)2G (x)

(G2F  ) (x) 5 G  (x)2F (x).

Does F2G 5 G2F? Explain.

17. Use the definition of logarithm to fill in the blanks 
below.
a. log2 8 5 3 because .

b. log5 _ 1
25+ 5 22 because .

c. log4 4 5 1 because .
d. log3 (3

n) 5 n because .
e. log4 1 5 0 because .

18. Find exact values for each of the following quanti-
ties without using a calculator.
a. log3 81 b.  log2  1024 c.  log3 _ 1

27+
d. log2 1 e.  log10  

_ 1
10+ f.  log3 3

g. log2 (2
k)

19. Use the definition of logarithm to prove that for 
any positive real number b with b Þ 1, log b b 5 1.

20. Use the definition of logarithm to prove that for 
any positive real number b with b Þ 1, log b 1 5 0.

21. If b is any positive real number with b Þ 1 and x 

is any real number, b2x is defined as follows:

b2x 5
1

bx. Use this definition and the definition of 

logarithm to prove that log b S1
uD 5 2log b 

(u) 

for all positive real numbers u and b, with b Þ 1.

22. Use the unique factorization for the integers theo-
rem (Section 4.4) and the definition of logarithm 
to prove that log3 (7) is irrational.

23. If b and y are positive real numbers such that 
log b y 5 3, what is log1/b (y)? Explain.

24. If b and y are positive real numbers such that 
log b y 5 2, what is log b2

 
(y)? Explain.

25. Let A 5 {2, 3, 5} and B 5 {x, y}. Let p1 and p2 
be the projections of A 3 B onto the first and 
second coordinates. That is, for each pair  
(a, b) [ A 3 B, p1(a, b) 5 a and p2(a, b) 5 b.
a. Find p1(2, y) and p1(5, x). What is the range 

of p1?
b. Find p2(2, y) and p2(5, x). What is the range 

of p2?

26. Observe that mod and div can be defined as func-
tions from Znonneg 3 Z1 to Z. For each ordered 
pair (n, d) consisting of a nonnegative integer n 
and a positive integer d, let

mod (n, d) 5 n mod d (the nonnegative remainder
obtained when n is divided by d).

div (n, d) 5 n div d (the integer quotient
obtained when n is divided by d).

Find each of the following:
a. mod  (67, 10) and div  (67, 10)
b. mod  (59, 8) and div  (59, 8)
c. mod  (30, 5) and div  (30, 5)

27. Let S be the set of all strings of a’s and b’s.
a. Define f  : S S Z as follows: For each string s 

in S

f (s) 5 5
the number of b

,
s to the left

of the left{most a in s

0 if s contains no a,s.

Find f  (aba), f  (bbab), and f  (b). What is the 
range of f?

b. Define g  : S S S as follows: For each string s 
in S,

g(s) 5 the string obtained by writing the 
characters of s in reverse order.

Find g(aba), g(bbab), and g(b). What is the 
range of g?

28. Consider the coding and decoding functions E and 
D defined in Example 7.1.9.
a. Find E  (0110) and D  (111111000111).
b. Find E  (1010) and D  (000000111111).

29. Consider the Hamming distance function defined 
in Example 7.1.10.
a. Find H  (10101, 00011).
b. Find H  (00110, 10111).

H
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438  CHAPTER 7 PROPERTIES OF FUNCTIONS

30. Draw arrow diagrams for the Boolean functions 
defined by the following input/output tables.

a. Input Output

P Q R

1 1 0

1 0 1

0 1 0

0 0 1

b. Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1

31. Fill in the following table to show the values of all 
possible two-place Boolean functions.

Input f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

1 1

1 0

0 1

0 0

32. Consider the three-place Boolean function f defined 
by the following rule: For each triple (x1, x2, x3) of 
0’s and 1’s,

f (x1, x2, x3) 5 (4x1 13x2 12x3) mod 2.

a. Find f (1, 1, 1) and f (0, 0, 1).
b. Describe f using an input/output table.

33. Student A tries to define a function g  : Q S Z by 
the rule

gSm
nD 5 m2n,  for all integers m and n with n Þ 0.

Student B claims that g is not well defined. Justify 
student B’s claim.

34. Student C tries to define a function h  : Q S Q by 
the rule

hSm
nD 5

m2

n
, for all integers m and n with n Þ 0.

Student D claims that h is not well defined. Justify 
student D’s claim.

35. Let U 5 {1, 2, 3, 4}. Student A tries to define a 
function R  : U S Z as follows: For each x [ U,

R(x) is the integer y so that (xy) mod 5 5 1.

Student B claims that R is not well defined. Who 
is correct: student A or student B? Justify your 
answer.

36. Let V 5 {1, 2, 3}. Student C tries to define a func-
tion S  : V S V as follows: For each x [ V ,

S(x) is the integer y in V so that (xy) mod 4 5 1.

Student D claims that S is not well defined. Who is 
right: student C or student D? Justify your answer.

37. On certain computers the integer data type goes 
from 22,147,483,648 through 2,147,483,647. Let 
S be the set of all integers from 22,147,483,648 
through 2,147,483,647. Try to define a function  
f  : S S S by the rule f (n) 5 n2 for each n in S. Is f 
well defined? Explain.

38. Let X 5 {a, b, c} and Y 5 {r, s, t, u, v, w}. Define  
f  : X S Y as follows: f (a) 5 v, f (b) 5 v, and 
f (c) 5 t.
a. Draw an arrow diagram for f.
b. Let A 5 {a, b}, C 5 {t}, D 5 {u, v}, and 

E 5 {r, s}. Find f (A), f (X), f 21(C), f 21(D), 
f 21(E), and f 21(Y).

39. Let X 5 {1, 2, 3, 4} and Y 5 {a, b, c, d, e}.  
Define g  : X S Y as follows: g(1) 5 a, g(2) 5 a, 
g(3) 5 a, and g(4) 5 d.
a. Draw an arrow diagram for g.
b. Let A 5 {2, 3}, C 5 {a}, and D 5 {b, c}. Find 

g(A), g(X), g21(C), g21(D), and g21(Y).

40. Let X and Y be sets, let A and B be any sub-
sets of X, and let F be a function from X to Y. 
Fill in the blanks in the following proof that 
F (A) ø F (B) # F (A ø B).

Proof: Let y be any element in F(A) ø F(B). [We 
must show that y is in F(A ø B).] By definition of 
union, .

Case 1, y  F(A): In this case, by definition of 
F(A), y 5 F(x) for  x [ A. Since A # A ø B, 

H

(i)

(ii)
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7.2 ONE-TO-ONE, ONTO, aND INvERSE FUNCTIONS  439

it follows from the definition of union that  
x [  . Hence, y 5 F (x) for some x [ A ø B, 
and thus, by definition of F(A ø B), y [  .

Case 2, y  F(B): In this case, by definition of  
F (B),  for some x [ B. Since B # A ø B it 
follows from the definition of union that . Thus  
y [ F (A ø B).

Therefore, regardless of whether y [ F(A) or 
y [ F(B), we have that y [ F(A ø B) [as was to  
be shown]. 

In 41–49 let X and Y be sets, let A and B be any subsets of 
X, and let C and D be any subsets of Y. Determine which 
of the properties are true for every function F from X to Y 
and which are false for at least one function F from X to Y. 
Justify your answers.

41. If A # B then F (A) # F (B).

42. F (A ù B ) # F (A) ù F (B)

43. F (A) ù F (B) # F (A ù B)

44. For all subsets A and B of X, F(A2B) 5
F(A)2F(B).

45. For all subsets C and D of Y, if C # D, then

F  

21(C) # F  

21(D).

46. For all subsets C and D of Y,

F  

21(C ø D) 5 F 

21(C) ø F  

21(D).

47. For all subsets C and D of Y,

F  

21(C ù D) 5 F  

21(C) ù F  

21(D).

48. For all subsets C and D of Y,

F  

21(C2D) 5 F  

21(C)2F  

21(D).

49. F (F  

21(C)) # C

50. Given a set S and a subset A, the characteristic 
function of A, denoted xA, is the function defined 
from S to Z with the property that for each u [ S,

xA(u) 5 51 if u [ A

0 if u Ó A.

Show that each of the following holds for all sub-
sets A and B of S and every u [ S.
a. xAùB(u) 5 xA(u)?xB(u)
b. xAøB(u) 5 xA(u)1xB(u)2xA(u)?xB(u)

Each of exercises 51–53 refers to the Euler phi function, 
denoted f, which is defined as follows: For each integer  
n $ 1, f(n) is the number of positive integers less than or 
equal to n that have no common factors with n except 61.  
For example, f(10) 5 4 because there are four positive 
integers less than or equal to 10 that have no common 
factors with 10 except 61—namely, 1, 3, 7, and 9.

51. Find each of the following:
a. f(15) b. f(2) c. f(5)
d. f(12) e. f(11) f. f(1)

52. Prove that if p is a prime number and n is an inte-
ger with n $ 1, then f(pn) 5 pn 2pn−1.

53. Prove that there are infinitely many integers n for 
which f(n) is a perfect square. 

(iii)
(iv)

(v)
(vi)

H

H

1. the unique output element in Y that is related to x by f  
2. the value of f at x; the image of x under f; the output of f 
for the input x 3. the set of all y in Y such that f (x) 5 y  
4. an inverse image of y under f; a preimage of y  
5. {x [ X u f (x) 5 y}; the inverse image of y 6. f (x) 5 g(x) 

for every x [ X 7. the exponent to which b must be raised 
to obtain x (Or  : the real number y such that x 5 by)  
8. {y [ Y u y 5 f (x) for some x [ A} (Or  : {f (x) u x [ A})  
9. {x [ X u f (x) [ C}

ANSWERS FOR TEST YOURSELF 

One-to-One, Onto, and Inverse Functions
Don’t accept a statement just because it is printed. —Anna Pell Wheeler, 1883–1966

In this section we discuss two important properties that functions may satisfy: the property 
of being one-to-one and the property of being onto. Functions that satisfy both properties 
are called one-to-one correspondences or one-to-one onto functions. When a function is a 
one-to-one correspondence, the elements of its domain and co-domain match up perfectly, 

7.2
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440  CHAPTER 7 PROPERTIES OF FUNCTIONS

and we can define an inverse function from the co-domain to the domain that “undoes” 
the action of the function.

One-to-One Functions
In Section 7.1 we noted that a function may send several elements of its domain to the same 
element of its co-domain. In terms of arrow diagrams, this means that two or more arrows 
that start in the domain can point to the same element in the co-domain. On the other hand, 
if no two arrows that start in the domain point to the same element of the co-domain then 
the function is called one-to-one or injective. For a one-to-one function, each element of 
the co-domain is the image of at most one element of the domain.

Definition

Let F be a function from a set X to a set Y. F is one-to-one (or injective) if, and only 
if, for all elements x1 and x2 in X,

if F (x1) 5 F (x2), then x1 5 x2,

or, equivalently, if x1 Þ x2, then F  (x1) Þ F  (x2).

Symbolically:

F: X S Y is one-to-one 3 5x1, x2 [ X, if F  (x1) 5 F  (x2) then x1 5 x2.

To obtain a precise statement of what it means for a function not to be one-to-one, take 
the negation of one of the equivalent versions of the definition above. Thus:

 A function F: X S Y is not one{to{one 3 E elements x1 and x2 in X with

 F(x1) 5 F(x2) and x1 Þ x2.

In other words, if elements x1 and x2 can be found that have the same function value but 
are not equal, then F is not one-to-one.

In terms of arrow diagrams, a one-to-one function can be thought of as a function that 
separates points. That is, it takes distinct points of the domain to distinct points of the co-
domain. A function that is not one-to-one fails to separate points. In other words, at least 
two points of the domain are taken to the same point of the co-domain. This distinction is 
illustrated in Figures 7.2.1(a) and 7.2.1(b).

x1

x2

F(x1)

F(x2)

Any two distinct elements
of X are sent to two
distinct elements of Y.

X = domain of F Y = co-domain of FF

FIGURE 7.2.1(a) A One-to-One Function Separates Points

x1

x2
F(x1) = F(x2)

Two distinct elements
of X are sent to
the same element of Y.

X = domain of F Y = co-domain of FF

FIGURE 7.2.1(b) A Function That Is Not One-to-One Collapses Points Together
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Identifying One-to-One Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

a
b
c
d

F
u

x
y

Domain of F Co-domain of F

X Y

a
b
c
d

G
u

x
y

Domain of G Co-domain of G

X Y

FIGURE 7.2.2

b. Let X 5 {1, 2, 3} and Y 5 {a, b, c, d}. Define H: X S Y as follows: H (1) 5 c, 
H  (2) 5 a, and H (3) 5 d. Define K: X S Y as follows: K (1) 5 d, K (2) 5 b, and 
K (3) 5 d. Is either H or K one-to-one? 

Solution

a. F is one-to-one but G is not. F is one-to-one because no two different elements of X 
are sent by F to the same element of Y. G is not one-to-one because the elements a and 
c are both sent by G to the same element of Y: G(a) 5 G(c) 5 w but a Þ c.

b. H is one-to-one but K is not. H is one-to-one because each of the three elements of 
the domain of H is sent by H to a different element of the co-domain: H(1) Þ H(2), 
H(1) Þ H(3), and H(2) Þ H(3). K, however, is not one-to-one because K(1) 5 K(3) 5 d 
but 1 Þ 3.  ■

Consider the problem of writing a computer algorithm to check whether a function 
F is one-to-one. If F is defined on a finite set and there is an independent algorithm 
or a table of values for F, then an algorithm to check whether F is one-to-one can 
be written as follows: Represent the domain of F as a one-dimensional array a[1],  
a[2], Á , a[n] and use a nested loop to examine all possible pairs (a[i], a[ j]), where 
i , j. If there is a pair (a[i], a[ j]) for which F(a[i]) 5 F(a[j]) and a[i] Þ a[j], then F is 
not one-to-one. If, however, all pairs have been examined without finding such a pair, 
then F is one-to-one. You are asked to write such an algorithm in exercise 57 at the 
end of this section.

One-to-One Functions on Infinite Sets
Now suppose f is a function defined on an infinite set X. By definition, f is one-to-one if, 
and only if, the following universal statement is true:

5x1, x2 [ X, if f (x1) 5 f (x2) then x1 5 x2.

Thus, to prove f is one-to-one, you will generally use the method of direct proof:

suppose x1 and x2 are elements of X such that f (x1) 5 f (x2)

and show that x1 5 x2.

To show that f is not one-to-one, you will ordinarily

find elements x1 and x2 in X so that f (x1) 5 f (x2) but x1 Þ x2.

Example 7.2.1

94193_ch07_ptg01.indd   441 12/11/18   5:14 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



442  CHAPTER 7 PROPERTIES OF FUNCTIONS

Proving or Disproving That Functions Are One-to-One

Define f : R S R and g : Z S Z by the rules

f (x) 5 4x21 for all x [ R

and g(n) 5 n2 for all n [ Z.

a. Is f one-to-one? Prove or give a counterexample.

b. Is g one-to-one? Prove or give a counterexample.

Solution It is usually best to start by taking a positive approach to answering ques-
tions like these. Try to prove the given functions are one-to-one and see whether you run 
into difficulty. If you finish without running into any problems, then you have a proof. 
If you do encounter a problem, then analyzing the problem may lead you to discover a 
counterexample.

a. The function f: R S R is defined by the rule

f  (x) 5 4x21  for each real number x.

To prove that f is one-to-one, you need to prove that

5 real numbers x1 and x2, if f (x1) 5 f (x2) then x1 5 x2.

Substituting the definition of f into the outline of a direct proof, you

suppose x1 and x2 are any real numbers such that 4x1 21 5 4x2 21,

and show that x1 5 x2.

Can you reach what is to be shown from the supposition? Yes. Just add 1 to both sides 
of the equation in the supposition and then divide both sides by 4.

This discussion is summarized in the following formal answer.

Example 7.2.2

Answer to (a):

If the function f : R S R is defined by the rule f (x) 5 4x21, for each real num-
ber x, then f is one-to-one.

Proof: Suppose x1 and x2 are real numbers such that f (x1) 5 f (x2). [We must show 
that x1 5 x2.] By definition of f,

4x1 21 5 4x2 21.

Adding 1 to both sides gives

4x1 5 4x2,

and dividing both sides by 4 gives

x1 5 x2,

[as was to be shown].
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b. The function g: Z S Z is defined by the rule

g(n) 5 n2 for each integer n.

As above, you start as though you were going to prove that g is one-to-one. Substitut-
ing the definition of g into the outline of a direct proof, you

suppose n1 and n2 are integers such that n2
1 5 n2

2,

and try to show that n1 5 n2.

Can you reach what is to be shown from the supposition? No! It is quite possible for 
two numbers to have the same squares and yet be different. For example, 22 5 (22)2 
but 2 Þ 22.

Thus, in trying to prove that g is one-to-one, you run into difficulty. But analyzing 
this difficulty leads to the discovery of a counterexample, which shows that g is not 
one-to-one.

This discussion is summarized as follows:

Answer to (b):

If the function g: Z S Z is defined by the rule g(n) 5 n2, for all n [ Z, then g is 
not one-to-one.

Counterexample:
Let n1 5 2 and n2 5 22. Then by definition of g,

g(n1) 5 g(2) 5 22 5 4 and also

g(n2) 5 g(22) 5 (22)2 5 4.

Hence g(n1) 5 g(n2) but n1 Þ n2, 

and so g is not one-to-one.

 ■

Application: Hash Functions 
Imagine a university with 10,000 students each with a nine-digit ID number, which the 
university plans to link to student records. Placing the record with ID number n in position 
n of an array would waste computer memory space because only a small fraction of the 
billion possible nine-digit ID numbers are needed for the 10,000 students. 

Definition: Hash Function

A hash function is a function defined from a larger, possibly infinite, set of data to 
a smaller fixed-size set of integers.

To make it efficient for the university to store the records, a hash function is needed that 
(1) is one-to-one and (2) has a co-domain that is very much smaller than one billion. Most 
hash functions are modifications of mod functions and are defined using prime numbers 
to increase the chance that their values will be scattered rather than clustered together. In 
addition, making their co-domains 50% to 100% larger than their domains makes it more 

94193_ch07_ptg01.indd   443 12/11/18   5:14 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



444  CHAPTER 7 PROPERTIES OF FUNCTIONS

likely that they will be one-to-one. Nonetheless, two input values may collide, that is, have 
the same output value, and various methods are used to avoid such a collision. One of these 
is illustrated in the following very much simplified example to address the university’s 
situation.  

Computing Values of a Hash Function

Instead of 10,000 students, suppose there are only 6. Define a function H, from the set of 
student ID numbers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} as follows:

H(n) 5 n mod 11 for each ID number n.

To compute values of H either use a calculator or a computer with a built-in mod function 
or use the formula n mod 11 5 n2 (n div 11) from Section 4.5. In other words, divide n 
by 11, multiply the integer part of the result by 11, and subtract that number from n. As an 
example, since 328343419/11 5 29849401.73.

H(328343419) 5 3283434192 (11?29849401) 5 8

To store the link to the record for the student with ID number n, start by computing H(n). 
For instance, if the ID numbers are 328343419, 356633102, 223799061, and 513408716, the 
corresponding H-values are as shown in Table 7.2.1.

TABLE 7.2.1

0

356633102 1

223799061 2

3

4

5

6

513408716 7

328343419 8

9

10

As noted above, H may not be one-to-one: two different ID numbers could have the 
same H-value. But because it is important for each value in the table to link to a single 
student record, a collision resolution method is needed. One of the simplest, called a 
linear probe, works as follows: If H(n) is already occupied when a new student ID number 
is input, start from H(n) in the table and search downward to put a link for the student’s 
record in the first empty position that occurs; if no empty positions remain going down, go 
up to the beginning of the table and search from there. Because 11 is greater than 6, empty 
positions are guaranteed.

Suppose the ID number for another student is 607275830. Find the position in the table 
for this number.

Example 7.2.3
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Solution When you compute H(607275830) you find that it equals 7, which is already 
occupied by the link to the record for ID number 513408716. Searching downward from 
position 7, you find that position 8 is also occupied but position 9 is free.

607275830 S  7 S  8 S  9
 c  c  c
 occupied occupied free

Therefore, you put the link for the record with ID number 607275830 in position 9. ■

A special class of hash functions, known as cryptographic hash functions, is used to 
secure digital data. A cryptographic hash function is designed to satisfy the following 
conditions:

1. It is a function from bit strings to bit strings of a fixed length.

2. It is close to being one-to-one: the probability of collisions is very small.

3. It is close to being a one-way function: given any bit string in its range, finding the in-
verse image of the string is computationally very difficult.

4. Its values can be quickly computed.

5. A very slight change in an input string results in an extensive change in the output string.

One use of cryptographic hash functions is to provide password security. Passwords in a 
company’s user account file are almost never stored as “clear” text. A basic protection is to 
apply a cryptographic hash function to the passwords, or to a combination consisting of the 
passwords plus extra content provided by the company, and to store only the values of the hash 
function, called the hashes. To log in, a user keys in a password, which is immediately hashed 
(meaning that its value is input to the hash function), and the result is compared to the hash 
stored in the account file. In order to complete the login process, the two hashes have to agree.

A somewhat similar kind of hashing is used for checking the integrity of files. When 
a file is intended to be copied, a cryptographic hash function is applied to it. The accu-
racy of a copy is checked by applying the same hash function. If the two hashes agree, 
the copy is accepted. Similarly, when A needs to send a file through a possibly insecure 
network to B, A can first apply a cryptographic hash function to the file. Then A sends 
the hash separately to B through a secure network, and when B receives the file, B applies 
the same hash function to it that A used. B compares the result with the hash received 
from A, and if the two agree, B can have confidence that the file was unchanged during 
transmission.

Cryptographic hash functions are also used in blockchain technology. A blockchain is a 
public register on the Internet made up of linked blocks consisting of records or programs. To 
make it impossible to change the data in any part of a block, each includes a time stamp plus a 
hash computed from all the previous parts of the blockchain. To keep the system operating at a 
reasonable pace and to validate additions, a time-consuming proof of work is required to add a 
block to the blockchain. A commonly used proof of work requires a programmer to use repeat-
ed random trials, to discover the input that needs to be added to the data in the blockchain so that 
when the two are hashed together the output will contain a specified number of initial zeroes.

Onto Functions
It was noted in Section 7.1 that there may be an element of the co-domain of a function 
that is not the image of any element in the domain. On the other hand, it is possible for 
every element in a function’s co-domain to be the image of some element in its domain. 
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Such a function is called onto or surjective. When a function is onto, its range is equal to 
its co-domain.

Definition

Let F be a function from a set X to a set Y. F is onto (or surjective) if, and only if, 
given any element y in Y, it is possible to find an element x in X with the property 
that y 5 F (x).

Symbolically:

F: X S Y is onto 3  5y [ Y, E  x [ X such that F (x) 5 y.

To obtain a precise statement of what it means for a function not to be onto, take the 
negation of the definition of onto:

F: X S Y is not onto 3  E y in Y such that 5x [ X, F (x) Þ y.

That is, there is some element in Y that is not the image of any element in X.
In terms of arrow diagrams, a function is onto if each element of the co-domain has an 

arrow pointing to it from some element of the domain. A function is not onto if at least one 
element in its co-domain does not have an arrow pointing to it. This is illustrated in Figures 
7.2.3(a) and 7.2.3(b).

X = domain of F Y = co-domain of FF

y = F(x)

Each element y in
Y equals F(x) for
at least one x in X.

x

FIGURE 7.2.3(a) A Function That Is Onto

X = domain of F Y = co-domain of FF

At least one element in Y
does not equal F(x)
for any x in X.

FIGURE 7.2.3(b) A Function That Is Not Onto

Identifying Onto Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

a
b
c
d

1
2
3
4
5

Domain of F Co-domain of F

F
a
b
c
d

1
2
3
4
5

Domain of G Co-domain of G

X Y X Y
G

FIGURE 7.2.4

Example 7.2.4
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b. Let X 5 {1, 2, 3, 4} and Y 5 {a, b, c}. Define H : X S Y as follows: H (1) 5 c, 
H  (2) 5 a, H (3) 5 c, H (4) 5 b. Define K : X S Y as follows: K (1) 5 c, K (2) 5 b, 
K (3) 5 b, and K (4) 5 c. Is either H or K onto? 

Solution

a. F is not onto because b Þ F(x) for any x in X. G is onto because each element of Y 
equals G(x) for some x in X : a 5 G  (3), b 5 G  (1), c 5 G (2) 5 G (4), and d 5 G  (5).

b. H is onto but K is not. H is onto because each of the three elements of the co-domain 
of H is the image of some element of the domain of H : a 5 H (2), b 5 H (4), and 
c 5 H(1) 5 H (3). K, however, is not onto because a Þ K(x) for any x in {1, 2, 3, 4}.

 ■

It is possible to write a computer algorithm to check whether a function F is onto, pro-
vided F is defined from a finite set X to a finite set Y and there is an independent algorithm 
or table of values for F. Represent X and Y as one-dimensional arrays a[1], a[2], . . . , a[n] 
and b[1], b[2], . . . , b[m], respectively. Use a nested loop to pick each element y of Y in turn, 
and search through the elements of X to find an x such that y is the image of x. If any search 
is unsuccessful, then F is not onto. If each such search is successful, then F is onto. You are 
asked to write such an algorithm in exercise 58 at the end of this section.

Onto Functions on Infinite Sets
Now suppose F is a function from a set X to a set Y, and suppose Y is infinite. By definition, 
F is onto if, and only if, the following universal statement is true:

5y [ Y, E x [ X such that F (x) 5 y.

Thus to prove F is onto, you will ordinarily use the method of generalizing from the ge-
neric particular:

suppose that y is any element of Y

and show that there is an element x in X with F (x) 5 y.

To prove F is not onto, you will usually

find an element y of Y such that y Þ F(x) for any x in X. 

Proving or Disproving That Functions Are Onto

Define f : R S R and h : Z S Z by the rules

f (x) 5 4x21 for each x [ R

and h(n) 5 4n21 for each n [ Z.

a. Is f onto? Prove or give a counterexample.

b. Is h onto? Prove or give a counterexample. 

Solution

a. The best approach is to start trying to prove that f is onto and be alert for difficulties 
that might indicate that it is not. Now f : R S R is the function defined by the rule

f (x) 5 4x21 for each real number x.

Example 7.2.5
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To prove that f is onto, you must prove

5y [ Y, E x [ X such that f (x) 5 y.

Substituting the definition of f into the outline of a proof by the method of generalizing 
from the generic particular, you

 suppose y is a real number

and show that there exists a real number x such that y 5 4x21.

Scratch Work: If such a real number x exists, then

 4x21 5 y

 4x 5 y11 by adding 1 to both sides

 x 5
y11

4
 by dividing both sides by 4.

Thus if such a number x exists, it must equal (y11)/4. Does such a number exist? Yes. 
To show this, let x 5 (y11)/4, and then make sure that (1) x is a real number and that (2) 
f really does send x to y. The following formal answer summarizes this process.

Answer to (a):

If f  : R S R is the function defined by the rule f (x) 5 4x21 for each real num-
ber x, then f is onto.

Proof: Let y [ R. [We must show that E x in R such that f (x) 5 y.] Let x 5 (y11)/4. 
Then x is a real number since sums and quotients (other than by 0) of real num-
bers are real numbers. It follows that

  f (x) 5 f  1y11

4 2    by substitution

 5 4?1y11

4 221  by definition of f

 5 (y11)21 5 y by basic algebra,

[as was to be shown].

b. The function h : Z S Z is defined by the rule

h(n) 5 4n21 for each integer n.

To prove that h is onto, you must prove that

5 integer m, E an integer n such that h(n) 5 m.

Substituting the definition of h into the outline of a proof by the method of generaliz-
ing from the generic particular shows that you need to

 suppose m is any integer

and show that there is an integer n with 4n21 5 m.

!
Caution! This scratch 
work only proves what x 
has to be if it exists. The 
scratch work does not 
prove that x exists.
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Can you reach what is to be shown from the supposition? No! If 4n21 5 m, 

 n 5
m11

4
 by adding 1 and dividing by 4.

But n must be an integer. And when, for example, m 5 0, 

n 5
011

4
5

1

4
,

which is not an integer.
Thus, in trying to prove that h is onto, you run into difficulty, and this difficulty 

reveals a counterexample that shows h is not onto.
This discussion is summarized in the following formal answer.

Answer to (b):

If the function h : Z S Z is defined by the rule h(n) 5 4n21 for each integer n, 
then h is not onto.

Counterexample: The co-domain of h is Z and 0 [ Z. But h(n) Þ 0 for any 
integer n. For if h(n) 5 0, then

 4n21 5 0 by definition of h

which implies that

 4n 5 1 by adding 1 to both sides

and so

 n 5
1

4
 by dividing both sides by 4.

But 
1

4
 is not an integer. Hence there is no integer n for which f (n) 5 0, and thus 

f is not onto.

 ■

Relations between Exponential and Logarithmic Functions
For positive numbers b Þ 1, the exponential function with base b, denoted expb, is the 
function from R to R1 defined as follows: For each real number x,

expb(x) 5 bx,

where b0 5 1 and b2x 5 1/bx.
When working with the exponential function, it is useful to recall the laws of exponents 

from elementary algebra.

Laws of Exponents

If b and c are any positive real numbers and u and v are any real numbers, the fol-
lowing laws of exponents hold true:

 bu bv 5 bu1v 7.2.1

 (bu)v 5 buv 7.2.2

  
bu

bu 5 bu2v 7.2.3

 (bc)u 5 bucu 7.2.4

Note That the quantity 
bx is a real number for 
any real number x follows 
from the least-upper-
bound property of the 
real number system. (See 
Appendix A.)
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In Section 7.1 the logarithmic function with base b was defined for any positive number 
b Þ 1 to be the function from R1 to R with the property that for each positive real number x,

logb 
(x) 5 the exponent to which b must be raised to obtain x.

Or, equivalently, for each positive real number x and real number y,

logb x 5 y 3  by 5 x.

It can be shown using calculus that both the exponential and logarithmic functions are one-
to-one and onto. Therefore, by definition of one-to-one, the following properties hold true:

For any positive real number b with b Þ 1,

 if bu 5 bv then u 5 v for all real numbers u and v, 7.2.5

and

 if logb 
u 5 logb 

v then u 5 v for all positive real numbers u and v. 7.2.6

These properties are used to derive many additional facts about exponents and logarithms. 
In particular we have the following properties of logarithms.

Theorem 7.2.1 Properties of Logarithms

For any positive real numbers b, c, x, and y with b Þ 1 and c Þ 1 and for every real 
number a:

a. logb 
(xy) 5 logb  

x1 logb  
y

b. logb 1x
y2 5 logb  

x2 logb  
y

c.  logb 
(xa) 5 a logb  

x

d. log c  
x 5

logb  
x

logb 
c

Theorem 7.2.1(d) is proved in the next example. You are asked to prove the remainder 
of the theorem in exercises 33–35 at the end of this section.

Using the One-to-Oneness of the Exponential Function

Use the definition of logarithm, the laws of exponents, and the one-to-oneness of the ex-
ponential function (property 7.2.5) to prove part (d) of Theorem 7.2.1: For any positive real 
numbers b, c, and x, with b Þ 1 and c Þ 1,

log c  
x 5

logb  
x

logb 
c

.

Solution Suppose positive real numbers b, c, and x are given with b Þ 1 and c Þ 1. Let

(1) u 5 log b 
c   (2) v 5 log c  

x   (3) w 5 logb x.

Example 7.2.6
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Then, by definition of logarithm,

(19) c 5 bu   (29) x 5 cv   (39) x 5 bw.

Substituting (19) into (29) and using one of the laws of exponents gives

x 5 cv 5 (bu)v 5 buv by 7.2.2.

Now by (3), x 5 bw also. Hence

buv 5 bw,

and so by the one-to-oneness of the exponential function (property 7.2.5),

uv 5 w.

Substituting from (1), (2), and (3) gives that

(logb 
c)(logc  

x) 5  logb  
x.

And dividing both sides by logb 
c (which is nonzero because c Þ 1) results in

  log c  
x 5

 logb  
x

 logb 
c

. ■

Computing Logarithms with Base 2 on a Calculator

In computer science it is often necessary to compute logarithms with base 2. Most calcu-
lators do not have keys to compute logarithms with base 2 but do have keys to compute 
logarithms with base 10 (called common logarithms and often denoted simply log) and 
logarithms with base e (called natural logarithms and usually denoted ln). Suppose your 
calculator shows that ln 5 > 1.609437912 and ln 2 > 0.6931471806. Use Theorem 7.2.1(d) 
to find an approximate value for log2 5.

Solution By Theorem 7.2.1(d),

 log2 5 5
ln 5

ln 2
>

1.609437912

0.6931471806
> 2.321928095. ■

One-to-One Correspondences
Consider a function F : X S Y that is both one-to-one and onto. Given any element x in X, 
there is a unique corresponding element y 5 F(x) in Y (since F is a function). Also given 
any element y in Y, there is an element x in X such that F(x) 5 y (since F is onto) and there 
is only one such x (since F is one-to-one). Thus, a function that is one-to-one and onto sets 
up a pairing between the elements of X and the elements of Y that matches each element of 
X with exactly one element of Y and each element of Y with exactly one element of X. Such 
a pairing is called a one-to-one correspondence or bijection and is illustrated by the arrow 
diagram in Figure 7.2.5. One-to-one correspondences are often used as aids to counting. 
The pairing of Figure 7.2.5, for example, shows that there are five elements in the set X.

a
b
c
d
e

1
2
3
4
5

X = domain of F Y = co-domain of F
F

FIGURE 7.2.5 An Arrow Diagram for a One-to-One Correspondence

Example 7.2.7
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Definition

A one-to-one correspondence (or bijection) from a set X to a set Y is a function  
F: X S Y that is both one-to-one and onto.

A Function from a Power Set to a Set of Strings

Let 3({a, b}) be the set of all subsets of {a, b} and let S be the set of all strings of length 
2 made up of 0’s and 1’s. Then 3({a, b}) 5 {[, {a}, {b}, {a, b}} and S 5 {00, 01, 10, 11}. 
Define a function h from 3({a, b}) to S as follows: Given any subset A of {a, b}, a is either 
in A or not in A, and b is either in A or not in A. If a is in A, write a 1 in the first position 
of the string h(A); otherwise write a 0 there. Similarly, if b is in A, write a 1 in the second 
position of the string h(A); otherwise write a 0 there. This definition is summarized in the 
following table.

h

Subset A of {a, b} Status of a in A Status of b in A String h(A) in S

[ not in not in 00

{a} in not in 10

{b} not in in 01

{a, b} in in 11

Is h a one-to-one correspondence?

Solution The arrow diagram shown in Figure 7.2.6 shows clearly that h is a one-to-one 
correspondence. It is onto because each element of S has an arrow pointing to it. It is one-
to-one because each element of S has no more than one arrow pointing to it.

{a}
{b}

{a, b}

00
10
01
11

S
h

({a, b})

FIGURE 7.2.6

 ■

A String-Reversing Function

Let T be the set of all finite strings of x’s and y’s. Define g : T S T by the following rule: 
For each string s [ T,

 g(s) 5  the string obtained by writing the 
characters of s in reverse order.

Is g a one-to-one correspondence from T to itself?

Solution The answer is yes. To show that g is a one-to-one correspondence, it is neces-
sary to show that g is one-to-one and onto.

To see that g is one-to-one, suppose that for some strings s1 and s2 in T, g(s1) 5 g(s2). [We 
must show that s1 5 s2.] Now to say that g(s1) 5 g(s2) is the same as saying that the string 

Example 7.2.8

Example 7.2.9
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obtained by writing the characters of s1 in reverse order equals the string obtained by writ-
ing the characters of s2 in reverse order. But if s1 and s2 are equal when written in reverse 
order, then they must be equal to start with. In other words, s1 5 s2 [as was to be shown].

To show that g is onto, suppose t is any string in T. [We must find a string s in T such that 
g(s) 5 t.] Let s 5 g(t). By definition of g, s 5 g(t) is the string in T obtained by writing the 
characters of t in reverse order. But when the order of the characters of a string is reversed 
once and then reversed again, the original string is recovered. Thus

g(s) 5 g(g(t)) 5  the string obtained by writing the characters 
of t in reverse order and then writing those 
characters in reverse order again 

   5 t,

[as was to be shown]. ■

A Function of Two Variables

Define a function F : R 3 R S R 3 R as follows: For every (x, y) [ R 3 R,

F(x, y) 5 (x1y, x2y).

Is F a one-to-one correspondence from R 3 R to itself?

Solution The answer is yes. Showing that F is a one-to-one correspondence requires 
showing both that F is one-to-one and that F is onto.

Proof that F is one-to-one: Suppose that (x1, y1) and (x2, y2) are any ordered pairs in 
R 3 R such that

F(x1, y1) 5 F(x2, y2).

[We must show that (x1, y1) 5 (x2, y2).] By definition of F,

(x1 1y1, x1 2y1) 5 (x2 1y2, x2 2y2).

For two ordered pairs to be equal, both the first and second components must be equal. 
Thus x1, y1, x2, and y2 satisfy the following system of equations:

 x1 1y1 5 x2 1y2 (1)

 x1 2y1 5 x2 2y2. (2)

Adding equations (1) and (2) gives that

2x1 5 2x2, and so x1 5 x2.

Substituting x1 5 x2 into equation (1) yields

x1 1y1 5 x1 1y2, and so y1 5 y2.

Thus, by definition of equality of ordered pairs, (x1, y1) 5 (x2, y2) [as was to be shown].

Scratch work for the proof that F is onto: To prove that F is onto, suppose that you have 
any ordered pair—say (u, v)—in the co-domain R 3 R and then show that there is an 
ordered pair in the domain that is sent to (u, v) by F. To do this, suppose provisionally that 
you have found such an ordered pair, say (r, s). Then, on the one hand,

F(r, s) 5 (u, v)   because you are supposing  
that F sends (r, s) to (u, v)

Example 7.2.10

!
Caution! This scratch 
work only shows what 
(r, s) has to be if it exists. 
The scratch work does not 
prove that (r, s) exists.
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454  CHAPTER 7 PROPERTIES OF FUNCTIONS

and, on the other hand,

F(r, s) 5 (r1 s, r2 s) by definition of F.

Equating the right-hand sides of these two equations gives

(r1 s, r2 s) 5 (u, v).

By definition of equality of ordered pairs this means that

  r1 s 5 u (1)

  r2 s 5 v. (2)

To solve for r and s in terms of u and v, first add equations (1) and (2) to get

2r 5 u1v, and so r 5
u1v

2
.

Then subtract equation (2) from equation (1) to obtain

2s 5 u2v, and so s 5
u2v

2
.

Thus, if F sends (r, s) to (u, v), then r 5
(u 1 v)

2  and s 5
(u 2 v)

2 . To turn this scratch work into 

a proof, you need to make sure that (1) _u 1 v
2 , u 2 v

2 + is in the domain of F, and (2) that F re-

ally does send _u 1 v
2 , u 2 v

2 + to (u, v).

Proof that F is onto: Suppose (u, v) is any ordered pair in the co-domain of F. [We will 
show that there is an ordered pair in the domain of F that is sent to (u, v) by F.] Let

 r 5
u1v

2
 and s 5

u2v

2
.

Then (r, s) is an ordered pair of real numbers, and so it is in the domain of F. In addition:

   F (r, s) 5 F 1u1v

2
, 

u2v

2 2 by substitution

   5 1u1v

2
1

u2v

2
, 

u1v

2
2

u2v

2 2 by definition of F

   5 1u1v1u2v

2
, 

u1v2u1v

2 2
   5 12u

2
, 

2v

2 2
   5 (u, v) by algebra

[as was to be shown]. ■

Inverse Functions
If F is a one-to-one correspondence from a set X to a set Y, then there is a function from Y 
to X that “undoes” the action of F; that is, it sends each element of Y back to the element of 
X that it came from. This function is called the inverse function for F.
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7.2 ONE-TO-ONE, ONTO, aND INvERSE FUNCTIONS  455

Theorem 7.2.2

Suppose F : X S Y is a one-to-one correspondence; in other words, suppose F is 
one-to-one and onto. Then there is a function F  

21: Y S X that is defined as follows:
Given any element y in Y,

F  

21(y) 5 that unique element x in X such that F(x) equals y.

Or, equivalently,

F  

21(y) 5 x 3  y 5 F(x).

The proof of Theorem 7.2.2 follows immediately from the definition of one-to-one and 
onto. Given any element y in Y, there is an element x in X with F(x) 5 y because F is onto ; 
x is unique because F is one-to-one.

Definition

The function F  

21 of Theorem 7.2.2 is called the inverse function for F.

Note that according to this definition, the logarithmic function with base b . 0 and 
b Þ 1 is the inverse of the exponential function with base b.

The diagram that follows illustrates the fact that an inverse function sends each element 
back to where it came from.

x = F –1( y) F(x) = y

X = domain of F Y = co-domain of F

F

F –1

Finding an Inverse Function for a Function Given by an Arrow Diagram

Define the inverse function for the one-to-one correspondence h given in Example 7.2.8.

Solution The arrow diagram for h21 is obtained by tracing the h-arrows back from S to 
3({a, b}) as shown below.

 

{a}
{b}

{a, b}

00
10
01
11

S
h–1({a, b})

h–1(00) =     h–1(10) = {a}

h–1(01) = {b}  h–1(11) = {a, b}

 ■

Finding an Inverse Function for a Function Given in Words

Define the inverse function for the one-to-one correspondence g given in Example 7.2.9.

Example 7.2.11

Example 7.2.12
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456  CHAPTER 7 PROPERTIES OF FUNCTIONS

Solution The function g : T S T is defined by the following rule:
For all strings t in T,

  g(t) 5  the string obtained by writing the 
characters of t in reverse order.

Now if the characters of t are written in reverse order and then written in reverse order 
again, the original string is recovered. Thus given any string t in T,

  g21(t) 5  the unique string that, when written  
in reverse order, equals t

  5  the string obtained by writing the 
characters of t in reverse order

  5 g(t).

Hence g21: T S T is the same as g, or, in other words, g21 5 g. ■

Finding an Inverse Function for a Function Given by a Formula

The function f : R S R defined by the formula

f (x) 5 4x21 for each real number x

was shown to be one-to-one in Example 7.2.2 and onto in Example 7.2.5. Find its inverse 
function.

Solution For any [particular but arbitrarily chosen] y in R, by definition of f 21,

f 21(y) 5 that unique real number x such that f  (x) 5 y.

But

      f (x) 5 y

  3   4x21 5 y  by definition of f

  3   x 5
y11

4
 by algebra.

Hence f 21(y) 5
y 1 1

4 . ■

The following theorem follows easily from the definitions.

Theorem 7.2.3

If X and Y are sets and F: X S Y is one-to-one and onto, then F21: Y S X is also 
one-to-one and onto.

Proof: F21 is one-to-one: Suppose y1 and y2 are elements of Y such that 
F21(y1) 5 F21(y2). [We must show that y1 5 y2.] Let x 5 F21(y1) 5 F21(y2). Then 
x [ X, and by definition of F21,

F(x) 5 y1 since x 5 F21(y1)

and F(x) 5 y2 since x 5 F21(y2).

Consequently, y1 5 y2 because each is equal to F (x). [This is what was to be shown.]

F −1 is onto: Suppose x [ X. [We must show that there exists an element y in Y such 
that F 21(y) 5 x.] Let y 5 F(x). Then y [ Y, and by definition of F21, F21(y) 5 x 
[as was to be shown].

Example 7.2.13
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7.2 ONE-TO-ONE, ONTO, aND INvERSE FUNCTIONS  457

Finding an Inverse Function for a Function of Two Variables

Define the inverse function F21: R 3 R S R 3 R for the one-to-one correspondence 
given in Example 7.2.10.

Solution The solution to Example 7.2.10 shows that F _u 1 v
2 , u 2 v

2 + 5 (u, v). Because F is 
one-to-one, this means that 

_u 1 v
2 , u 2 v

2 + is the unique ordered pair in the domain of F that is sent to (u, v) by F.

Thus, F21 is defined as follows: For each ordered pair (u, v) [ R 3 R,

  F21(u, v) 5 1u1v

2
, 

u2v

2 2. ■

Example 7.2.14

1. If F is a function from a set X to a set Y, then F is 
one-to-one if, and only if, .

2. If F is a function from a set X to a set Y, then F is 
not one-to-one if, and only if, .

3. If F is a function from a set X to a set Y, then F is 
onto if, and only if, .

4. If F is a function from a set X to a set Y, then F is 
not onto if, and only if, .

5. The following two statements are :

5u, v [ U, if H (u) 5 H (v) then u 5 v.

5u, v [ U, if u Þ v then H (u) Þ H (v). 
 

6. Given a function F : X S Y where X is an infinite 
set, to prove that F is one-to-one, you suppose  
that  and then you show that .

7. Given a function F : X S Y where X is an infinite 
set, to prove that F is onto, you suppose that  
and then you show that .

8. Given a function F : X S Y, to prove that F is not 
one-to-one, you .

9. Given a function F : X S Y, to prove that F is not 
onto, you .

10. A one-to-one correspondence from a set X to a set 
Y is a  that is .

11. If F is a one-to-one correspondence from a set X 
to a set Y and y is in Y, then F21(y) is .

TEST YOURSELF 

1. The definition of one-to-one is stated in two ways:

5x1, x2 [ X, if F(x1) 5 F(x2) then x1 5 x2

and 5x1, x2 [ X, if x1 Þ x2 then F(x1) Þ F(x2).

Why are these two statements logically equivalent?

2. Fill in each blank with the word most or least.
a. A function F is one-to-one if, and only if, each 

element in the co-domain of F is the image of 
at  one element in the domain of F.

b. A function F is onto if, and only if, each ele-
ment in the co-domain of F is the image of at 

 one element in the domain of F. 

3. When asked to state the definition of one-to-one, a 
student replies, “A function f is one-to-one if, and 

only if, every element of X is sent by f to exactly 
one element of Y.” Give a counterexample to show 
that the student’s reply is incorrect.

4. Let f  : X S Y be a function. True or false? A suf-
ficient condition for f to be one-to-one is that for 
every element y in Y, there is at most one x in X 
with f (x) 5 y. Explain your answer.

5. All but two of the following statements are correct 
ways to express the fact that a function f is onto. 
Find the two that are incorrect.
a. f is onto 3 every element in its co-domain is 

the image of some element in its domain.
b. f is onto 3 every element in its domain has a 

corresponding image in its co-domain.
c. f is onto 3  5y [ Y, E x [ X such that f (x) 5 y.

H

H

H

ExERCISE SET 7.2 
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458  CHAPTER 7 PROPERTIES OF FUNCTIONS

d. f is onto 3  5x [ X, E  y [ Y such that f (x) 5 y.
e. f is onto 3  the range of f is the same as the 

co-domain of f. 

6. Let X 5 {1, 5, 9} and Y 5 {3, 4, 7}.
a. Define f  : X S Y by specifying that

f (1) 5 4, f (5) 5 7, f (9) 5 4.

Is f one-to-one? Is f onto? Explain your 
answers.

b. Define g  : X S Y by specifying that

g(1) 5 7, g(5) 5 3, g(9) 5 4.

 Is g one-to-one? Is g onto? Explain your 
answers. 

7. Let X 5 {a, b, c, d} and Y 5 {e, f, g}. Define 
functions F and G by the arrow diagrams below.

X Y

Domain of F Co-domain of F

F

a
b
c
d

e
f
g

X Y

Domain of G Co-domain of G

G

a
b
c
d

e
f
g

a. Is F one-to-one? Why or why not? Is it onto? 
Why or why not? 

b. Is G one-to-one? Why or why not? Is it onto? 
Why or why not?

8. Let X 5 {a, b, c} and Y 5 {d, e, f, g}. Define 
functions H and K by the arrow diagrams below.

X Y

Domain of H Co-domain of H

H

d
e
f
g

a
b
c

X Y

Domain of K Co-domain of K

K

d
e
f
g

a
b
c

a. Is H one-to-one? Why or why not? Is it onto? 
Why or why not?

b. Is K one-to-one? Why or why not? Is it onto? 
Why or why not?

9. Let X 5 {1, 2, 3}, Y 5 {1, 2, 3, 4}, and Z 5 {1, 2}.
a. Define a function f  : X S Y  that is one-to-one 

but not onto.
b. Define a function g  : X S Z that is onto but 

not one-to-one.
c. Define a function h  : X S X that is neither 

one-to-one nor onto.
d. Define a function k  : X S X that is one-to-one 

and onto but is not the identity function on X. 

10. a.  Define f  : Z S Z by the rule f (n) 5 2n, for 
every integer n.
 (i)  Is f one-to-one? Prove or give a  

counterexample.
(ii) Is f onto? Prove or give a counterexample. 

b. Let 2Z denote the set of all even integers. That 
is, 2Z 5 {n [ Z u  n 5 2k, for some integer k}. 
Define h  : Z S 2Z by the rule h(n) 5 2n, for 
each integer n. Is h onto? Prove or give a coun-
terexample.

11. a.  Define g  : Z S Z by the rule g(n) 5 4n25, 
for each integer n.
 (i)  Is g one-to-one? Prove or give a  

counterexample.
(ii) Is g onto? Prove or give a counterexample.

b. Define G  : R S R by the rule G(x) 5 4x25 
for every real number x. Is G onto? Prove or 
give a counterexample.

12. a.  Define F  : Z S Z by the rule F(n) 5 223n, 
for each integer n.

 (i)  Is F one-to-one? Prove or give a  
counterexample.

(ii) Is F onto? Prove or give a counterexample.
b. Define G  : R S R by the rule G(x) 5 223x 

for each real number x. Is G onto? Prove or 
give a counterexample.

13. a.  Define H  : R S R by the rule H(x) 5 x2, for 
each real number x.
 (i)  Is H one-to-one? Prove or give a  

counterexample.
(ii)  Is H onto? Prove or give a counterexample.

b. Define K  : Rnonneg S Rnonneg by the rule 
K(x) 5 x2, for each nonnegative real number x. 
Is K onto? Prove or give a counterexample.

H
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7.2 ONE-TO-ONE, ONTO, aND INvERSE FUNCTIONS  459

14. Explain the mistake in the following “proof.”
 Theorem: The function f : Z S Z defined by the 
formula f  (n) 5 4n13, for each integer n, is one-
to-one.
 “Proof: Suppose any integer n is given. Then by 
definition of f, there is only one possible value 
for f  (n)—namely, 4n13. Hence f is one-to-one.” 

In each of 15–18 a function f is defined on a set of real 
numbers. Determine whether or not f is one-to-one and 
justify your answer.

15. f (x) 5
x11

x
, for each number x Þ 0

16. f (x) 5
x

x2 11
, for each real number x

17. f(x) 5
3x21

x
, for each real number x Þ 0

18. f (x) 5
x11

x21
, for each real number x Þ 1

19. Referring to Example 7.2.3, assume that records 
with the following ID numbers are to be placed in 
sequence into Table 7.2.1. Find the position into 
which each record is placed.
a. 417302072
b. 364981703
c. 283090787

20. Define Floor : R S Z by the formula 
Floor(x) 5 :x;, for every real number x.
a. Is Floor one-to-one? Prove or give a  

counterexample.
b. Is Floor onto? Prove or give a counterexample.

21. Let S be the set of all strings of 0’s and 1’s, and 
define L : S S Znonneg by

L(s) 5 the length of s, for every string s in S.

a. Is L one-to-one? Prove or give a counterex-
ample.

b. Is L onto? Prove or give a counterexample.

22. Let S be the set of all strings of 0’s and 1’s, and 
define D : S S Z as follows: For every s [ S,

D (s) 5  the number of 1’s in s minus the  
number of 0’s in s.

a. Is D one-to-one? Prove or give a counterexample.
b. Is D onto? Prove or give a counterexample.

23. Define F : 3({a, b, c}) S Z as follows: For every 
A in 3({a, b, c}),

F(A) 5 the number of elements in A.

a. Is F one-to-one? Prove or give a counterexample.
b. Is F onto? Prove or give a counterexample.

24. Les S be the set of all strings of a’s and b’s, and 
define N  : S S Z by

N(s) 5 the number of a’s in s, for each s [ S.

a. Is N one-to-one? Prove or give a counterexample.
b. Is N onto? Prove or give a counterexample.

25. Let S be the set of all strings in a’s and b’s, and 
define C  : S S S by

C(s) 5 as, for each s [ S.

(C is called concatenation by a on the left.)
a. Is C one-to-one? Prove or give a counterex-

ample.
b. Is C onto? Prove or give a counterexample.

26. Define S  : Z1 S Z1  by the rule: For each integer 
n, S(n) 5 the sum of the positive divisors of n.
a. Is S one-to-one? Prove or give a counterexample.
b. Is S onto? Prove or give a counterexample.

27. Let D be the set of all finite subsets of positive 
integers, and define T  : Z1 S D by the following 
rule: For every integer n, T(n) 5 the set of all of 
the positive divisors of n.
a. Is T one-to-one? Prove or give a counterex-

ample.
b. Is T onto? Prove or give a counterexample.

28. Define G : R 3 R S R 3 R as follows: 
G (x, y) 5 (2y, 2x) for every (x, y) [ R 3 R.
a. Is G one-to-one? Prove or give a counterex-

ample.
b. Is G onto? Prove or give a counterexample.

29. Define H : R 3 R S R 3 R as follows: 
H (x, y) 5 (x11, 22y) for every (x, y) [ R 3 R.
a. Is H one-to-one? Prove or give a counterex-

ample.
b. Is H onto? Prove or give a counterexample.

30. Define J : Q 3 Q S R by the rule  
J (r, s) 5 r1 Ï2s for each (r, s) [ Q 3 Q.
a. Is J one-to-one? Prove or give a counterex-

ample.
b. Is J onto? Prove or give a counterexample.

31. Define F  :  Z1 3 Z1 S Z1 and G  :  Z1 3 Z1 S Z1 
as follows: For each (n, m) [ Z1 3 Z1,

F(n, m) 5 3n5m and G(n, m) 5 3n6m.

H

H*

*
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a. Is F one-to-one? Prove or give a counterex-
ample.

b. Is G one-to-one? Prove or give a counterexample.

32. a. Is log8 27 5 log2 3? Why or why not?
b. Is log16 9 5 log4 3? Why or why not? 

The properties of logarithm established in 33−35 are used 
in Sections 11.4 and 11.5.

33. Prove that for all positive real numbers b, x, and y 
with b Þ 1,

logb 1x
y2 5 logb x2 logb y.

34. Prove that for all positive real numbers b, x, and y 
with b Þ 1,

logb 
(xy) 5 logb  

x1 logb  
y.

35. Prove that for all real numbers a, b, and x with b 
and x positive and b Þ 1,

logb 
(xa) 5 a logb  

x.

Exercises 36 and 37 use the following definition: If  
f  : R S R and g: R S R are functions, then the function  
( f 1 g): R S R is defined by the formula ( f 1 g)(x) 5  
f(x) 1 g(x) for every real number x.

36. If f : R S R and g : R S R are both one-to-one, is 
f1g also one-to-one? Justify your answer.

37. If f : R S R and g : R S R are both onto, is f1g 
also onto? Justify your answer. 

Exercises 38 and 39 use the following definition: If  
f  : R S R is a function and c is a nonzero real number,  
the function (c?f ): R S R is defined by the formula  
(c?f )(x) 5 c?( f(x)) for every real number x.

38. Let f : R S R be a function and c a nonzero real 
number. If f is one-to-one, is c?f  also one-to-one? 
Justify your answer.

39. Let f : R S R be a function and c a nonzero real 
number. If f is onto, is c?f  also onto? Justify your 
answer.

40. Suppose F: X S Y is one-to-one.
a. Prove that for every subset A # X, 

F21(F(A)) 5 A.
b. Prove that for all subsets A1 and A2 in X, 

F(A1 ù A2) 5 F(A1) ù F(A2).

41. Suppose F : X S Y is onto. Prove that for every 
subset B # Y, F(F21 (B)) 5 B.

Let X 5 {a, b, c, d, e} and Y 5 {s, t, u, v, w}. In each of 42 
and 43 a one-to-one correspondence F: X S Y is defined 
by an arrow diagram. In each case draw an arrow diagram 

for F  21.

42. 

a
b
c
d
e

X YF

s
t
u

43. 

a
b
c
d
e

X YF

s
t
u

In 44–55 indicate which of the functions in the referenced 
exercise are one-to-one correspondences. For each func-
tion that is a one-to-one correspondence, find the inverse 
function.

44. Exercise 10a 45. Exercise 10b

46. Exercise 11a 47. Exercise 11b

48. Exercise 12a 49. Exercise 12b

50. Exercise 21 51. Exercise 22

52. Exercise 15 with the co-domain taken to be the set 
of all real numbers not equal to 1

53. Exercise 16 with the co-domain taken to be the set 
of all real numbers

54. Exercise 17 with the co-domain taken to be the set 
of all real numbers not equal to 3

55. Exercise 18 with the co-domain taken to be the set 
of all real numbers not equal to 1

56. In Example 7.2.8 a one-to-one correspondence 
was defined from the power set of {a, b} to the set 
of all strings of 0’s and 1’s that have length 2. Thus 
the elements of these two sets can be matched up 
exactly, and so the two sets have the same number 
of elements.
a. Let X 5 {x1, x2, . . . , xn} be a set with  

n elements. Use Example 7.2.8 as a model to  

H

H

H
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7.3 COMPOSITION OF FUNCTIONS  461

define a one-to-one correspondence from 
3(X), the set of all subsets of X, to the set of 
all strings of 0’s and 1’s that have length n.

b. In Section 9.2 we show that there are 2n 
strings of 0’s and 1’s that have length n. What 
does this allow you to conclude about the 
number of subsets of 3(X)? (This provides an 
alternative proof of Theorem 6.3.1.)

57. Write a computer algorithm to check whether a 
function from one finite set to another is one-
to-one. Assume the existence of an independent 
algorithm to compute values of the function.

58. Write a computer algorithm to check whether a 
function from one finite set to another is onto. As-
sume the existence of an independent algorithm to 
compute values of the function. 

H

H

1. for all x1 and x2 in X, if F(x1) 5 F(x2) then x1 5 x2  
2. there exist elements x1 and x2 in X such that F(x1) 5 F(x2) 
and x1 Þ x2 3. for every element y in Y, there exists 
at least one element x in X such that f (x) 5 y 4. there 
exists an element y in Y such that for every element x in X, 
f (x) Þ y 5. logically equivalent ways of expressing what it 
means for a function H to be one-to-one (The second is the 
contrapositive of the first.) 6. x1 and x2 are any [particular 

but arbitrarily chosen] elements in X with the property that 

F(x1) 5 F(x2); x1 5 x2 7. y is any [particular but arbitrarily 

chosen] element in Y; there exists at least one element x in X 
such that F(x) 5 y 8. show that there are concrete elements 
x1 and x2 in X with the property that F(x1) 5 F(x2) and 
x1 Þ x2 9. show that there is a concrete element y in Y  
with the property that F(x) Þ y for any element x in X  
10. function from X to Y; both one-to-one and onto 11. the 
unique element x in X such that F(x) 5 y (in other words, 
F21(y) is the unique preimage of y in X)

Answers for TesT Yourself 

Composition of functions
It is no paradox to say that in our most theoretical moods we may be nearest to our 
most practical applications. —Alfred North Whitehead

Consider two functions, the successor function and the squaring function, both defined 
from Z to Z, and imagine that each is represented by a machine. If the two machines are 
hooked up so that the output from the successor function is used as input to the squaring 
function, then they work together to operate as one larger machine. In this larger machine, 
an integer n is first increased by 1 to obtain n11; then the quantity n11 is squared to 
obtain (n11)2. This is illustrated in the following drawing.

successor function

n

n + 1

squaring function

(n + 1)2

Combining functions in this way is called composing them; the resulting function is 
called the composition of the two functions. Note that the composition can be formed only 
if the output of the first function is acceptable input to the second function. That is, the 
range of the first function must be contained in the domain of the second function.

7.3
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462  CHAPTER 7 PROPERTIES OF FUNCTIONS

This definition is shown schematically below.

Y ZX
f

x
f (x)

Y'

g

g( f (x)) =
(g    f )(x)

g    f

Composition of Functions Defined by Formulas

Let f  : Z S Z be the successor function and let g : Z S Z be the squaring function. Then 
f (n) 5 n11 for each n [ Z and g(n) 5 n2 for each n [ Z.

a. Find the compositions g + f  and f + g.

b. Is g + f 5 f + g? Explain. 

Solution
a. Because f sends each integer to that integer plus 1 and g sends each integer to the 

square of that integer, it can be helpful to think of the action of f and g as follows:

f (any integer) 5 that integer11 [even if the integer is g(n)].

g(any integer) 5 (that integer)2  [even if the integer is f (n)].

Thus the functions g + f  and f + g are defined as follows:

(g + f  )(n) 5 g(  f (n)) 5 g(n11) 5 (n11)2 for each n [ Z,

and

(  f + g)(n) 5 f (g(n)) 5 f (n2) 5 n2 11 for each n [ Z.

b. Two functions from one set to another are equal if, and only if, they always take the 
same values. In this case,

(g + f  )(1) 5 (111)2 5 4, whereas ( f + g)(1) 5 12 11 5 2.

Thus the two functions g + f  and f + g are not equal:

 g + f Þ f + g. ■

Example 7.3.1 illustrates the important fact that composition of functions is not a com-
mutative operation.

Example 7.3.1

Note Even though we 
write g + f , we put f first 
when we say “the compo-
sition of f and g” because 
an element x is acted upon 
first by f and then by g.

Definition

Let f  : X S Y and g  : Y9 S Z be functions with the property that the range of f is a 
subset of the domain of g. Define a new function g + f : X S Z as follows:

(g + f  )(x) 5 g( f (x)) for each x [ X,

where g + f  is read “g circle f  ” and g( f  (x)) is read “g of f of x.” The function g + f  is 
called the composition of f and g.

!
Caution! Be careful 
not to confuse g + f  and 
g( f (x)): g + f  is the name 
of the function whereas 
g( f (x)) is the value of the 
function at x. 

Note For general func-
tions F and G, F + G need 
not necessarily equal 
G + F (although the two 
may be equal).
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7.3 COmPOSITION OF FUNCTIONS  463

Composition of Functions Defined on Finite Sets

Let X 5 {1, 2, 3}, Y9 5 {a, b, c, d}, Y 5 {a, b, c, d, e}, and Z 5 {x, y, z}. Define func-
tions f  : X S Y9 and g  : Y S Z by the arrow diagrams below.

X

1

2

3

a

b

d

c

e

Z
Y

x

y

z
Y'

f g

Draw the arrow diagram for g + f . What is the range of g + f ?

Solution To find the arrow diagram for g + f , just trace the arrows all the way across 
from X to Z through Y. The result is shown below.

(g + f )(1) 5 g(  f (1)) 5 g(c) 5 z

(g + f  )(2) 5 g(  f (2)) 5 g(b) 5 y

(g + f  )(3) 5 g(  f (3)) 5 g(a) 5 y

The range of g + f  is {y, z}. ■

Recall that the identity function on a set X, IX, is the function from X to X defined by 
the formula

IX 
(x) 5 x for every x [ X.

That is, the identity function on X sends each element of X to itself. What happens when an 
identity function is composed with another function?

Composition with the Identity Function

Let X 5 {a, b, c, d} and Y 5 {u, v, w}, and suppose f  : X S Y is given by the arrow dia-
gram shown below.

X Yf

a
b
c
d

u

Find f + IX and IY + f .

Solution The values of f + IX are obtained by tracing through the arrow diagram shown below.

(  f + IX)(a) 5 f (IX(a)) 5 f (a) 5 u

( f + IX)(b) 5 f (IX  (b)) 5 f (b) 5 v

(  f + IX)(c) 5 f (IX  (c)) 5 f (c) 5 v

(  f + IX)(d) 5 f (IX(d)) 5 f(d) 5 u

Example 7.3.2

X

1

2

3

Z

x

y

z

g    f

Example 7.3.3

X Y
fIX

a

b

c

d

X

a

b

c

d

u
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464  CHAPTER 7 PROPERTIES OF FUNCTIONS

Thus, for every element x in X,

(  f + IX)(x) 5 f (x).

By definition of equality of functions, this means that f + IX 5 f .
Similarly, the equality IY + f 5 f  can be verified by tracing through the arrow diagram 

below for each x in X and noting that in each case, (IY + f )(x) 5 f (x).

Y Y
f IY

X

uua

b

c

d
 ■

More generally, the composition of any function with an identity function equals the 
function.

Theorem 7.3.1 Composition with an Identity Function

If f is a function from a set X to a set Y, and IX is the identity function on X, and IY is 
the identity function on Y, then

(a) f + IX 5 f  and (b) IY + f 5 f .

Proof:
Part (a): Suppose f is a function from a set X to a set Y and IX is the identity function 
on X. Then, for each x in X,

( f + IX)(x) 5 f (IX   

(x)) 5 f (x).

Hence, by definition of equality of functions, f + IX 5 f , as was to be shown.

Part (b): This is exercise 16 at the end of this section.

Now let f be a function from a set X to a set Y, and suppose f has an inverse function 
f 21. Recall that f 21 is the function from Y to X with the property that

f 21(y) 5 x 3 f (x) 5 y.

What happens when f is composed with f 21? Or when f 21 is composed with f  ?

Composing a Function with Its Inverse

Let X 5 {a, b, c} and Y 5 {x, y, z}. Define f  : X S Y by the following arrow diagram.

X Yf

x
y
z

a
b
c

Example 7.3.4
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7.3 COmPOSITION OF FUNCTIONS  465

You can see from the diagram that f is one-to-one and onto. Thus f   21 exists and is found 
by tracing the arrows backwards, as shown below.

Y Xf –1

a
b
c

x
y
z

Now f 21 + f  is found by following the arrows from X to Y by f and back to X by f 21. If you 
do this, you will see that

( f 21 + f  )(a) 5 f 21( f (a)) 5 f 21(z) 5 a

( f 21 + f  )(b) 5 f 21( f (b)) 5 f 21(x) 5 b

and

 (f 21 + f )(c) 5 f 21( f (c)) 5 f 21(y) 5 c.

Thus the composition of f and f 21 sends each element to itself. So by definition of the 
identity function,

f 21 + f 5 IX.

In a similar way, you can see that

 f + f 21 5 IY. ■

More generally, the composition of any function with its inverse (if it has one) is an 
identity function. Intuitively, the function sends an element in its domain to an element in 
its co-domain and the inverse function sends it back again, so the composition of the two 
sends each element to itself. This reasoning is formalized in Theorem 7.3.2.

Theorem 7.3.2 Composition of a Function with Its Inverse

If f  : X S Y is a one-to-one and onto function with inverse function f 21: Y S X, then

(a) f 21 + f 5 IX and (b) f + f 21 5 IY.

Proof:
Part (a): Suppose f: X S Y is a one-to-one and onto function with inverse function  
f  21: Y S X. [To show that f 21 + f 5 IX, we must show that for each x [ X,  
(f 21 + f )(x) 5 x.] Let x be any element in X. Then, by definition of composition of 
functions,

 (f 21 + f)(x) 5 f 21(f (x))

Let 

z 5 f 21( f (x)).

By definition of inverse function, 

f (z) 5 f  (x),

(continued on page 466)

Note Recall that if b is 
any element of Y, then  
f 21(b) 5 that element a 
of X such that f (a) 5 x.
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466  CHAPTER 7 PROPERTIES OF FUNCTIONS

Composition of One-to-One Functions
The composition of functions interacts in interesting ways with the properties of be-
ing one-to-one and onto. What happens, for instance, when two one-to-one functions 
are composed? Must their composition be one-to-one? For example, let X 5 {a, b, c}, 
Y 5 {w, x, y, z}, and Z 5 {1, 2, 3, 4, 5}, and define one-to-one functions f  : X S Y and  
g  : Y S Z as shown in the arrow diagrams of Figure 7.3.1.

X

1

2

4

5

3

ZY

a

b

c

x

z

y

f g

FIGURE 7.3.1

Then g + f  is the function with the arrow diagram shown in Figure 7.3.2.

X

1

2

4

5

3

Z

a

b

c

g    f

FIGURE 7.3.2

From the diagram it is clear that for these particular functions, the composition is one-to-
one. This result is no accident. It turns out that the composition of two one-to-one functions 
is always one-to-one.

and, because f is one-to-one, this implies that

z 5 x.

Now z 5 f 21( f (x)) also, and so, by substitution,

f 21( f (x)) 5 x,

Or, equivalently,

( f 21 + f )(x) 5 x,

[as was to be shown]. 
Since x is any element of X and since IX(x) 5 x, this proves that f 21 + f 5 IX.
Part (b): This is exercise 17 at the end of this section.
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7.3 COmPOSITION OF FUNCTIONS  467

By the method of direct proof, the proof of Theorem 7.3.3 has the following starting point 
and conclusion to be shown.

Starting Point:  Suppose f is a one-to-one function from X to Y and g is a one-to-one func-
tion from Y to Z.

To Show: g + f  is a one-to-one function from X to Z.

The conclusion to be shown says that a certain function is one-to-one. How do you show 
that? The crucial step is to realize that if you substitute g + f  into the definition of one-to-
one, you see that

g + f is one{to{one 3 5x1, x2 [ X, if (g + f )(x1) 5 (g + f )(x2) then  x1 5 x2.

By the method of direct proof, then, to show g + f  is one-to-one, you

suppose x1 and x2 are any elements of X such that (g + f )(x1) 5 (g + f )(x2),

and you

show that x1 5 x2.

Now the heart of the proof begins. To show that x1 5 x2, you work forward from the sup-
position that (g + f )(x1) 5 (g + f )(x2), using the fact that f and g are both one-to-one. By 
definition of composition,

(g + f  )(x1) 5 g( f (x1)) and (g + f )(x2) 5 g( f  (x2)).

Since the left-hand sides of the equations are equal, so are the right-hand sides. Thus

g( f (x1)) 5 g( f (x2)).

Now just stare at the above equation for a moment. It says that

g(something) 5 g(something else).

Because g is a one-to-one function, any time g of one thing equals g of another thing, those 
two things are equal. Hence

f (x1) 5 f (x2).

But f is also a one-to-one function. Any time f of one thing equals f of another thing, those 
two things are equal. Therefore,

x1 5 x2.

This is what was to be shown!

Theorem 7.3.3

If f  : X S Y and g  : Y S Z are both one-to-one functions, then g + f  is one-to-one.
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468  CHAPTER 7 PROPERTIES OF FUNCTIONS

This discussion is summarized in the following formal proof.

Proof of Theorem 7.3.3:

Suppose f  : X S Y and g : Y S Z are both one-to-one functions. [We must show that 
g + f  is one-to-one.] Suppose x1 and x2 are elements of X such that

(g + f )(x1) 5 (g + f )(x2).

[We must show that x1 5 x2.] By definition of composition of functions,

g( f (x1)) 5 g( f (x2)).

Since g is one-to-one, f (x1) 5 f (x2).

And since f is one-to-one, x1 5 x2

[as was to be shown]. Hence g + f  is one-to-one.

Composition of Onto Functions
Now consider what happens when two onto functions are composed. For example, let 
X 5 {a, b, c, d, e}, Y 5 {w, x, y, z}, and Z 5 {1, 2, 3}. Define onto functions f and g by 
the following arrow diagrams.

X

a

b

d

e

c

ZY

1

2

3

x

z

y

f g

Then g + f  is the function with the arrow diagram shown below.
It is clear from the diagram that g + f  is onto.

X

a

b

d
e

c

Z

1

2

3

g    f

It turns out that the composition of any two onto functions (that can be composed) is onto.

Theorem 7.3.4

If f  : X S Y and g : Y S Z are both onto functions, then g + f  is onto.

A direct proof of Theorem 7.3.4 has the following starting point and conclusion to be 
shown:

Starting Point:  Suppose f is an onto function from X to Y, and g is an onto function from 
Y to Z.

To Show: g + f  is an onto function from X to Z.
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7.3 COmPOSITION OF FUNCTIONS  469

The conclusion to be shown says that a certain function is onto. How do you show that? The 
crucial step is to realize that if you substitute g + f  into the definition of onto, you see that

g + f : X S Z is onto 3  given any element z of Z, it is possible to find an element 
x of X such that (g + f )(x) 5 z. 

Since this statement is universal, to prove it you

suppose z is a [particular but arbitrarily chosen] element of Z

and show that there is an element x in X such that (g + f )(x) 5 z.

Hence you must start the proof by supposing you are given a particular but arbitrari-
ly chosen element in Z. Let us call it z. Your job is to find an element x in X such that  
(g + f )(x) 5 z.

To find x, reason from the supposition that z is in Z, using the fact that both g and f are 
onto. Imagine arrow diagrams for the functions f and g.

z
gf

Y ZX

g    f

You have a particular element z in Z, and you need to find an element x in X such that when 
x is sent over to Z by g + f , its image will be z. Now since g is onto, z is at the tip of some 
arrow coming from Y. That is, there is an element y in Y such that

 g(y) 5 z. 7.3.1

This means that the arrow diagrams can be drawn as follows:

z

Y ZX

y
gf

g    f

But f also is onto, and so every element in Y is at the tip of an arrow coming from X. In 
particular, y is at the tip of some arrow. That is, there is an element x in X such that

 f (x) 5 y. 7.3.2

The diagram, therefore, can be drawn as shown below.

Y Z

z

X

y
gf

x

g    f

!
Caution! To show that a 
function is onto, you must 
start with an arbitrary 
element of the co-domain 
and deduce that it is the 
image of some element in 
the domain.
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470  CHAPTER 7 PROPERTIES OF FUNCTIONS

Now just substitute equation (7.3.2) into equation (7.3.1) to obtain

g( f (x)) 5 z.

And by definition of g + f , this can be rewritten as

g( f (x)) 5 (g + f )(x).

Hence

(g + f )(x) 5 z. 

Thus x is an element of X that is sent by g + f  to z, and so x is the element you were sup-
posed to find.

This discussion is summarized in the following formal proof.

Proof of Theorem 7.3.4:

Suppose f : X S Y and g : Y S Z are both onto functions. [We must show that g + f  is 
onto.] Let z be any [particular but arbitrarily chosen] element of Z. [We must show the 
existence of an element in X such that g + f  of that element equals z.] Since g is onto, 
there is an element, say y, in Y such that g(y) 5 z. And since f is onto, there is an 
element, say x, in X such that f  (x) 5 y. Hence there is an element x in X such that

(g + f )(x) 5 g( f (x)) 5 g(y) 5 z

[as was to be shown]. It follows that g + f  is onto.

An Incorrect “Proof” That a Function Is Onto

To prove that a composition of onto functions is onto, a student wrote:

1. “Suppose f  : X S Y and g : Y S Z are both onto. Then

2. 5y [ Y, E x [ X such that f (x) 5 y,

3. and

4. 5z [ Z, E y [ Y such that f (y) 5 z.

5. So

6. (g + f  )(x) 5 g(  f (x)) 5 g(y) 5 z,

7. and thus g + f  is onto.” 

Explain the mistakes in this “proof.”

Solution To show that g + f  is onto, you have to meet the following challenge: If some-
one gives you an element z in Z (over which you have no control), you must be able to ex-
plain how to find an element x in X such that (g + f )(x) 5 z. Thus a proof that g + f  is onto 
must start with the assumption that you have been given a particular but arbitrarily chosen 
element of Z. This proof does not do that.

In fact the statements in lines 2 and 4 simply restate the hypothesis that f and g are 
functions that are onto. The x, y, and z in these lines are local variables, with no mean-
ing outside the quantified statements that contain them. In particular, the variable y in 
line 2 is unrelated to the variable y in line 4. So in line 6 it is wrong to assume that the 
two y’s refer to the same object, which removes the justification for concluding that 
g + f  is onto.  ■

Example 7.3.5
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7.3 COmPOSITION OF FUNCTIONS  471

1. If f is a function from X to Y9, g is a function 
from Y to Z, and Y9 # Y , then g + f  is a function 
from  to , and (g + f )(x) 5   for 
every x in X.

2. If f is a function from X to Y and Ix and Iy are the 
identity functions from X to X and Y to Y, respec-
tively, then f + Ix 5  and Iy + f 5 .

3. If f is a one-to-one correspondence from X to Y, 
then f 21 + f 5  and f + f 21 5 .

4. If f is a one-to-one function from X to Y and g is 
a one-to-one function from Y to Z, you prove that 
g + f  is one-to-one by supposing that  and 
then showing that .

5. If f is an onto function from X to Y and g is an 
onto function from Y to Z, you prove that g + f  is 
onto by supposing that  and then showing 
that .

TEST YOURSELF

In each of 1 and 2, functions f and g are defined by arrow 
diagrams. Find g + f and f + g and determine whether g + f  
equals f + g.

1. 

1
3
5

X

1
3
5

X
f

1
3
5

X

1
3
5

X
g

2. 

1
3
5

X

1
3
5

X
f

1
3
5

X

1
3
5

X
g

In 3 and 4, functions F and G are defined by formulas. 
Find G + F and F + G and determine whether G + F equals 
F + G.

3. F(x) 5 x3 and G(x) 5 x21, for each real number x.

4. F(x) 5 x5 and G(x) 5 x1y5 for each real number x.

5. Define f  : R S R by the rule f (x) 5 2x for every 
real number x. Find ( f + f )(x).

6. Define F : Z S Z and G : Z S Z by the rules 
F(a) 5 7a and G(a) 5 a mod 5 for each integer a. 
Find (G + F)(0), (G + F)(1), (G + F)(2), (G + F)(3), 
and (G + F)(4).

7. Define L : Z S Z and M : Z S Z by the rules 
L(a) 5 a2 and M(a) 5 a mod 5 for each integer a. 
a. Find (L + M)(12), (M + L)(12), (L + M)(9), and 

(M + L)(9).
b. Is L + M 5 M + L?

8. Let S be the set of all strings in a’s and b’s and let 
L: S S Z be the length function:

For all strings s [ S,

L(s) 5 the number of characters in s.

Let T  : Z S {0, 1, 2} be the mod 3 function:

For every integer n, T(n) 5 n mod 3.

a. (T + L)(abaa) 5?
b. (T + L)(baaab) 5?
c. (T + L)(aaa) 5?

9. Define F  : R S R and G : R S Z by the follow-
ing formulas: F(x) 5 x2y3 and G(x) 5 :x; for every 
x [ R. 
a. (G + F)(2) 5?
b. (G + F)(23) 5?
c. (G + F)(5) 5?

10. Define F : Z S Z and G : Z S Z by the rules 
F(n) 5 2n and G(n) 5 :ny2; for every integer n.
a. Find (G + F)(8), (F + G)(8), (G + F)(3), and 

(F + G)(3).
b. Is G + F 5 F + G? Explain.

11. Define F  : R S R and G  : R S R by the rules 
F(n) 5 3x and G(n) 5 <xy3= for every real number x.
a. Find (G + F)(6), (F + G)(6), (G + F)(1), and 

(F + G)(1).
b. Is G + F 5 F + G? Explain.

The functions of each pair in 12–14 are inverse to each 
other. For each pair, check that both compositions give 
the identity function.

12. F : R S R and F21 R S R are defined by

F(x) 5 3x12 and F21(y) 5
y22

3
,

for every y [ R.

H

ExERCISE SET 7.3 
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472  CHAPTER 7 PROPERTIES OF FUNCTIONS

13. G : R1 S R1 and G21: R1 S R1 are defined by

G(x) 5 x2 and G21(x) 5 Ïx

for every x [ R1.

14. H and H 21 are both defined from R2{1} to 
R2{1} by the formula

H(x) 5 H21(x) 5
x11

x21
, for each x [ R2{1}.

15. Explain how it follows from the definition of 
logarithm that
a. logb(bx ) 5 x, for every real number x.
b. blogb  x 5 x, for every positive real number x.

16. Prove Theorem 7.3.1(b): If f is any function from 
a set X to a set Y, then IY + f 5 f , where IY is the 
identity function on Y.

17. Prove Theorem 7.3.2(b): If f  : X S Y is a one-to-
one and onto function with inverse function  
f −1: Y S X, then f + f 21 5 IY, where IY is the 
identity function on Y.

18. Suppose Y and Z are sets and g  : Y S Z is a one-
to-one function. This means that if g takes the 
same value on any two elements of Y, then those 
elements are equal. Thus, for example, if a and b 
are elements of Y and g(a) 5 g(b), then it can be 
inferred that a 5 b. What can be inferred in the 
following situations?
a. sk and sm are elements of Y and g(sk) 5 g(sm).
b. zy2 and ty2 are elements of Y and 

g(zy2) 5 g(ty2).
c. f (x1) and f (x2) are elements of Y and 

g( f (x1)) 5 g( f (x2)).

19. If f  : X S Y and g  : Y S Z are functions and g + f  
is one-to-one, must g be one-to-one? Prove or give 
a counterexample.

20. If f  : X S Y and g  : Y S Z are functions and g + f  is 
onto, must f be onto? Prove or give a counterexample.

21. If f  : X S Y and g  : Y S Z are functions and g + f  
is one-to-one, must f be one-to-one? Prove or give 
a counterexample.

22. If f  : X S Y and g : Y S Z are functions and  
g + f  is onto, must g be onto? Prove or give a 
counterexample.

23. Let f  : W S X, g : X S Y, and h: Y S Z be func-
tions. Must h + (g + f) 5 (h + g) + f ? Prove or give 
a counterexample.

24. True or False? Given any set X and given any 
functions f  : X S X, g : X S X, and h : X S X, if h 
is one-to-one and h + f 5 h + g, then f 5 g. Justify 
your answer.

25. True or False? Given any set X and given any 
functions f  : X S X, g  : X S X, and h  : X S X, if h 
is one-to-one and f + h 5 g + h, then f 5 g. Justify 
your answer.

In 26 and 27 find (g + f  )21, g21, f 21, and f 21 + g21, and state 
how (g + f  )21 and f 21 + g21 are related.

26. Let X 5 {a, b, c}, Y 5 {x, y, z}, and Z 5 {u, v, w}. 
Define f  : X S Y and g  : Y S Z by the arrow diagrams 
below.

X

a

b

c

Z

u

Y

x

y

z

f g

27. Define f  : R S R and g : R S R by the formulas

f (x) 5 x13 and g(x) 5 2x for each x [ R.

28. Prove or give a counterexample: If f  : X S Y and 
g  : Y S X are functions such that g + f 5 IX and 
f + g 5 IY, then f and g are both one-to-one and 
onto and g 5 f 21.

29. Suppose f  : X S Y and g  : Y S Z are both one-to-
one and onto. Prove that (g + f )21 exists and that 
(g + f  )21 5  f 21 + g21.

30. Let f  : X S Y and g  : Y S Z. Is the following 
property true or false? For every subset C in Z, 
(g + f )21(C) 5 f 21(g21(C)). Justify your answer. 

H

H

H

H

1. X; Z; g( f (x)) 2. f; f 3. IX; IY 4. x1 and x2 are any 
[particular but arbitrarily chosen] elements in X with the 
property that (g + f )(x1) 5 (g + f )(x2); x1 5 x2  

5. z is any [particular but arbitrarily chosen] element 
in Z; there exists at least one element x in X such that 
(g + f )(x) 5 z

ANSWERS FOR TEST YOURSELF 
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Cardinality with Applications to Computability
There are as many squares as there are numbers because they are just as numerous 
as their roots. —Galileo Galilei, 1632

The term cardinal number refers to the size of a set (“This set has eight elements”), where-
as the term ordinal number refers to the order of an element in a sequence (“This is the 
eighth element in the row”). The mathematical definition of cardinal number is based on 
the use of fingers or tally marks to represent numbers. For instance, small children often 
indicate their age by holding up the same number of fingers as the years of their life, and 
adults frequently use one tally mark to correspond to each vote received by a candidate in 
an election. As was discussed in Section 7.2, a pairing of the elements of two sets is called 
a one-to-one correspondence. We say that two finite sets whose elements can be paired 
by a one-to-one correspondence have the same size. This is illustrated by the following 
diagram.

A

a
b
c
d

B

u

x

The elements of set A can
be put into one-to-one
correspondence with the
elements of B.

Now a finite set is one that has no elements at all or that can be put into one-to-one cor-
respondence with a set of the form {1, 2, Á , n} for some positive integer n. By contrast, 
an infinite set is a nonempty set that cannot be put into one-to-one correspondence with  
{1, 2, Á , n} for any positive integer n. Suppose that, as suggested by the quote from Gali-
leo at the beginning of this section, we extend the concept of size to infinite sets by saying 
that one infinite set has the same size as another if, and only if, the first set can be put into 
one-to-one correspondence with the second. What consequences follow from such a defi-
nition? Do all infinite sets have the same size, or are some infinite sets larger than others? 
These are the questions we address in this section. The answers are sometimes surprising 
and have the interesting consequence that there are functions defined on the set of integers 
whose values cannot be computed on a computer.

7.4

Galileo Galilei 
(1564–1642)

w
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Definition

Let A and B be any sets. A has the same cardinality as B if, and only if, there is a 
one-to-one correspondence from A to B. In other words, A has the same cardinality 
as B if, and only if, there is a function f from A to B that is one-to-one and onto.

The following theorem gives some basic properties of cardinality, most of which follow 
from statements proved earlier about one-to-one and onto functions.

Theorem 7.4.1 Properties of Cardinality

For all sets A, B, and C:

a. Reflexive property of cardinality: A has the same cardinality as A.

b.  Symmetric property of cardinality: If A has the same cardinality as B, then B 
has the same cardinality as A.

(continued on page 474)
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474  CHAPTER 7 PROPERTIES OF FUNCTIONS

Note that Theorem 7.4.1(b) makes it possible to say simply that two sets have the same 
cardinality instead of always having to say that one set has the same cardinality as another. 
That is, the following definition can be made.

c.  Transitive property of cardinality: If A has the same cardinality as B and B has 
the same cardinality as C, then A has the same cardinality as C.

Proof:
Part (a), Reflexivity: Suppose A is any set. [To show that A has the same cardinality 
as A, we must show there is a one-to-one correspondence from A to A.] Consider the 
identity function IA from A to A. This function is one-to-one because if x1 and x2 are 
any elements in A with IA(x1) 5 IA(x2), then, by definition of IA, x1 5 x2. The identity 
function is also onto because if y is any element of A, then y 5 IA(y) by definition of 
IA. Hence IA is a one-to-one correspondence from A to A. [So there exists a one-to-one 
correspondence from A to A, as was to be shown.]

Part (b), Symmetry: Suppose A and B are any sets and A has the same cardinality as 
B. [We must show that B has the same cardinality as A.] Since A has the same cardi-
nality as B, there is a function f from A to B that is one-to-one and onto. But then, by 
Theorems 7.2.2 and 7.2.3, there is a function f 21 from B to A that is also one-to-one 
and onto. Hence B has the same cardinality as A [as was to be shown].

Part (c), Transitivity: Suppose A, B, and C are any sets and A has the same cardi-
nality as B and B has the same cardinality as C. [We must show that A has the same 
cardinality as C.] Since A has the same cardinality as B, there is a function f from A 
to B that is one-to-one and onto, and since B has the same cardinality as C, there is 
a function g from B to C that is one-to-one and onto. But then, by Theorems 7.3.3 
and 7.3.4, g + f  is a function from A to C that is one-to-one and onto. Hence A has the 
same cardinality as C [as was to be shown].

Definition

A and B have the same cardinality if, and only if, A has the same cardinality as B 
or B has the same cardinality as A.

The following example illustrates a very important property of infinite sets—namely, 
that an infinite set can have the same cardinality as a proper subset of itself. This property 
is sometimes taken as the definition of infinite set. The example shows that even though it 
may seem reasonable to say that there are twice as many integers as there are even integers, 
the elements of the two sets can be matched up exactly, and so, according to the definition, 
the two sets have the same cardinality.

An Infinite Set and a Proper Subset Can Have the Same Cardinality

Let 2Z be the set of all even integers. Prove that 2Z and Z have the same cardinality.

Solution Consider the function H from Z to 2Z defined as follows:

H(n) 5 2n for each n [ Z.

Example 7.4.1
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A (partial) arrow diagram for H is shown below.

Z 2Z
H

3
2
1
0

–1
–2
–3

6
4
2
0
–2
–4
–6

To show that H is one-to-one, suppose H(n1) 5 H(n2) for some integers n1 and n2. 
Then 2n1 5 2n2 by definition of H, and dividing both sides by 2 gives n1 5 n2. Hence h is 
one-to-one.

To show that H is onto, suppose m is any element of 2Z. Then m is an even integer, and 
so m 5 2k for some integer k. It follows that H(k) 5 2k 5 m. Thus there exists k in Z with 
H(k) 5 m, and hence H is onto.

Therefore, by definition of cardinality, Z and 2Z have the same cardinality. ■

In Section 9.4 we will show that a function from one finite set to another set of the 
same size is one-to-one if, and only if, it is onto. This result does not hold for infinite 
sets. Although it is true that for two infinite sets to have the same cardinality there must 
exist a function from one to the other that is both one-to-one and onto, it is also always 
the case that:

If A and B are infinite sets with the same cardinality, then there exist 
functions from A to B that are one-to-one but not onto and functions 
from A to B that are onto but not one-to-one.

For instance, since the function H in Example 7.4.1 is one-to-one and onto, Z and 2Z have 
the same cardinality. But the “inclusion function” I from 2Z to Z, given by I(n) 5 n for all 
even integers n, is one-to-one but not onto. And the function J from Z to 2Z defined by 
J(n) 5 2 :ny2;, for each integer n, is onto but not one-to-one. (See exercise 6 at the end of 
this section.)

Countable Sets
The most basic of all infinite sets is Z1 the set of counting numbers {1, 2, 3, 4, Á}. A set A 
having the same cardinality as this set is called countably infinite. The reason is that the 
one-to-one correspondence between the two sets can be used to “count” the elements of 
A: If F is a one-to-one and onto function from Z1 to A, then F(1) can be designated as the 
first element of A, F(2) as the second element of A, F(3) as the third element of A, and so 
forth. This is illustrated graphically in Figure 7.4.1 on the next page. Because F is one-to-
one, no element is ever counted twice, and because it is onto, every element of A is counted 
eventually.

Note So there are “as 
many” even integers as 
there are integers!
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1
2
3

“First” element of A
“Second” element of A
“Third” element of A

Z+ A
F

FIGURE 7.4.1 “Counting” a Countably Infinite Set

Definition

A set is finite if, and only if, it is the empty set or can be put into one-to-one cor-
respondence with a set of the form {1, 2, Á , n} for some positive integer n. A set is 
countably infinite if, and only if, it has the same cardinality as the set of positive 
integers Z1. A set is countable if, and only if, it is finite or countably infinite. A set 
that is not countable is called uncountable.

Countability of Z, the Set of All Integers

Show that Z, the set of all integers, is countable.

Solution The set Z is certainly not finite, so if it is countable, it must be because it is 
countably infinite. To show that Z is countably infinite, find a function from the positive 
integers Z1 to Z that is one-to-one and onto. This seems to contradict common sense 
because judging from the diagram below, there appear to be more than twice as many 
integers than there are positive integers.

25 24 23 22 0

positive integers

1 2 3 4 5

all integers

21

But you were alerted that results in this section might be surprising. Try to think how 
you might “count” the set of all integers.

One way is to start in the middle and work outward systematically. Let the first integer be 
0, the second 1, the third 21, the fourth 2, the fifth 22, and so forth, as shown in Figure 7.4.2, 
starting at 0 and swinging outward in back-and-forth arcs from positive to negative integers 
and back again, picking up one additional integer at each swing.

11 9 7 5 3 1 2 4 6 8 10

–5 –4 –3 –2 –1 0 1 2 3 4 5Integers:
The “count” of each integer:

FIGURE 7.4.2 “Counting” the Set of All Integers

It is clear from the diagram that no integer is counted twice (so the function is one-to-
one) and every integer is counted eventually (so the function is onto). Consequently, this 
diagram defines a function from Z1 to Z that is one-to-one and onto. Even though in one 

Example 7.4.2
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sense there seem to be more integers than positive integers, the elements of the two sets 
can be paired up one for one. It follows by definition of cardinality that Z1 has the same 
cardinality as Z. Thus Z is countably infinite and hence countable.

The diagrammatic description of the previous function is acceptable as given. You can 
check, however, that the function can also be described by the explicit formula

F(n) 5 5    

n

2
if n is an even positive integer

2
n21

2
if n is an odd positive integer.

 ■

Countability of 2Z, the Set of All Even Integers

Show that 2Z, the set of all even integers, is countable.

Solution Example 7.4.2 showed that Z1 has the same cardinality as Z, and Example 7.4.1 
showed that Z has the same cardinality as 2Z. Thus, by the transitive property of cardinality, 
Z1 has the same cardinality as 2Z. It follows by definition of countably infinite that 2Z is 
countably infinite and hence countable. ■

The Search for Larger Infinities:  
The Cantor Diagonalization Process
Every infinite set we have discussed so far has been countably infinite. Do any larger in-
finities exist? Are there uncountable sets? Here is one candidate.

Imagine the number line as shown below.

0 1 2 3 424 23 22 21

As noted in Section 1.2, the integers are spread along the number line at discrete intervals. 
On the other hand, the rational numbers are dense along the number line. Between any 
two distinct rational numbers is another rational number, which implies that there are in-
finitely many rational numbers between any two distinct rational numbers no matter how 
close they are to each other. (See exercise 17 at the end of this section or exercise 20 in 
Section 4.3.) So, because there seem to be vastly more rational numbers than integers, it 
would be natural to conjecture that the infinity of the set of rational numbers is larger than 
the infinity of the set of integers.

Amazingly, this conjecture is false. Despite the fact that the rational numbers are 
crowded onto the number line whereas the integers are quite separated, the set of all 
rational numbers can be put into one-to-one correspondence with the set of integers. The 
next example gives part of a proof of this fact. It shows that the set of all positive rational 
numbers can be put into one-to-one correspondence with the set of all positive integers. 
In exercise 16 at the end of this section you are asked to use this result, together with a 
technique similar to that of Example 7.4.2, to show that the set of all rational numbers 
is countable.

The Set of All Positive Rational Numbers Is Countable

Show that Q1, the set of all positive rational numbers, is countable.

Solution Display the elements of the set Q1 in a grid as shown in Figure 7.4.3 on the 
next page.

Example 7.4.3

Example 7.4.4
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1

1

1

2

1

3

1

4

1

5

1

6

2

1

2

2

2

3

2

4

2

5

2

6

3

1

3

2

3

3

3

4

3

5

3

6

4
1

4
2

4
3

4
4

4
5

4
6

5
1

5
2

5
3

5
4

5
5

5
6

6
1

6
2

6
3

6
4

6
5

6
6

FIGURE 7.4.3

Define a function F from Z1 to Q1 by starting to count at 11 and following the arrows as 
indicated, skipping over any number that has already been counted.

To be specific: Set F(1) 5 1, F(2) 5 1
2, F(3) 5 2

1, and F(4) 5
3
1. Then skip 2

2 since 
2
2 5 1

1, which was counted already. After that, set F(5) 5 1
3, F(6) 5 1

4, F(7) 5 2
3, F(8) 5

3
2, 

F(9) 5 4
1, and F(10) 5

5
1. Then skip 4

2, 3
3, and 2

4 (since 4
2 5 2

1, 3
3 5 1

1, and 2
4 5 1

2), and set 

F(11) 5 1
5. Continue in this way, defining F(n) for each positive integer n.

Note that every positive rational number appears somewhere in the grid, and the counting 
procedure is set up so that every point in the grid is reached eventually. Thus the function 
F is onto. Also, skipping numbers that have already been counted ensures that no number 
is counted twice. Thus F is one-to-one. Consequently, F is a function from Z1 to Q1 that is 
one-to-one and onto, and so Q1 is countably infinite and hence countable. ■

In 1874 the German mathematician Georg Cantor achieved success in the search for a 
larger infinity by showing that the set of all real numbers is uncountable. His method of 
proof was somewhat complicated, however. We give a proof of the uncountability of the 
set of all real numbers between 0 and 1 using a simpler technique introduced by Cantor in 
1891 and now called the Cantor diagonalization process. Over the intervening years, this 
technique and variations on it have been used to establish a number of important results in 
logic and the theory of computation.

Before stating and proving Cantor’s theorem, we note that every real number is a measure 
of location on a number line. Each can be represented by a decimal expansion of the form

a0.a1a2a3 Á ,

where a0 is an integer (positive, negative, or zero) and for each i $ 1, ai is an integer from 
0 through 9. This way of thinking about numbers was developed over several centuries 
by mathematicians in the Chinese, Hindu, and Islamic worlds, culminating in the work 
of Ghiyāth al-D n Jamsh d al-Kashi in 1427. In Europe it was first clearly formulated and 
successfully promoted by the Flemish mathematician Simon Stevin in 1585. We illustrate 
the concept with an example.

al-Kashi 
(1380–1429)

Simon Stevin 
(1548–1620)

Be
tt

m
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Consider the point P in Figure 7.4.4. Figure 7.4.4(a) shows P located between 1 and 2. 
When the interval from 1 to 2 is divided into ten equal subintervals (see Figure 7.4.4(b)), 
P is seen to lie between 1.6 and 1.7. If the interval from 1.6 to 1.7 is itself divided into ten 
equal subintervals (see Figure 7.4.4(c)), the P is seen to lie between 1.62 and 1.63 but closer 
to 1.62 than to 1.63. So the first three digits of the decimal expansion for P are 1.62.

–3 –1–2 0 1 2 3

1.0

1.60 1.62 1.63 1.65 1.70

1.5 1.6 1.7 2.0

P

P

P

(b)

(a)

(c)

FIGURE 7.4.4

Assuming that any interval of real numbers, no matter how small, can be divided into 
ten equal subintervals, the process of obtaining additional digits in the decimal expansion 
for P can, in theory, be repeated indefinitely. At any stage if P is seen to be a subdivision 
point, then all further digits in the expansion may be taken to be 0. If not, then the process 
gives an expansion with an infinite number of digits.

The resulting decimal representation for P is unique except for numbers that end in 
infinitely repeating 9’s or infinitely repeating 0’s. For example (see exercise 25 at the end 
of this section), it can be proved that

0.199999 Á 5 0.200000 Á

Let us agree to express any such decimal in the form that ends in all 0’s so that we will have 
a unique representation for every real number.

Theorem 7.4.2 (Cantor)

The set of all real numbers between 0 and 1 is uncountable.

Proof (by contradiction): Suppose the set of all real numbers between 0 and 1 is 
countable. Then the decimal representations of these numbers can be written in a 
list as follows:

0.a11a12a13
Á a1n

Á

0.a21a22a23
Á a2n

Á

0.a31a32a33
Á a3n

Á

o
0.an1an2an3

Á ann
Á

o
[We will derive a contradiction by showing that there is a number between 0 and 1 that 
does not appear on this list.]

(continued on page 480)
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For each pair of positive integers i and j, the jth decimal digit of the ith number 
on the list is aij. In particular, the first decimal digit of the first number on the list is 
a11, the second decimal digit of the second number on the list is a22, and so forth. As 
an example, suppose the list of real numbers between 0 and 1 starts out as follows:

0. 2 0 1 4 8 8 0 2 Á
0. 1 1 6 6 6 0 2 1 Á
0. 0 3 3 5 3 3 2 0 Á
0. 9 6 7 7 6 8 0 9 Á
0. 0 0 0 3 1 0 0 2 Á

o
The diagonal elements are circled: a11 is 2, a22 is 1, a33 is 3, a44 is 7, a55 is 1, and so forth.

Construct a new decimal number d 5 0.d1d2d3
Á dn

Á  as follows:

dn 5 51 if ann Þ 1

2 if ann 5 1.

In the previous example,

d1 is 1 because a11 5 2 Þ 1,

d2 is 2 because a22 5 1,

d3 is 1 because a33 5 3 Þ 1,

d4 is 1 because a44 5 7 Þ 1,

d5 is 2 because a55 5 1,

and so forth. Hence d would equal 0.12112… .
The crucial observation is that for each integer n, d differs in the nth decimal 

position from the nth number on the list. But this implies that d is not on the list! 
In other words, d is a real number between 0 and 1 that is not on the list of all real 
numbers between 0 and 1. This contradiction shows the falseness of the supposition 
that the set of all numbers between 0 and 1 is countable. Hence the set of all real 
numbers between 0 and 1 is uncountable [as was to be shown].

Along with demonstrating the existence of an uncountable set, Cantor developed a 
whole arithmetic theory of infinite sets of various sizes. One of the most basic theorems of 
the theory states that any subset of a countable set is countable. 

Theorem 7.4.3

Any subset of any countable set is countable.

Proof: Let A be a particular but arbitrarily chosen countable set and let B be any subset 
of A. [We must show that B is countable.] Either B is finite or it is infinite. If B is finite, 
then B is countable by definition of countable, and we are done. So suppose B is infi-
nite. Since A is countable, the distinct elements of A can be represented as a sequence

a1, a2, a3, Á .
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Corollary 7.4.4

Any set with an uncountable subset is uncountable.

Proof: Consider the following equivalent phrasing of Theorem 7.4.3: For every set S 
and for every subset A of S, if S is countable, then A is countable. The contrapositive 
of this statement is logically equivalent to it and states: For every set S and for every 
subset A of S, if A is uncountable then S is uncountable. Since this is an equivalent 
phrasing for the corollary, the corollary is proved.

Define a function g: Z1 S B inductively as follows:

1. Search sequentially through elements of a1, a2, a3, Á until an element of B 
is found. [This must happen eventually since B # A and B Þ [.] Call that ele-
ment g(1).

2. For each integer k $ 2, suppose g(k21) has been defined. Then g(k21) 5 ai 
for some ai in {a1, a2, a3, Á}. Starting with ai 11, search sequentially through 
ai 11, ai 12, ai 13, Á trying to find an element of B. One must be found even-
tually because B is infinite, and {g(1), g(2), Á , g(k21)} is a finite set. When 
an element of B is found, define it to be g(k). 

By (1) and (2) above, the function g is defined for each positive integer.
Since the elements of a1, a2, a3, Á are all distinct, g is one-to-one. Further-

more, the searches for elements of B are sequential: Each picks up where the 
previous one left off. Thus every element of A is reached during some search. 
Moreover, all the elements of B are located somewhere in the sequence a1, a2, 
a3, Á , and so every element of B is eventually found and made the image of 
some integer. Hence g is onto. These remarks show that g is a one-to-one cor-
respondence from Z1 to B. So B is countably infinite and thus countable [as was 
to be shown].

Note If g(k21) 5 ai, 
then g(k) could also be 
defined by applying the 
well-ordering principle 
for the integers to the 
set {n [ Z un . i and 
ai [ B}.

An immediate consequence of Theorem 7.4.3 is the following corollary.

Corollary 7.4.4 implies that the set of all real numbers is uncountable because the subset 
of numbers between 0 and 1 is uncountable. In fact, as Example 7.4.5 shows, the set of all 
real numbers has the same cardinality as the set of all real numbers between 0 and 1! This 
fact is further explored in exercises 13 and 14 at the end of this section.

The Cardinality of the Set of All Real Numbers

Show that the set of all real numbers has the same cardinality as the set of real numbers 
between 0 and 1.

Solution Let S be the open interval of real numbers between 0 and 1:

S 5 {x [ R u0 , x , 1}.

Example 7.4.5
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482  CHAPTER 7 PROPERTIES OF FUNCTIONS

Imagine picking up S and bending it into a circle as shown below. Since S does not include 
either endpoint 0 or 1, the top-most point of the circle is omitted from the drawing.

7
8

3
4

1
2

3
8

5
8

1
4

1
8

Define a function F: S S R as follows:
Draw a number line and place the interval, S, somewhat enlarged and bent into a circle, 

tangent to the number line at the point 0. This is shown below.

Number line

0212223 1 2 3

x

L

F(x)

For each point x on the circle representing S, draw a straight line L through the top-most 
point of the circle and x, and let F(x) be the point of intersection of L and the number line. 
(F(x) is called the projection of x onto the number line.)

It is clear from the geometry of the situation that distinct points on the circle go to 
distinct points on the number line, so F is one-to-one. In addition, given any point y 
on the number line, a line can be drawn through y and the top-most point of the circle. 
This line must intersect the circle at some point x, and, by definition, y 5 F(x). Thus F 
is onto. Hence F is a one-to-one correspondence from S to R, and so S and R have the 
same cardinality. ■

The combination of Example 7.4.5 and Theorem 7.4.2 shows that the set of all real 
numbers is uncountable, which implies that there is an infinite set whose cardinality is 
“greater” than the infinity of the set of positive integers. In exercise 35, you are asked to 
prove that any set and its power set have different cardinalities. And because there is a one-
to-one function from any set to its power set (the function that takes each element a to the 
singleton set {a}), this implies that the cardinality of any set is “less than” the cardinality of 
its power set. As a result, you can create an infinite sequence of larger and larger infinities! 
For example, you could begin with Z, the set of all integers, and take Z, 3(Z), 3(3(Z)), 
3(3(3(Z))), and so forth.

Application: Cardinality and Computability
Knowledge of the countability and uncountability of certain sets can be used to answer a 
question of computability. We begin by showing that a certain set is countable.

Countability of the Set of Computer Programs in a Computer Language

Show that the set of all computer programs in a given computer language is countable.

Solution This result is a consequence of the fact that any computer program in any lan-
guage can be regarded as a finite string of symbols in the (finite) alphabet of the language.

Example 7.4.6
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7.4 CaRDINalITy wITh aPPlICaTIONS TO COmPUTabIlITy  483

Given any computer language, let P be the set of all computer programs in the language. 
Either P is finite or P is infinite. If P is finite, then P is countable and we are done. If P is 
infinite, set up a binary code to translate the symbols of the alphabet of the language into 
strings of 0’s and 1’s. (For instance, either the seven-bit American Standard Code for In-
formation Interchange, known as ASCII, or the eight-bit Extended Binary-Coded Decimal 
Interchange Code, known as EBCDIC, might be used.)

For each program in P, use the code to translate all the symbols in the program into 0’s and 
1’s. Order these strings by length, putting shorter before longer, and order all strings of a given 
length by regarding each string as a binary number and writing the numbers in ascending order.

Define a function F: Z1 S P by specifying that

F(n) 5 the nth program in the list for each n [ Z1.

By construction, F is one-to-one and onto, and so P is countably infinite and hence 
countable. 

As a simple example, suppose the following are all the programs in P that translate into 
bit strings of length less than or equal to 5:

10111, 11, 0010, 1011, 01, 00100, 1010, 00010.

Ordering these by length gives

length 2: 11, 01

length 4: 0010, 1011, 1010

length 5: 10111, 00100, 00010

And ordering those of each given length by the size of the binary number they represent gives

01

11

0010

1010

1011

00010

00100

10111

5

5

5

5

5

5

5

5

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

F(8)

Note that when viewed purely as numbers and ignoring leading zeros, 0010 5 00010. 
This illustrates why it is important to order the strings by length before arranging them 
in ascending numeric order because otherwise the values of F would not be uniquely 
determined. ■

The final example of this section shows that a certain set is uncountable and hence that 
there must exist a noncomputable function.

The Cardinality of a Set of Functions and Computability

a. Let T be the set of all functions from the positive integers to the set {0, 1, 2, 3, 4, 5, 6, 
7, 8, 9}. Show that T is uncountable.

b. Derive the consequence that there are noncomputable functions. Specifically, show 
that for any computer language there must be a function F from Z1 to {0, 1, 2, 3, 4, 5, 
6, 7, 8, 9} with the property that no computer program can be written in the language 
to take arbitrary values as input and output the corresponding function values. 

Example 7.4.7
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484  CHAPTER 7 PROPERTIES OF FUNCTIONS

Solution
a. Let S be the set of all real numbers between 0 and 1. As noted before, any number in S 

can be represented in the form

0.a1a2a3 Á an Á ,

where each ai is an integer from 0 to 9. This representation is unique if decimals that 
end in all 9’s are omitted.

Define a function F from S to a subset of T as follows:

F(0.a1a2a3 Á an Á ) 5  the function that sends each
positive integer n to an.

Choose the co-domain of F to be exactly that subset of T that makes F onto, recalling 
that T is the set of all functions from Z1 to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In other words, 
define the co-domain of F to equal the image of F. Now F is one-to-one because in 
order for the functions F (x1) and F (x2) to be equal, they must have the same value for 
each positive integer, and so each decimal digit of x1 must equal the corresponding 
decimal digit of x2, which implies that x1 5 x2. Thus F is a one-to-one correspon-
dence from S to a subset of T. But S is uncountable by Theorem 7.4.2. Hence T has an 
uncountable subset, and so, by Corollary 7.4.4, T is uncountable.

b. Part (a) shows that the set T of all functions from Z1 to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
is uncountable. But, by Example 7.4.6, given any computer language, the set of all 
programs in that language is countable. Consequently, in any computer language there 
are not enough programs to compute values of every function in T. There must exist 
functions that are not computable!  ■

1. A set is finite if, and only if, .

2. To prove that a set A has the same cardinality as a 
set B you must .

3. The reflexive property of cardinality says that 
given any set A, .

4. The symmetric property of cardinality says that 
given any sets A and B, .

5. The transitive property of cardinality says that 
given any sets A, B, and C, .

6. A set is called countably infinite if, and only  
if, .

7. A set is called countable if, and only if, .

8. In each of the following, fill in the blank with the 
word countable or the word uncountable.

(a) The set of all integers is .

(b) The set of all rational numbers is .

(c)  The set of all real numbers between 0 and 1  
is .

(d) The set of all real numbers is .

9. The Cantor diagonalization process is used to 
prove that .

TEST YOURSELF 

1. When asked what it means to say that set A has 
the same cardinality as set B, a student replies, “A 
and B are one-to-one and onto.” What should the 
student have replied? Why?

2. Show that “there are as many squares as there are 
numbers” by exhibiting a one-to-one correspon-
dence from the positive integers, Z1, to the set S 
of all squares of positive integers:

S 5 {n [ Z1 un 5 k2, for some positive integer k}.

ExERCISE SET 7.4 

Note As an example, 
let G 5 F(0.2901 Á). 
Then G(1) 5 2, G(2) 5 9,
G(3) 5 0, G(4) 5 1, and 
so forth. 
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3. Let 3Z 5 {n [ Z un 5 3k, for some integer k}. 
Prove that Z and 3Z have the same cardinality.

4. Let O be the set of all odd integers. Prove that O 
has the same cardinality as 2Z, the set of all even 
integers.

5. Let 25Z be the set of all integers that are multiples 
of 25. Prove that 25Z has the same cardinality as 
2Z, the set of all even integers.

6. Use the functions I and J defined in the paragraph 
following Example 7.4.1 to show that even though 
there is a one-to-one correspondence, H, from 2Z 
to Z, there is also a function from 2Z to Z that is 
one-to-one but not onto and a function from Z to 
2Z that is onto but not one-to-one. In other words, 
show that I is one-to-one but not onto, and show 
that J is onto but not one-to-one.

7. a.  Check that the formula for F given at the end 
of Example 7.4.2 produces the correct values 
for n 5 1, 2, 3, and 4.

b. Use the floor function to write a formula for F 
as a single algebraic expression for each posi-
tive integer n.

8. Use the result of exercise 3 to prove that 3Z is 
countable.

9. Show that the set of all nonnegative integers is 
countable by exhibiting a one-to-one correspon-
dence between Z1 and Znonneg. 

In 10–14 S denotes the set of real numbers strictly 
between 0 and 1. That is, S 5 {x [ R u0 , x , 1}.

10. Let U 5 {x [ R u0 , x , 2}. Prove that S and U 
have the same cardinality.

11. Let V 5 {x [ R u2 , x , 5}. Prove that S and V 
have the same cardinality.

12. Let a and b be real numbers with a , b, and sup-
pose that W 5 {x [ R ua , x , b}. Prove that S 
and W have the same cardinality.

13. Draw the graph of the function f defined by the 
following formula:
For each real number x with 0 , x , 1,

f (x) 5 tanSpx2
p

2D.

Use the graph to explain why S and R have the 
same cardinality.

14. Define a function g from the set of real numbers 
to S by the following formula:

For each real number x,

g(x) 5
1

2
?S x

11 ux u D1
1

2
.

Prove that g is a one-to-one correspondence. (It is 
possible to prove this statement either with calcu-
lus or without it.) What conclusion can you draw 
from this fact?

15. Show that the set of all bit strings (strings of 0’s 
and 1’s) is countable.

16. Show that Q, the set of all rational numbers, is 
countable.

17. Show that Q, the set of all rational numbers, is dense 
along the number line by showing that given any 
two rational numbers r1 and r2 with r1 , r2, there 
exists a rational number x such that r1 , x , r2.

18. Must the average of two irrational numbers always 
be irrational? Prove or give a counterexample.

19. Show that the set of all irrational numbers is dense 
along the number line by showing that given any 
two real numbers, there is an irrational number in 
between.

20. Give two examples of functions from Z to Z that 
are one-to-one but not onto.

21. Give two examples of functions from Z to Z that 
are onto but not one-to-one.

22. Define a function g: Z1 3 Z1 S Z1 by the 
formula g(m, n) 5 2m3n for all (m, n) [ Z13 Z1. 
Show that g is one-to-one and use this result to 
prove that Z1 3 Z1 is countable.

23. a.  Explain how to use the following diagram to 
show that Znonneg 3 Znonneg and Znonneg have 
the same cardinality.

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)(0, 4)

...
...

...
...

...

. . .

. . .

. . .

. . .

. . .

b. Define a function H: Znonneg 3 Znonneg S 
Znonneg by the formula

H(m, n) 5 n1
(m1n)(m1n11)

2

H

H

*

H

H

H*

H

H*
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486  CHAPTER 7 PROPERTIES OF FUNCTIONS

for all nonnegative integers m and n. Interpret the ac-
tion of H geometrically using the diagram of part (a).

24. Prove that the function H defined analytically in 
exercise 23b is a one-to-one correspondence.

25. Prove that 0.1999 Á 5 0.2.

26. Prove that any infinite set contains a countably 
infinite subset.

27. Prove that if A is any countably infinite set, B is 
any set, and g: A S B is onto, then B is countable.

28. Prove that a disjoint union of any finite set and 
any countably infinite set is countably infinite.

29. Prove that a union of any two countably infinite 
sets is countably infinite.

30. Use the result of exercise 29 to prove that the set 
of all irrational numbers is uncountable.

31. Use the results of exercises 28 and 29 to prove that 
a union of any two countable sets is countable.

32. Prove that Z 3 Z, the Cartesian product of the set 
of integers with itself, is countably infinite.

33. Use the results of exercises 27, 31, and 32 to prove 
the following: If R is the set of all solutions to all 
equations of the form x2 1bx1c 5 0, where b 
and c are integers, then R is countable.

34. Let 3(S) be the set of all subsets of set S, and let 
T be the set of all functions from S to {0, 1}. Show 
that 3(S) and T have the same cardinality.

35. Let S be a set and let 3(S) be the set of all subsets 
of S. Show that S is “smaller than” 3(S) in the 
sense that there is a one-to-one function from S to 
3(S) but there is no onto function from S to 3(S).

36. The Schroeder–Bernstein theorem states the fol-
lowing: If A and B are any sets with the property 
that there is a one-to-one function from A to B 
and a one-to-one function from B to A, then A and 
B have the same cardinality. Use this theorem to 
prove that there are as many functions from Z1 
to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} as there are functions 
from Z1 to {0, 1}.

37. Prove that if A and B are any countably infinite 
sets, then A 3 B is countably infinite.

38. Suppose A1, A2, A3, Á is an infinite sequence of 
countable sets. Recall that

ø
`

i51

Ai 5 hx u x [ Ai for some positive integer ij.

Prove that <`

i51 
Ai is countable. (In other words, 

prove that a countably infinite union of countable 
sets is countable.) 

*

H

H

H

H

H

H

H

*

H

*

1. it is the empty set or there is a one-to-one correspondence 
from {1, 2, Á , n} to it, where n is a positive integer  
2. show that there exists a function from A to B that is one-
to-one and onto (Or: show that there exists a one-to-one 
correspondence from A to B) 3. A has the same cardinality 
as A 4. if A has the same cardinality as B, then B has the 

same cardinality as A 5. if A has the same cardinality as 
B and B has the same cardinality as C, then A has the same 
cardinality as C 6. it has the same cardinality as the set of 
all positive integers 7. it is finite or countably infinite  
8. countable; countable; uncountable; uncountable 9. the 
set of all real numbers between 0 and 1 is uncountable

ANSWERS FOR TEST YOURSELF 
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ProPerties of relationsChapter 8

In this chapter we discuss the mathematics of relations defined on sets, focusing on ways to 
represent relations and exploring various properties they may have. The concept of equiva-
lence relation is introduced in Section 8.3 and applied in Section 8.4 to modular arithmetic 
and cryptography. Partial order relations are discussed in Section 8.5, and an application 
is given showing how to use these relations to help coordinate and guide the flow of indi-
vidual tasks that must be performed to accomplish a complex, large-scale project.

relations on sets
Strange as it may sound, the power of mathematics rests on its evasion of all unnecessary 
thought and on its wonderful saving of mental operations. —Ernst Mach, 1838–1916

A more formal way to refer to the kind of relation defined in Section 1.3 is to call it a 
binary relation because it is a subset of a Cartesian product of two sets. At the end of this 
section we define an n-ary relation to be a subset of a Cartesian product of n sets, where 
n is any integer greater than or equal to two. Such a relation is the fundamental structure 
used in relational databases. However, because we focus on binary relations in this text, 
when we use the term relation by itself, we will mean binary relation.

the less-than relation for real numbers

Define a relation L from R to R as follows: For all real numbers x and y,

x L y 3 x , y.

a. Is 57 L 53?  b. Is (217) L (214)?  c. Is 143 L 143?  d. Is (235) L 1?

e. Draw the graph of L as a subset of the Cartesian plane R 3 R. 

solution

a. No, 57 . 53.  b. Yes, 217 , 214.  c. No, 143 5 143.  d. Yes, 235 , 1.

e. For each value of x, all the points (x, y) with y . x are on the graph. So the graph 
consists of all the points above the line x 5 y.

y

x

 ■

8.1

example 8.1.1
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488  ChaPter 8 PROPERTIES OF RELATIONS

the Congruence Modulo 2 relation

Define a relation E from Z to Z as follows: For every (m, n) [ Z 3 Z,

m E n 3 m2n is even.

a. Is 4 E 0? Is 2 E 6? Is 3 E (23)? Is 5 E 2?

b. List five integers that are related by E to 1.

c. Prove that if n is any odd integer, then n E 1. 

solution

a. Yes, 4 E 0 because 420 5 4 and 4 is even.
Yes, 2 E 6 because 226 5 24 and 24 is even.
Yes, 3 E (23) because 32 (23) 5 6 and 6 is even.
No, 5 E 2 because 522 5 3 and 3 is not even.

b. There are many such lists. One is

 1 because 121 5 0 is even.

 3 because 321 5 2 is even.

 5 because 521 5 4 is even.

   21 because 2121 5 22 is even.

   23 because 2321 5 24 is even.

c. Proof: Suppose n is any odd integer. Then n 5 2k11 for some integer k. Now by 
definition of E, n E 1 if, and only if, n21 is even. But by substitution,

n21 5 (2k11)21 5 2k,

and since k is an integer, 2k is even. Hence n E 1 [as was to be shown].

It can be shown (see exercise 2 at the end of this section) that integers m and n are related 
by E if, and only if, m mod 2 5 n mod 2 (that is, both are even or both are odd). When this 
occurs m and n are said to be congruent modulo 2.  ■

a relation on a Power set

Let X 5 {a, b, c}. Then 3(X) 5 {[, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Define a 
relation  from 3(X) to 3(X) as follows: For all sets A and B in 3(X) (that is, for all subsets 
A and B of X),

A  B 3 A has at least as many elements as B.

a. Is {a, b}  {b, c}?  b. Is {a}    [?  c. Is {b, c}  {a, b, c}?  d. Is {c}  {a}?

solution

a. Yes, both sets have two elements.

b. Yes, {a} has one element and [ has zero elements, and 1 $ 0.

c. No, {b, c} has two elements and {a, b, c} has three elements and 2 , 3.

d. Yes, both sets have one element.  ■

The Inverse of a Relation
If R is a relation from A to B, then a relation  R21 from B to A can be defined by interchang-
ing the elements of all the ordered pairs of R.

example 8.1.2

example 8.1.3
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8.1 relations on sets  489

Definition

Let R be a relation from A to B. Define the inverse relation R21 from B to A as 
follows:

R21 5 {(y, x) [ B 3 A u  (x, y) [ R}.

This definition can be written operationally as follows:

For all x [ A and y [ B, (y, x) [ R21 3  (x, y) [ R.

the inverse of a finite relation

Let A 5 {2, 3, 4} and B 5 {2, 6, 8}, and let R be the “divides” relation from A to B: For 
every ordered pair (x, y) [ A 3 B,

x R y 3 x u  y x divides y.

a. State explicitly which ordered pairs are in R and R21, and draw arrow diagrams for R 
and R21.

b. Describe R21 in words. 

solution

a.  R 5 h(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)j
 R21 5 h(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)j

BR

2

6

8

A

2

3

4

To draw the arrow diagram for R21, you can copy the arrow diagram for R but reverse 
the directions of the arrows.

B
R–1

2

6

8

A

2

3

4

Or you can redraw the diagram so that B is on the left.

AR–1

2

3

4

B

2

6

8

b. R21 can be described in words as follows: For every ordered pair (y, x) [ B 3 A,

  y R21x 3 y is a multiple of x. ■

example 8.1.4
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490  ChaPter 8 ProPerties of relations

the inverse of an infinite relation

Define a relation R from R to R as follows: For every ordered pair (x, y) [ R 3 R,

x R y 3 y 5 2 ux u .

Draw the graphs of R and R21 in the Cartesian plane. Is R21 a function?

solution A point (v, u) is on the graph of R21 if, and only if, (u, v) is on the graph of R. 
Note that if x $ 0, then the graph of y 5 2 ux u 5 2x is a straight line with slope 2. And if 
x , 0, then the graph of y 5 2 ux u 5 2(2x) 5 22x is a straight line with slope 22. Some 
sample values are tabulated and the graphs are shown below.

  R 5 {(x, y) uy 5 2 ux u} R21 5 {(y, x) uy 5 2 ux u}

 

x y

   0 0

   1 2

21 2

   2 4

22 4
 

y x

0    0

2    1

2 21

4    2

4 22

 1st coordinate 2nd coordinate 1st coordinate 2nd coordinate

Graph of R
u

Graph of R–1

u

R21 is not a function because, for instance, both (2, 1) and (2, 21) are in R21. ■

Directed Graph of a Relation
In the remaining sections of this chapter, we discuss important properties of relations that 
are defined from a set to itself.

Definition

A relation on a set A is a relation from A to A.

When a relation R is defined on a set A, the arrow diagram of the relation can be modi-
fied so that it becomes a directed graph. Instead of representing A as two separate sets 
of points, represent A only once, and draw an arrow from each point of A to each related 
point. As with an ordinary arrow diagram,

example 8.1.5

h h h h

note Be careful to dis-
tinguish clearly between 
a relation and the set on 
which it is defined.
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8.1 relations on sets  491

For all points x and y in A,

there is an arrow from x to y 3 x R y 3 (x, y) [ R.

If a point is related to itself, a loop is drawn that extends out from the point and goes back 
to it.

Directed Graph of a relation

Let A 5 {3, 4, 5, 6, 7, 8} and define a relation R on A as follows: For every x, y [ A,

x R y 3 2 u  (x2y).

Draw the directed graph of R.

solution Note that 3 R 3 because 323 5 0 and 2 u  0 since 0 5 2?0. Thus there is a loop 
from 3 to itself. Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth, since 
the difference of each integer with itself is 0, and 2 u  0.

Note also that 3 R 5 because 325 5 22 5 2?(21). And 5 R 3 because 523 5 2 5 2?1. 
Hence there is an arrow from 3 to 5 and also an arrow from 5 to 3. The other arrows in the 
directed graph, as shown below, are obtained by similar reasoning.

 

5

4

6

7

8
3

 ■

n-ary Relations and Relational Databases
A special group of relations, called n-ary relations, form the mathematical foundation for 
relational database theory. Just as a binary relation is a subset of a Cartesian product of two 
sets, an n-ary relation is a subset of a Cartesian product of n sets.

Definition

Given sets A1, A2, . . . , An, an n-ary relation R on A1 3 A2 3 Á 3 An is a subset of 
A1 3 A2 3 Á 3 An. The special cases of 2-ary, 3-ary, and 4-ary relations are called 
binary, ternary, and quaternary relations, respectively.

a simple Database

The following is a radically simplified version of a database that might be used in a hospi-
tal. Let A1 be a set of positive integers, A2 a set of alphabetic character strings, A3 a set of 
numeric character strings, and A4 a set of alphabetic character strings. Define a quaternary 
relation R on A1 3 A2 3 A3 3 A4 as follows:

(a1, a2, a3, a4) [ R 3  a patient with patient ID number a1, named a2, was 
admitted on date a3, with primary diagnosis a4.

example 8.1.6

note Read “For every 
x, y [ A” as “For every x 
and y in A.”

example 8.1.7
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492  ChaPter 8 ProPerties of relations

At a particular hospital, this relation might contain the following 4-tuples:

(011985, John Schmidt, 020719, asthma)

(574329, Tak Kurosawa, 011419, pneumonia)

(466581, Mary Lazars, 010319, appendicitis)

(008352, Joan Kaplan, 112419, gastritis)

(011985, John Schmidt, 021719, pneumonia)

(244388, Sarah Wu, 010319, broken leg)

(778400, Jamal Baskers, 122719, appendicitis)

In discussions of relational databases, the n-tuples are normally thought of as being 
written in tables. Each row of the table corresponds to one n-tuple, and the header for each 
column gives the descriptive attribute for the elements in the column.

Operations within a database allow the data to be manipulated in many different ways. 
For example, in the database language SQL, if the above database is denoted S, the result 
of the query

SELECT Patient_ID#, Name FROM S WHERE

Admission_Date 5 010319

would be a list of the ID numbers and names of all patients admitted on 01-03-19:

466581 Mary Lazars

   244388 Sarah Wu

This is obtained by taking the intersection of the set A1 3 A2 3 {010319} 3 A4 with the 
database and then projecting onto the first two coordinates. (See exercise 25 of Section 7.1.) 
Similarly, SELECT can be used to obtain a list of all admission dates of a given patient. 
For John Schmidt this list is

02–07–19

02–17–19

Individual entries in a database can be added, deleted, or updated, and most databases 
can sort data entries in various ways. In addition, entire databases can be merged, and the 
entries common to two databases can be moved to a new database. ■

1. If R is a relation from A to B, x [ A, and y [ B, 
the notation x R y means that .

2. If R is a relation from A to B, x [ A, and y [ B, 
the notation x R y means that .

3. If R is a relation from A to B, x [ A, and y [ B, 
then (y, x) [ R21 if, and only if, .

4. A relation on a set A is a relation from  to 
.

5. If R is a relation on a set A, the directed graph of R 
has an arrow from x to y if, and only if, .

test Yourself 
answers to test Yourself questions are located at the end of each section.
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1. As in Example 8.1.2, the congruence modulo 2 
relation E is defined from Z to Z as follows: For 
every ordered pair (m, n) [ Z 3 Z,

m E n 3 m2n is even.

a. Is 0 E 0? Is 5 E 2? Is (6, 6) [ E?  
Is (21, 7) [ E?

b. Prove that for any even integer n, n E 0. 

2. Prove that for all integers m and n, m2n is even 
if, and only if, both m and n are even or both m 
and n are odd.

3. The congruence modulo 3 relation, T, is defined 
from Z to Z as follows: For all integers m and n, 

m T n 3 3 u  (m2n).

a. Is 10 T 1? Is 1 T 10? Is (2, 2) [ T?  
Is (8, 1) [ T?

b. List five integers n such that n T 0.
c. List five integers n such that n T 1.
d. List five integers n such that n T 2. 
e. Make and prove a conjecture about which 

integers are related by T to 0, which integers 
are related by T to 1, and which integers are 
related by T to 2.

4. Define a relation P on Z as follows: For every 
ordered pair (m, n) [ Z 3 Z,

m P n 3 m and n have a common prime factor.

a. Is 15 P 25?    b.  Is 22 P 27?
c. Is 0 P 5?      d.  Is 8 P 8? 

5. Let X 5 {a, b, c}. Recall that 3(X) is the power 
set of X. Define a relation  on 3(X) as follows: 
For all sets A and B in 3(X),

A  B 3 A has the same number of elements as B.

a. Is {a, b}  {b, c}?   b.  Is {a}  {a, b}?
c. Is {c}  {b}?

6. Let X 5 {a, b, c}. Define a relation  on 3(X) as 
follows: For all sets A and B in 3(X),

A  B 3 A ù B Þ [.

a. Is {a}  {c}?    b. Is {a, b}  {b, c}?
c. Is {a, b}  {a, b, c}?

7. Define a relation R on Z as follows: For all inte-
gers m and n,

m R n 3 5 u  (m2 2n2).

a. Is 1 R (29)?   b. Is 2 R 13?
c. Is 2 R (28)?   d. Is (28) R 2?

8. Let A be the set of all strings of a’s and b’s of 
length 4. Define a relation R on A as follows: For 
every s, t [ A,

s R t 3  s has the same first two characters as t.

a. Is abaa R abba?    b. Is aabb R bbaa?
c. Is aaaa R aaab?    d. Is baaa R abaa? 

9. Let A be the set of all strings of 0’s, 1’s, and 2’s of 
length 4. Define a relation R on A as follows: For 
every s, t [ A,

s R t 3  the sum of the characters in s equals  
the sum of the characters in t.

a. Is 0121 R 2200?   b. Is 1011 R 2101?
c. Is 2212 R 2121?    d. Is 1220 R 2111?

10. Let A 5 {3, 4, 5} and B 5 {4, 5, 6} and let R be 
the “less than” relation. That is, for every ordered 
pair (x, y) [ A 3 B,

x R y 3 x , y.

 State explicitly which ordered pairs are in R and R21.

11. Let A 5 {3, 4, 5} and B 5 {4, 5, 6} and let S be 
the “divides” relation. That is, for every ordered 
pair (x, y) [ A 3 B,

x S y 3 x u  y.

 State explicitly which ordered pairs are in S and S21.

12. a.  Suppose a function F  : X S Y  is one-to-one 
but not onto. Is F21 (the inverse relation for F) 
a function? Explain your answer.

b. Suppose a function F  : X S Y  is onto but not 
one-to-one. Is F21 (the inverse relation for F) a 
function? Explain your answer. 

H

H

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.

exerCise set 8.1* 
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494  ChaPter 8 ProPerties of relations

Draw the directed graphs of the relations defined 
in 13–18.

13. Define a relation R on A 5 {0, 1, 2, 3} by 
R 5 {(0, 0), (1, 2), (2, 2)}.

14. Define a relation S on B 5 {a, b, c, d} by 
S 5 {(a, b), (a, c), (b, c), (d, d)}.

15. Let A 5 {2, 3, 4, 5, 6, 7, 8} and define a relation R 
on A as follows: For every x, y [ A,

x R y 3 x u  y.

16. Let A 5 {5, 6, 7, 8, 9, 10} and define a relation S 
on A as follows: For every x, y [ A,

x S y 3 2 u  (x2y).

17. Let A 5 {2, 3, 4, 5, 6, 7, 8} and define a relation T 
on A as follows: For every x, y [ A,

x T y 3 3 u  (x2y).

18. Let A 5 {0, 1, 3, 4, 5, 6} and define a relation V 
on A as follows: For every x, y [ A,

x V y 3 5 u  (x2 2y2).

exercises 19–20 refer to unions and intersections of rela-
tions. Since relations are subsets of Cartesian products, 
their unions and intersections can be calculated as for any 
subsets. Given two relations R and S from A to B,

R ø S 5 {(x, y) [ A 3 B u  (x, y) [ R or (x, y) [ S}

R ù S 5 {(x, y) [ A 3 B u  (x, y) [ R and (x, y) [ S}.

19. Let A 5 { 2, 4} and B 5 {6, 8, 10} and define 
relations R and S from A to B as follows: For every 
(x, y) [ A 3 B,

x R y 3 x u  y and

x S y 3 y24 5 x.

  State explicitly which ordered pairs are in A 3 B, 
R, S, R ø S, and R ù S.

20. Let A 5 {21, 1, 2, 4} and B 5 {1, 2} and define 
relations R and S from A to B as follows: For every 
(x, y) [ A 3 B,

x R y 3 ux u 5 uy u  and

x S y 3 x2y is even.

  State explicitly which ordered pairs are in A 3 B, 
R, S, R ø S, and R ù S.

21. Define relations R and S on R as follows:

R 5 h(x, y) [ R 3 R u  x , yj and

S 5 h(x, y) [ R 3 R u  x 5 yj.
  That is, R is the “less than” relation and S is the 

“equals” relation on R. Graph R, S, R ø S, and 
R ù S in the Cartesian plane.

22. Define relations R and S on R as follows:

R 5 h(x, y) [ R 3 R u  x2 1y2 5 4j and

S 5 h(x, y) [ R 3 R u  x 5 yj.

  Graph R, S, R ø S, and R ù S in the Cartesian 
plane.

23. Define relations R and S on R as follows:

R 5 h(x, y) [ R 3 R u  y 5 ux u j and

S 5 h(x, y) [ R 3 R u  y 5 1j.

  Graph R, S, R ø S, and R ù S in the Cartesian 
plane.

24. In Example 8.1.7 consider the query SELECT 
Patient_ID#, Name FROM S WHERE Primary_ 
Diagnosis 5 X. The response to the query is 
the projection onto the first two coordinates 
of the intersection of the database with the set 
A1 3 A2 3 A3 3 {X}.
a. Find the result of the query SELECT Patient_

ID#, Name FROM S WHERE Primary_ 
Diagnosis 5 pneumonia.

b. Find the result of the query SELECT Patient_
ID#, Name FROM S WHERE Primary_ 
Diagnosis 5 appendicitis.

H

1. x is related to y by R 2. x is not related to y by R 3. (x, y) [ R 4. A; A 5. x is related to y by R

answers for test Yourself 
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8.2 reflexivity, symmetry, and transitivity  495

reflexivity, symmetry, and transitivity
Mathematics is the tool specially suited for dealing with abstract concepts of any kind 
and there is no limit to its power in this field. —P. A. M. Dirac, 1902–1984

Let A 5 {2, 3, 4, 6, 7, 9} and define a relation R on A as follows: For every x, y [ A,

x R y 3 3 u  (x2y).

Then 2 R 2 because 222 5 0, and 3 u  0. Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and 9 R 9. 
Also 6 R 3 because 623 5 3, and 3 u  3. And 3 R 6 because 326 5 2(623) 5 23, and 
3 u  (23). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed graph for 
R has the appearance shown below.

3
4

7

2

6
9

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it and going back to it.

2. In each case where there is an arrow going from one point to a second, there is an arrow 
going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from the 
second point to a third, there is an arrow going from the first point to the third. That is, 
there are no “incomplete directed triangles” in the graph. 

Properties (1), (2), and (3) correspond to properties of general relations called reflexiv-
ity, symmetry, and transitivity. 

8.2

!
Caution! The definition 
of symmetric does not 
say that x is related to y 
by R; rather, it states only 
that if it happens that x is 
related to y, then y must 
be related to x.

Definition

Let R be a relation on a set A.
1. R is reflexive if, and only if, for every x [ A, x R x.

2. R is symmetric if, and only if, for every x, y [ A, if x R y then y R x.

3. R is transitive if, and only if, for every x, y, z [ A, if x R y and y R z then x R z. 

Because of the equivalence of the expressions x R y and (x, y) [ R for every x and y in 
A, the reflexive, symmetric, and transitive properties can also be written as follows:

1. R is reflexive 3  for every x in A, (x, x) [ R.

2. R is symmetric 3  for every x and y in A, if (x, y) [ R then (y, x) [ R.

3. R is transitive 3   for every x, y, and z in A, if (x, y) [ R and (y, z) [ R then 
(x, z) [ R. 
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496  ChaPter 8 ProPerties of relations

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second element 
is related to the first.

3. Transitive: If any one element is related to a second and that second element is related 
to a third, then the first element is related to the third.

Note that the definitions of reflexivity, symmetry, and transitivity are universal state-
ments. This means that to prove a relation has one of the properties, you use either the 
method of exhaustion or the method of generalizing from the generic particular.

Now consider what it means for a relation not to have one of the properties defined 
previously. Recall that the negation of a universal statement is existential. Hence if R is a 
relation on a set A, then

1. R is not reflexive 3   there is an element x in A such that x R x [that is, such that 
(x, x) Ó R].

2. R is not symmetric 3   there are elements x and y in A such that x R y but y R x [that 
is, such that (x, y) [ R but (y, x) Ó R].

3. R is not transitive 3   there are elements x, y, and z in A such that x R y and y R z  
but x R z [that is, such that (x, y) [ R and (y, z) [ R but  
(x, z) Ó R].

It follows that you can show that a relation does not have one of the properties by finding 
a counterexample.

Properties of relations on finite sets

Let A 5 {0, 1, 2, 3} and define relations R, S, and T on A as follows:

R 5 {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}, 

S 5 {(0, 0), (0, 2), (0, 3), (2, 3)}, 

T 5 {(0, 1), (2, 3)}.

a. Is R reflexive? symmetric? transitive?

b. Is S reflexive? symmetric? transitive?

c. Is T reflexive? symmetric? transitive? 

solution

a. The directed graph of R has the appearance shown below.

0

3

1

2

R is reflexive: There is a loop at each point of the directed graph. This means that 
each element of A is related to itself, so R is reflexive.

example 8.2.1

!
Caution! The “first,” 
“second,” and “third” 
elements in the informal 
versions need not all be 
distinct. This is a disadvan-
tage of informality: It may 
mask nuances that a formal 
definition makes clear.
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R is symmetric: In each case where there is an arrow going from one point of the 
graph to a second, there is an arrow going from the second point back to the first. This 
means that whenever one element of A is related by R to a second, then the second is 
related to the first. Hence R is symmetric.

R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to 
3, but there is no arrow going from 1 to 3. This means that there are elements of A—0, 
1, and 3—such that 1 R 0 and 0 R 3 but 1 R 3. Hence R is not transitive.

b. The directed graph of S has the appearance shown below.

0

3 2

1

S is not reflexive: There is no loop at 1, for example. Thus (1, 1) Ó S, and so S is not 
reflexive.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0. Hence 
(0, 2) [ S but (2, 0) Ó S, and so S is not symmetric.

S is transitive: There are three cases for which there is an arrow going from one point 
of the graph to a second and from the second point to a third. In particular, there are 
arrows going from 0 to 2 and from 2 to 3; there are arrows going from 0 to 0 and from 
0 to 2; and there are arrows going from 0 to 0 and from 0 to 3. In each case there is 
an arrow going from the first point to the third. (Note again that the “first,” “second,” 
and “third” points need not be distinct.) This means that whenever (x, y) [ S and 
(y, z) [ S, then (x, z) [ S, for every x, y, z [ {0, 1, 2, 3}, and so S is transitive.

c. The directed graph of T has the appearance shown below.

0 1

3 2

T is not reflexive: There is no loop at 0, for example. Thus (0, 0) Ó T, so T is not reflexive.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0. Thus (0, 1) [ T  
but (1, 0) Ó T, and so T is not symmetric.

T is transitive: The transitivity condition is vacuously true for T. To see this, observe 
that the transitivity condition says that

For every x, y, z [ A, if (x, y) [ T and (y, z) [ T then (x, z) [ T.

The only way for this to be false would be for there to exist elements of A that make 
the hypothesis true and the conclusion false. That is, there would have to be elements 
x, y, and z in A such that

(x, y) [ T  and (y, z) [ T  and (x, z) Ó T .

In other words, there would have to be two ordered pairs in T that have the potential to 
“link up” by having the second element of one pair be the first element of the other pair. 
But the only elements in T are (0, 1) and (2, 3), and these do not have the potential to 
link up. Hence the hypothesis is never true. It follows that it is impossible for T not to be 
transitive, and thus T is transitive. ■

note T is transitive by 
default because it is not 
not transitive!

94193_ch08_ptg01.indd   497 12/11/18   4:53 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



498  ChaPter 8 ProPerties of relations

When a relation R is defined on a finite set A, it is possible to write computer algo-
rithms to check whether R is reflexive, symmetric, and transitive. One way to do this 
is to represent A as a one-dimensional array, (a[1], a[2], Á , a[n]) and use a modifica-
tion of the algorithm of exercise 38 in Section 6.1 to check whether an ordered pair in 
A 3 A is in R. Checking whether R is reflexive can be done with a loop that examines 
each element a[i] of A in turn. If, for some i, (a[i], a[i]) Ó R, then R is not reflexive. 
Otherwise, R is reflexive. Checking for symmetry can be done with a nested loop that 
examines each pair (a[i], a[ j]) of A 3 A in turn. If, for some i and j, (a[i], a[ j]) [ R and 
(a[ j], a[i]) Ó R, then R is not symmetric. Otherwise, R is symmetric. Checking whether 
R is transitive can be done with a triply nested loop that examines each triple (a[i], a[ j], 
a[k]) of A 3 A 3 A in turn. If, for some triple, (a[i], a[ j]) [ R, (a[ j], a[k]) [ R, and (a[i], 
a[k]) Ó R, then R is not transitive. Otherwise, R is transitive. In the exercises for this 
section, you are asked to formalize these algorithms.

Properties of Relations on Infinite Sets
Suppose a relation R is defined on an infinite set A. To prove the relation is reflexive, sym-
metric, or transitive, first write down what is to be proved. For instance, for symmetry you 
need to prove that

5x, y [ A, if x R y then y R x.

Then use the definitions of A and R to rewrite the statement for the particular case in 
question. For instance, for the “equality” relation on the set of real numbers, the rewritten 
statement is

5x, y [ R, if x 5 y then y 5 x.

Sometimes the truth of the rewritten statement will be immediately obvious (as it is here). 
At other times you will need to prove it using the method of generalizing from the generic 
particular. We give examples of both cases in this section. We begin with the relation of 
equality, one of the simplest and yet most important relations.

Properties of equality

Define a relation R on R as follows: For all real numbers x and y,

x R y 3 x 5 y.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive? 

solution
a. R is reflexive: R is reflexive if, and only if, the following statement is true:

For every x [ R, x R x.

Since x R x just means that x 5 x, this is the same as saying

For every x [ R, x 5 x.

But this statement is certainly true; every real number is equal to itself.

b. R is symmetric: R is symmetric if, and only if, the following statement is true:

For every x, y [ R, if x R y then y R x.

example 8.2.2
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By definition of R, x R y means that x 5 y and y R x means that y 5 x. Hence R is 
symmetric if, and only if,

For every x, y [ R, if x 5 y then y 5 x.

But this statement is certainly true; if one number is equal to a second, then the sec-
ond is equal to the first.

c. R is transitive: R is transitive if, and only if, the following statement is true:

For every x, y, z [ R, if x R y and y R z then x R z.

By definition of R, x R y means that x 5 y, y R z means that y 5 z, and x R z means 
that x 5 z. Hence R is transitive if, and only if, the following statement is true:

For every x, y, z [ R, if x 5 y and y 5 z then x 5 z.

But this statement is certainly true: If one real number equals a second and the second 
equals a third, then the first equals the third. ■

Properties of “less than”

Define a relation R on R as follows: For all real numbers x and y, 

x R y 3 x , y.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive? 

solution
a. R is not reflexive: R is reflexive if, and only if, 5x [ R, x R x. By definition of R, this 

means that 5x [ R, x , x. But this is false: E x [ R such that x ñ x. As a counterex-
ample, let x 5 0 and note that 0 ñ 0. Hence R is not reflexive.

b. R is not symmetric: R is symmetric if, and only if, 5x, y [ R, if x R y then y R x. 
By definition of R, this means that 5x, y [ R, if x , y then y , x. But this is false:  
E x, y [ R such that x , y and y ñ x. As a counterexample, let x 5 0 and y 5 1 and 
note that 0 , 1 but 1 ñ 0. Hence R is not symmetric.

c. R is transitive: R is transitive if, and only if, 5x, y, z [ R, if x R y and y R z then  
x R z. By definition of R, this means that 5x, y, z [ R, if x , y and y , z, then x , z. 
But this statement is true by the transitive law of order for real numbers (Appendix A, 
T18). Hence R is transitive.  ■

Sometimes a property is “universally false” in the sense that it is false for every element 
of its domain. It follows immediately, of course, that the property is false for each particular 
element of the domain and hence counterexamples abound. In such a case, it may seem more 
natural to prove the universal falseness of the property rather than to give a single counter-
example. In the example above, for instance, you might find it natural to answer (a) and (b) 
as follows:

Alternative Answer to (a): R is not reflexive because x ñ x for every real number x (by 
the trichotomy law—Appendix A, T17).

Alternative Answer to (b): R is not symmetric because for all real numbers x and y in A, 
if x , y then y ñ x (by the trichotomy law).

example 8.2.3
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500  ChaPter 8 ProPerties of relations

Properties of Congruence Modulo 3

Define a relation T on Z (the set of all integers) as follows: For all integers m and n,

m T n 3 3 u  (m2n).

This relation is called congruence modulo 3.

a. Is T reflexive? b. Is T symmetric? c. Is T transitive? 

solution

a. T is reflexive: To show that T is reflexive, it is necessary to show that

For every m [ Z, m T m.

By definition of T, this means that

For every m [ Z, 3 u  (m2m),

which is true because m2m 5 0 and 3 u  0 (since 0 5 3?0). Hence T is reflexive. This 
reasoning is formalized in the following proof.

Proof of Reflexivity: Suppose m is a particular but arbitrarily chosen integer. 
[We must show that m T m.] Now m2m 5 0. But 3 u  0 since 0 5 3?0. Hence 
3 u  (m2m). Thus, by definition of T, m T m [as was to be shown].

b. T is symmetric: To show that T is symmetric, it is necessary to show that

For every m, n [ Z, if m T n then n T m.

By definition of T this means that

For every m, n [ Z, if 3 u  (m2n) then 3 u  (n2m).

Is this true? Suppose m and n are particular but arbitrarily chosen integers such that 
3 u  (m2n). Must it follow that 3 u  (n2m)? [In other words, can we find an integer so 
that n2m 5 3?(that integer)?] By definition of “divides,” since

3 u  (m2n),

then

m2n 5 3k for some integer k.

The crucial observation is that n2m 5 2(m2n). Hence, you can multiply both sides 
of this equation by 21 to obtain

2(m2n) 5 23k,

which is equivalent to

n2m 5 3(2k).

[Thus we have found an integer, 2k, so that n2m 5 3?(that integer).]

Since 2k is an integer, this equation shows that

3  u   (n2m).

It follows that T is symmetric.

example 8.2.4
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8.2 reflexivity, symmetry, and transitivity  501

The reasoning above is formalized in the following proof.

Proof of Symmetry: Suppose m and n are particular but arbitrarily chosen inte-
gers that satisfy the condition m T n. [We must show that n T m.] By definition of T, 
since m T n then 3 u  (m2n). By definition of “divides,” this means that m2n 5 3k, 
for some integer k. Multiplying both sides by 21 gives n2m 5 3(2k). Since 2k 
is an integer, this equation shows that 3 u  (n2m). Hence, by definition of T, n T 
m [as was to be shown].

c. T is transitive: To show that T is transitive, it is necessary to show that

 For every m, n, p [ Z, if m T n and n T p then m T p.

By definition of T this means that

For every m, n [ Z, if 3 u  (m2n) and 3 u  (n2p) then 3 u  (m2p).

Is this true? Suppose m, n, and p are particular but arbitrarily chosen integers such that 
3 u  (m2n) and 3 u  (n2p). Must it follow that 3 u  (m2p)? [In other words, can we find 
an integer so that m2p 5 3?(that integer)?] By definition of “divides,” since

3 u  (m2n) and 3 u  (n2p),

then

m2n 5 3r for some integer r,

and

n2p 5 3s for some integer s.

The crucial observation is that (m2n)1 (n2p) 5 m2p. Add these two equations 
together to obtain

(m2n)1 (n2p) 5 3r13s,

which is equivalent to

m2p 5 3(r1 s).

[Thus we have found an integer so that m2p 5 3?(that integer).] Since r and s are inte-
gers, r1 s is an integer. So this equation shows that

3 u  (m2p).

It follows that T is transitive.
The reasoning above is formalized in the following proof.

Proof of Transitivity: Suppose m, n, and p are particular but arbitrarily chosen 
integers that satisfy the condition m T n and n T p. [We must show that m T p.] By 
definition of T, since m T n and n T p, then 3 u  (m2n) and 3 u  (n2p). By defini-
tion of “divides,” this means that m2n 5 3r and n2p 5 3s, for some integers r 
and s. Adding the two equations gives (m2n)1 (n2p) 5 3r13s, and simplify-
ing gives that m2p 5 3(r1 s). Since r1 s is an integer, this equation shows that 
3 u  (m2p). Hence, by definition of T, m T p [as was to be shown].

■
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502  ChaPter 8 ProPerties of relations

The Transitive Closure of a Relation
Generally speaking, a relation fails to be transitive because it fails to contain certain or-
dered pairs. For example, if (1, 3) and (3, 4) are in a relation R, then the pair (1, 4) must be 
in R if R is to be transitive. To obtain a transitive relation from one that is not transitive, it 
is necessary to add ordered pairs. Roughly speaking, the relation obtained by adding the 
least number of ordered pairs to ensure transitivity is called the transitive closure of the 
relation. More precisely, the transitive closure of a relation is the smallest transitive relation 
that contains the relation.

Definition

Let A be a set and R a relation on A. The transitive closure of R is the relation Rt on 
A that satisfies the following three properties:
1. Rt is transitive.

2. R # Rt.

3. If S is any other transitive relation that contains R, then Rt # S. 

transitive Closure of a relation

Let A 5 {0, 1, 2, 3} and consider the relation R defined on A as follows:

R 5 {(0, 1), (1, 2), (2, 3)}.

Find the transitive closure of R.

solution Every ordered pair in R is in Rt, so

{(0, 1), (1, 2), (2, 3)} # Rt.

Thus the directed graph of R contains the arrows shown below.

0 1

3 2

Since there are arrows going from 0 to 1 and from 1 to 2, Rt must have an arrow going 
from 0 to 2. Hence (0, 2) [ Rt. Then (0, 2) [ Rt and (2, 3) [ Rt, so since Rt is transitive, 
(0, 3) [ Rt. Also, since (1, 2) [ Rt and (2, 3) [ Rt, then (1, 3) [ Rt. Thus Rt contains at 
least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.

But this relation is transitive; hence it equals Rt. The directed graph of Rt is shown 
below.

 0 1

3 2

 

■

example 8.2.5

94193_ch08_ptg01.indd   502 12/11/18   4:53 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



8.2 reflexivity, symmetry, and transitivity  503

1. For a relation R on a set A to be reflexive means 
that .

2. For a relation R on a set A to be symmetric means 
that .

3. For a relation R on a set A to be transitive means 
that .

4. To show that a relation R on an infinite set A is 
reflexive, you suppose that  and you show 
that .

5. To show that a relation R on an infinite set A is 
symmetric, you suppose that  and you 
show that .

6. To show that a relation R on an infinite set A is 
transitive, you suppose that  and you show 
that .

7. To show that a relation R on a set A is not reflex-
ive, you .

8. To show that a relation R on a set A is not symmet-
ric, you .

9. To show that a relation R on a set A is not transi-
tive, you .

10. Given a relation R on a set A, the transitive closure of 
R is the relation Rt on A that satisfies the following 
three properties: , , and . 

test Yourself 

In 1–8, a number of relations are defined on the set  
A 5 {0, 1, 2, 3}. For each relation:

a. Draw the directed graph.
b. Determine whether the relation is reflexive.
c. Determine whether the relation is symmetric.
d. Determine whether the relation is transitive. 

Give a counterexample in each case in which the relation 
does not satisfy one of the properties. 

1. R1 5 {(0, 0), (0, 1), (0, 3), (1, 1), (1, 0), (2, 3), (3, 3)}

2. R2 5 {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)}

3. R3 5 {(2, 3), (3, 2)}

4. R4 5 {(1, 2), (2, 1), (1, 3), (3, 1)}

5. R5 5 {(0, 0), (0, 1), (0, 2), (1, 2)}

6. R6 5 {(0, 1), (0, 2)}

7. R7 5 {(0, 3), (2, 3)}

8. R8 5 {(0, 0), (1, 1)}

In 9–33, determine whether the given relation is reflexive, 
symmetric, transitive, or none of these. Justify your answers.

9. R is the “greater than or equal to” relation on 
the set of real numbers: For every x, y [ R,  
x R y 3 x $ y.

10. C is the circle relation on the set of real numbers: 
For every x, y [ R, x C y 3 x2 1y2 5 1.

11. D is the relation defined on R as follows: For 
every x, y [ R, x D y 3 xy $ 0.

12. E is the congruence modulo 4 relation on Z: For 
every m, n [ Z, m E n 3 4 u  (m2n).

13. F is the congruence modulo 5 relation on Z: For 
every m, n [ Z, m F n 3 5 u  (m2n).

14. O is the relation defined on Z as follows: For 
every m, n [ Z, m O n 3 m2n is odd.

15. D is the “divides” relation on Z1: For all positive 
integers m and n, m D n 3 m u  n.

16. A is the “absolute value” relation on R: For all real 
numbers x and y, x A y 3 ux u 5 uy u .

17. Recall that a prime number is an integer that is 
greater than 1 and has no positive integer divi-
sors other than 1 and itself. (In particular, 1 is not 
prime.) A relation P is defined on Z as follows: 
For every m, n [ Z, m P n 3 E a prime number p 
such that p u  m and p u  n.

18. Define a relation Q on R as follows: For all real 
numbers x and y, x Q y 3 x2y is rational.

19. Define a relation I on R as follows: For all real 
numbers x and y, x I y 3 x2y is irrational.

20. Let X 5 {a, b, c} and 3(X) be the power set of X 
(the set of all subsets of X). A relation  is defined 
on 3(X) as follows: For every A, B [ 3(X),  
A    B 3 the number of elements in A equals the 
number of elements in B.

H

exerCise set 8.2 

94193_ch08_ptg01.indd   503 12/11/18   4:53 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



504  ChaPter 8 ProPerties of relations

21. Let X 5 {a, b, c} and 3(X) be the power set of X. 
A relation  is defined on 3(X) as follows: For ev-
ery A, B [ 3(X), A      B 3 the number of elements 
in A is less than the number of elements in B.

22. Let X 5 {a, b, c} and 3(X) be the power set of X. 
A relation    is defined on 3(X) as follows: For 
every A, B [ 3(X), A      B 3 the number of ele-
ments in A is not equal to the number of elements 
in B.

23. Let X be a nonempty set and 3(X) the power set of 
X. Define the “subset” relation  on 3(X) as fol-
lows: For every A, B [ 3(X), A    B 3 A # B.

24. Let X be a nonempty set and 3(X) the power set of 
X. Define the “not equal to” relation  on 3(X) as 
follows: For every A, B [ 3(X), A    B 3 A Þ B.

25. Let A be the set of all strings of a’s and b’s of 
length 4. Define a relation R on A as follows: For 
every s, t [ A, s R t 3 s has the same first two 
characters as t.

26. Let A be the set of all strings of 0’s, 1’s, and 2’s 
that have length 4 and for which the sum of the 
characters in the string is less than or equal to 2. 
Define a relation R on A as follows: For every 
s, t [ A, s R t 3 the sum of the characters of s 
equals the sum of the characters of t.

27. Let A be the set of all English statements. A relation 
  is defined on A as follows: For every p, q [ A,

p    q 3 p S q is true.

28. Let A 5 R 3 R. A relation  is defined on A as 
follows: For every (x1, y1) and (x2, y2) in A,

(x1, y1)    (x2, y2) 3 x1 5 x2.

29. Let A 5 R 3 R. A relation    is defined on A as 
follows: For every (x1, y1) and (x2, y2) in A,

(x1, y1)    (x2, y2) 3 y1 5 y2.

30. Let A be the “punctured plane”; that is, A is the set 
of all points in the Cartesian plane except the ori-
gin (0, 0). A relation R is defined on A as follows: 
For every p1 and p2 in A, p1 R p2 3 p1 and p2 lie 
on the same half line emanating from the origin.

31. Let A be the set of people living in the world 
today. A relation R is defined on A as follows: For 
all people p and q in A,

p R q 3 p lives within 100 miles of q.

32. Let A be the set of all lines in the plane. A relation 
R is defined on A as follows: For every l1 and l2 in 
A, l1 R l2 3 l1 is parallel to l2. (Assume that a line 
is parallel to itself.)

33. Let A be the set of all lines in the plane. A relation R 
is defined on A as follows: For every l1 and l2 in A,

l1 R l2 3 l1 is perpendicular to l2. 

In 34–36, assume that R is a relation on a set A. prove or 
disprove each statement.

34. If R is reflexive, then R21 is reflexive.

35. If R is symmetric, then R21 is symmetric.

36. If R is transitive, then R21 is transitive. 

In 37–42, assume that R and S are relations on a set A. 
prove or disprove each statement.

37. If R and S are reflexive, is R ù S reflexive? Why?

38. If R and S are symmetric, is R ù S symmetric? Why?

39. If R and S are transitive, is R ù S transitive? Why?

40. If R and S are reflexive, is R ø S reflexive? Why?

41. If R and S are symmetric, is R ø S symmetric? 
Why?

42. If R and S are transitive, is R ø S transitive? Why? 

In 43–50, the following definitions are used: a relation on 
a set A is defined to be

irreflexive if, and only if, for every x [ A, x R x;

asymmetric if, and only if, for every x, y [ A if x R y 
then y R x;

intransitive if, and only if, for every x, y, z [ A, if x R y 
and y R z then x R z.

For each of the relations in the referenced exercise, 
determine whether the relation is irreflexive, asymmetric, 
intransitive, or none of these. 

43. Exercise 1 44. Exercise 2

45. Exercise 3 46. Exercise 4

47. Exercise 5 48. Exercise 6

49. Exercise 7 50. Exercise 8

In 51–53, R, S, and T are relations defined on A 5 {0, 1, 2, 3}.

51. Let R 5 (0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (3, 0). 
Find Rt, the transitive closure of R.

52. Let S 5 {(0, 0), (0, 3), (1, 0), (1, 2), (2, 0), (3, 2)}. 
Find St, the transitive closure of S.

H
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8.3 equivalence relations  505

53. Let T 5 {(0, 2), (1, 0), (2, 3), (3, 1)}. Find T t, the 
transitive closure of T.

54. Write a computer algorithm to test whether a rela-
tion R defined on a finite set A is reflexive, where

A 5 {a[1], a[2], Á , a[n]}.

55. Write a computer algorithm to test whether a rela-
tion R defined on a finite set A is symmetric, where

A 5 {a[1], a[2], Á , a[n]}.

56. Write a computer algorithm to test whether a rela-
tion R defined on a finite set A is transitive, where

A 5 {a[1], a[2], Á , a[n]}.  

1. for every x in A, x R x 2. for every x and y in A, if x R y  
then y R x 3. for every x, y, and z in A, if x R y and y R z 
then x R z 4. x is any element of A; x R x 5. x and y are 
any elements of A such that x R y; y R x 6. x, y, and z are 
any elements of A such that x R y and y R z; x R z 7. show 

that there is an element x in A such that x R x 8. show that 
there are elements x and y in A such that x R y but y R x  
9. show that there are elements x, y, and z in A such that  
x R y and y R z but x R z 10. Rt is transitive; R # Rt; if S is 
any other transitive relation that contains R, then Rt # S

answers for test Yourself 

equivalence relations
“You are sad” the Knight said in an anxious tone: “let me sing you a song to 

comfort you.”
. . .  The name of the song is called ‘Haddocks’ Eyes.’”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what 

the name is called. The name really is ‘The Aged Aged Man.’”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected 

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and 

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely 

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’: and 
the tune’s my own invention.” 
—Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent forms. 
For example,

1

2
, 

2

4
, 

3

6
, 

21

22
, 

23

26
, 

15

30
, . . . , and so on,

are all different ways to represent the same number. They may look different; they 
may be called different names; but they are all equal. The idea of grouping together 
things that “look different but are really the same” is the central idea of equivalence 
relations.

8.3
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The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint 
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by 
subsets A1, A2, Á , A6.

A2

A4 A5

A6

A3

A1
Ai ù Aj 5 [, whenever i Þ j
A1 ø A2 ø ø A6 5 A

fiGure 8.3.1 A Partition of a Set

Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on 
A as follows: For every x, y [ A,

x R y 3  there is a subset Ai of the partition  
such that both x and y are in Ai.

relation induced by a Partition

Let A 5 {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.

Find the relation R induced by this partition.

solution Since {0, 3, 4} is a subset of the partition,

0 R 3 because both 0 and 3 are in {0, 3, 4}

3 R 0 because both 3 and 0 are in {0, 3, 4}

0 R 4 because both 0 and 4 are in {0, 3, 4}

4 R 0 because both 4 and 0 are in {0, 3, 4}

3 R 4 because both 3 and 4 are in {0, 3, 4}

and

4 R 3 because both 4 and 3 are in {0, 3, 4}.

Also,

0 R 0 because both 0 and 0 are in {0, 3, 4}

3 R 3 because both 3 and 3 are in {0, 3, 4}

and

4 R 4 because both 4 and 4 are in {0, 3, 4}.

Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

example 8.3.1

note These statements 
may seem strange, but, 
after all, they are not false!
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8.3 equivalence relations  507

Hence

 R 5 {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}.  ■

The fact is that a relation induced by a partition of a set satisfies all three properties 
studied in Section 8.2: reflexivity, symmetry, and transitivity.

theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition. Then 
R is reflexive, symmetric, and transitive.

Proof: Suppose A is a set with a partition. In order to simplify notation, we assume 
that the partition consists of only a finite number of sets. The proof for an infinite 
partition is identical except for notation. Denote the partition subsets by

A1, A2, . . . , An.

Then Ai ù Aj 5 [ whenever i Þ j, and A1 ø A2 ø Á ø An 5 A. The relation R in-
duced by the partition is defined as follows: For every x, y [ A,

x R y 3 there is a set Ai of the partition

such that x [ Ai and y [ Ai.

[idea for the proof of reflexivity: For R to be reflexive means that each element of A is 
related by R to itself. But by definition of R, for an element x to be related to itself means 
that x is in the same subset of the partition as itself. Well, if x is in some subset of the 
partition, then it is certainly in the same subset as itself. And x is in some subset of the 
partition because the union of the subsets of the partition is all of A. This reasoning is 
formalized as follows.]

Proof that R is reflexive: Suppose x [ A. Since A1, A2, . . . , An is a partition of A, it 
follows that x [ Ai for some i, and so the statement

there is a set Ai of the partition such that x [ Ai and x [ Ai

is true. Thus, by definition of R, x R x.

[idea for the proof of symmetry: For R to be symmetric means that any time one ele-
ment is related to a second, then the second is related to the first. Now for one element 
x to be related to a second element y means that x and y are in the same subset of the 
partition. But if this is the case, then y is in the same subset of the partition as x, so y is 
related to x by definition of R. This reasoning is formalized as follows.]

Proof that R is symmetric: Suppose x and y are elements of A such that x R y. Then 

there is a subset Ai of the partition such that x [ Ai and y [ Ai

by definition of R. It follows that the statement

there is a subset Ai of the partition such that y [ Ai and x [ Ai

is also true. Hence, by definition of R, y R x.

(continued on page 508)

note The deduction that 
x [ Ai and x [ Ai is based 
on the logical equivalence 
of the statement forms p 
and p ` p.

note The deduction that 
y [ Ai and x [ Ai is based 
on the logical equivalence 
of the statement forms  
p ` q and q ` p.
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Definition of an Equivalence Relation
A relation on a set that satisfies the three properties of reflexivity, symmetry, and transitiv-
ity is called an equivalence relation.

Definition

Let A be a set and R a relation on A. R is an equivalence relation if, and only if, R is 
reflexive, symmetric, and transitive.

Thus, according to Theorem 8.3.1, the relation induced by a partition is an equivalence 
relation. A variety of additional examples of equivalence relations are given below and in 
the exercises.

an equivalence relation on a set of subsets

Let X be the set of all nonempty subsets of {1, 2, 3}. Then

X 5 {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Define a relation  on X as follows: For every A and B in X,

A  B 3 the least element of A equals the least element of B.

Prove that  is an equivalence relation on X.

solution
 is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. [We must show that A  A.] It 

is true to say that the least element of A equals the least element of A. Thus, by definition 
of , A  A.

example 8.3.2

[idea for the proof of transitivity: For R to be transitive means that any time one ele-
ment of A is related by R to a second and that second is related to a third, then the first 
element is related to the third. But for one element to be related to another means that 
there is a subset of the partition that contains both. So suppose x, y, and z are elements 
such that x is in the same subset as y and y is in the same subset as z. Must x be in the 
same subset as z? Yes, because the subsets of the partition are mutually disjoint. Since 
the subset that contains x and y has an element in common with the subset that contains 
y and z (namely, y), the two subsets are equal. But this means that x, y, and z are all in 
the same subset, and so, in particular, x and z are in the same subset. Hence x is related 
by R to z. This reasoning is formalized as follows.]

Proof that R is transitive: Suppose x, y, and z are in A and x R y and y R z. By defini-
tion of R, there are subsets Ai and Aj of the partition such that

x and y are in Ai and y and z are in Aj.

Suppose Ai Þ Aj. [We will deduce a contradiction.] Then Ai ù Aj 5 [ since {A1, A2, 
A3, . . . , An} is a partition of A. But y is in Ai and y is in Aj also. Hence Ai ù Aj Þ [. 
[This contradicts the statement that Ai ù Aj 5 [.] Thus Ai 5 Aj. It follows that x, y, 
and z are all in Ai, and so, in particular,

x and z are in Ai.

Thus x R z by definition of R.
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8.3 equivalence relations  509

 is symmetric: Suppose A and B are nonempty subsets of {1, 2, 3} and A  B. [We must 
show that B  A.] Since A  B, the least element of A equals the least element of B. But this 
implies that the least element of B equals the least element of A, and so, by definition of  

, B  A.

 is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 3}, A  B, and B R C. 
[We must show that A  C.] Since A  B, the least element of A equals the least element of B 
and since B  C, the least element of B equals the least element of C. Thus the least element 
of A equals the least element of C, and so, by definition of , A  C. ■

equivalence of Digital logic Circuits is an equivalence relation

Let S be the set of all digital logic circuits with a fixed number n of inputs. Define a relation 
 on S as follows: For all circuits C1 and C2 in S,

C1  C2 3 C1 has the same input/output table as C2.

If C1  C2, then circuit C1 is said to be equivalent to circuit C2. Prove that  is an equiva-
lence relation on S.

solution
 is reflexive: Suppose C is a digital logic circuit in S. [We must show that C  C.] Certainly 

C has the same input/output table as itself. Thus, by definition of , C  C [as was to be 
shown].

 is symmetric: Suppose C1 and C2 are digital logic circuits in S such that C1  C2. [We 
must show that C2  C1.] By definition of , since C1  C2, then C1 has the same input/out-
put table as C2. It follows that C2 has the same input/output table as C1. Hence, by defini-
tion of , C2  C1 [as was to be shown].

 is transitive: Suppose C1, C2, and C3 are digital logic circuits in S such that C1  C2 and 
C2  C3. [We must show that C1  C3.] By definition of , since C1  C2 and C2  C3, then

C1 has the same input/output table as C2

and

C2 has the same input/output table as C3.

It follows that

C1 has the same input/output table as C3.

Hence, by definition of , C1  C3 [as was to be shown].

Since  is reflexive, symmetric, and transitive,  is an equivalence relation on S. ■

Certain implementations of computer languages do not place a limit on the allowable 
length of an identifier. This permits a programmer to be as precise as necessary in naming 
variables without having to worry about exceeding length limitations. However, compil-
ers for such languages often ignore all but some specified number of initial characters: As 
far as the compiler is concerned, two identifiers are the same if they have the same initial 
characters, even though they may look different to a human reader of the program. For 
example, to a compiler that ignores all but the first eight characters of an identifier, the 
following identifiers would be the same:

NumberOfScrews NumberOfBolts.

example 8.3.3
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510  ChaPter 8 ProPerties of relations

Obviously, in using such a language, the programmer has to be sure to avoid giving two 
distinct identifiers the same first eight characters. When a compiler lumps identifiers to-
gether in this way, it sets up an equivalence relation on the set of all possible identifiers in 
the language. Such a relation is described in the next example.

a relation on a set of identifiers

Let L be the set of all allowable identifiers in a certain computer language, and define a 
relation R on L as follows: For all strings s and t in L,

s R t 3 the first eight characters of s equal the first eight characters of t.

Prove that R is an equivalence relation on L.

solution
R is reflexive: Let s [ L. [We must show that s R s.] Clearly s has the same first eight char-
acters as itself. Thus, by definition of R, s R s [as was to be shown].

R is symmetric: Let s and t be in L and suppose that s R t. [We must show that t R s.] By 
definition of R, since s R t, the first eight characters of s equal the first eight characters of t.  
It follows that the first eight characters of t equal the first eight characters of s, and so, by 
definition of R, t R s [as was to be shown].

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show that 
s R u.] By definition of R, since s R t and t R u, the first eight characters of s equal the first 
eight characters of t, and the first eight characters of t equal the first eight characters of u. 
Hence the first eight characters of s equal the first eight characters of u. Hence, by defini-
tion of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L. ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of 
the set, then one can ask, “What is the subset of all elements that are related to a?” This 
subset is called the equivalence class of a.

Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the 
equivalence class of a, denoted [a] and called the class of a for short, is the set of all 
elements x in A such that x is related to a by R.

In symbols:

[a] 5 {x [ A u  x R a}

The procedural version of this definition is

for every x [ A, x [ fag 3 x R a.

When several equivalence relations on a set are under discussion, the notation [a]R may 
be used to denote the equivalence class of a for the relation R.

example 8.3.4

note Be careful to 
distinguish among the 
following: (1) a relation 
on a set, (2) the (underly-
ing) set itself, and (3) the 
equivalence class for an 
element of the (underly-
ing) set.
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8.3 equivalence relations  511

equivalence Classes of a relation Given as a set of ordered Pairs

Let A 5 {0, 1, 2, 3, 4} and define a relation R on A as follows:

R 5 {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.

The directed graph for R is as shown below. As can be seen by inspection, R is an equiva-
lence relation on A. Find the distinct equivalence classes of R.

0

4
1

3

2

solution First find the equivalence class of every element of A.

 f0g 5 hx [ A u  x R  0j 5 h0, 4j
 f1g 5 hx [ A u  x R  1j 5 h1, 3j
 f2g 5 hx [ A u  x R  2j 5 h2j
 f3g 5 hx [  A u  x R  3j 5 h1, 3j
 f4g 5 hx [ A u  x R  4j 5 h0, 4j

Note that [0] 5 [4] and [1] 5 [3]. Thus the distinct equivalence classes of the relation are

  {0, 4}, {1, 3}, and {2}. ■

When a problem asks you to find the distinct equivalence classes of an equivalence rela-
tion, you will generally solve the problem in two steps. In the first step you either explicitly 
construct (as in Example 8.3.5) or imagine constructing (as in infinite cases) the equiva-
lence class for each element of the domain A of the relation. Usually several of the classes 
will contain exactly the same elements, so in the second step you must take a careful look 
at the classes to determine which are the same. You then indicate the distinct equivalence 
classes by describing them without duplication.

equivalence Classes of a relation on a set of subsets

In Example 8.3.2 it was shown that the relation  was an equivalence relation, where for 
nonempty subsets A and B of {1, 2, 3} to be related by  means that they have the same 
least element. Describe the distinct equivalence classes of .

solution The equivalence class of {1} is the set of all the nonempty subsets of {1, 2, 3} 
whose least element is 1. Thus

[{1}] 5 {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.

The equivalence class of {2} is the set of all the nonempty subsets of {1, 2, 3} whose least 
element is 2. Thus

[{2}] 5 {{2}, {2, 3}}.

example 8.3.5

example 8.3.6
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512  ChaPter 8 ProPerties of relations

The equivalence class of {3} is the set of all the nonempty subsets of {1, 2, 3} whose least 
element is 3. There is only one such set: {3} itself. Thus

[{3}] 5 {{3}}.

Since all the nonempty subsets of {1, 2, 3} are in one of the equivalence classes, this is a 
complete listing. Moreover, these classes are all distinct. ■

equivalence Classes of identifiers

In Example 8.3.4 it was shown that the relation R of having the same first eight characters 
is an equivalence relation on the set L of allowable identifiers in a computer language. 
Describe the distinct equivalence classes of R.

solution By definition of R, two strings in L are related by R if, and only if, they have 
the same first eight characters. Given any string s in L,

fsg 5 ht [ L u  t R sj
5 ht [ L u  the first eight characters of t equal the first eight characters of s}.

Thus the distinct equivalence classes of R are sets of strings such that (1) each class 
consists entirely of strings all of which have the same first eight characters, and (2) any two 
distinct classes contain strings that differ somewhere in their first eight characters. ■

equivalence Classes of the identity relation

Let A be any set and define a relation R on A as follows: For every x and y in A,

x R y 3 x 5 y.

Then R is an equivalence relation. [To prove this, just generalize the argument used in 
Example 8.2.2.] Describe the distinct equivalence classes of R.

solution Given any a in A, the class of a is

[a] 5 {x [  A u  x R a}.

Now by definition of R, a R x if, and only if, a 5 x. So

fag 5 hx [ A u  x 5 aj
5 haj   since the only element of A that equals a is a.

Hence, given any a in A,

[a] 5 {a},

and if x Þ a then {x} Þ {a}. Consequently, all the classes of all the elements of A are dis-
tinct, and the distinct equivalence classes of R are all the single-element subsets of A. ■

In each of Examples 8.3.5, 8.3.6, 8.3.7, and 8.3.8, the set of distinct equivalence classes of 
the relation consists of mutually disjoint subsets whose union is the entire domain A of the 
relation. This means that the set of equivalence classes of the relation forms a partition of the 
domain A. In fact, it is always the case that the equivalence classes of an equivalence relation 
partition the domain of the relation into a union of mutually disjoint subsets. We establish the 
truth of this statement in stages, first proving two lemmas and then proving the main theorem.

The first lemma says that if two elements of A are related by an equivalence relation R, 
then their equivalence classes are the same.

example 8.3.7

example 8.3.8
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8.3 equivalence relations  513

This lemma says that if a certain condition is satisfied, then [a] 5 [b]. Now [a] and 
[b] are sets, and two sets are equal if, and only if, each is a subset of the other. Hence the 
proof of the lemma consists of two parts: first, a proof that [a] # [b] and second, a proof 
that [b] # [a]. To show each subset relation, it is necessary to show that every element in 
the left-hand set is an element of the right-hand set.

lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. 
If a R b, then [a] 5 [b].

Proof of lemma 8.3.2:
Let A be a set, let R be an equivalence relation on A, and suppose

a and b are elements of A such that a R b.

[We must show that [a] 5 [b].]

Proof that [a]  [b]: Let x [ [a]. [We must show that x [ [b].] Since

x [ [a],

then

x R a

by definition of class. But

a R b

by hypothesis. Thus, by transitivity of R,

x R b.

Hence

x [ [b]

by definition of class. [This is what was to be shown.]

Proof that [b]  [a]: Let x [ [b]. [We must show that x [ [a].] Since

x [ [b]

then

x R b

by definition of class. Now

a R b

by hypothesis. Thus, since R is symmetric,

b R a

also. Then, since R is transitive and x R b and b R a,

x R a.

Hence,

x [ [a]

by definition of class. [This is what was to be shown.]

Since [a] # [b] and [b] # [a], it follows that [a] 5 [b] by definition of set equality.
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514  ChaPter 8 ProPerties of relations

The second lemma says that any two equivalence classes of an equivalence relation are 
either mutually disjoint or identical.

Proof of lemma 8.3.3:

Suppose A is a set, R is an equivalence relation on A, a and b are elements of A, and

[a] ù [b] Þ [.

[We must show that [a] 5 [b].] Since [a] ù [b] Þ [, there exists an element x in A 
such that x [ [a] ù [b]. By definition of intersection,

x [ fag and x [ fbg,

and so x R a and x R b

by definition of class. Since R is symmetric [being an equivalence relation] and x R 
a, then a R x. But R is also transitive [since it is an equivalence relation], and so, since 
a R x and x R b,

a R b.

Now a and b satisfy the hypothesis of Lemma 8.3.2. Hence, by that lemma,

[a] 5 [b]

 [as was to be shown].

theorem 8.3.4 the Partition induced by an equivalence relation

If A is a set and R is an equivalence relation on A, then the distinct equivalence 
classes of R form a partition of A; that is, the union of the equivalence classes is all 
of A, and the intersection of any two distinct classes is empty.

lemma 8.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either    fag ù fbg 5 [ or fag 5 fbg.

The statement of Lemma 8.3.3 has the form

if p then (q or r),

where p is the statement “A is a set, R is an equivalence relation on A, and a and b are 
elements of A,” q is the statement “[a] ù [b] 5 [,” and r is the statement “[a] 5 [b].” To 
prove the lemma, we will prove the logically equivalent statement

if (p and not q) then r.

That is, we will prove the following:

If A is a set, R is an equivalence relation on A, a and b are elements of 
A, and [a] ù [b] Þ [, then [a] 5 [b].

note You can always 
prove a statement of the 
form “if p then (q or r)” 
by proving one of the 
logically equivalent state-
ments: “if (p and not q) 
then r” or “if (p and not r) 
then q.”*

*See exercise 14 in Section 2.2.
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8.3 equivalence relations  515

The proof of Theorem 8.3.4 is divided into two parts: first, a proof that A is the union 
of the equivalence classes of R and second, a proof that the intersection of any two distinct 
equivalence classes is empty. The proof of the first part follows from the fact that the rela-
tion is reflexive. The proof of the second part follows from Lemma 8.3.3.

Proof of theorem 8.3.4:

Suppose A is a set and R is an equivalence relation on A. For notational simplicity, 
we assume that R has only a finite number of distinct equivalence classes, which we 
denote

A1, A2, Á , An,

where n is a positive integer. (When the number of classes is infinite, the proof is 
identical except for notation.)

Proof that A 5 A1 : A2 : Á : An: [We must show that A # A1 ø A2 ø Á ø An 
and that A1 ø A2 ø Á ø An # A.]

To show that A # A1 ø A2 ø Á ø An, suppose x is any element of A. [We must 
show that x [ A1 ø A2 ø Á ø An.] By reflexivity of R, x R x. And this implies that 
x [ [x] by definition of class. Since x is in some equivalence class, it must be in one 
of the distinct equivalence classes A1, A2, Á , or An. Thus x [ Ai for some index i, 
and hence x [ A1 ø A2 ø Á ø An by definition of union [as was to be shown].

To show that A1 ø A2 ø Á ø An # A, suppose x [ A1 ø A2 ø Á ø An. [We 
must show that x [ A.] Then x [ Ai for some i 5 1, 2, Á , n, by definition of union. 
Now each Ai is an equivalence class of R, and equivalence classes are subsets of A. 
Hence Ai # A and so x [ A [as was to be shown].

Since A # A1 ø A2 ø Á ø An and A1 ø A2 ø Á ø An # A, then by definition 
of set equality, A 5 A1 ø A2 ø Á ø An.

Proof that the distinct classes of R are mutually disjoint: Suppose that Ai and Aj 
are any two distinct equivalence classes of R. [We must show that Ai and Aj are dis-
joint.] Since Ai and Aj are distinct, then Ai Þ Aj. And since Ai and Aj are equivalence 
classes of R, there must exist elements a and b in A such that Ai 5 [a] and Aj 5 [b]. 
By Lemma 8.3.3,

either fag ù fbg 5 [ or fag 5 fbg.

Now [a] Þ [b] because Ai Þ Aj, and hence [a] ù [b] 5 [. Thus Ai ù Aj 5 [, and 
so Ai and Aj are disjoint [as was to be shown].

equivalence Classes of Digital logic Circuits

In Example 8.3.3 it was shown that the relation of equivalence among circuits is an equiva-
lence relation. Let S be the set of all digital logic circuits with exactly two inputs and one 
output. The binary relation  is defined on S as follows: For every C1 and C2 in S,

C1  C2 3 C1 has the same input/output table as C2.

Describe the equivalence classes of this relation. How many distinct equivalence classes 
are there? Find two different circuits that are in one of the classes.

example 8.3.9
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516  ChaPter 8 ProPerties of relations

solution Given a circuit C, the equivalence class of C is the set of all circuits with two 
input signals and one output signal that have the same input/output table as C. Now each 
input/output table has exactly four rows, corresponding to the four possible combinations 
of inputs: 11, 10, 01, and 00. A typical input/output table is the following:

Input Output

P Q R

1 1 0

1 0 0

0 1 0

0 0 1

There are exactly as many such tables as there are binary strings of length 4. The reason 
is that distinct input/output tables can be formed by changing the pattern of the four 0’s 
and 1’s in the output column, and there are as many ways to do that as there are strings of 
four 0’s and 1’s. And since the number of binary strings of length 4 is 24 5 16, there are 16 
distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each dis-
tinct input/output table. However, there are infinitely many circuits that give rise to each 
table. For instance, two circuits for the previous input/output table are shown below.

 

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

 ■

 Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric, 
and transitive. Therefore, it is an equivalence relation.

equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all 
integers m and n,

m R n 3 3 u (m2n).

Describe the distinct equivalence classes of R.

solution For each integer a,

[a] 5 {x [ Z u  x R a}

5 {x [ Z u  3 u  (x2a)}

5 {x [ Z u  x2a 5 3k, for some integer k}.

Therefore,

[a] 5 {x [ Z u  x 5 3k1a, for some integer k}.

example 8.3.10
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8.3 equivalence relations  517

In particular,

[0] 5 {x [ Z u  x 5 3k10, for some integer k}

5 {x [ Z u  x 5 3k, for some integer k}

5 {Á29, 26, 23, 0, 3, 6, 9, Á},

[1] 5 {x [ Z u  x 5 3k11, for some integer k}

5 {Á28, 25, 22, 1, 4, 7, 10, Á},

[2] 5 {x [ Z u  x 5 3k12, for some integer k}

5 {Á27, 24, 21, 2, 5, 8, 11, Á}.

Now since 3 R 0, then by Lemma 8.3.2,

[3] 5 [0].

More generally, by the same reasoning,

[0] 5 [3] 5 [23] 5 [6] 5 [26] 5 Á , and so on.

Similarly,

[1] 5 [4] 5 [22] 5 [7] 5 [25] 5 Á , and so on.

And

[2] 5 [5] 5 [21] 5 [8] 5 [24] 5 Á , and so on.

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence classes 
are

{x [ Z u  x 5 3k, for some integer k},

{x [ Z u  x 5 3k11, for some integer k}, and

{x [ Z u  x 5 3k12, for some integer k}.

In words, the three classes of congruence modulo 3 are (1) the set of all integers that are 
divisible by 3, (2) the set of all integers that leave a remainder of 1 when divided by 3, and 
(3) the set of all integers that leave a remainder of 2 when divided by 3. ■

Example 8.3.10 illustrates a very important property of equivalence classes, namely that 
an equivalence class may have many different names. In Example 8.3.10, for instance, the 
class of 0, [0], may also be called the class of 3, [3], or the class of 26, [26]. But what the 
class is is the set of all integers that are divisible by 3:

{x [ Z u  x 5 3k, for some integers k}.

(The quote at the beginning of this section refers in a humorous way to the philosophically 
interesting distinction between what things are called and what they are.)

Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A 
representative of the class S is any element a such that [a] 5 S.

In exercises 36–41 at the end of this section, you are asked to show, in effect, that if a is 
any element of an equivalence class S, then S 5 [a]. Hence any element of an equivalence 
class is a representative of that class.
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The following notation is used frequently when referring to congruence relations. It was in-
troduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones Arithmeticae. 
This work, which was published when Gauss was only 24, laid the foundation for modern 
number theory.

Definition

Let m and n be integers and let d be a positive integer. We say that m is congruent 
to n modulo d and write

m ; n (mod d)

if, and only if, d u (m2n).

Symbolically: m ; n(mod d) 3 d u (m2n).

Exercise 17(b) at the end of this section asks you to show that m ; n (mod d) if, and only 
if, m mod d 5 n mod d, where m, n, and d are integers and d is positive.

evaluating Congruences

Determine which of the following congruences are true and which are false.

a. 12 ; 7 (mod 5) b. 6 ; 28 (mod 4) c. 3 ; 3 (mod 7)

solution

a. True. 1227 5 5 5 5?1. Hence 5 u  (1227), and so 12 ; 7 (mod 5).

b. False. 62 (28) 5 14, and 4 u14 because 14 Þ 4?k for any integer k. Consequently, 
6 ò 28 (mod  4).

c. True. 323 5 0 5 7?0. Hence 7 u  (323), and so 3 ; 3 (mod 7). ■

The discussion of binary arithmetic in Section 2.5 used a simplified computer model, 
which used 8-bit two’s complements and binary arithmetic to represent and compute with the 
256 integers from 2128 to 12721. To find 781 (246), the following scheme was shown:

0 1 0 0 1 1 1 0 4 78

4 2461 1 1 0 1 0 0 1 0

1 0 0 1 0 0 0 0 0

Now the number corresponding to 1001000002 is 288, which is too large to be the 8-bit 
binary representation of a number. But the directions said to discard the 1 in the 29th posi-
tion. When this is done, the result is 001000002, which corresponds to 32 and is the correct 
answer for the problem.

To see why this method works, observe that the decimal forms of the two’s comple-
ments for 78 and 246 are 78 and 28 246, respectively. In addition,

781 (28 246) 5 28 1 (78246) ; (78246) (mod 28).

Thus reducing the number 781 (28 246) modulo 28 gives the correct result. And doing so is 
equivalent to dropping the 1 in the 29th position of the computation’s result because the 29th 
position holds the place for the number 28 when integers are represented in binary notation.

example 8.3.11

Carl Friedrich Gauss 
(1777–1855)
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A Definition for Rational Numbers
For a moment, forget what you know about fractional arithmetic and look at the numbers

1

3
and

2

6

as symbols. Considered as symbolic expressions, these appear quite different. In fact, if 
they were written as ordered pairs

(1, 3) and (2,  6)

they would be different. The fact that we regard them as “the same” is a specific instance 
of our general agreement to regard any two numbers

a

b
 and c

d

as equal provided the cross products are equal; in other words, if, and only if, ad 5 bc. 
This can be formalized as follows, using the language of equivalence relations.

rational numbers are really equivalence Classes

Let A be the set of all ordered pairs of integers for which the second element of the pair is 
nonzero. Symbolically:

A 5 Z 3 (Z2{0}).

Define a relation R on A as follows: For all pairs (a, b) and (c, d) in A,

(a, b) R (c, d) 3 ad 5 bc.

The fact is that R is an equivalence relation.

a. Prove that R is transitive. (Proofs that R is reflexive and symmetric are left to exercise 
42 at the end of the section.)

b. Describe the distinct equivalence classes of R. 

solution

a. [We must show that for all ordered pairs (a, b), (c, d), and (e, f) in A, if (a, b) R (c, d) and 
(c, d) R (e, f), then (a, b) R (e, f).] Suppose (a, b), (c, d), and (e, f) are particular but arbi-
trarily chosen elements of A such that (a, b) R (c, d) and (c, d) R (e, f). [We must show 
that (a, b) R (e, f).] By definition of R,

(1) ad 5 bc and (2) cf 5 de.

Since the second elements of all ordered pairs in A are nonzero, b Þ 0, d Þ 0, and 
f Þ 0. Multiply both sides of equation (1) by f and both sides of equation (2) by b to 
obtain

(19) adf 5 bcf  and (29) bcf 5 bde.

Because both equal bcf,

adf 5 bde,

and, since d Þ 0, it follows from the cancellation law for multiplication (T7 in  
Appendix A) that

af 5 be.

Hence, by definition of R, (a, b) R (e, f) [as was to be shown].

example 8.3.12
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520  ChaPter 8 ProPerties of relations

b. There is one equivalence class for each distinct rational number. Each equivalence class 
consists of all ordered pairs (a, b) that, if written as fractions a/b, would equal each 
other. The reason is that the condition for two rational numbers to be equal is the same 
as the condition for two ordered pairs to be related. For instance, the class of (1, 2) is

[(1, 2)] 5 {(1, 2), (21, 22), (2, 4), (22, 24), (3, 6), (23, 26), Á }

since 12 5 21
22 5 2

4 5 22
24 5

3
6 5

23
26 and so forth.  ■

It is possible to expand the result of Example 8.3.12 to define operations of addition and 
multiplication on the equivalence classes of R that satisfy all the same properties as the ad-
dition and multiplication of rational numbers. (See exercise 43.) It follows that the rational 
numbers can be defined as equivalence classes of ordered pairs of integers. Similarly (see 
exercise 44), it can be shown that all integers, negative and zero included, can be defined 
as equivalence classes of ordered pairs of positive integers. In the late nineteenth century, 
F. L. G. Frege and Giuseppe Peano showed that the positive integers can be defined entirely 
in terms of sets. And just a little earlier, Richard Dedekind (1848–1916) showed that all 
real numbers can be defined as sets of rational numbers. Taken together, these results show 
that the set of real numbers can be defined using logic and set theory alone.

1. For a relation on a set to be an equivalence rela-
tion, it must be .

2. The notation m ; n (mod d) is read “ ” and 
means that .

3. Given an equivalence relation R on a set A and 
given an element a in A, the equivalence class of a 
is denoted  and is defined to be .

4. If A is a set, R is an equivalence relation on A, and 
a and b are elements of A, then either [a] 5 [b]  
or .

5. If A is a set and R is an equivalence relation on 
A, then the distinct equivalence classes of R form 

.

6. Let A 5 Z 3 (Z2{0}), and define a relation R 
on A by specifying that for every (a, b) and (c, d) 
in A, (a, b) R (c, d) if, and only if, ad 5 bc. Then 
there is exactly one equivalence class of R for each 

.

test Yourself 

1. Suppose that S 5 {a, b, c, d, e} and R is a relation 
on S such that a R b, b R c, and d R e. List all of the 
following that must be true if R is (a) reflexive (but 
not symmetric or transitive), (b) symmetric (but not 
reflexive or transitive), (c) transitive (but not reflex-
ive or symmetric), and (d) an equivalence relation.
c R b c R c a R c b R a 
a R d e R a e R d c R a

2. Each of the following partitions of {0, 1, 2, 3, 4} 
induces a relation R on {0, 1, 2, 3, 4}. In each 
case, find the ordered pairs in R.
a. {0, 2}, {1}, {3, 4} b. {0}, {1, 3, 4}, {2}
c. {0}, {1, 2, 3, 4}

In each of 3–6, the relation R is an equivalence rela-
tion on A. as in example 8.3.5, first find the specified 
equivalence classes. then state the number of distinct 
equivalence classes for R and list them.

3. A 5 {0, 1, 2, 3, 4}

R 5 {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3),

(4, 0), (4, 4)}
equivalence classes: [0], [1], [2], [3]

4. A 5 {a, b, c, d}

R 5 {(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)}

equivalence classes: [a], [b], [c], [d]

exerCise set 8.3 
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5. A 5 {1, 2, 3, 4, Á , 20}. R is defined on A as  
follows:

For all x, y [ A, x  R  y 3 4 u (x2y).

equivalence classes: [1], [2], [3], [4], [5]

6. A 5 {24, 23, 22, 21, 0, 1, 2, 3, 4, 5}. R is de-
fined on A as follows:

For all x, y [ A, x R y 3 3 u (x2y).

equivalence classes: [0], [1], [2], [3] 

In each of 7–14, the relation R is an equivalence relation 
on the set A. Find the distinct equivalence classes of R.

7. A 5 {(1, 3), (2, 4), (24, 28), (3, 9), (1, 5), (3, 6)}.  
R is defined on A as follows: For every (a, b),  
(c, d) [ A,

(a, b) R (c, d) 3 ad 5 bc.

8. X 5 {a, b, c} and A 5 3(X). R is defined on A as 
follows: For all sets U and V in 3(X),

U R V 3 N(U) 5 N(V).

(That is, the number of elements in U equals the 
number of elements in V.)

9. X 5 {21, 0, 1} and A 5 3(X). R is defined on 
3(X) as follows: For all sets S and T in 3(X),

s R T 3 the sum of the elements in S
equals the sum of the elements in T.

10. A 5 {25, 24, 23, 22, 21, 0, 1, 2, 3, 4, 5}.  
R is defined on A as follows: For all m, n [ Z,

m R n 3 3 u  (m2 2n2).

11. A 5 {24, 23, 22, 21, 0, 1, 2, 3, 4}. R is defined 
on A as follows: For every (m, n) [ A,

m R n 3 4 u  (m2 2n2).

12. A 5 {24, 23, 22, 21, 0, 1, 2, 3, 4}. R is defined 
on A as follows: For all (m, n) [ A,

m R n 3 5 u  (m2 2n2).

13. A is the set of all strings of length 4 in a’s and b’s. 
R is defined on A as follows: For all strings s and 
t in A,

s R t 3 s has the same first two characters as t.

14. A is the set of all strings of 0’s, 1’s, and 2’s that 
have length 4 and for which the sum of the char-
acters in the string is less than or equal to 2. R is 
defined on A as follows: For every s, t [ A,  

s R t 3 the sum of the characters of s equals the 
sum of the characters of t.

15. Determine which of the following congruence 
relations are true and which are false.
a. 17 ; 2 (mod 5)
b. 4 ; 25 (mod 7)
c. 22 ; 28 (mod 3)
d. 26 ; 22 (mod 2) 

16. a.  Let R be the relation of congruence modulo 3. 
Which of the following equivalence classes are 
equal?

[7], [24], [26], [17], [4], [27], [19]

b. Let R be the relation of congruence modulo 7. 
Which of the following equivalence classes are 
equal?

 [35], [3], [27], [12], [0], [22], [17]

17. a.  Prove that for all integers m and n, m ; n 
(mod 3) if, and only if, m mod 3 5 n mod 3.

b. Prove that for all integers m and n and any 
positive integer d, m ; n (mod d) if, and only 
if, m mod d 5 n mod d.

18. a.  Give an example of two sets that are distinct 
but not disjoint.

b. Find sets A1 and A2 and elements x, y, and z such 
that x and y are in A1 and y and z are in A2 but x 
and z are not both in either of the sets A1 or A2. 

In 19–31, (1) prove that the relation is an equivalence rela-
tion, and (2) describe the distinct equivalence classes of 
each relation.

19. A is the set of all students at your college.
a. R is the relation defined on A as follows: For 

every x and y in A,

x R y 3 x has the same major (or double

major) as y.

(Assume “undeclared” is a major.)
b. S is the relation defined on A as follows: For 

every x, y [ A,

x S y 3 x is the same age as y.

20. E is the relation defined on Z as follows:

For every m, n [ Z, m E n 3 4 u  (m2n).

21. R is the relation defined on Z as follows:

For every m, n [ Z, m R n 3 7m25n is even.

H
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22. Let A be the set of all statement forms in three 
variables p, q, and r.  is the relation defined on A 
as follows: For all P and Q in A,

P    Q 3 P and Q have the same truth table.

23. Let P be a set of parts shipped to a company from 
various suppliers. S is the relation defined on P as 
follows: For every x, y [ P,

x S y 3 x has the same part number and is
shipped from the same supplier as y.

24. Let A be the set of identifiers in a computer pro-
gram. It is common for identifiers to be used for 
only a short part of the execution time of a program 
and not to be used again to execute other parts of 
the program. In such cases, arranging for identi-
fiers to share memory locations makes efficient use 
of a computer’s memory capacity. Define a relation 
R on A as follows: For all identifiers x and y,

x R y 3  the values of x and y are stored in the 
same memory location during 
execution of the program.

25. A is the “absolute value” relation defined on R as 
follows:

For every x, y [ R, x A y 3 ux u 5 uy u .

26. D is the relation defined on Z as follows: For every 
m, n [ Z,

m D n 3 3 u  (m2 2n2).

27. R is the relation defined on Z as follows: For every 
(m, n) [ Z,

m R n 3 4 u  (m2 2n2).

28. I is the relation defined on R as follows:

For every x, y [ R, m I n 3 x2y is an integer.

29. Define P on the set R 3 R of ordered pairs of 
real numbers as follows: For every (w, x), (y, z) [
R 3 R,

(w, x) P (y, z) 3 w 5 y.

30. Define Q on the set R 3 R as follows: For every 
(w, x), (y, z) [ R 3 R,

(w, x) Q (y, z) 3 x 5 z.

31. Let P be the set of all points in the Cartesian plane 
except the origin. R is the relation defined on P as 
follows: For every p1 and p2 in P,

p1 R p2 3 p1 and p2 lie on the same half{line 
emanating from the origin.

32. Let A be the set of all straight lines in the Carte-
sian plane. Define a relation uu  on A as follows:

For every l1 and l2 in A,

l1 uu l2 3 l1 is parallel to l2.

Then uu  is an equivalence relation on A. Describe 
the equivalence classes of this relation.

33. Let A be the set of points in the rectangle with x 
and y coordinates between 0 and 1. That is,

A 5 {(x, y) [ R 3 R u 0 # x # 1 and 0 # y # 1}.

Define a relation R on A as follows: For all (x1, y1) 
and (x2, y2) in A,

(x1, y1) R (x2, y2) 3
(x1, y1) 5 (x2, y2); or

x1 5 0 and x2 5 1 and y1 5 y2; or

x1 5 1 and x2 5 0 and y1 5 y2; or

y1 5 0 and y2 5 1 and x1 5 x2; or

y1 5 1 and y2 5 0 and x1 5 x2.

In other words, all points along the top edge of 
the rectangle are related to the points along the 
bottom edge directly beneath them, and all points 
directly opposite each other along the left and 
right edges are related to each other. The points 
in the interior of the rectangle are not related to 
anything other than themselves. Then R is an 
equivalence relation on A. Imagine gluing togeth-
er all the points that are in the same equivalence 
class. Describe the resulting figure.

34. The documentation for the computer language 
Java recommends that when an “equals method” is 
defined for an object, it be an equivalence relation. 
That is, if R is defined as follows:

x R y 3 x.equals(y) for all objects in the class,

then R should be an equivalence relation. Suppose 
that in trying to optimize some of the mathematics 
of a graphics application, a programmer creates an 
object called a point, consisting of two coordinates 
in the plane. The programmer defines an equals 
method as follows: If p and q are any points, then

p.equals(q) 3  the distance from p to q is 
less than or equal to c

where c is a small positive number that depends 
on the resolution of the computer display. Is the 

H
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programmer’s equals method an equivalence rela-
tion? Justify your answer.

35. Find an additional representative circuit for the 
input/output table of Example 8.3.9. 

Let R be an equivalence relation on a set A. prove 
each of the statements in 36–41 directly from the 
definitions of equivalence relation and equivalence 
class without using the results of Lemma 8.3.2, Lem-
ma 8.3.3, or theorem 8.3.4.

36. For every a in A, a [ [a].

37. For every a and b in A, if b [ [a] then a R b.

38. For every a, b, and c in A, if b R c and c [ [a] 
then b [ [a].

39. For every a and b in A, if [a] 5 [b] then a R b.

40. For every a, b, and x in A, if a R b and x [ [a] 
then x [ [b].

41. For every a and b in A, if a [ [b] then [a] 5 [b].

42. Let R be the relation defined in Example 8.3.12.
a. Prove that R is reflexive.
b. Prove that R is symmetric.
c. List four distinct elements in [(1, 3)].
d. List four distinct elements in [(2, 5)]. 

43. In Example 8.3.12, define operations of addition 
(1) and multiplication (?) as follows: For every  
(a, b), (c, d) [ A,

[(a, b)]1 [(c, d)] 5 [(ad1bc, bd)]

[(a, b)]?[(c, d)] 5 [(ac, bd)]. 

a. Prove that this addition is well defined. 
That is, show that if [(a, b)] 5 [(a9, b9)] and 
[(c, d)] 5 [(c9, d9)], then [(ad1bc, bd)] 5
[(a9d91  b9c9, b9d9)].

b. Prove that this multiplication is well defined. 
That is, show that if [(a, b)] 5 [(a9, b9)]  
and [(c, d)] 5 [(c9, d9)], then [(ac, bd)] 5
[(a9c9, b9d9)].

c. Show that [(0, 1)] is an identity element for ad-
dition. That is, show that for any (a, b) [ A,

[(a, b)]1 [(0, 1)] 5 [(0, 1)]1 [(a, b)] 5 [(a, b)].

d. Find an identity element for multiplication. 
That is, find (i, j) in A so that for every (a, b) in 
A, [(a, b)]?[(i, j)] 5 [(i, j)]?[(a, b)] 5 [(a, b)].

e. For any (a, b) [ A, show that [(2a, b)] is 
an inverse for [(a, b)] for addition. That is, 
show that [(2a, b)]1 [(a, b)] 5 [(a, b)]1
[(2a, b)] 5 [(0, 1)].

f. Given any (a, b) [ A with a Þ 0, find an 
inverse for [(a, b)] for multiplication. That 
is, find (c, d) in A so that [(a, b)]?[(c, d)] 5
[(c, d)]?[(a, b)] 5 [(i, j)], where [(i, j)] is the 
identity element you found in part (d).

44. Let A 5 Z1 3 Z1. Define a relation R on A as 
follows: For every (a, b) and (c, d) in A,

(a, b) R (c, d) 3 a1d 5 c1b.

a. Prove that R is reflexive.
b. Prove that R is symmetric.
c. Prove that R is transitive.
d. List five elements in [(1, 1)].
e. List five elements in [(3, 1)].
f. List five elements in [(1, 2)].

g. Describe the distinct equivalence classes of R.

45. The following argument claims to prove that the 
requirement that an equivalence relation be re-
flexive is redundant. In other words, it claims to 
show that if a relation is symmetric and transi-
tive, then it is reflexive. Find the mistake in the 
argument.
“Proof: Let R be a relation on a set A and suppose 
R is symmetric and transitive. For any two elements 
x and y in A, if x R y then y R x since R is symmet-
ric. Thus it follows by transitivity that x R x, and 
hence R is reflexive.”

46. Let R be a relation on a set A and suppose R is 
symmetric and transitive. Prove the following: If 
for every x in A there is a y in A such that x R y, 
then R is an equivalence relation.

47. Refer to the quote at the beginning of this section 
to answer the following questions.
a. What is the name of the Knight’s song called?
b. What is the name of the Knight’s song?
c. What is the Knight’s song called?
d. What is the Knight’s song?
e. What is your (full, legal) name?
f. What are you called?

g. What are you? (Do not answer this on paper; 
just think about it.) 

H

*

H

1. reflexive, symmetric, and transitive 2. m is congruent to n modulo d; d divides m2n 3. [a]; the set of all elements x in A 
such that x R a 4. [a] ù [b] 5 [ 5. a partition of A 6. rational number

answers for test Yourself 
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Modular arithmetic with applications 
to Cryptography
The “real” mathematics of the “real” mathematicians, the mathematics of Fermat 
and Euler and Gauss and Abel and Riemann, is almost wholly “useless.” . . . It is not 
possible to justify the life of any genuine professional mathematician on the ground of 
the “utility” of his work. —G. H. Hardy, A Mathematician’s Apology, 1941

Cryptography is the study of methods for sending secret messages. It involves encryption, 
in which a message, called plaintext, is converted into a form, called ciphertext, that is 
sent over a channel possibly open to view by outside parties. The receiver of the ciphertext 
uses decryption to convert the ciphertext back into plaintext.

With the rise of electronic communication systems, especially the Internet, the most 
important current use of cryptography is to enable transmission of confidential informa-
tion, such as banking data, medical records, credit card numbers, and governmental com-
munications, over electronic channels. Developing products for encryption and decryption 
is one of the main activities of the National Security Agency, which is the largest employer 
of mathematicians in the United States.

Many systems for sending secret messages require both the sender and the receiver to 
know both the encryption and the decryption procedures. For instance, an encryption sys-
tem once used by Julius Caesar, and now called the Caesar cipher, encrypts messages by 
changing each letter of the alphabet to the one three places farther along, with X wrapping 
around to A, Y to B, and Z to C. In other words, say each letter of the alphabet is coded by 
its position relative to the others—so that A 5 01, B 5 02, . . . , Z 5 26. If the numerical 
version of the plaintext for a letter is denoted M and the numeric version of the ciphertext 
is denoted C, then

C 5 (M13) mod 26.

The receiver of such a message can easily decrypt it by using the formula

M 5 (C23) mod 26.

For reference, here are the letters of the alphabet, together with their numeric equivalents:

A B C D E F G H I J K L M
01 02 03 04 05 06 07 08 09 10 11 12 13

N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

encrypting and Decrypting with the Caesar Cipher

a. Use the Caesar cipher to encrypt the message HOW ARE YOU.

b. Use the Caesar cipher to decrypt the message L DP ILQH. 

solution

a. First, translate the letters of HOW ARE YOU into their numeric equivalents:

08     15     23       01     18     05       25     15     21.

8.4

example 8.4.1
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8.4 modular arithmetic with aPPlications to cryPtograPhy  525

Next, encrypt the message by adding 3 to each number. The result is

11     18     26       04     21     08       02     18     24.

Finally, substitute the letters that correspond to these numbers. The encrypted mes-
sage becomes

KRZ     DUH     BRX.

b. First, translate the letters of L DP ILQH into their numeric equivalents:

12       04     16       09     12     17     08.

Next, decrypt the message by subtracting 3 from each number:

09       01     13       06     09     14     05.

Then, translate back into letters to obtain the original message: I AM FINE.  ■

One problem with the Caesar cipher is that given a sufficient amount of ciphertext a 
person with knowledge of letter frequencies in the language can easily figure out the ci-
pher. Partly for this reason, even Caesar himself did not make extensive use of it. Another 
problem with a system like the Caesar cipher is that knowledge of how to encrypt a mes-
sage automatically gives knowledge of how to decrypt it. When a potential recipient of 
messages passes the encryption information to a potential sender of messages, the channel 
over which the information is passed may itself be insecure. Thus the information may leak 
out, enabling an outside party to decrypt messages intended to be kept secret.

With public-key cryptography, a potential recipient of encrypted messages openly dis-
tributes a public key containing the encryption information. However, knowledge of the 
public key provides virtually no clue about how messages are decrypted. Only the recipi-
ent has that knowledge. Regardless of how many people learn the encryption information, 
only the recipient should be able to decrypt messages that are sent.

The first public-key cryptography system was developed in 1976–1977 by three 
mathematician/computer scientists working at M.I.T.: Ronald Rivest, Adi Shamir, and

From left to right: 
Ronald Rivest (born 
1948), Adi Shamir (born 
1952), and Leonard 
Adleman (born 1945) Ki
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Leonard Adleman. In their honor it is called the RSA cipher. In order for you to learn how 
it works, you need to know some additional properties of congruence modulo n.

Properties of Congruence Modulo n
The first theorem in this section brings together a variety of equivalent ways of expressing 
the same basic arithmetic fact. Sometimes one way is most convenient; sometimes another 
way is best. You need to be comfortable moving from one to another, depending on the 
nature of the problem you are trying to solve.

theorem 8.4.1 Modular equivalences

Let a, b, and n be any integers and suppose n . 1. The following statements are all 
equivalent:

1. n u  (a2b)

2. a ; b (mod n)

3. a 5 b1kn for some integer k

4. a and b have the same (nonnegative) remainder when divided by n

5. a mod n 5 b mod n

Proof: We will show that (1) 1 (2) 1 (3) 1 (4) 1 (5) 1 (1). It will follow by the 
transitivity of if-then that all five statements are equivalent.

So let a, b, and n be any integers with n . 1.

Proof that (1) 1 (2): Suppose that n u (a2b). By definition of congruence modulo n, 
we can immediately conclude that a ; b (mod n).

Proof that (2) 1 (3): Suppose that a ; b (mod n). By definition of congruence mod-
ulo n, n u  (a2b). Thus, by definition of divisibility, a2b 5 kn, for some integer k. 
Adding b to both sides gives that a 5 b1kn.

Proof that (3) 1 (4): Suppose that a 5 b1kn, for some integer k. Use the quotient-
remainder theorem to divide a by n to obtain

a 5 qn1 r where q and r are integers and 0 # r , n.

So r is the remainder obtained when a is divided by n. Substituting b1kn for a in the 
equation a 5 qn1 r gives that

b1kn 5 qn1 r,

and subtracting kn from both sides and factoring out n yields

b 5 (q2k)n1 r.

Now since 0 # r , n, the uniqueness property of the quotient-remainder theorem 
guarantees that r is also the remainder obtained when b is divided by n. Thus a and 
b have the same remainder when divided by n.

Proof that (4) 1 (5): Suppose that a and b have the same remainder when di-
vided by n. It follows immediately from the definition of the mod function that  
a mod n 5 b mod n.
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Proof that (5) 1 (1): Suppose that a mod n 5 b mod n. By definition of the mod 
function, a and b have the same remainder when divided by n. Thus, by the quotient-
remainder theorem, we can write

a 5 q1n1 r and b 5 q2n1 r where q1, q2, and r are integers and 0 # r , n.

It follows that

a2b 5 (q1n1 r)2 (q2n1 r) 5 (q1 2q2)n.

Therefore, since q1 2q2 is an integer, n u (a2b).

Another consequence of the quotient-remainder theorem is this: When an integer a is 
divided by a positive integer n, a unique quotient q and remainder r are obtained with the 
property that a 5 nq1 r and 0 # r , n. Because there are exactly n integers that satisfy 
the inequality 0 # r , n (the numbers from 0 through n21), there are exactly n possible 
remainders that can occur. These are called the least nonnegative residues modulo n or 
simply the residues modulo n.

Definition

Given integers a and n with n . 1, the residue of a modulo n is a mod n, the non-
negative remainder obtained when a is divided by n. The numbers 0, 1, 2, . . . , n21 
are called a complete set of residues modulo n. To reduce a number modulo n 
means to set it equal to its residue modulo n. If a modulus n . 1 is fixed throughout 
a discussion and an integer a is given, the words “modulo n” are often dropped and 
we simply speak of the residue of a.

The following theorem generalizes several examples from Section 8.3.

theorem 8.4.2 Congruence Modulo n is an equivalence relation

If n is any integer with n . 1, congruence modulo n is an equivalence relation on the 
set of all integers. The distinct equivalence classes of the relation are the sets [0], [1], 
[2], . . . , [n21], where for each a 5 0, 1, 2, . . . , n21,

[a] 5 {m [ Z u  m ; a (mod n)},

or, equivalently,

[a] 5 {m [ Z u  m 5 a1kn for some integer k}.

Proof: Suppose n is any integer with n . 1. We must show that congruence modulo n 
is reflexive, symmetric, and transitive.

Proof of reflexivity: Suppose a is any integer. To show that a ; a (mod n), we must show 
that n u  (a2a). Now a2a 5 0, and n  u  0 because 0 5 n?0. Therefore a ; a (mod n).

Proof of symmetry: Suppose a and b are any integers such that a ; b (mod n). We 
must show that b ; a (mod n). Now since a ; b (mod n), then n u  (a2b). Thus, by 

(continued on page 528)
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definition of divisibility, a2b 5 nk, for some integer k. Multiply both sides of this 
equation by 21 to obtain

2(a2b) 5 2nk,

or, equivalently,

b2a 5 n(2k).

Thus, by definition of divisibility n u  (b2a), and so, by definition of congruence 
modulo n, b ; a (mod n).

Proof of transitivity: This is left as exercise 5 at the end of the section.

Proof that the distinct equivalence classes are [0], [1], [2], . . . , [n 2 1]: This is left 
as exercise 6 at the end of the section.

Observe that there is a one-to-one correspondence between the distinct equivalence classes 
for congruence modulo n and the elements of a complete set of residues modulo n.

Modular Arithmetic
A fundamental fact about congruence modulo n is that if you first perform an addition, 
subtraction, or multiplication on integers and then reduce the result modulo n, you will ob-
tain the same answer as if you had first reduced each of the numbers modulo n, performed 
the operation, and then reduced the result modulo n. For instance, instead of computing

(5?8) 5 40 ; 1 (mod 3)

you will obtain the same answer if you compute

(5 mod 3) (8 mod 3) 5 2?2 5 4 ; 1 (mod 3).

The fact that this process works is a result of the following theorem.

theorem 8.4.3 Modular arithmetic

Let a, b, c, d, and n be integers with n . 1, and suppose

a ; c (mod n) and b ; d (mod n).

Then

1. (a1b) ; (c1d) (mod n)

2. (a2b) ; (c2d) (mod n)

3. ab ; cd (mod n)

4. am ; cm (mod n) for every positive integer m. 

Proof: Because we will make greatest use of part 3 of this theorem, we prove it here 
and leave the proofs of the remaining parts of the theorem to exercises 9–11 at the 
end of the section.
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Proof of Part 3: Suppose a, b, c, d, and n are integers with n . 1, and suppose a ; b 
(mod n) and c ; d (mod n). By Theorem 8.4.1, there exist integers s and t such that

a 5 c1 sn and b 5 d1 tn.

Then

 ab 5 (c1 sn)(d1 tn)  by substitution

 5 cd1ctn1 snd1 sntn
 5 cd1n(ct1 sd1 stn)  by algebra.

Let k 5 ct1 sd1 stn. Then k is an integer because it is a sum of products of integers, 
and ab 5 cd1nk. Thus by Theorem 8.4.1, ab ; cd (mod n).

Getting started with Modular arithmetic

The most practical use of modular arithmetic is to reduce computations involving large 
integers to computations involving smaller ones. For instance, note that 55 ; 3 (mod 4) 
because 5523 5 52, which is divisible by 4, and 26 ; 2 (mod 4) because 2622 5 24, 
which is also divisible by 4. Verify the following statements.

a. 55126 ; (312) (mod 4)  b. 55226 ; (322) (mod 4)

c. 55?26 ; (3?2) (mod 4)    d. 552 ; 32 (mod 4) 

solution
a. Compute 55126 5 81 and 312 5 5. By definition of congruence modulo n, to 

show that 81 ; 5 (mod 4), you need to show that 4 u  (8125). But this is true because 
8125 5 76, and 4 u  76 since 76 5 4?19.

b. Compute 55226 5 29 and 322 5 1. By definition of congruence modulo n, to 
show that 29 ; 1 (mod 4), you need to show that 4 u  (2921). But this is true because 
2921 5 28, and 4 u  28 since 28 5 4?7.

c. Compute 55?26 5 1430 and 3?2 5 6. By definition of congruence modulo n, to show 
that 1430 ; 6 (mod 4), you need to show that 4 u  (143026). But this is true because 
143026 5 1424, and 4 u  1424 since 1424 5 4?356.

d. Compute 552 5 3025 and 32 5 9. By definition of congruence modulo n, to show 
that 3025 ; 9 (mod 4), you need to show that  4 u  (302529). But this is true because 
302529 5 3016, and 4 u  3016 since 3016 5 4?754. ■

In order to facilitate the computations performed in this section, it is convenient to ex-
press part 3 of Theorem 8.4.3 in a slightly differently form.

Corollary 8.4.4

Let a, b, and n be integers with n . 1. Then

ab ; [(a mod n)(b mod n)] (mod n),

or, equivalently,

ab mod n 5 [(a mod n)(b mod n)] mod n.

In particular, if m is a positive integer, then

am ; [(a mod n)m] (mod n).

example 8.4.2
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Computing a Product Modulo n

As in Example 8.4.2, note that 55 ; 3 (mod 4) and 26 ; 2 (mod 4). Because both 3 and 2 
are less than 4, each of these numbers is a least nonnegative residue modulo 4. Therefore, 
55 mod 4 5 3 and 26 mod 4 5 2. Use the notation of Corollary 8.4.4 to find the residue of 
55?26 modulo 4.

solution Recall that to use a calculator to compute remainders, you can use the for-
mula n mod d 5 n2d? :nyd;. If you are using a hand calculator with an “integer part” 
feature and both n and d are positive, then :nyd; is the integer part of the division of n by 
d. When you divide a positive integer n by a positive integer d with a more basic calcula-
tor, you can see :nyd; on the calculator display by simply ignoring the digits that follow 
the decimal point.

By Corollary 8.4.4,

 (55?26) mod 4 5 h(55 mod 4)(26 mod 4)j mod 4

 ;  (3?2) mod 4 because 55 mod 4 5 3 and 26 mod 4 5 2

 ;  6 mod 4

  ;  2 because 4 u (622) and 2 , 4. ■

When modular arithmetic is performed with very large numbers, as is the case for 
RSA crytography, computations are facilitated by using two properties of exponents. The 
first is

x2a 5 (xa)2 for all real numbers x and a with x $ 0.
 

8.4.1

Thus, for instance, if x is any positive real number, then

 x4 mod n 5 (x2)2 mod n  because (x2)2 5 x4

 5 (x2 mod n)2 mod n by Corollary 8.4.4.

Hence you can reduce x4 modulo n by reducing x2 modulo n and then reducing the square 
of the result modulo n. Because all the residues are less than n, this process limits the size 
of the computations to numbers that are less than n2, which makes them easier to work 
with, both for humans (when the numbers are relatively small) and for computers (when 
the numbers are very large).

A second useful property of exponents is

xa1b 5 xaxb for all real numbers x, a, and b with x $ 0.
 

8.4.2

For instance, because 7 5 41211,

x7 5 x4x2x1.

Thus, by Corollary 8.4.4,

x7 mod n 5 {(x4 mod n)(x2 mod n)(x1 mod n)} mod n.

We first show an example that illustrates the application of formula (8.4.1) and then an 
example that uses both (8.4.1) and (8.4.2).

example 8.4.3
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Computing ak mod n when k is a Power of 2

Find 1444 mod 713.

solution Use property (8.4.1) to write 1444 5 (1442)2. Then

 1444 mod 713 5 (1442)2 mod 713

 5 (1442 mod 713)2 mod 713

 5 (20736 mod 713)2 mod 713 because 1442 5 20736

 5 592 mod 713  because 20736 mod 713 5 59

 5 3481 mod 713  because 592 5 3481

 5 629  because 3481 mod 713 5 629. ■

Computing ak mod n when k is not a Power of 2

Find 1243 mod 713.

solution First write the exponent as a sum of powers of 2:

43 5 25 123 1211 5 32181211.

Next compute 122k
 for k 5 0, 1, 2, 3, 4, and 5.

   12 mod 713 5 12

   122 mod 713 5 144

 124 mod 713 5 1442mod 713  5 59  by Example 8.4.4

 128 mod 713 5 592 mod 713  5 629 by Example 8.4.4

 1216 mod 713 5 6292 mod 713 5 639 by the method of Example 8.4.4

 1232 mod 713 5 6392 mod 713 5 485 by the method of Example 8.4.4.

By property (8.4.2),

1243 5 1232181211 5 1232?128?122?121.

Thus, by Corollary 8.4.4,

1243 mod 713

5 {(1232 mod 713)?(128 mod 713)?(122 mod 713)?(12 mod 713)} mod 713.

By substitution,

 1243 mod 713 5 (485?629?144?12) mod 713

 5 527152320 mod 713

         5 48.  ■

You should know how to do the computations in Example 8.4.5 by hand using only a 
simple electronic calculator, but if you are computing a lot of residues, especially ones 
involving large numbers, you may want to write a short computer or calculator program to 
do the computations for you.

Extending the Euclidean Algorithm
An extended version of the Euclidean algorithm can be used to find a concrete expression 
for the greatest common divisor of integers a and b.

example 8.4.4

example 8.4.5
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Definition

An integer d is said to be a linear combination of integers a and b if, and only if, 
there exist integers s and t such that as1bt 5 d.

theorem 8.4.5 writing a Greatest Common Divisor as a linear Combination

For all integers a and b, not both zero, if d 5 gcd(a, b), then there exist integers s and 
t such that as1bt 5 d.

Proof: Given integers a and b, not both zero, and given d 5 gcd(a, b), let

S 5 {x u  x is a positive integer and x 5 as1bt for some integers s and t}.

Note that S is a nonempty set because (1) if a . 0 then 1?a10?b [ S, (2) if a , 0 
then (21)?a10?b [ S, and (3) if a 5 0 then, by assumption, b Þ 0, and hence 
0?a11?b [ S or 0?a1 (21)?b [ S. Thus, because S is a nonempty subset of posi-
tive integers, by the well-ordering principle for the integers there is a least element c 
in S. By definition of S,

  c 5 as1bt for some integers s and t. 8.4.3

We will show that (1) c $ d, and (2) c # d, and we will therefore be able to conclude 
that c 5 d 5 gcd(a, b).

(1) Proof that c $ d:
[In this part of the proof, we show that d is a divisor of c and thus that d # c.] Be-
cause d 5 gcd(a, b), by definition of greatest common divisor, d u  a and d u  b. Hence 
a 5 dx and b 5 dy for some integers x and y. Then

 c 5 as1bt  by (8.4.3)

 5 (dx)s1 (dy)t by substitution

 5 d(xs1y)  by factoring out the d.

Now xs1yt is an integer because it is a sum of products of integers. Thus, by defi-
nition of divisibility, d u  c. Both c and d are positive, and hence, by Theorem 4.4.1, 
c $ d.

(2) Proof that c # d:
[In this part of the proof, we show that c is a divisor of both a and b and therefore that 
c is less than or equal to the greatest common divisor of a and b, which is d.] Apply the 
quotient-remainder theorem to the division of a by c to obtain

  a 5 cq1 r for some integers q and r with 0 # r , c. 8.4.4

Thus for some integers q and r with 0 # r , c,

r 5 a2cq.

Now c 5 as1bt. Therefore, for some integers q and r with 0 # r , c,

 r 5 a2 (as1bt)q  by substitution.

 5 a(1 2 sq)2btq
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Thus r is a linear combination of a and b. If r . 0, then r would be in S, and so r 
would be a smaller element of S than c, which would contradict the fact that c is the 
least element of S. Hence r 5 0. By substitution into (8.4.4),

a 5 cq

and therefore c u  a.
An almost identical argument establishes that c u  b and is left as exercise 30 at the 

end of the section.
Because c u  a and c u  b, c is a common divisor of a and b. Hence c is less than or 

equal to the greatest common divisor of a and b. In other words, c # d.
From (1) and (2), we conclude that c 5 d. It follows that d, the greatest common 

divisor of a and b, is equal to as1bt.

The following example shows a practical method for expressing the greatest common 
divisor of two integers as a linear combination of the two.

expressing a Greatest Common Divisor as a linear Combination

In Example 4.10.6 we showed how to use the Euclidean algorithm to find that the great-
est common divisor of 330 and 156 is 6. Use the results of those calculations to express 
gcd(330, 156) as a linear combination of 330 and 156.

solution The first four steps of the solution restate and extend results from Example 
4.10.6, which were obtained by successive applications of the quotient-remainder theorem. 
The fifth step shows how to find the coefficients of the linear combination by substituting 
back through the results of the previous steps.

Step 1: 330 5 156?2118, which implies that 18 5 3302156?2.

Step 2: 156 5 18?8112, which implies that 12 5 156218?8.

Step 3: 18 5 12?116, which implies that 6 5 18212?1.

Step 4: 12 5 6?210, which implies that gcd(330, 156) 5 6.

Step 5: By substituting back through steps 3 to 1: 

 6 5 18212?1  from step 3

 5 182 (15628?18)?1  by substitution from step 2

 5 9?181 (21)?156  by algebra

 5 9?(3302156?2)1 (21)?156 by substitution from step 1

 5 9?3301 (219)?156  by algebra.

Thus gcd(330, 156) 5 9?3301 (219)?156. (It is always a good idea to check the result 
of a calculation like this to be sure you did not make a mistake. In this case, you find that 
9?3301 (219)?156 does indeed equal 6.) ■

The Euclidean algorithm given in Section 4.10 can be adapted so as to compute the coef-
ficients of the linear combination of the gcd at the same time as it computes the gcd itself. 
This extended Euclidean algorithm is described in the exercises at the end of the section.

example 8.4.6
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Finding an Inverse Modulo n
Suppose you want to solve the following congruence for x:

2x ; 3 (mod 5).

Note that 3?2 5 6 ; 1 (mod 5). So 3 appears to be a kind of inverse for 2 modulo 5. Thus 
multiplying both sides of the congruence to be solved by 3 might give a solution for x. 
When we try this, we obtain

6x 5 3?2x ; 3?3 (mod 5) ; 9 (mod 5) ; 4 (mod 5).

Now since 6 ; 1 (mod 5), Theorem 8.4.3(3) implies that 

6x ; 1?x (mod 5) ; x (mod 5).

So, 6x ; 4 (mod 5) and 6x ; x (mod 5), and, hence, by the symmetric and transitive prop-
erties of modular congruence,

x ; 4 (mod 5).

Therefore, a solution is x 5 4. (You can check that 2?4 5 8 ; 3 (mod 5).)

Definition

Given any integer a and any positive integer n, if there exists an integer s such that 
as ; 1 (mod n), then s is called an inverse for a modulo n.

Unfortunately, the method shown above cannot always be used to solve congruences 
because not every integer has an inverse modulo n. For instance, observe that

2?1 ; 2 (mod 4)

2?2 ; 0 (mod 4)

2?3 ; 2 (mod 4). 

By Theorem 8.4.3, these calculations suffice to show that the number 2 does not have an 
inverse modulo 4.

Describing the circumstances in which inverses exist in modular arithmetic requires the 
concept of relative primeness.

Definition

Integers a and b are relatively prime if, and only if, gcd(a, b) 5 1. Integers a1, a2, 
a3, . . . , an are pairwise relatively prime if, and only if, gcd(ai, aj) 5 1 for all inte-
gers i and j with 1 # i, j # n, and i Þ j.

Given the definition of relatively prime integers, the following corollary is an immedi-
ate consequence of Theorem 8.4.5.

Corollary 8.4.6

If a and b are relatively prime integers, then there exist integers s and t such that 
as1bt 5 1.
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expressing 1 as a linear Combination of relatively Prime integers

Show that 660 and 43 are relatively prime, and find a linear combination of 660 and 43 
that equals 1.

solution
Step 1:  Divide 660 by 43 to obtain 660 5 43?15115, which implies that 

15 5 660243?15.

Step 2: Divide 43 by 15 to obtain 43 5 15?2113, which implies that 13 5 43215?2.

Step 3: Divide 15 by 13 to obtain 15 5 13?112, which implies that 2 5 15213.

Step 4: Divide 13 by 2 to obtain 13 5 2?611, which implies that 1 5 1322?6.

Step 5:  Divide 2 by 1 to obtain 2 5 1?210, which implies that gcd(660, 43) 5 1 and so 
660 and 43 are relatively prime.

Step 6:  To express 1 as a linear combination of 660 and 43, substitute back through steps 
4 to 1: 

 1 5 1322?6  from step 4

 5 132 (15213)?6  by substitution from step 3

 5 7?1326?15  by algebra

 5 7?(43215?2)26?15  by substitution from step 2

 5 7?43220?15  by algebra

 5 7?43220?(660243?15) by substitution from step 1

 5 307?43220?660  by algebra.

Thus gcd(660, 43) 5 1 5 307?43220?660. (And a check by direct computation confirms 
that 307?43220?660 does indeed equal 1.) ■

A consequence of Corollary 8.4.6 is that under certain circumstances, it is possible to 
find an inverse for an integer modulo n.

Corollary 8.4.7 existence of inverses Modulo n

For all integers a and n, if gcd(a, n) 5 1, then there exists an integer s such that 
as ; 1 (mod n), and so s is an inverse for a modulo n.

Proof: Suppose a and n are integers and gcd(a, n) 5 1. By Corollary 8.4.6, there 
exist integers s and t such that

as1nt 5 1.

Subtracting nt from both sides gives that

as 5 12nt 5 11 (2t)n.

Thus, by definition of congruence modulo n,

as ; 1 (mod n).

example 8.4.7
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finding an inverse Modulo n

a. Find an inverse for 43 modulo 660. That is, find an integer s such that 43s ; 1 (mod 660).

b. Find a positive inverse for 3 modulo 40. That is, find a positive integer s such that 
3s ; 1 (mod 40). 

solution

a. By Example 8.4.7,

307?43220?660 5 1.

Adding 20?660 to both sides gives that

307?43 5 1120?660.

Thus, by definition of congruence modulo 660,

307?43 ; 1 (mod 660),

so 307 is an inverse for 43 modulo 660.

b. Use the technique of Example 8.4.7 to find a linear combination of 3 and 40 that 
equals 1. 

Step 1: Divide 40 by 3 to obtain 40 5 3?1311. This implies that 1 5 4023?13.

Step 2: Divide 3 by 1 to obtain 3 5 3?110. This implies that gcd(3, 40) 5 1.

Step 3: Use the result of step 1 to write

3?(213) 5 11 (21)40.

This result implies that 213 is an inverse for 3 modulo 40. In other words, 3?(213) ;   
1 (mod 40). To find a positive inverse, compute 40213. The result is 27, and

27 ; 213 (mod 40)

because 272 (213) 5 40. So, by Theorem 8.4.3(3),

3?27 ; 3?(213) ; 1 (mod 40),

and thus by the transitive property of congruence modulo n, 27 is a positive integer that is 
an inverse for 3 modulo 40. ■

RSA Cryptography
At this point we have developed enough number theory to explain how to encrypt and de-
crypt messages using the RSA cipher. The effectiveness of the system is based on the fact 
that although modern computer algorithms make it quite easy to find two distinct large in-
tegers p and q—say on the order of several hundred digits each—that are virtually certain 
to be prime, even the fastest computers are not currently able to factor their product, an 
integer with approximately twice that many digits. In order to encrypt a message using the 
RSA cipher, a person needs to know the value of pq and of another integer e, both of which 
are made publicly available. But only a person who knows the individual values of p and q 
can decrypt an encrypted message.

We first give an example to show how the cipher works and then discuss some of 
the theory to explain why it works. The example is unrealistic in the sense that because 
p and q are so small, it would be easy to figure out what they are just by knowing  

example 8.4.8
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their product. But working with small numbers conveys the idea of the system, while 
keeping the computations in a range that can be performed with a hand calculator.

Suppose Alice decides to set up an RSA cipher. She chooses two prime numbers—say, 
p 5 5 and q 5 11—and computes pq 5 55. She then chooses a positive integer e that is 
relatively prime to (p21)(q21). In this case, (p21)(q21) 5 4?10 5 40, so she may 
take e 5 3 because 3 is relatively prime to 40. (In practice, taking e to be small could 
compromise the secrecy of the cipher, so she would take a larger number than 3. However, 
the mathematics of the cipher works as well for 3 as for a larger number, and the smaller 
number makes for easier calculations.)

The number pair (pq, e) is Alice’s public key, which she may distribute widely. Because 
the RSA cipher works only on numbers, Alice also informs people how she will interpret 
the numbers in the messages they send her. Let us suppose that she encodes letters of the 
alphabet in a similar way as was done for the Caesar cipher:

A 5 01, B 5 02, C 5 03, . . . , Z 5 26.

Let us also assume that the messages Alice receives consist of blocks, each of which, for 
simplicity, is taken to be a single, numerically encoded letter of the alphabet.

Someone who wants to send Alice a message breaks the message into blocks, each con-
sisting of a single letter, and finds the numeric equivalent for each block. The plaintext, M, 
in a block is converted into ciphertext, C, according to the following formula:

C 5 Me mod pq.
 

8.4.5

Note that because (pq, e) is the public key, anyone who has it and knows modular arithme-
tic can encrypt a message to send to Alice.

encrypting a Message using rsa Cryptography

Bob wants to send Alice the message HI. What is the ciphertext for his message?

solution Bob will send his message in two blocks, one for the H and another for the I. 
Because H is the eighth letter in the alphabet, it is encoded as 08, or 8. The corresponding 
ciphertext is computed using formula 8.4.5 as follows:

 C 5 83 mod 55

 5 512 mod 55

 5 17.

Because I is the ninth letter in the alphabet, it is encoded as 09, or 9. The corresponding 
ciphertext is

 C 5 93 mod 55

 5 729 mod 55

 5 14.

Accordingly, Bob sends Alice the message: 17 14. ■

To decrypt the message, the decryption key must be computed. It is a number d that is a 
positive inverse to e modulo (p21)(q21). The plaintext M is obtained from the ciphertext 
C by the formula

M 5 Cd mod pq, where the number pair (pq, d) is Alice’s private key.
 

8.4.6

example 8.4.9
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Note that because M1kpq ; M (mod pq), M must be taken to be less than pq, as in 
the above example, in order for the decryption to be guaranteed to produce the original 
message. But because p and q are normally taken to be so large, this requirement does not 
cause problems. Long messages are broken into blocks of symbols to meet the restriction 
and several symbols are included in each block to prevent decryption based on knowledge 
of letter frequencies.

Decrypting a Message using rsa Cryptography

Imagine that Alice has hired you to help her decrypt messages and has shared with you the 
values of p and q. Compute Alice’s private key (pq, d) and use the formula M 5 Cd mod pq 
to decrypt the following ciphertext for her: 17 14.

solution Because p 5 5 and q 5 11, (p21)(q21) 5 40, the decryption key d is a posi-
tive inverse for 3 modulo 40. Knowing that you would need this number, we computed it 
in Example 8.4.8(b) and found it to be 27. Thus to decrypt the ciphertext 17, you need to 
compute

M 5 17d mod pq 5 1727 mod 55.

To do so, note that

27 5 16181211.

Next, find the residues obtained when 17 is raised to successively higher powers of 2, up 
to 24 5 16:

 17 mod 55 5 17 mod 55  5 17

 172 mod 55 5 172 mod 55  5 14

 174 mod 55 5 (172)2 mod 55 5 142 mod 55 5 31

 178 mod 55 5 (174)2 mod 55 5 312 mod 55 5 26

 1716 mod 55 5 (178)2 mod 55 5 262 mod 55 5 16

Then use the fact that

1727 5 1716181211 5 1716?178?172?171

to write

 1727 mod 55 5 (1716?178?172?17) mod 55

 ; f(176 mod 55)(178 mod 55)(172 mod 55)(17 mod 55)g (mod 55) 
  by Corollary 8.4.4

 ; (16?26?14?17) (mod 55)

 ; 99008 (mod 55)

 ; 8 (mod 55).

Hence 1727 mod 55 5 8, and thus the plaintext of the first part of Bob’s message is 8, or 08. 
In the last step, you find the letter corresponding to 08, which is H. In exercises 14 and 15 
at the end of this section, you are asked to show that when you decrypt 14, the result is 9, 
which corresponds to the letter I, so you can tell Alice that Bob’s message is HI. ■

Figure 8.4.1 illustrates the process of sending and receiving a message using RSA 
cryptography.

example 8.4.10
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Bob creates a
plaintext block M.

Alice reads Bob’s
plaintext block M.

Bob sends encrypted
block C to Alice.

Bob uses Alice’s
public key to
encrypt M:
C 5 Me mod pq.

Alice uses her
private key to
decrypt C:
M 5 Cd mod pq.

fiGure 8.4.1 Using RSA cryptography

Euclid’s Lemma
Another consequence of Theorem 8.4.5 is known as Euclid’s lemma. It is the crucial fact 
behind the unique factorization theorem for the integers and is also of great importance in 
many other parts of number theory.

theorem 8.4.8 euclid’s lemma

For all integers a, b, and c, if gcd(a, c) 5 1 and a u  bc, then a u  b.

Proof: Suppose a, b, and c are integers, gcd(a, c) 5 1, and a u  bc. [We must show that 
a ub.] By Theorem 8.4.5, there exist integers s and t so that

as1ct 5 1.

Multiply both sides of this equation by b to obtain

  bas1bct 5 b. 8.4.7

Since a ubc, by definition of divisibility there exists an integer k such that

  bc 5 ak. 8.4.8

Substituting (8.4.8) into (8.4.7), rewriting, and factoring out an a gives that

 b 5 bas1 (ak)t 5 a(bs1kt).

Let r 5 bs1kt. Then r is an integer (because b, s, k, and t are all integers), and 
b 5 ar. Thus a ub by definition of divisibility.

The unique factorization theorem for the integers states that any integer greater than 1 
has a unique representation as a product of prime numbers, except possibly for the order in 
which the numbers are written. The hint for exercise 13 of Section 5.4 outlined a proof of the 
existence part of the proof, and the uniqueness of the representation follows quickly from Eu-
clid’s lemma. In exercise 41 at the end of this section, we outline a proof for you to complete.

Another application of Euclid’s lemma is a cancellation theorem for congruence modulo 
n. This theorem allows us—under certain circumstances—to divide out a common factor 
in a congruence relation.

theorem 8.4.9 Cancellation theorem for Modular Congruence

For all integers a, b, c, and n with n . 1, if gcd(c, n) 5 1 and ac ; bc (mod n), then 
a ; b (mod n).

(continued on page 540)
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Proof: Suppose a, b, c, and n are any integers, gcd(c, n) 5 1, and ac ; bc (mod n). 
[We must show that a ; b (mod n).] By definition of congruence modulo n,

n u  (ac2bc),

and so, since ac2bc 5 (a2b)c,

then

n u  (a2b)c.

Because gcd(c, n) 5 1, we may apply Euclid’s lemma to obtain

n u  (a2b),

and so, by definition of congruence modulo n,

a ; b (mod n).

An alternative proof for Theorem 8.4.9 uses Corollary 8.4.7. Because gcd(c, n) 5 1, the 
corollary guarantees an inverse for c modulo n. In the proof of Theorem 8.4.9, let d denote 
an inverse for c. Apply Theorem 8.4.3(3) repeatedly, first to multiply both sides of ac ; bc 
(mod n) by d to obtain (ac)d ; (bd)d (mod n), and then to use the fact that cd ; 1 (mod n) 
to simplify the congruence and conclude that a ; b (mod n).

Fermat’s Little Theorem
Fermat’s little theorem was given that name to distinguish it from Fermat’s last theo-
rem, which we discussed in Section 4.1. It provides the theoretical underpinning for RSA 
cryptography.

theorem 8.4.10 fermat’s little theorem

If p is any prime number and a is any integer such that p u  a, then ap21 ; 1 (mod p).

Proof: Suppose p is any prime number and a is any integer such that p u  a. Note that 
a Þ 0 because otherwise p would divide a. Consider the set of integers

S 5 {a, 2a, 3a, . . . , (p21)a}.

We claim that no two elements of S are congruent modulo p. For suppose sa ;   
ra (mod p) for some integers s and r with 1 # r , s # p21. Then, by definition of 
congruence modulo p,

p u  (sa2 ra), or, equivalently, p u  (s2 r)a.

Now p u  a by hypothesis, and because p is prime, gcd(a, p) 5 1. Thus, by Euclid’s 
lemma, p u  (s2 r). But this is impossible because 0 , s2 r , p.

Consider the function F from S to the set T 5 {1, 2, 3, . . . , (p21)} that sends 
each element of S to its residue modulo p. Then F is one-to-one because no two ele-
ments of S are congruent modulo p. In Section 9.4 we prove that if a function from 
one finite set to another is one-to-one, then it is also onto. Hence F is onto, and so the 
p21 residues of the p21 elements of S are exactly the numbers 1, 2, 3, . . . , (p21).
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It follows by Theorem 8.4.3(3) that

a?2a?3a Á (p21)a ; f1?2?3 Á (p21)g (mod p),

or, equivalently,

ap21(p21)! ; (p21)! (mod p).

Now because p is prime, p and (p21)! are relatively prime. Thus, by the cancella-
tion theorem for modular congruence (Theorem 8.4.9),

ap21 ; 1 (mod p).

Why Does the RSA Cipher Work?
For the RSA cryptography method, the formula

M 5 Cd mod pq

is supposed to produce the original plaintext message, M, when the encrypted message is 
C. How can we be sure that it always does so? Recall that we require that M , pq, and we 
know that C 5 Me mod pq. So, by substitution,

C 
d mod pq 5 (M 

e mod pq)d mod pq.

By Theorem 8.4.3(4),

(M 
e mod pq)d ; M 

ed (mod pq).

Thus C 
d mod pq ; M 

ed (mod pq), and so it suffices to show that

M ; Med (mod pq).

Recall that d was chosen to be a positive inverse for e modulo (p21)(q21), which ex-
ists because gcd(e, (p21)(q21)) 5 1. In other words,

ed ; 1 (mod (p21)(q21)),

or, equivalently,

ed 5 11k(p21)(q21) for some positive integer k.

Therefore,

M 
ed 5 M11k(p21)(q21) 5 M(M 

k(p21)(q21)).

If p u  M, then by Fermat’s little theorem, Mp21 ; 1 (mod p), and so

Med 5 M(Mk(p21)(q21)) 5 M(Mp21)k (q21) ; M(1)k(q21) (mod p) 5 M (mod p).

Similarly, if q u  M, then by Fermat’s little theorem, Mq21 ; 1 (mod q), and so

Med 5 M(Mk(p21)(q21)) 5 M(Mq21)k( p21) ; M(1)k(p21) (mod q) 5 M (mod q).

Thus, if M is relatively prime to pq,

Med ; M (mod  p) and Med ; M (mod  q).
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If M is not relatively prime to pq, then either p u  M or q u  M. If p u  M, then Med ; 0 ;   
M (mod p), and if q u  M, then Med ; 0 ; M (mod q). If q u  M, then as above, Med ; M (mod q), 
and if p u  M, then as above, M ed ; M (mod p). Thus, in all cases,

M ed ; M (mod p) and Med ; M (mod q).

By Theorem 8.4.1,

p u  (Med 2M) and q u  (Med 2M),

and, by definition of divisibility,

M ed 2M 5 pt for some integer t.

By substitution, q u  pt,

and since q and p are distinct prime numbers, Euclid’s lemma applies to give

q u  t.

Thus t 5 qu for some integer u

by definition of divisibility. By substitution,

M2M ed 5 pt 5 p(qu) 5 (pq)u,

where u is an integer, and so, 

pq u  (M2M ed)

by definition of divisibility. Thus

M2Med ; 0 (mod pq)

by definition of congruence, or, equivalently,

M ; Med (mod pq).

Because M , pq, this last congruence implies that

M 5 Med mod pq,

and thus the RSA cipher gives the correct result.

Message Authentication
In some Internet networks, such as those that use blockchain technology, individuals have 
their own public keys but their actual identities are private. Suppose Alice and Bob are part 
of the network, so each knows the other’s public key. Alice wants to send Bob a message, 
but she has a problem. She wants to make sure that Bob will know that the message really 
is from her. After all everyone in the network has Bob’s public key, and so someone else 
could send Bob a message pretending that it is from Alice.

The solution follows from the fact that in the formula M 5 Med mod pq, e and d are 
interchangeable. Alice can use her private key (pq, d) and the formula

M 5 M ed mod pq

to encrypt some identifying information showing that she is the person she claims to be. 
Then she adds the encrypted information to her plaintext message for Bob and uses Bob’s 
public key to encrypt the communication as a whole.
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When Bob receives the communication, he uses his private key to decrypt it. He discov-
ers that part is plaintext, claiming to be from Alice, and another part is encrypted. So he 
uses Alice’s public key to decrypt the encrypted part and finds Alice’s identifying infor-
mation. He then knows the message is authentic because only Alice has the private key 
needed to perform the encryption.

This process of message authentication is illustrated in Figure 8.4.2.

Alice creates message A
in plaintext; uses her
private key to encrypt
her ID information; and
adds it to A.

Bob reads the clear text in
message A, knowing that it
is from Alice because only
Alice has the private key to
encrypt her ID information.

Alice uses Bob’s
public key to
encrypt A.

Bob uses his
private key to
decrypt A. Then
he uses Alice’s
public key to
decrypt Alice’s
enclosed ID
information.

Alice sends encrypted
message A to Bob.

fiGure 8.4.2 Message authentication

Additional Remarks on Number Theory and Cryptography
The famous British mathematician G. H. Hardy (1877–1947) was fond of comparing the 
beauty of pure mathematics, especially number theory, to the beauty of art. Indeed, the 
theorems in this section have many beautiful and striking consequences beyond those 
we have had the space to describe, and the subject of number theory extends far beyond 
these theorems. Hardy also enjoyed describing pure mathematics as useless. Hence it is 
ironic that there are now whole books devoted to applications of number theory to com-
puter science, RSA cryptography being just one such application. Furthermore, as the need 
for public-key cryptography has developed, techniques from other areas of mathematics, 
such as abstract algebra and algebraic geometry, have been used to develop additional 
cryptosystems.

1. When letters of the alphabet are encrypted using 
the Caesar cipher, the encrypted version of a letter 
is .

2. If a, b, and n are integers with n . 1, all of the fol-
lowing are different ways to express the fact that 
n u (a2b): , , , .

3. If a, b, c, d, m, and n are integers with n . 1 
and if a ; c (mod n) and b ; d (mod n), then 
a1b ;  , a2b ;  , ab ;  , and 
am ;  .

4. If a, n, and k are positive integers with n . 1, an 
efficient way to compute ak (mod n) is to write 
k as a  and use the facts about computing 
products and powers modulo n.

5. To express a greatest common divisor of two in-
tegers as a linear combination of the integers, use 
the extended version of the  algorithm.

6. To find an inverse for a positive integer a modulo 
an integer n with n . 1, you express the number 1 
as .

test Yourself 
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7. To encrypt a message M using RSA cryptography 
with public key pq and e, you use the formula 

, and to decrypt a message C, you use the 
formula , where .

8. Euclid’s lemma says that for all integers a, b, and c 
if gcd(a, c) 5 1 and a u  bc, then .

9. Fermat’s little theorem says that if p is any prime 
number and a is any integer such that p u  a, then .

10. The crux of the proof that the RSA cipher works is 
that if (1) p and q are distinct large prime num-
bers, (2) M , pq, (3) M is relatively prime to pq, 
(4) e is relatively prime to (p21)(q21), and  
(5) d is a positive inverse for e modulo 
(p21)(q21), then M 5 .

1. a.  Use the Caesar cipher to encrypt the message 
WHERE SHALL WE MEET.

b. Use the Caesar cipher to decrypt the message 
LQ WKH FDIHWHULD.

2. a.  Use the Caesar cipher to encrypt the message 
AN APPLE A DAY.

b. Use the Caesar cipher to decrypt the message 
NHHSV WKH GRFWRU DZDB.

3. Let a 5 25, b 5 19, and n 5 3.
a. Verify that 3 u  (25219).
b. Explain why 25 ; 19 (mod 3).
c. What value of k has the property that  

25 5 1913k?
d. What is the (nonnegative) remainder obtained 

when 25 is divided by 3? When 19 is divided 
by 3?

e. Explain why 25 mod 3 5 19 mod 3. 

4. Let a 5 68, b 5 33, and n 5 7.
a. Verify that 7 u  (68233).
b. Explain why 68 ; 33 (mod 7).
c. What value of k has the property that 

68 5 3317k?
d. What is the (nonnegative) remainder obtained 

when 68 is divided by 7? When 33 is divided 
by 7?

e. Explain why 68 mod 7 5 33 mod 7. 

5. Prove the transitivity of modular congruence. That 
is, prove that for all integers a, b, c, and n with 
n . 1, if a ; b (mod n) and b ; c (mod n) then 
a ; c (mod n).

6. Prove that the distinct equivalence classes of the 
relation of congruence modulo n are the sets [0], 
[1], [2], Á , [n21], where for each a 5 0, 1, 2, Á ,  
n21,

[a] 5 {m [ Z u  m ; a (mod n)}.

7. Verify the following statements.
a. 128 ; 2 (mod 7) and 61 ; 5 (mod 7)
b. (128161) ; (215) (mod 7)
c. (128261) ; (225) (mod 7)
d. (128?61) ; (2?5) (mod 7)
e. 1282 ; 22 (mod 7) 

8. Verify the following statements.
a. 45 ; 3 (mod 6) and 104 ; 2 (mod 6)
b. (451104) ; (312) (mod 6)
c. (452104) ; (322) (mod 6)
d. (45?104) ; (3?2) (mod 6)
e. 452 ; 32 (mod 6) 

In 9–11, prove each of the given statements, assuming  
that a, b, c, d, and n are integers with n . 1 and that  
a ; c (mod n) and b ; d (mod n).

9. a. (a1b) ; (c1d) (mod n)
b. (a2b) ; (c2d) (mod n)

10. a2 ; c2 (mod n)

11. am ; cm (mod n) for every integer m $ 1 (Use 
mathematical induction on m.)

12. a.  Prove that for every integer n $ 0, 10n ;   
1 (mod 9).

b. Use part (a) to prove that a positive integer is 
divisible by 9 if, and only if, the sum of its 
digits is divisible by 9.

13. a.  Prove that for every integer n $ 1, 
10n ; (21)n (mod 11).

b. Use part (a) to prove that a positive integer 
is divisible by 11 if, and only if, the alternat-
ing sum of its digits is divisible by 11. (For 
instance, the alternating sum of the digits 
of 82,379 is 822132719 5 11 and 
82,379 5 11?7489.)

14. Use the technique of Example 8.4.4 to find 142 
mod 55, 144 mod 55, 148 mod 55, and 1416 mod 55.

H

exerCise set 8.4 
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15. Use the result of exercise 14 and the technique of 
Example 8.4.5 to find 1427 mod 55. 

In 16–18, use the techniques of example 8.4.4 and 
example 8.4.5 to find the given numbers.

16. 675307 mod 713 17. 89307 mod 713

18. 48307 mod 713

In 19–24, use the rSa cipher from examples 8.4.9 and 
8.4.10. In 19–21, translate the message into its numeric 
equivalent and encrypt it. In 22–24, decrypt the cipher-
text and translate the result into letters of the alphabet to 
discover the message.

19. HELLO 20. WELCOME 21. EXCELLENT

22. 13 20 20 09 23. 08 05 15  24. 51 14 49 15

25. Use Theorem 5.2.2 to prove that if a and n are 
positive integers and an 21 is prime, then a 5 2 
and n is prime. 

In 26 and 27, use the extended euclidean algorithm to find 
the greatest common divisor of the given numbers and 
express it as a linear combination of the two numbers.

26. 6664 and 765 27. 4158 and 1568

exercises 28 and 29 refer to the following formal version 
of the extended euclidean algorithm.

algorithm 8.4.1 extended euclidean algorithm
[Given integers A and B with A . B . 0, this algorithm 
computes gcd(A, B) and finds integers s and t such that 
sA1 tB 5 gcd(A, B).]
Input: A, B [integers with A . B . 0]
Algorithm Body:

a :5 A, b :5 B, s :5 1, t :5 0, u :5 0, v :5 1,
[pre-condition: a 5 sA1 tB and b 5 uA1vB]
while (b Þ 0)

[loop invariant: a 5 sA1 tB and b 5 uA1vB, 
gcd(a, b) 5 gcd(A, B)]

r :5 a mod b, q :5 a div b

a :5 b, b :5 r

newu :5 s2uq, newv :5 t2vq

s :5 u, t :5 v

u :5 newu, v :5 newv
end while

gcd :5 a
[post-condition: gcd(A, B) 5 a 5 sA1 tB]

Output: gcd[a positive integer], s, t [integers]

In 28 and 29, for the given values of A and B, make a table 
showing the value of s, t, and sA 1 tB before the start of 
the while loop and after each iteration of the loop.

28. A 5 330, B 5 156 29. A 5 284, B 5 168

30. Finish the proof of Theorem 8.4.5 by proving that 
if a, b, and c are as in the proof, then c ub.

31. a. Find an inverse for 210 modulo 13.
b. Find a positive inverse for 210 modulo 13.
c. Find a positive solution for the congruence 

210x ; 8 (mod 13).

32. a. Find an inverse for 41 modulo 660.
b. Find the least positive solution for the follow-

ing congruence: 41x ; 125 (mod 660).

33. Use Theorem 8.4.5 to prove that for all integers a, 
b, and c, if gcd(a, b) 5 1 and a u  c and b u  c, then 
ab u  c.

34. Give a counterexample to show that the state-
ment of exercise 33 is false if the hypothesis that 
gcd(a, b) 5 1 is removed.

35. Corollary 8.4.7 guarantees the existence of an 
inverse modulo n for an integer a when a and n are 
relatively prime. Use Euclid’s lemma to prove that 
the inverse is unique modulo n. In other words, 
show that if s and t are any two integers whose 
product with a is congruent to 1 modulo n, then s 
and t are congruent to each other modulo n. 

In 36, 37, 39, and 40, use the rSa cipher with public key  
n 5 713 5 23?31 and e 5 43. In 36 and 37, encode the mes-
sages into their numeric equivalents and encrypt them. 
In 39 and 40, decrypt the given ciphertext and find the 
original messages.

36. HELP 37. COME

38. Find the least positive inverse for 43 modulo 660.

39. 675 089 089 048

40. 028 018 675 129

41. a.  Use mathematical induction and Euclid’s 
lemma to prove that for every positive integer 
s, if p and q1, q2, Á , qs are prime numbers 
and p u  q1q2

Á qs, then p 5 qi for some i with 
1 # i # s.

b. The uniqueness part of the unique factorization 
theorem for the integers says that given any 
integer n, if

n 5 p1p2
Á pr 5 q1q2

Á qs

for some positive integers r and s and prime num-
bers p1 # p2 # Á # pr and q1 # q2 # Á # qs,  
then r 5 s and pi 5 qi for every integer i with 
1 # i # r.

Use the result of part (a) to fill in the details 
of the following sketch of a proof: Suppose 

H

H

H
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that n is an integer with two different prime 
factorizations: n 5 p1 

p2
Á pt 5 q1 

q2
Á qu. 

All the prime factors that appear on both sides 
can be cancelled (as many times as they appear 
on both sides) to arrive at the situation where 
p1 

p2
Á pr 5 q1 

q2
Á qs, p1 # p2 # Á # pr, 

q1 # q2 # Á # qs, and pi Þ qj for any integers 
i and j. Then use part (a) to deduce a contradic-
tion, and conclude that the prime factorization 
of n is unique except, possibly, for the order in 
which the prime factors are written.

42. According to Fermat’s little theorem, if p is a 
prime number and a and p are relatively prime, 

then ap21 ; 1 (mod p). Verify that this theorem 
gives correct results for the following:
a. a 5 15 and p 5 7 b. a 5 8 and p 5 11

43. Fermat’s little theorem can be used to show 
that a number is not prime by finding a number 
a relatively prime to p with the property that 
ap21 ò 1 (mod  p). However, it cannot be used to 
show that a number is prime. Find an example 
to illustrate this fact. That is, find integers a 
and p such that a and p are relatively prime and 
ap21 ; 1 (mod p) but p is not prime. 

Partial order relations
There is no branch of mathematics, however abstract, which may not some day be 
applied to phenomena of the real world. —Nicolai Ivanovitch Lobachevsky, 1792–1856

In order to obtain a degree in computer science at a certain university, a student must take 
a specified set of required courses, some of which must be completed before others can 
be started. Given the prerequisite structure of the program, one might ask what is the least 
number of school terms needed to fulfill the degree requirements, or what is the maximum 
number of courses that can be taken in the same term, or whether there is a sequence in 
which a part-time student can take the courses one per term. Later in this section, we will 
show how representing the prerequisite structure of the program as a partial order relation 
makes it relatively easy to answer such questions.

Antisymmetry
In Section 8.2 we defined three properties of relations: reflexivity, symmetry, and transitiv-
ity. A fourth property of relations is called antisymmetry. In terms of the arrow diagram of 
a relation, saying that a relation is antisymmetric is the same as saying that whenever there 
is an arrow going from one element to another distinct element, there is not an arrow going 
back from the second to the first.

8.5

Definition

Let R be a relation on a set A. R is antisymmetric if, and only if,

for every a and b in A, if a R b and b R a then a 5 b.

1. the letter that is three places in the alphabet to the right of 
the given letter, with X wrapped around to A, Y to B, and Z to 
C 2. a ; b (mod n); a 5 b1kn for some integer k; a and b 
have the same nonnegative remainder when divided by n;  
a mod n 5 b mod n 3. (c1d) (mod n); (c2d) (mod n);  

(cd) (mod n); cm (mod n) 4. sum of powers of 2  
5. Euclidean 6. a linear combination of a and n  
7. C 5 Me mod pq; M 5 Cd mod pq; d is a positive inverse 
for e modulo (p21)(q21) 8. a u  b 9. ap21 ; 1 (mod p)  
10. Med mod pq

answers for test Yourself 
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8.5 Partial order relations  547

By taking the negation of the definition, you can see that a relation R is not antisym-
metric if, and only if,

there are elements a and b in A such that a R b and b R a but a Þ b.

testing for antisymmetry of finite relations

Let R1 and R2 be the relations on {0, 1, 2} defined as follows: Draw the directed graphs for 
R1 and R2 and indicate which relations are antisymmetric.

a. R1 5 {(0, 2), (1, 2), (2, 0)} b. R2 5 {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)} 

solution
a. R1 is not antisymmetric.

0 1

2

Since 0 R1 2 and 2 R1 0 but 0 Þ 2,
R1 is not antisymmetric.

b. R2 is antisymmetric.

 In order for R2 not to be antisymmetric, there
would have to exist a pair of distinct elements
of A such that each is related to the other
by R2 . But you can see by inspection that
no such pair exists.

0 1

2

 

 ■

testing for antisymmetry of “Divides” relations

Let R1 be the “divides” relation on the set of all positive integers, and let R2 be the “divides” 
relation on the set of all integers.

For every a, b [ Z1, a R1 b 3 a u  b.

For every a, b [ Z, a R2 b 3 a u  b.

a. Is R1 antisymmetric? Prove or give a counterexample.

b. Is R2 antisymmetric? Prove or give a counterexample.

solution
a. R1 is antisymmetric.

Proof: Suppose a and b are positive integers such that a R1 b and b R1 a. [We must 
show that a 5 b.] By definition of R1, a u  b and b u  a. Thus, by definition of divides, 
there are integers k1 and k2 with b 5 k1a and a 5 k2b. It follows that

b 5 k1a 5 k1(k2b) 5 (k1k2)b.

Dividing both sides by b gives

k1k2 5 1.

example 8.5.1

example 8.5.2
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548  ChaPter 8 ProPerties of relations

Now since a and b are both integers, k1 and k2 are both positive integers also. And the 
only product of two positive integers that equals 1 is 1?1. Thus

k1 5 k2 5 1

and so a 5 k2b 5 1?b 5 b

[as was to be shown].

b. R2 is not antisymmetric.
Counterexample: 
Let a 5 2 and b 5 22. Then a u  b [since 22 5 (21)?2] and b ua [since 2 5 (21)(22)]. 

Hence a R2 b and b R2 a but a Þ b. ■

Example 8.5.2 illustrates the fact that a relation may be antisymmetric on a subset of a 
set but not antisymmetric on the set itself.

Partial Order Relations
A relation that is reflexive, antisymmetric, and transitive is called a partial order.

Definition

Let R be a relation defined on a set A. R is a partial order relation if, and only if, R 
is reflexive, antisymmetric, and transitive.

Two fundamental partial order relations are the “less than or equal to” relation on a set 
of real numbers and the “subset” relation on a set of sets. These can be thought of as mod-
els, or paradigms, for general partial order relations.

the “subset” relation

Let ! be any collection of sets and define the “subset” relation, #, on ! as follows: For 
every U, V [ !,

U # V 3 for each x, if x [ U then x [ V.

By an argument almost identical to that of the solution for exercise 23 of Section 8.2, #
is reflexive and transitive. Finish the proof that # is a partial order relation by proving 
that # is antisymmetric.

solution For # to be antisymmetric means that for all sets U and V in !, if U # V  and 
V # U then U 5 V . This is true by definition of equality of sets. ■

a “Divides” relation on a set of Positive integers

Let u  be the “divides” relation on a set A of positive integers. That is, for all a and b in A,

a u  b 3 b 5 ka  for some integer k.

Prove that u  is a partial order relation on A.

example 8.5.3

example 8.5.4
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solution
| is reflexive: [We must show that for each a [ A, a u  a.] Suppose a [ A. Then a 5 1?a, so 
a u  a by definition of divisibility.

| is antisymmetric: [We must show that for every a, b [ A, if a u  b and b u  a then a 5 b.] The 
proof of this is virtually identical to that of Example 8.5.2(a).

| is transitive: To show transitivity means to show that for every a, b, c [ A, if a u  b and 
b u  c then a u  c. But this is the transitivity of divisibility property, which was proved as 
Theorem 4.4.3.

Since u  is reflexive, antisymmetric, and transitive, u  is a partial order relation on A. ■

the “less than or equal to” relation

Let S be a set of real numbers and define the “less than or equal to” relation, #, on S as 
follows: For all real numbers x and y in S,

x # y 3 x , y  or  x 5 y.

Show that # is a partial order relation.

solution
# is reflexive: For # to be reflexive means that x # x for every real number x in S. But 
x # x means that x , x or x 5 x, and x 5 x is always true.

# is antisymmetric: For # to be antisymmetric means that for all real numbers x and y in 
S, if x # y and y # x then x 5 y. This follows immediately from the definition of # and 
the trichotomy property (see Appendix A, T17), which says that given any real numbers 
x and y, exactly one of the following holds: x , y or x 5 y or x . y.

# is transitive: For # to be transitive means that for all real numbers x, y, and z in S if  
x # y and y # z then x # z. This follows from the definition of # and the transitivity prop-
erty of order (see Appendix A, T18), which says that given any real numbers x, y, and z, if 
x , y and y , z then x , z.

Because # is reflexive, antisymmetric, and transitive, it is a partial order relation. ■

example 8.5.5

notation

Because of the special paradigmatic role played by the # relation in the study of 
partial order relations, the symbol      is often used to refer to a general partial order 
relation, and the notation x    y is read “x is less than or equal to y” or “y is greater 
than or equal to x.”

Lexicographic Order
To figure out which of two words comes first in an English dictionary, you compare their 
letters one by one from left to right. If all letters have been the same to a certain point and 
one word runs out of letters, that word comes first in the dictionary. For example, play 
comes before playhouse. If all letters up to a certain point are the same and the next letters 
differ, then the word whose next letter is located earlier in the alphabet comes first in the 
dictionary. For instance, playhouse comes before playmate.

More generally, if A is any set with a partial order relation, then a dictionary or lexi-
cographic order can be defined on a set of strings over A as indicated in the following 
theorem.
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550  ChaPter 8 ProPerties of relations

theorem 8.5.1 lexicographic order

Let A be a set with a partial order relation R, and let S be a set of strings over A. 
Define a relation      on S as follows:

Let s and t be any strings in S of lengths m and n, respectively, where m and n are 
positive integers, and let sm and tm be the characters in the mth position for s and t, 
respectively.

1. If m # n and the first m characters of s and t are the same, then s      t.

2. If the first m21 characters in s and t are the same, sm R tm, and sm Þ tm, then s    t.

3. If � is the null string then �      s.

If no strings are related by      other than by these three conditions, then      is a partial 
order relation on S.

The proof of Theorem 8.5.1 is technical but straightforward. It is left for the exercises.

Definition

The partial order relation of Theorem 8.5.1 is called the lexicographic order for S 
that corresponds to the partial order R on A.

testing strings for lexicographic order

Let A 5 {x, y} and let R be the following partial order relation on A:

R 5 {(x, x), (x, y), (y, y)}.

Let S be the set of all strings over A, and denote by the lexicographic order for S that cor-
responds to R.

a. Is x      x? Is x      xx? Is yx      yxy?

b. Is xxxyyy      xy?

c. Is x      y?

d. Is �      xy?

e. Is xyy      xyx? 

solution
a. Yes in all three cases, by property (1) of the definition of   .

b. Yes in all cases, by property (2) of the definition of   .

c. Yes in all cases, by property (2) of the definition of   . In this case m21 5 0, and the 
statement that the first zero characters of x and y are the same is true by default.

d. Yes by property (3) of the definition of   .

e. No because y is not related to x by R.  ■

Hasse Diagrams
Let A 5 {1, 2, 3, 9, 18} and consider the “divides” relation on A: For every a, b [ A,

a u  b 3 b 5 ka  for some integer k.

example 8.5.6
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8.5 Partial order relations  551

The directed graph of this relation has the following appearance:

18

9

3

1

2

Note that there is a loop at every vertex, all other arrows point in the same direction (up-
ward), and any time there is an arrow from one point to a second and from the second 
point to a third, there is an arrow from the first point to the third. Given any partial order 
relation defined on a finite set, it is possible to draw the directed graph in such a way that 
all of these properties are satisfied. This makes it possible to associate a somewhat simpler 
graph, called a Hasse diagram (after Helmut Hasse, a twentieth-century German number 
theorist), with a partial order relation defined on a finite set. To obtain a Hasse diagram, 
proceed as follows:

Start with a directed graph of the relation, placing vertices on the page so that all arrows 
point upward. Then eliminate

1. the loops at all the vertices,

2. all arrows whose existence is implied by the transitive property, and

3. the direction indicators on the arrows.

For the relation given previously, the Hasse diagram is as follows:

2

1

3

9

18

Constructing a hasse Diagram

Consider the “subset” relation, #, on the set 3({a, b, c}). That is, for all sets U and V in 
3({a, b, c}),

U # V 3 5x, if x [ U then x [ V.

Construct the Hasse diagram for this relation.

solution Draw the directed graph of the relation in such a way that all arrows except 
loops point upward.

example 8.5.7
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{c}{b}{a}

{a, b, c}

{a, c}
{b, c}{a, b}

[

Then strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse 
diagram.

 

{c}

{b}

{a}

{a, b}

{a, b, c}

{a, c} {b, c}

[

 

 ■

To recover the directed graph of a relation from the Hasse diagram, just reverse the 
instructions given previously, using the knowledge that the original directed graph was 
sketched so that all arrows pointed upward:

1. Reinsert the direction markers on the arrows making all arrows point upward.

2. Add loops at each vertex.

3. For each sequence of arrows from one point to a second and from that second point to 
a third, add an arrow from the first point to the third. 

obtaining the Directed Graph of a Partial order relation 
from the hasse Diagram of the relation

A partial order relation R has the following Hasse diagram. Find the directed graph of R.

a

d

f

g

e

c
b

example 8.5.8
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solution

a

d

b

e

c

f

g

 ■

Partially and Totally Ordered Sets
Given any two real numbers x and y, either x # y or y # x. In a situation like this, the ele-
ments x and y are said to be comparable. On the other hand, given two subsets A and B of 
{a, b, c}, it may be the case that neither A # B nor B # A. For instance, let A 5 {a, b} and 
B 5 {b, c}. Then A Ü B and B Ü A. In such a case, A and B are said to be noncomparable.

Definition

Suppose      is a partial order relation on a set A. Elements a and b of A are said 
to be comparable if, and only if, either a      b or b      a. Otherwise, a and b are 
called noncomparable.

When all the elements of a partial order relation are comparable, the relation is called 
a total order.

Definition

If R is a partial order relation on a set A, and for any two elements a and b in A either 
a R b or b R a, then R is a total order relation on A.

Both the “less than or equal to” relation on sets of real numbers and the lexicographic 
order of the set of words in a dictionary are total order relations. Note that the Hasse dia-
gram for a total order relation can be drawn as a single vertical “chain.”

Many important partial order relations have elements that are not comparable and are, 
therefore, not total order relations. For instance, the subset relation on 3({a, b, c}) is not a 
total order relation because, as shown previously, the subsets {a, b} and {a, c} of {a, b, c} 
are not comparable. In addition, a “divides” relation is not a total order relation unless the 
elements are all powers of a single integer. (See exercise 21 at the end of this section.)

A set A is called a partially ordered set (or poset) with respect to a relation      if, and 
only if,      is a partial order relation on A. For instance, the set of real numbers is a partially 
ordered set with respect to the “less than or equal to” relation #, and a set of sets is partially 
ordered with respect to the “subset” relation #. It is entirely straightforward to show that 
any subset of a partially ordered set is partially ordered. (See exercise 35 at the end of this 
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Definition

Let A be a set that is partially ordered with respect to a relation   . A subset B of A is 
called a chain if, and only if, the elements in each pair of elements in B are compa-
rable. In other words, a      b or b      a for every a and b in B. The length of a chain 
is one less than the number of elements in the chain.

Observe that if B is a chain in A, then B is a totally ordered set with respect to the “re-
striction” of      to B.

a Chain of subsets

The set 3({a, b, c}) is partially ordered with respect to the subset relation. Find a chain of 
length 3 in 3({a, b, c}).

solution Since [ # {a} # {a, b} # {a, b, c}, the set

S 5 {[, {a}, {a, b}, {a, b, c}}

is a chain of length 3 in 3({a, b, c}). ■

In exercise 39 at the end of this section, you are asked to show that a set that is partially 
ordered with respect to a relation      is totally ordered with respect to      if, and only if, it 
is a chain.

A maximal element in a partially ordered set is an element that is greater than or equal 
to every element to which it is comparable. (There may be many elements to which it is 
not comparable.) A greatest element in a partially ordered set is an element that is greater 
than or equal to every element in the set (so it is comparable to every element in the set). 
Minimal and least elements are defined similarly.

example 8.5.9

A greatest element is maximal, but a maximal element need not be a greatest element. 
However, every finite subset of a totally ordered set has both a least element and a greatest 
element. (See exercise 40 at the end of the section.) Similarly, a least element is minimal, 
but a minimal element need not be a least element. Furthermore, a set that is partially or-
dered with respect to a relation can have at most one greatest element and one least element 

Definition

Let a set A be partially ordered with respect to a relation   .

1. An element a in A is called a maximal element of A if, and only if, for each b in 
A, either b      a or b and a are not comparable.

2. An element a in A is called a greatest element of A if, and only if, for each b in 
A, b      a.

3. An element a in A is called a minimal element of A if, and only if, for each b in 
A, either a      b or b and a are not comparable.

4. An element a in A is called a least element of A if, and only if, for each b in A, 
a      b.

section.) This, of course, assumes the “same definition” for the relation on the subset as for 
the set as a whole. A set A is called a totally ordered set with respect to a relation      if, and 
only if, A is partially ordered with respect to    and      is a total order.

A set that is partially ordered but not totally ordered may have totally ordered subsets. 
Such subsets are called chains.
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(see exercise 42 at the end of the section), but it may have more than one maximal or mini-
mal element. The next example illustrates some of these facts.

Maximal, Minimal, Greatest, and least elements

Let A 5 {a, b, c, d, e, f, g, h, i} have the partial ordering      defined by the following Hasse 
diagram. Find all maximal, minimal, greatest, and least elements of A.

a

b

c d

e

f

g

h

i

solution There is just one maximal element, g, which is also the greatest element. The 
minimal elements are c, d, and i, and there is no least element. ■

Topological Sorting
Is it possible to input the sets of 3({a, b, c}) into a computer in a way that is compatible 
with the subset relation # in the sense that if set U is a subset of set V, then U is input be-
fore V? The answer, as it turns out, is yes. For instance, the following input order satisfies 
the given condition:

[, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

Another input order that satisfies the condition is

[, {a}, {b}, {a, b}, {c}, {b, c}, {a, c}, {a, b, c}.

example 8.5.10

Given an arbitrary partial order relation      on a set A, is there a total order   9  on A that is 
compatible with   ? If the set on which the partial order is defined is finite, then the answer 
is yes. A total order that is compatible with a given order is called a topological sorting.

Definition

Given partial order relations  and 9 on a set A, 9 is compatible with  if, and 
only if, for every a and b in A, if a  b then a 9 b.

Definition

Given partial order relations      and   9 on a set A,   9   is a topological sorting for      if, 
and only if,   9 is a total order that is compatible with   .

The construction of a topological sorting for a general finite partially ordered set is 
based on the fact that any partially ordered set that is finite and nonempty has a minimal 
element. (See exercise 41 at the end of the section.) To create a total order for a partially 
ordered set, simply pick any minimal element and make it number one. Then consider 
the set obtained when this element is removed. Since the new set is a subset of a partially 
ordered set, it is partially ordered. If it is empty, stop the process. If not, pick a minimal 
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element from it and call that element number two. Then consider the set obtained when 
this element also is removed. If this set is empty, stop the process. If not, pick a minimal 
element and call it number three. Continue in this way until all the elements of the set have 
been used up.

Here is a somewhat more formal version of the algorithm:

Constructing a topological sorting

Let  be a partial order relation on a nonempty finite set A. To construct a topologi-
cal sorting:

1. Pick any minimal element x in A. [Such an element exists since A is nonempty.]

2. Set A9 :5 A2{x}.

3. Repeat steps a–c while A9 Þ [.

a. Pick any minimal element y in A9.

b. Define x 9 y.

c. Set A9 :5 A92{y} and x :5 y. 

[Completion of steps 1–3 of this algorithm gives enough information to construct the 
Hasse diagram for the total ordering . We have already shown how to use the Hasse 
diagram to obtain a complete directed graph for a relation.] 

a topological sorting

Consider the set A 5 {2, 3, 4, 6, 18, 24} ordered by the “divides” relation u. The Hasse 
diagram of this relation is the following:

24

4

18

6

32

The ordinary “less than or equal to” relation # on this set is a topological sorting for it 
since for positive integers a and b, if a ub then a # b. Find another topological sorting for 
this set.

solution The set has two minimal elements: 2 and 3. Either one may be chosen; suppose 
you pick 3. The beginning of the total order is

total order: 3.

Set A9 5 A2{3}. You can indicate this by removing 3 from the Hasse diagram as shown 
below.

24

4

18

6

2

Next choose a minimal element from A92{3}. Only 2 is minimal, so you must pick it. The 
total order thus far is

total order: 3  2.

example 8.5.11
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Set A9 5 (A2{3})2{2} 5 A2{3, 2}. You can indicate this by removing 2 from the 
Hasse diagram, as is shown below.

24

4

18

6

Choose a minimal element from A92{3, 2}. Again you have two choices: 4 and 6. Sup-
pose you pick 6. The total order for the elements chosen thus far is

total order: 3      2      6.

You continue in this way until every element of A has been picked. One possible sequence 
of choices gives

total order: 3      2      6      18      4      24.

You can verify that this order is compatible with the “divides” partial order by checking 
that for each pair of elements a and b in A such that a ub, then a  b. Note that it is not the 
case that if a    b then a u  b. ■

An Application
To return to the example that introduced this section, note that the following defines a 
partial order relation on the set of courses required for a university degree: For all required 
courses x and y,

x    y 3 x 5 y or x  is a prerequisite for y.

If the Hasse diagram for the relation is drawn, then the questions raised at the beginning 
of this section can be answered easily. For instance, consider the Hasse diagram for the 
requirements at a particular university, which is shown in Figure 8.5.1.

CS 390

CS 360

CS 300

CS 225

CS 250

CS 340

CS 345

CS 301

CS 230

CS 200

CS 155

CS 150

CS 350

MA 140

MA 141

fiGure 8.5.1

The minimum number of school terms needed to complete the requirements is the size 
of a longest chain, which is 7 (150, 155, 225, 300, 340, 360, 390, for example). The maxi-
mum number of courses that could be taken in the same term (assuming the university 
allows it) is the maximum number of noncomparable courses, which is 6 (350, 360, 345, 
301, 230, 200, for example). A part-time student could take the courses in a sequence 
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determined by constructing a topological sorting for the set. (One such sorting is 140, 150, 
141, 155, 200, 225, 230, 300, 250, 301, 340, 345, 350, 360, 390. There are many others.)

PERT and CPM
Two important and widely used applications of partial order relations are PERT (Program 
Evaluation and Review Technique) and CPM (Critical Path Method). These techniques  
were developed in the 1950s as planners came to grips with the complexities of scheduling 
the individual activities needed to complete very large projects, and although they are very 
similar, their developments were independent. PERT was developed by the U.S. Navy to 
help organize the construction of the Polaris submarine, and CPM was developed by the 
E. I. Du Pont de Nemours company for scheduling chemical plant maintenance. Here is a 
somewhat simplified example of the way the techniques work.

a Job scheduling Problem

At an automobile assembly plant, the job of assembling an automobile can be broken down 
into these tasks:

1. Build frame.

2. Install engine, power train components, gas tank.

3. Install brakes, wheels, tires.

4. Install dashboard, floor, seats.

5. Install electrical lines.

6. Install gas lines.

7. Install brake lines.

8. Attach body panels to frame.

9. Paint body. 
Certain of these tasks can be carried out at the same time, whereas some cannot be started 
until other tasks are finished. Table 8.5.1 summarizes the order in which tasks can be per-
formed and the time required to perform each task.

table 8.5.1

Task Immediately Preceding Tasks Time Needed to Perform Task

1 7 hours

2 1 6 hours

3 1 3 hours

4 2 6 hours

5 2, 3 3 hours

6 4 1 hour

7 2, 3 1 hour

8 4, 5 2 hours

9 6, 7, 8 5 hours

example 8.5.12
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Let T be the set of all tasks, and consider the partial order relation  defined on T as 
follows: For all tasks x and y in T,

x      y 3 x 5 y or x precedes y.

If the Hasse diagram of this relation is turned sideways (as is customary in PERT and 
CPM analysis), it has the appearance shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours

What is the minimum time required to assemble a car? You can determine this by 
working from left to right across the diagram, noting for each task (say, just above the box 
representing that task) the minimum time needed to complete that task starting from the 
beginning of the assembly process. For instance, you can put a 7 above the box for task 1 
because task 1 requires 7 hours. Task 2 requires completion of task 1 (7 hours) plus 6 hours 
for itself, so the minimum time required to complete task 2, starting at the beginning of 
the assembly process, is 716 5 13 hours. So you can put a 13 above the box for task 2. 
Similarly, you can put a 10 above the box for task 3 because 713 5 10. Now consider 
what number you should write above the box for task 5. The minimum times to complete 
tasks 2 and 3, starting from the beginning of the assembly process, are 13 and 10 hours 
respectively. Since both tasks must be completed before task 5 can be started, the mini-
mum time to complete task 5, starting from the beginning, is the time needed for task 5 
itself (3 hours) plus the maximum of the times to complete tasks 2 and 3 (13 hours), and 
this equals 3113 5 16 hours. Thus you should place the number 16 above the box for task 
5. The same reasoning leads you to place a 14 above the box for task 7. Similarly, you can 
place a 19 above the box for task 4, a 20 above the box for task 6, a 21 above the box for 
task 8, and a 26 above the box for task 9, as shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours

7

10

13 16

14

19
20

21
26

This analysis shows that at least 26 hours are required to complete task 9 starting from the 
beginning of the assembly process. When task 9 is finished, the assembly is complete, so 
26 hours is the minimum time needed to accomplish the whole process.
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560  ChaPter 8 ProPerties of relations

Note that the minimum time required to complete tasks 1, 2, 4, 8, and 9 in sequence is 
exactly 26 hours. This means that a delay in performing any one of these tasks causes a 
delay in the total time required for assembly of the car. For this reason, the path through 
tasks 1, 2, 4, 8, and 9 is called a critical path.  ■

1. For a relation R on a set A to be antisymmetric 
means that .

2. To show that a relation R on an infinite set A is 
antisymmetric, you suppose that  and you 
show that .

3. To show that a relation R on a set A is not antisym-
metric, you .

4. To construct a Hasse diagram for a partial order 
relation, you start with a directed graph of the 
relation in which all arrows point upward and you 
eliminate , , and .

5. If A is a set that is partially ordered with respect 
to a relation      and if a and b are elements of A, 
we say that a and b are comparable if, and only if, 

 or .

6. A relation      on a set A is a total order if, and only 
if, .

7. If A is a set that is partially ordered with respect 
to a relation   , and if B is a subset of A, then B is a 
chain if, and only if, for all a and b in B, .

8. Let A be a set that is partially ordered with respect 
to a relation   , and let a be an element of A.

(a) a is maximal if, and only if, .

(b)  a is a greatest element of A if, and only if, 
.

(c) a is minimal if, and only if, .

(d) a is a least element of A if, and only if, .

9. Given a set A that is partially ordered with respect 
to a relation   , the relation   9   is a topological 
sorting for   ,   if, and only if, 9 is a  and for 
all a and b in A if a      b then .

10. PERT and CPM are used to produce efficient 
.

test Yourself 

1. Each of the following is a relation on {0, 1, 2, 3}. 
Draw directed graphs for each relation, and indi-
cate which relations are antisymmetric.
a. R1 5 {(0, 0), (0, 2), (1, 0), (1, 3), (2, 2), (3, 0), (3, 1)}
b. R2 5 {(0, 1), (0, 2), (1, 1), (1, 2), (1, 3), (2, 2), (3, 2)}
c. R3 5 {(0, 0), (0, 3), (1, 0), (1, 3), (2, 2), (3, 3), (3, 2)} 
d. R4 5 {(0, 0), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1),

(3, 2), (3, 0)}

2. Let P be the set of all people in the world and 
define a relation R on P as follows: For all people 
x and y,

x R y 3 x is no older than y.

Is R antisymmetric? Prove or give a counterexample.

3. Let S be the set of all strings of a’s and b’s. Define 
a relation R on S as follows: For every s, t [ S,

s R t 3 L(s) # L(t),

where L(x) denotes the length of a string x. Is R 
antisymmetric? Prove or give a counterexample.

4. Let R be the “less than” relation on R, the set of 
all real numbers: For every x, y [ R,

x R y 3 x , y.

Is R antisymmetric? Prove or give a counterexample.

5. Let R be the set of all real numbers and define a 
relation R on R 3 R as follows: For every (a, b) 
and (c, d) in R 3 R,

(a, b) R (c, d) 3 either a , c or both a 5 c

and b # d.

Is R a partial order relation? Prove or give a 
counterexample.

6. Let P be the set of all people who have ever lived 
and define a relation R on P as follows: For every 
r, s [ P,

r R s 3 r is an ancestor of s or r 5 s.

Is R a partial order relation? Prove or give a 
counterexample.

exerCise set 8.5 
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7. Define a relation R on Z, the set of all integers as 
follows: For every m, n [ Z,

m R n 3 every prime factor of m

is a prime factor of n.

Is R a partial order relation? Prove or give a 
counterexample.

8. Define a relation R on Z, the set of all integers as 
follows: For every m, n [ Z,

m R n 3 m1n is even.

Is R a partial order relation? Prove or give a 
counterexample.

9. Define a relation R on R, the set of all real num-
bers as follows: For every x, y [ R,

x R y 3 x2 # y2.

Is R a partial order relation? Prove or give a 
counterexample.

10. Suppose R and S are antisymmetric relations on a 
set A. Must R ø S also be antisymmetric? Explain.

11. Let A 5 {a, b}, and suppose A has the partial 
order relation R where R 5 {(a, a), (a, b), (b, b)}. 
Let S be the set of all strings in a’s and b’s and 
let be the corresponding lexicographic order on 
S. Indicate which of the following statements are 
true, and for each true statement cite as a reason 
part (1), (2), or (3) of the definition of lexicograph-
ic order given in Theorem 8.5.1.
a. aab      aaba b. bbab      bba
c. �      aba d. aba      abb
e. bbab      bbaa f. ababa      ababaa
g. bbaba      bbabb

12. Prove Theorem 8.5.1.

13. Let A 5 {a, b}. Describe all partial order relations 
on A.

14. Let A 5 {a, b, c}.
a. Describe all partial order relations on A for 

which a is a maximal element.
b. Describe all partial order relations on A for 

which a is a minimal element.

15. Suppose a relation R on a set A is reflexive, sym-
metric, transitive, and antisymmetric. What can 
you conclude about R? Prove your answer.

16. Consider the “divides” relation on each of the fol-
lowing sets A. Draw the Hasse diagram for each 
relation.

a. A 5 {1, 2, 4, 5, 10, 15, 20}
b. A 5 {2, 3, 4, 6, 8, 9, 12, 18}

17. Consider the “subset” relation on 3(S) for each of 
the following sets S. Draw the Hasse diagram for 
each relation.
a. S 5 {0, 1} b. S 5 {0, 1, 2}

18. Let S 5 {0, 1} and consider the partial order rela-
tion R defined on S 3 S as follows: For all ordered 
pairs (a, b) and (c, d) in S 3 S,

(a, b)  R  (c, d) 3 either a , c  or  both

 a 5 c and b # d,

where , denotes the usual “less than” and # de-
notes the usual “less than or equal to” relation for 
real numbers. Draw the Hasse diagram for R.

19. Let S 5 {0, 1} and consider the partial order rela-
tion R defined on S 3 S as follows: For all ordered 
pairs (a, b) and (c, d) in S 3 S,

(a, b)  R  (c, d) 3 a # c and b # d,

where # denotes the usual “less than or equal to” 
relation for real numbers. Draw the Hasse diagram 
for R.

20. Let S 5 {0, 1} and consider the partial order rela-
tion R defined on S 3 S 3 S as follows: For all 
ordered triples (a, b, c) and (d, e, f) in S 3 S 3 S,

(a, b, c)  R  (d, e, f ) 3 a # d, b # e, and c # f,

where # denotes the usual “less than or equal to” 
relation for real numbers. Draw the Hasse diagram 
for R.

21. Consider the “divides” relation defined on the set 
A 5 {1, 2, 22, 23, Á , 2n}, where n is a nonnegative 
integer.
a. Prove that this relation is a total order relation 

on A.
b. Draw the Hasse diagram for this relation for  

n 5 4. 

In 22–29, find all greatest, least, maximal, and minimal 
elements for the relations in each of the referenced 
exercises.

22. Exercise 16(a) 23. Exercise 16(b)

24. Exercise 17(a) 25. Exercise 17(b)

26. Exercise 18 27. Exercise 19

28. Exercise 20 29. Exercise 21

H
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562  ChaPter 8 ProPerties of relations

30. Each of the following sets is partially ordered 
with respect to the “less than or equal to” rela-
tion, #, for real numbers. In each case, deter-
mine whether the set has a greatest or least 
element.
a. R b. {x [ R u  0 # x # 1}

c. {x [ R u  0 , x , 1} d. {x [ Z u  0 , x , 10}

31. Let A 5 {a, b, c, d}, and let R be the relation

R 5 {(a, a), (b, b), (c, c), (d, d), (c, a), (a, d),
(c, d), (b, c), (b, d), (b, a)}.

Is R a total order on A? Justify your answer.

32. Let A 5 {a, b, c, d}, and let R be the relation

R 5 {(a, a), (b, b), (c, c), (d, d), (c, b), (a, d),

(b, a), (b, d), (c, d), (c, a)}.

Is R a total order on A? Justify your answer.

33. Consider the set A 5 {12, 24, 48, 3, 9} ordered by 
the “divides” relation. Is A totally ordered with 
respect to the relation? Justify your answer.

34. Suppose that R is a partial order relation on a set A 
and that B is a subset of A. The restriction of R to 
B is defined as follows:

The restriction of R to B

5 {(x, y) u  x [ B, y [ B, and (x, y) [ R}.

In other words, two elements of B are related by 
the restriction of R to B if, and only if, they are 
related by R. Prove that the restriction of R to B is 
a partial order relation on B. (In less formal lan-
guage, this says that a subset of a partially ordered 
set is partially ordered.)

35. The set 3({w, x, y, z}) is partially ordered with 
respect to the “subset” relation #. Find a chain of 
length 4 in 3({w, x, y, z}). 

36. The set A 5 {2, 4, 3, 6, 12, 18, 24} is partially 
ordered with respect to the “divides” relation. Find 
a chain of length 3 in A.

37. Find a chain of length 2 for the relation defined in 
exercise 19.

38. Prove that a partially ordered set is totally ordered 
if, and only if, it is a chain.

39. Suppose that A is a totally ordered set. Use 
mathematical induction to prove that for any 

integer n $ 1, every subset of A with n ele-
ments has both a least element and a greatest 
element.

40. Prove that a nonempty, finite, partially ordered 
set has
a. at least one minimal element,
b. at least one maximal element.

41. Prove that a finite, partially ordered set has
a. at most one greatest element,
b. at most one least element.

42. Draw a Hasse diagram for a partially ordered set 
that has two maximal elements and two minimal 
elements and is such that each element is compa-
rable to exactly two other elements.

43. Draw a Hasse diagram for a partially ordered 
set that has three maximal elements and three 
minimal elements and is such that each element is 
either greater than or less than exactly two other 
elements.

44. Use the algorithm given in the text to find a to-
pological sorting for the relation of exercise 16(a) 
that is different from the “less than or equal to” 
relation #.

45. Use the algorithm given in the text to find a to-
pological sorting for the relation of exercise 16(b) 
that is different from the “less than or equal to” 
relation #.

46. Use the algorithm given in the text to find a topo-
logical sorting for the relation of exercise 19.

47. Use the algorithm given in the text to find a topo-
logical sorting for the relation of exercise 20.

48. Use the algorithm given in the text to find a 
topological sorting for the “subset” relation on 
3({a, b, c, d}).

49. Refer to the prerequisite structure shown in 
Figure 8.5.1.
a. Find a list of six noncomparable courses that is 

different from the list given in the text.
b. Find two topological sortings that are different 

from the one given in the text.

50. A set S of jobs can be ordered by writing x      y to 
mean that either x 5 y or x must be done before y, 
for all x and y in S. The following is a Hasse dia-
gram for this relation for a particular set S of jobs.

H
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3

7

10 6

91 2

8

5

4

a. If one person is to perform all the jobs, one 
after another, find an order in which the jobs 
can be done.

b. Suppose enough people are available to per-
form any number of jobs simultaneously.
(i)  If each job requires one day to perform, 

what is the least number of days needed to 
perform all ten jobs?

(ii)  What is the maximum number of jobs that 
can be performed at the same time?

51. Suppose the tasks described in Example 8.5.12 
require the following performance times:

Task Time Needed to Perform Task

1 9 hours

2 7 hours

3 4 hours

4 5 hours

5 7 hours

6 3 hours

7 2 hours

8 4 hours

9 6 hours

a. What is the minimum time required to 
assemble a car?

b. Find a critical path for the assembly process. 

1. for every a and b in A, if a R b and b R a then a 5 b  
2. a and b are any elements of A with a R b and b R a; 
a 5 b 3. show that there are elements a and b in A such 
that a R b and b R a and a Þ b 4. all loops; all arrows 
whose existence is implied by the transitive property; the 
direction indicators on the arrows 5. a  b; b  a 

6. for any two elements a and b in A, either a  b or b  a  
7. a and b are comparable 8. (a) for every b in A either b  a  
or b and a are not comparable (b) for every b in A, b  a 
(c) for every b in A either a  b or b and a are not comparable 
(d) for every b in A, a  b 9. total order; a 9 b  
10. scheduling of tasks

answers for test Yourself 
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Chapter 9

 “It’s as easy as 1–2–3.”
That’s the saying. And in certain ways, counting is easy. But other aspects of counting 

aren’t so simple. Have you ever agreed to meet a friend “in three days” and then real-
ized that you and your friend might mean different things? For example, on the European 
continent, to meet in eight days means to meet on the same day as today one week hence; 
on the other hand, in English-speaking countries, to meet in seven days means to meet one 
week hence. The difference is that on the continent, all days including the first and the last 
are counted. In the English-speaking world, it’s the number of 24-hour periods that are 
counted.

Continental countries 1 2 3 4 5 6 7 8
 D D D D D D D D
  Sun Mon Tue Wed Thu Fri Sat Sun(')'*(')'*(')'*(')'*(')'*(')'*(')'*
English-speaking countries 1 2 3 4 5 6 7

The English convention for counting days follows the almost universal convention for 
counting hours. If it is 9 a.m. and two people anywhere in the world agree to meet in three 
hours, they mean that they will get back together again at 12 noon.

Musical intervals, on the other hand, are universally reckoned the way the Continentals 
count the days of a week. An interval of a third consists of two tones with a single tone 
in between, and an interval of a second consists of two adjacent tones. (See Figure 9.1.1.)

C E C D

Interval of a third Interval of a second

Figure 9.1.1

Of course, the complicating factor in all these examples is not how to count but rather 
what to count. And, indeed, in the more complex mathematical counting problems dis-
cussed in this chapter, it is what to count that is the central issue. 

introduction to Probability
Imagine tossing two coins and observing whether 0, 1, or 2 heads are obtained. It would 
be natural to guess that each of these events occurs about one-third of the time, but in 
fact this is not the case. Table 9.1.1 shows actual data obtained from tossing two quarters 
50 times.

9.1

COuNTiNg AND 
PrOBABiLiTY
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TABLe 9.1.1 Experimental Data Obtained from Tossing Two Quarters 50 Times

Event Tally

Frequency (Number 
of times the event  

occurred)

Relative Frequency 
(Fraction of times 

the event occurred)

2 heads obtained uuuu  uuuu  u 11 22%

1 head obtained uuuu  uuuu uuuu  uuuu uuuu  u u 27 54%

0 heads obtained uuuu uuuu  u u 12 24%

A B A B A B A B

2 heads obtained 1 head obtained 0 heads obtained

Figure 9.1.2 Equally Likely Outcomes from Tossing Two Balanced Coins

Figure 9.1.2 shows that there is a 1 in 4 chance of obtaining two heads and a 1 in 4 
chance of obtaining no heads. The chance of obtaining one head, however, is 2 in 4 be-
cause either A could come up heads and B tails or B could come up heads and A tails. So if 
you repeatedly toss two balanced coins and record the number of heads, you should expect 
relative frequencies similar to those shown in Table 9.1.1.

To formalize this analysis and extend it to more complex situations, we introduce the 
notions of random process, sample space, event, and probability. To say that a process 
is random means that when it takes place, one outcome from some set of outcomes is 
sure to occur, but it is impossible to predict with certainty which outcome that will be. 
For instance, if an ordinary person performs the experiment of tossing an ordinary coin 
into the air and allowing it to fall flat on the ground, it can be predicted with certainty 
that the coin will land either heads up or tails up (so the set of outcomes can be denoted 
{heads, tails}), but it is not known for sure whether heads or tails will occur. We re-
stricted this experiment to ordinary people because a skilled magician can toss a coin 
in a way that appears random but is not, and a physicist equipped with first-rate measur-
ing devices may be able to analyze all the forces on the coin and correctly predict its 
landing position. Just a few of many examples of random processes or experiments are 
choosing winners in state lotteries, selecting respondents in public opinion polls, and 
choosing subjects to receive treatments or serve as controls in medical experiments. 
The set of outcomes that can result from a random process or experiment is called a 
sample space.

As you can see, the relative frequency of obtaining exactly 1 head was roughly twice as 
great as that of obtaining either 2 heads or 0 heads. It turns out that the mathematical the-
ory of probability can be used to predict that a result like this will almost always occur. To 
see how, call the two coins A and B, and suppose that each is perfectly balanced. Then each 
has an equal chance of coming up heads or tails, and when the two are tossed together, the 
four outcomes pictured in Figure 9.1.2 are all equally likely.
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566  ChAPTer 9 countInG and ProbabIlIty

In the case where an experiment has finitely many outcomes and all outcomes are 
equally likely to occur, the probability of an event (set of outcomes) is just the ratio of 
the number of outcomes in the event to the total number of outcomes. Strictly speaking, 
this result can be deduced from a set of axioms for probability formulated in 1933 by the 
Russian mathematician A. N. Kolmogorov. In Section 9.8 we discuss the axioms and show 
how to derive their consequences formally. At present, we take a less formal approach to 
probability and simply state the result as a principle.

Definition

A sample space is the set of all possible outcomes of a random process or experi-
ment. An event is a subset of a sample space.

equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an 
event in S, then the probability of E, denoted P(E), is

P (E ) 5
the number of outcomes in E

the total number of outcomes in S
.

Notation

For any finite set A, N(A) denotes the number of elements in A.

With this notation, the equally likely probability formula becomes

P (E) 5
N(E)

N(S)
.

Probabilities for a Deck of Cards

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are dia-
monds (♦) and hearts (♥), and the black suits are clubs (♣) and spades (♠). Each suit con-
tains 13 cards of the following denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack), Q (queen), 
K (king), and A (ace). The cards J, Q, and K are called face cards.

Mathematician Persi Diaconis, working with David Aldous in 1986 and Dave Bayer 
in 1992, showed that seven shuffles are needed to “thoroughly mix up” the cards in an 
ordinary deck. In 2000 mathematician Nick Trefethen, working with his father, Lloyd 
Trefethen, a mechanical engineer, used a somewhat different definition of “thoroughly mix 
up” to show that six shuffles will nearly always suffice. Imagine that the cards in a deck 
have become—by some method—so thoroughly mixed up that if you spread them out face 
down and pick one at random, you are as likely to get any one card as any other.

a. What is the sample space of outcomes?

b. What is the event that the chosen card is a black face card?

c. What is the probability that the chosen card is a black face card? 

example 9.1.1
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Solution
a. The outcomes in the sample space S are the 52 cards in the deck.

b. Let E be the event that a black face card is chosen. The outcomes in E are the jack, 
queen, and king of clubs and the jack, queen, and king of spades. Symbolically:

E 5 {J♣, Q♣, K♣, J♠, Q♠, K♠}.

c. By part (b), N(E) 5 6, and according to the description of the situation, all 52 outcomes 
in the sample space are equally likely. Therefore, by the equally likely probability 
formula, the probability that the chosen card is a black face card is

 P (E) 5
N(E)

N(S)
5

6

52
> 11.5% ■

rolling a Pair of Dice

A die is one of a pair of dice. It is a cube with six sides, each containing from one to six 
dots, called pips. Suppose a blue die and a gray die are rolled together, and the numbers of 
dots that occur face up on each are recorded. The possible outcomes can be listed as fol-
lows, where in each case the die on the left is blue and the one on the right is gray.

A more compact notation identifies, say,    with the notation 24,   with 53, and 
so forth.

a. Use the compact notation to write the sample space S of possible outcomes.

b. Use set notation to write the event E that the numbers showing face up have a sum of 6 
and find the probability of this event.

Solution
a. S 5  {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 

45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.

b. E 5 {15, 24, 33, 42, 51}.

The probability that the sum of the numbers is 6 5 P (E) 5
N (E)

N (S)
5

5

36
. ■

The next example is called the Monty Hall problem, named for the first host of the game 
show “Let’s Make A Deal.” When it was originally publicized in a newspaper column and 
on a radio show, it created tremendous controversy. Many highly educated people, even some 
with Ph.D.’s, submitted incorrect solutions or argued vociferously against the correct solution. 
Before you read the answer, think about what your own response to the situation would be.

example 9.1.2
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The Monty hall Problem

There are three doors on the set for a game show. Let’s call them A, B, and C. If you pick 
the correct door, you win the prize. You pick door A. The host of the show then opens one 
of the other doors and reveals that there is no prize behind it. Keeping the remaining two 
doors closed, he asks you whether you want to switch your choice to the other closed door 
or stay with your original choice of door A. What should you do if you want to maximize 
your chance of winning the prize: stay with door A or switch—or would the likelihood of 
winning be the same either way?

example 9.1.3

B C B C B C

Case 1 Case 2 Case 3

Solution At the point just before the host opens one of the closed doors, there is no infor-
mation about the location of the prize. Thus there are three equally likely possibilities for 
what lies behind the doors: (Case 1) the prize is behind A (meaning it is not behind either 
B or C); (Case 2) the prize is behind B; or (Case 3) the prize is behind C.

Since there is no prize behind the door the host opens, in Case 1 the host could open 
either door and you would win by staying with your original choice: door A. In Case 2 the 
host must open door C, and so you would win by switching to door B. In Case 3 the host 
must open door B, and so you would win by switching to door C. Thus, in two of the three 
equally likely cases, you would win by switching from A to the other closed door. In only 
one of the three equally likely cases would you win by staying with your original choice. 
Therefore, you should switch.  ■

The analysis used for the solution in Example 9.1.3 applies only if the host always opens 
one of the closed doors and offers the contestant the choice of staying with the original 
choice or switching. In the original show, the host made this offer only occasionally—most 
often when he knew the contestant had already chosen the correct door.

Many of the fundamental principles of probability were formulated in the mid-1600s in 
an exchange of letters between Pierre de Fermat and Blaise Pascal in response to questions 
posed by a French nobleman interested in games of chance. In 1812, Pierre-Simon Laplace 
published the first general mathematical treatise on the subject and extended the range of 
applications to a variety of scientific and practical problems.

Counting the Elements of a List
Some counting problems are as simple as counting the elements of a list. For instance, how 
many integers are there from 5 through 12? To answer this question, imagine going along 
the list of integers from 5 to 12, counting each in turn.

list: 5 6 7 8 9 10 11 12
D D D D D D D D

count: 1  2 3 4 5  6   7  8

So the answer is 8.

Pierre-Simon Laplace 
(1749–1827)
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9.1 IntroductIon to ProbabIlIty  569

More generally, if m and n are integers and m # n, how many integers are there from 
m through n? To answer this question, note that n 5 m1 (n2m), where n2m $ 0 [since 
n $ m]. Note also that the element m10 is the first element of the list, the element m11 
is the second element, the element m12 is the third, and so forth. In general, the element 
m1 i is the (i11)st element of the list.

list: m (5m10) m11 m12 Á  n (5 m1 (n2m))
D D D D

count: 1 2 3 Á   (n2m)11

And so the number of elements in the list is n2m11.
This general result is important enough to be restated as a theorem, the formal proof of 

which uses mathematical induction. (See exercise 33 at the end of this section.) The heart 
of the proof is the observation that if the list m, m11, Á , k has k2m11 numbers, then 
the list m, m11, Á , k, k11 has (k2m11)11 5 (k11)2m11 numbers.

Theorem 9.1.1 The Number of elements in a List

If m and n are integers and m # n, then there are n2m11 integers from m to n 
inclusive.

Counting the elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

Solution
a. Imagine writing the three-digit integers in a row, noting those that are multiples of 5 

and drawing arrows between each such integer and its corresponding multiple of 5.

example 9.1.4

100 101 102 103 104 105 106 107 108 109 110 Á 994 995 996 997 998 999
D D D D

5?20 5?21 5?22 5?199

From the sketch it is clear that there are as many three-digit integers that are mul-
tiples of 5 as there are integers from 20 to 199 inclusive. By Theorem 9.1.1, there are 
19922011, or 180, such integers. Hence there are 180 three-digit integers that are 
divisible by 5.

b. By Theorem 9.1.1 the total number of integers from 100 through 999 is 999210011 5
900. By part (a), 180 of these are divisible by 5. Hence the probability that a randomly 
chosen three-digit integer is divisible by 5 is 180y900 5 1y5.  ■

Application: Counting elements of a One-Dimensional Array

Analysis of many computer algorithms requires skill at counting the elements of a one-dimen-
sional array. Let A[1], A[2], Á , A[n] be a one-dimensional array, where n is a positive integer.

a. Suppose the array is cut at a middle value A[m] so that two subarrays are formed:

(1) A[1], A[2], Á , A[m] and (2) A[m11], A[m12], Á , A[n].

How many elements does each subarray have?

example 9.1.5
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570  ChAPTer 9 countInG and ProbabIlIty

b. What is the probability that a randomly chosen element of the array has an even 
subscript

(i) if n is even? (ii) if n is odd?

Solution
a. Array (1) has the same number of elements as the list of integers from 1 through m. 

So by Theorem 9.1.1, it has m, or m2111, elements. Array (2) has the same number 
of elements as the list of integers from m11 through n. So by Theorem 9.1.1, it has 
n2m, or n2 (m11)11, elements.

b. (i)  If n is even, each even subscript starting with 2 and ending with n can be matched 
up with an integer from 1 to ny2.

1 2 3 4 5 6 7 8 9 10 Á  n
D D  D D D D

2?1 2?2 2?3 2?4 2?5 2?(ny2)

So there are ny2 array elements with even subscripts. Since the entire array has n 
elements, the probability that a randomly chosen element has an even subscript is

 
ny2
n

5
1

2
.

(ii)  If n is odd, then the greatest even subscript of the array is n21. So there are as 
many even subscripts between 1 and n as there are from 2 through n21. Then the 
reasoning of (i) can be used to conclude that there are (n21)y2 array elements 
with even subscripts.

1 2 3 4 5 6 Á    n21    n
D D  D D

2?1 2?2 2?3 Á  2?[(n21)y2)]

Since the entire array has n elements, the probability that a randomly chosen ele-
ment has an even subscript is

(n21)y2
n

5
n21

2n
. 

Observe that as n gets larger and larger, this probability gets closer and closer to 1y2. 
Note that the answers to (i) and (ii) can be combined using the floor notation. By Theo-

rem 4.6.2, the number of array elements with even subscripts is :ny2; , so the probability that 

a randomly chosen element has an even subscript is 
:ny2;

n
. ■

1. A sample space of a random process or 
experiment is .

2. An event in a sample space is .

3. To compute the probability of an event using the 
equally likely probability formula, you take the 
ratio of the  to the .

4. If m # n, the number of integers from m to n 
inclusive is .

TeST YOurSeLF 
answers to test Yourself questions are located at the end of each section.
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1. Toss two coins 30 times and make a table showing 
the relative frequencies of 0, 1, and 2 heads. How do 
your values compare with those shown in Table 9.1.1?

2. In the example of tossing two quarters, what is the 
probability that at least one head is obtained? that 
coin A is a head? that coins A and B are either both 
heads or both tails? 

In 3–6 use the sample space given in example 9.1.1. Write 
each event as a set and compute its probability.

3. The event that the chosen card is red and is not a 
face card.

4. The event that the chosen card is black and has an 
even number on it.

5. The event that the denomination of the chosen 
card is at least 10 (counting aces high).

6. The event that the denomination of the chosen 
card is at most 4 (counting aces high). 

In 7–10, use the sample space given in example 9.1.2. 
Write each of the following events as a set and compute 
its probability.

7. The event that the sum of the numbers showing 
face up is 8.

8. The event that the numbers showing face up are 
the same.

9. The event that the sum of the numbers showing 
face up is at most 6.

10. The event that the sum of the numbers showing 
face up is at least 9.

11. Suppose that a coin is tossed three times and 
the side showing face up on each toss is noted. 
Suppose also that on each toss heads and tails 
are equally likely. Let HHT indicate the outcome 
heads on the first two tosses and tails on the third, 
THT the outcome tails on the first and third tosses 
and heads on the second, and so forth.
a. List the eight elements in the sample space 

whose outcomes are all the possible head-tail 
sequences obtained in the three tosses.

b. Write each of the following events as a set and 
find its probability:

(i)  The event that exactly one toss results in a 
head.

(ii)  The event that at least two tosses result in 
a head.

(iii) The event that no head is obtained. 

12. Suppose that each child born is equally likely to 
be a boy or a girl. Consider a family with exactly 
three children. Let BBG indicate that the first two 
children born are boys and the third child is a girl, 
let GBG indicate that the first and third children 
born are girls and the second is a boy, and so forth.
a. List the eight elements in the sample space 

whose outcomes are all possible genders of the 
three children.

b. Write each of the events in the next column as 
a set and find its probability.

(i) The event that exactly one child is a girl.
(ii)  The event that at least two children are 

girls.
(iii) The event that no child is a girl. 

13. Suppose that on a true/false exam you have no 
idea at all about the answers to three questions. 
You choose answers randomly and therefore have 
a 50–50 chance of being correct on any one ques-
tion. Let CCW indicate that you were correct on 
the first two questions and wrong on the third, let 
WCW indicate that you were wrong on the first 
and third questions and correct on the second, and 
so forth.
a. List the elements in the sample space whose 

outcomes are all possible sequences of correct 
and incorrect responses on your part.

b. Write each of the following events as a set and 
find its probability:

(i)  The event that exactly one answer is 
correct.

(ii)  The event that at least two answers are 
correct.

(iii) The event that no answer is correct. 

14. Three people have been exposed to a certain ill-
ness. Once exposed, a person has a 50–50 chance 
of actually becoming ill.
a. What is the probability that exactly one of the 

people becomes ill?

exerCiSe SeT 9.1* 

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.
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572  ChAPTer 9 countInG and ProbabIlIty

b. What is the probability that at least two of the 
people become ill?

c. What is the probability that none of the three 
people becomes ill? 

15. When discussing counting and probability, we 
often consider situations that may appear frivolous 
or of little practical value, such as tossing coins, 
choosing cards, or rolling dice. The reason is that 
these relatively simple examples serve as models 
for a wide variety of more complex situations in 
the real world. In light of this remark, comment on 
the relationship between your answer to exercise 
11 and your answers to exercises 12–14.

16. Two faces of a six-sided die are painted red, two 
are painted blue, and two are painted yellow. The 
die is rolled three times, and the colors that appear 
face up on the first, second, and third rolls are 
recorded.
a. Let BBR denote the outcome where the color 

appearing face up on the first and second 
rolls is blue and the color appearing face up 
on the third roll is red. Because there are as 
many faces of one color as of any other, the 
outcomes of this experiment are equally likely. 
List all 27 possible outcomes.

b. Consider the event that all three rolls produce 
different colors. One outcome in this event is 
RBY and another RYB. List all outcomes in the 
event. What is the probability of the event?

c. Consider the event that two of the colors that 
appear face up are the same. One outcome in 
this event is RRB and another is RBR. List all 
outcomes in the event. What is the probability 
of the event?

17. Consider the situation described in exercise 16.
a. Find the probability of the event that exactly 

one of the colors that appears face up is red.
b. Find the probability of the event that at least 

one of the colors that appears face up is red.

18. An urn contains two blue balls (denoted B1 and 
B2) and one white ball (denoted W). One ball is 
drawn, its color is recorded, and it is replaced in 
the urn. Then another ball is drawn, and its color 
is recorded.
a. Let B1W denote the outcome that the first ball 

drawn is B1 and the second ball drawn is W. 
Because the first ball is replaced before the 
second ball is drawn, the outcomes of the  

experiment are equally likely. List all nine  
possible outcomes of the experiment.

b. Consider the event that the two balls that are 
drawn are both blue. List all outcomes in the 
event. What is the probability of the event?

c. Consider the event that the two balls that are 
drawn are of different colors. List all outcomes 
in the event. What is the probability of the 
event?

19. An urn contains two blue balls (denoted B1 and 
B2) and three white balls (denoted W1, W2, and 
W3). One ball is drawn, its color is recorded, and it 
is replaced in the urn. Then another ball is drawn 
and its color is recorded.
a. Let B1W2 denote the outcome that the first ball 

drawn is B1 and the second ball drawn is W2. 
Because the first ball is replaced before the 
second ball is drawn, the outcomes of the ex-
periment are equally likely. List all 25 possible 
outcomes of the experiment.

b. Consider the event that the first ball that is 
drawn is blue. List all outcomes in the event. 
What is the probability of the event?

c. Consider the event that only white balls are 
drawn. List all outcomes in the event. What is 
the probability of the event?

20. Refer to Example 9.1.3. Suppose you are appear-
ing on a game show with a prize behind one of 
five closed doors: A, B, C, D, and E. If you pick 
the correct door, you win the prize. You pick 
door A. The game show host then opens one of 
the other doors and reveals that there is no prize 
behind it. Then the host gives you the option of 
staying with your original choice of door A or 
switching to one of the other doors that is still 
closed.
a. If you stick with your original choice, what is 

the probability that you will win the prize?
b. If you switch to another door, what is the prob-

ability that you will win the prize?

21. a.  How many positive two-digit integers are mul-
tiples of 3?

b. What is the probability that a randomly chosen 
positive two-digit integer is a multiple of 3?

c. What is the probability that a randomly chosen 
positive two-digit integer is a multiple of 4?

22. a.  How many positive three-digit integers are 
multiples of 6?

*
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b. What is the probability that a randomly chosen 
positive three-digit integer is a multiple of 6?

c. What is the probability that a randomly chosen 
positive three-digit integer is a multiple of 7?

23. Suppose A[1], A[2], A[3], Á , A[n] is a one-
dimensional array and n . 50.
a. How many elements are in the array?
b. How many elements are in the subarray

A[4], A[5], Á , A[39]?

c. If 3 # m # n, what is the probability that 
a randomly chosen array element is in the 
subarray

A[3], A[4], Á , A[m]?

d. What is the probability that a randomly chosen 
array element is in the subarray shown below 
if n 5 39?

A[:ny2;], A[:ny2; 11], Á , A[n]

24. Suppose A[1], A[2], Á , A[n] is a one-dimensional 
array and n $ 2. Consider the subarray

A[1], A[2], Á , A[:ny2;].

a. How many elements are in the subarray (i) if n 
is even? and (ii) if n is odd?

b. What is the probability that a randomly chosen 
array element is in the subarray (i) if n is even? 
and (ii) if n is odd?

25. Suppose A[1], A[2], Á , A[n] is a one-dimensional 
array and n $ 2. Consider the subarray

A[:ny2;], A[:ny2;11], Á , A[n].

a. How many elements are in the subarray (i) if n 
is even? and (ii) if n is odd?

b. What is the probability that a randomly chosen 
array element is in the subarray (i) if n is even? 
and (ii) if n is odd?

26. What is the 27th element in the one-dimensional 
array A[42], A[43], Á , A[100]?

27. What is the 62nd element in the one-dimensional 
array B[29], B[30], Á , B[100]?

28. If the largest of 56 consecutive integers is 279, 
what is the smallest?

29. If the largest of 87 consecutive integers is 326, 
what is the smallest?

30. How many even integers are between 1 and 1,001?

31. How many integers that are multiples of 3 are 
between 1 and 1,001?

32. A certain non-leap year has 365 days, and January 
1 occurs on a Monday.
a. How many Sundays are in the year?
b. How many Mondays are in the year?

33. Prove Theorem 9.1.1. (Let m be any integer and 
prove the theorem by mathematical induction on n.) 

*

1. the set of all outcomes of the random process or experiment 2. a subset of the sample space 3. number of outcomes in the 
event; total number of outcomes 4. n2m11

ANSwerS FOr TeST YOurSeLF 

Possibility Trees and the Multiplication rule
Don’t believe anything unless you have thought it through for yourself. 
—Anna Pell Wheeler, 1883–1966

A tree structure is a useful tool for keeping systematic track of all possibilities in situations 
in which events happen in order. The following example shows how to use such a structure 
to count the number of different outcomes of a tournament.

Possibilities for Tournament Play

Teams A and B are to play each other repeatedly until one wins two games in a row or a 
total of three games. One way in which this tournament can be played is for A to win the 

9.2

example 9.2.1
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574  ChAPTer 9 countInG and ProbabIlIty

first game, B to win the second, and A to win the third and fourth games. Denote this by 
writing A–B–A–A.

a. How many ways can the tournament be played?

b. Assuming that all the ways of playing the tournament are equally likely, what is the 
probability that five games are needed to determine the tournament winner? 

Solution

a. The possible ways for the tournament to be played are represented by the distinct 
paths from “root” (the start) to “leaf” (a terminal point) in the tree shown sideways in 
Figure 9.2.1. The label on each branching point indicates the winner of the game. The 
notations in parentheses indicate the winner of the tournament.

Start

Winner of
game 1

Winner of
game 2

Winner of
game 3

Winner of
game 4

Winner of
game 5

A

B

A

B

(A wins)

A

B (B wins)

(B wins)

(A wins)

A

B

(B wins)

(B wins)

A

B

A

(A wins)A

B
(A wins)A

B

(B wins)

(A wins)A

BB

Figure 9.2.1 The Outcomes of a Tournament

The fact that there are ten paths from the root of the tree to its leaves shows that 
there are ten possible ways for the tournament to be played. They are (moving from 
the top down): A–A, A–B–A–A, A–B–A–B–A, A–B–A–B–B, A–B–B, B–A–A, B–A–
B–A–A, B–A–B–A–B, B–A–B–B, and B–B. In five cases A wins, and in the other five 
B wins. The least number of games that must be played to determine a winner is two, 
and the most that will need to be played is five.

b. Since all the possible ways of playing the tournament listed in part (a) are assumed to 
be equally likely, and the listing shows that five games are needed in four different 
cases (A–B–A–B–A, A–B–A–B–B, B–A–B–A–B, and B–A–B–A–A), the probability 
that five games are needed is 4y10 5 2y5 5 40%. ■

The Multiplication Rule
Consider the following example. Suppose a computer installation has four input/output 
units (A, B, C, and D) and three central processing units (X, Y, and Z). Any input/output 
unit can be paired with any central processing unit. How many ways are there to pair an 
input/output unit with a central processing unit?

To answer this question, imagine the pairing of the two types of units as a two-step 
operation:

Step 1: Choose the input/output unit.

Step 2: Choose the central processing unit. 
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The possible outcomes of this operation are illustrated in the possibility tree of 
Figure 9.2.2.

Start

Step 1: Choose the
input/output unit.

Step 2: Choose the
central processing unit.

A

B

C

D

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

Figure 9.2.2 Pairing Objects Using a Possibility Tree

The topmost path from “root” to “leaf” indicates that input/output unit A is to be paired 
with central processing unit X. The next lower branch indicates that input/output unit A is 
to be paired with central processing unit Y. And so forth.

Thus the total number of ways to pair the two types of units is the same as the number 
of branches of the tree, which is

3131313 5 4?3 5 12.

The idea behind this example can be used to prove the following rule. A formal proof uses 
mathematical induction and is left to the exercises.

Theorem 9.2.1 The Multiplication rule

If an operation consists of k steps and

the first step can be performed in n1 ways,

the second step can be performed in n2 ways  [ regardless of how the first 
step was performed],

o
the kth step can be performed in nk ways  [ regardless of how the preceding 

steps were performed],

then the entire operation can be performed in n1n2
Á nk ways.

To apply the multiplication rule, think of the objects you are trying to count as the 
output of a multistep operation. The possible ways to perform a step may depend on how 
preceding steps were performed, but the number of ways to perform each step must be 
constant regardless of the action taken in prior steps.

Counting Personal identification Numbers (PiNs)

A certain personal identification number (PIN) is required to be a sequence of any four 
symbols chosen from the 26 uppercase letters in the Roman alphabet and the ten digits.

a. How many different PINs are possible if repetition of symbols is allowed?

example 9.2.2
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576  ChAPTer 9 countInG and ProbabIlIty

b. How many different PINs are possible if repetition of symbols is not allowed?

c. What is the probability that a PIN does not have a repeated symbol assuming that all 
PINs are equally likely? 

Solution

a. Some possible PINs are RCAE, 3387, B92B, and so forth. You can think of forming 
a PIN as a four-step operation where each step involves placing a symbol into one of 
four positions, as shown below.

4321

Pool of available
symbols: A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, P, Q, R,
S, T, U, V, W, X, Y, Z,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

36
 ch

oices

36
 ch

oice
s

36
 ch

oic
es

36
 ch

oi
ce

s

Step 1: Choose a symbol to place in position 1.

Step 2: Choose a symbol to place in position 2.

Step 3: Choose a symbol to place in position 3.

Step 4: Choose a symbol to place in position 4. 

There is a fixed number of ways to perform each step, namely 36, regardless of how 
preceding steps were performed. And so, by the multiplication rule, there are  
36?36?36?36 5 364 5 1,679,616 PINs in all.

b. Again think of forming a PIN as a four-step operation: Choose the first symbol, then 
the second, then the third, and then the fourth. There are 36 ways to choose the first 
symbol, 35 ways to choose the second (since the first symbol cannot be used again),  
34 ways to choose the third (since the first two symbols cannot be reused), and 33 
ways to choose the fourth (since the first three symbols cannot be reused). Thus, the 
multiplication rule can be applied to conclude that there are 36?35?34?33 5 1,413,720 
different PINs with no repeated symbol.

c. By part (b) there are 1,413,720 PINs with no repeated symbol, and by part (a) there are 
1,679,616 PINs in all. Thus the probability that a PIN chosen at random contains no 

repeated symbol is 
1,413,720
1,679,616 > 0.8417. In other words, approximately 84% of PINs 

have no repeated symbol. ■

Another way to look at the PINs of Example 9.2.2 is as ordered 4-tuples. For example, 
you can think of the PIN M2ZM as the ordered 4-tuple (M, 2, Z, M). Therefore, the total 
number of PINs is the same as the total number of ordered 4-tuples whose elements are 
either letters or digits. One of the most important uses of the multiplication rule is to derive 
a general formula for the number of elements in any Cartesian product of a finite number 
of finite sets. In Example 9.2.3, this is done for a Cartesian product of four sets.

The Number of elements in a Cartesian Product

Suppose A1, A2, A3, and A4 are sets with n1, n2, n3, and n4 elements, respectively. Show that 
the set A1 3 A2 3 A3 3 A4 has n1n2n3n4 elements.

example 9.2.3

94193_ch09_ptg01.indd   576 12/11/18   5:23 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.2 PossIbIlIty trees and the MultIPlIcatIon rule  577

Solution Each element in A1 3 A2 3 A3 3 A4 is an ordered 4-tuple of the form (a1, a2, 
a3, a4), where a1 [ A1, a2 [ A2, a3 [ A3, and a4 [ A4. Imagine the process of constructing 
these ordered tuples as a four-step operation:

Step 1: Choose the first element of the 4-tuple.

Step 2: Choose the second element of the 4-tuple.

Step 3: Choose the third element of the 4-tuple.

Step 4: Choose the fourth element of the 4-tuple. 
There are n1 ways to perform step 1, n2 ways to perform step 2, n3 ways to perform step 3, 
and n4 ways to perform step 4. Hence, by the multiplication rule, there are n1n2n3n4 

ways to perform the entire operation. Therefore, there are n1n2n3n4 distinct 4-tuples in 
A1 3 A2 3 A3 3 A4. ■

Any circuit with two input signals P and Q has an input/output table consisting of four rows 
corresponding to the four possible assignments of values to P and Q: 11, 10, 01, and 00. The 
next example shows that there are only 16 distinct ways in which such a circuit can function.

Number of input/Output Tables for a Circuit with Two input Signals

Consider the set of all circuits with two input signals P and Q. Each such circuit has a cor-
responding input/output table, but, as shown in Section 2.4, two such input/output tables 
may be the same. How many distinct input/output tables are there for a circuit with input/
output signals P and Q?

Solution Fix the order of the input values for P and Q. Then two input/output tables are 
distinct if their output values differ in at least one row. For example, the input/output tables 
shown below are distinct, because their output values differ in the first row.

  

P Q Output

1 1 1

1 0 0

0 1 1

0 0 0
   

P Q Output

1 1 0

1 0 0

0 1 1

0 0 0

For a fixed ordering of input values, you can obtain a complete input/output table by 
filling in the entries in the output column. You can think of this as a four-step operation:

Step 1: Fill in the output value for the first row.

Step 2: Fill in the output value for the second row.

Step 3: Fill in the output value for the third row.

Step 4: Fill in the output value for the fourth row. 

Each step can be performed in exactly two ways: either a 1 or a 0 can be filled in. Hence, 
by the multiplication rule, there are

2?2?2?2 5 16

ways to perform the entire operation. It follows that there are 24 5 16 distinct input/output 
tables for a circuit with two input signals P and Q. This means that such a circuit can func-
tion in only 16 distinct ways. ■

example 9.2.4
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Observe that in Example 9.2.2, the set of all PINs of length 4 is the same as the set of all 
strings of length 4 over the set

S 5 {x ux is a letter of the uppercase Roman alphabet or x is a digit}.

Also observe that another way to think of Example 9.2.4 is to realize that there are as many 
input/output tables for a circuit with two input signals as there are bit strings of length 4 
(written vertically) that can be used to fill in the output values. As another example, here is 
a listing of all bit strings of length 3:

000,     001,     010,     100,     011,     101,     110,     111.

Counting the Number of iterations of a Nested Loop

Consider the following nested loop:

for i :5 1 to 4

  for j :5 1 to 3

    [Statements in body of inner loop. 
None contain branching statements 
that lead out of the inner loop.]

  next j

next i

How many times will the inner loop be iterated when the algorithm is implemented  
and run?

Solution The outer loop is iterated four times, and during each iteration of the outer 
loop, there are three iterations of the inner loop. Hence by the multiplication rule, the 
total number of iterations of the inner loop is 4?3 5 12. This is illustrated by the trace 
table below.

i 1 2 3 4

j 1 2 3 1 2 3 1 2 3 1 2 3

3 3 3 3 125111

When the Multiplication Rule Is Difficult or Impossible to Apply
Consider the following problem:

Three officers—a president, a treasurer, and a secretary—are to be chosen from 
among four people: Ann, Bob, Cyd, and Dan. Suppose that, for various reasons, 
Ann cannot be president and either Cyd or Dan must be secretary. How many 
ways can the officers be chosen? 

It is natural to try to solve this problem using the multiplication rule. A person might an-
swer as follows:

There are three choices for president (all except Ann), three choices for treasurer 
(all except the one chosen as president), and two choices for secretary (Cyd or 
Dan). Therefore, by the multiplication rule, there are 3?3?2 5 18 choices in all. 

Unfortunately, this analysis is incorrect. The number of ways to choose the secretary var-
ies depending on who is chosen for president and treasurer. For instance, if Bob is chosen 

example 9.2.5

■
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for president and Ann for treasurer, then there are two choices for secretary: Cyd and Dan. 
But if Bob is chosen for president and Cyd for treasurer, then there is just one choice for 
secretary: Dan. The clearest way to see all the possible choices is to construct the possibil-
ity tree, as is shown in Figure 9.2.3.

Step 3: Choose
the secretary.

Step 2: Choose
the treasurer.

Start

Bob

Cyd

Dan

Ann

Ann

Ann

Bob

Bob

Cyd

Dan

Cyd

Cyd

Cyd

Cyd

Dan

Dan

Dan

Dan

Step 1: Choose
the president.

Figure 9.2.3

From the tree it is easy to see that there are only eight ways to choose a president, treasurer, 
and secretary so as to satisfy the given conditions.

Another way to solve this problem is somewhat surprising. It turns out that the steps can 
be reordered in a slightly different way so that the number of ways to perform each step is 
constant regardless of the way previous steps were performed.

A More Subtle use of the Multiplication rule

Reorder the steps for choosing the officers in the previous example so that the total number 
of ways to choose officers can be computed using the multiplication rule.

Solution

Step 1: Choose the secretary.

Step 2: Choose the president.

Step 3: Choose the treasurer. 

There are exactly two ways to perform step 1 
(either Cyd or Dan may be chosen), two ways 
to perform step 2 (neither Ann nor the person 
chosen in step 1 may be chosen but either of the 
other two may), and two ways to perform step 3 
(either of the two people not chosen as secretary 
or president may be chosen as treasurer). Thus, 
by the multiplication rule, the total number of 
ways to choose officers is 2?2?2 5 8. A possi-
bility tree illustrating this sequence of choices is 
shown in Figure 9.2.4. Note how balanced this 
tree is compared with the one in Figure 9.2.3.

example 9.2.6

Start

Step 1: Choose
the secretary.

Step 2: Choose
the president.

Step 3: Choose
the treasurer.

Cyd

Dan

Dan

Dan

Bob

Bob

Ann

Ann

Ann

Ann

Cyd

Bob

Bob

Cyd

Figure 9.2.4
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Permutations
A permutation of a set of objects is an ordering of the objects in a row. For example, the 
set of elements a, b, and c has six permutations.

abc acb cba bac bca cab

In general, given a set of n objects, how many permutations does the set have? Imagine 
forming a permutation as an n-step operation:

Step 1: Choose an element to write first.

Step 2: Choose an element to write second.

o          o
Step n: Choose an element to write nth. 

Any element of the set can be chosen in step 1, so there are n ways to perform step 1. 
Any element except that chosen in step 1 can be chosen in step 2, so there are n21 ways to 
perform step 2. In general, the number of ways to perform each successive step is one less 
than the number of ways to perform the preceding step. At the point when the nth element 
is chosen, there is only one element left, so there is only one way to perform step n. Hence, 
by the multiplication rule, there are

n(n21)(n22) Á 2?1 5 n!

ways to perform the entire operation. In other words, there are n! permutations of a set of 
n elements. This reasoning is summarized in the following theorem. A formal proof uses 
mathematical induction and is left as an exercise.

Theorem 9.2.2

For any integer n with n $ 1, the number of permutations of a set with n elements 
is n!.

Permutations of the Letters in a word

a. How many ways can the letters in the word COMPUTER be arranged in a row?

b. How many ways can the letters in the word COMPUTER be arranged if the letters CO 
must remain next to each other (in order) as a unit?

c. If letters of the word COMPUTER are randomly arranged in a row, what is the prob-
ability that the letters CO remain next to each other (in order) as a unit? 

Solution
a. All eight letters in the word COMPUTER are distinct, so the number of ways in which 

you can arrange the letters equals the number of permutations of a set of eight ele-
ments. This equals 8! 5 40,320.

b. If the letter group CO is treated as a unit, then there are effectively only seven objects 
that are to be arranged in a row.

CO   M   P   U   T   E   R

example 9.2.7
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9.2 PossIbIlIty trees and the MultIPlIcatIon rule  581

Hence there are as many ways to write the letters as there are permutations of a set of 
seven elements, namely, 7! 5 5,040.

c. When the letters are arranged randomly in a row, the total number of arrangements is 
40,320 by part (a), and the number of arrangements with the letters CO next to each 
other (in order) as a unit is 5,040. Thus the probability is

  
5,040

40,320
5

1

8
5 12.5%. ■

Permutations of Objects Around a Circle

At a meeting of diplomats, the six participants are to be seated around a circular table. 
Since the table has no ends to confer particular status, it doesn’t matter who sits in which 
chair. But it does matter how the diplomats are seated relative to each other. In other words, 
two seatings are considered the same if one is a rotation of the other. How many different 
ways can the diplomats be seated?

Solution Call the diplomats by the letters A, B, C, D, E, and F. Since only relative posi-
tion matters, you can start with any diplomat (say, A), place that diplomat anywhere (say, 
in the top seat of the diagram shown in Figure 9.2.5), and then consider all arrangements 
of the other diplomats around that one. The five diplomats B through F can be arranged 
in the seats around diplomat A in all possible orders. So there are 5! 5 120 ways to seat 
the group.

Five other
diplomats
to be seated:
B, C, D, E, F

A

 Figure 9.2.5 ■

Permutations of Selected Elements
Given the set {a, b, c}, there are six ways to select two letters from the set and write them 
in order.

ab ac ba bc ca cb

Each such ordering of two elements of {a, b, c} is called a 2-permutation of {a, b, c}.

Definition

An r-permutation of a set of n elements is an ordered selection of r elements taken 
from the set of n elements. The number of r-permutations of a set of n elements is 
denoted P(n, r).

example 9.2.8
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Theorem 9.2.3

If n and r are integers and 1 # r # n, then the number of r-permutations of a set of 
n elements is given by the formula

P (n, r) 5 n (n21)(n22) Á (n2 r11) first version

or, equivalently,

P (n, r) 5
n!

(n2 r)!
 second version.

A formal proof of this theorem uses mathematical induction and is based on the multi-
plication rule. The idea of the proof is the following.

Suppose a set of n elements is given. Formation of an r-permutation can be thought of as 
an r-step process. Step 1 is to choose the element to be first. Since the set has n elements, 
there are n ways to perform step 1. Step 2 is to choose the element to be second. Since the 
element chosen in step 1 is no longer available, there are n21 ways to perform step 2. 
Step 3 is to choose the element to be third. Since neither of the two elements chosen in the 
first two steps is available, there are n22 choices for step 3. This process is repeated r 
times, as shown below.

Position 2 Position rPosition 3Position 1

n choices

n – 1 choices

n – 2 choices
n – (r – 1) choices

Pool of available
elements: x1, x2, . . . , xn

The number of ways to perform each successive step is one less than the number of ways 
to perform the preceding step. Step r is to choose the element to be rth. At the point just 
before step r is performed, r21 elements have already been chosen, and so there are

n2 (r21) 5 n2 r11

left to choose from. Hence there are n2 r11 ways to perform step r. It follows by the 
multiplication rule that the number of ways to form an r-permutation is

P (n, r) 5 n(n21)(n22) Á (n2 r11).

Note that

 
n!

(n2 r)!
5

n(n21)(n22) Á (n2 r11)(n2 r)(n2 r21) Á 3?2?1

(n2 r)(n2 r21) Á 3?2?1

 5 n(n21)(n22) Á (n2 r11).

Thus the formula can also be written as

P (n, r) 5
n!

(n2 r)!
.
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The second version of the formula is easier to remember, but if you use it with a calcula-
tor, don’t first compute n! and (n2 r)! and then divide the first by the second. Because fac-
torials become so large so fast, using this method can overload a calculator’s capacity for 
exact arithmetic even when n and r are quite small. For instance, if n 5 15 and r 5 2, then

n!

(n2 r)!
5

15!

13!
5

1,307,674,368,000

6,227,020,800
.

On the other hand, if you cancel (n2 r)! 5 13! from the numerator and denominator  
before multiplying out, you reduce the expression to the first version of the formula for  
P(n, r), which is much easier to compute:

n!

(n2 r)!
5

15!

13!
5

15?14?13!

13!
5 15?14 5 210.

In fact, many scientific calculators allow you to compute P(n, r) simply by entering the 
values of n and r and pressing a key or making a menu choice. Alternative notations for 
P(n, r) are n Pr, Pn,r, and nPr.

evaluating r-Permutations

a. Evaluate P(5, 2).

b. How many 4-permutations are there of a set of seven objects?

c. How many 5-permutations are there of a set of five objects? 
Solution

a. P(5, 2) 5
5!

(522)!
5

5?4?3!

3!
5 20

b. The number of 4-permutations of a set of seven objects is

P (7, 4) 5
7!

(724)!
5

7?6?5?4?3!

3!
5 7?6?5?4 5 840.

c. The number of 5-permutations of a set of five objects is

P (5, 5) 5
5!

(525)!
5

5!

0!
5

5!

1
5 5! 5 120.

Note that the definition of 0! as 1 makes this calculation come out as it should, for the 
number of 5-permutations of a set of five objects is certainly equal to the number of 
permutations of the set.  ■

Permutations of Selected Letters of a word

a. How many different ways can three of the letters of the word BYTES be chosen and 
written in a row?

b. How many different ways can this be done if the first letter must be B?

Solution
a. The answer equals the number of 3-permutations of a set of five elements. This equals

P (5, 3) 5
5!

(523)!
5

5?4?3?2!

2!
5 5?4?3 5 60.

example 9.2.9

example 9.2.10
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b. Since the first letter must be B, there are effectively only two letters to be chosen and 
placed in the other two positions. And since the B is used in the first position, there 
are four letters available to fill the remaining two positions.

Position 2 Position 3Position 1

B

Pool of available
letters: Y, T, E, S

Hence the answer is the number of 2-permutations of a set of four elements, which is

  P (4, 2) 5
4!

(422)!
5

4?3?2!

2!
5 4?3 5 12. ■

In many applications of the mathematics of counting, it is necessary to be skillful in 
working algebraically with quantities of the form P(n, r). The next example shows a kind 
of problem that gives practice in developing such skill.

Proving a Property of P(n, r)

Prove that for every integer n $ 2,

P  (n, 2)1P (n, 1) 5 n2.

Solution Suppose n is any integer that is greater than or equal to 2. By Theorem 9.2.3,

P (n, 2) 5
n!

(n22)!
5

n(n21)(n22)!

(n22)!
5 n(n21)

and

P (n, 1) 5
n!

(n21)!
5

n?(n21)!

(n21)!
5 n.

Hence

P (n, 2)1P (n, 1) 5 n?(n21)1n 5 n2 2n1n 5 n2,

which is what we needed to show. ■

example 9.2.11

1. The multiplication rule says that if an opera-
tion can be performed in k steps and, for each i 
with 1 # i # k, the ith step can be performed in 
ni ways (regardless of how previous steps were 
performed), then the operation as a whole can be 
performed in .

2. A permutation of a set of elements is .

3. The number of permutations of a set of n elements 
equals .

4. An r-permutation of a set of n elements  
is .

5. The number of r-permutations of a set of n ele-
ments is denoted .

6. One formula for the number of r-permutations of 
a set of n elements is  and another formula 
is .

TeST YOurSeLF 
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In 1–4, use the fact that in baseball’s World Series, the 
first team to win four games wins the series.

1. Suppose team A wins the first three games. How 
many ways can the World Series be completed? 
(Draw a tree.)

2. Suppose team A wins the first two games. How 
many ways can the World Series be completed? 
(Draw a tree.)

3. How many ways can a World Series be played if 
team A wins four games in a row?

4. How many ways can a World Series be played if 
no team wins two games in a row?

5. In a competition between players X and Y, the first 
player to win three games in a row or a total of 
four games wins. How many ways can the com-
petition be played if X wins the first game and Y 
wins the second and third games? (Draw a tree.)

6. One urn contains two black balls (labeled B1 and 
B2) and one white ball. A second urn contains one 
black ball and two white balls (labeled W1 and 
W2). Suppose the following experiment is per-
formed: One of the two urns is chosen at random. 
Next a ball is randomly chosen from the urn. Then 
a second ball is chosen at random from the same 
urn without replacing the first ball.
a. Construct the possibility tree showing all pos-

sible outcomes of this experiment.
b. What is the total number of outcomes of this 

experiment?
c. What is the probability that two black balls are 

chosen?
d. What is the probability that two balls of op-

posite color are chosen? 
7. One urn contains one blue ball (labeled B1) and 

three red balls (labeled R1, R2, and R3). A second 
urn contains two red balls (R4 and R5) and two 
blue balls (B2 and B3). An experiment is per-
formed in which one of the two urns is chosen at 
random and then two balls are randomly chosen 
from it, one after the other without replacement.
a. Construct the possibility tree showing all pos-

sible outcomes of this experiment. 
b. What is the total number of outcomes of this 

experiment?
c. What is the probability that two red balls are 

chosen?

8. A person buying a personal computer system is 
offered a choice of three models of the basic unit, 
two models of keyboard, and two models of print-
er. How many distinct systems can be purchased?

9. Suppose there are three roads from city A to city B 
and five roads from city B to city C.
a. How many ways is it possible to travel from 

city A to city C via city B?
b. How many different round-trip routes are there 

from city A to B to C to B and back to A?
c. How many different routes are there from cit-

ies A to B to C to B and back to A in which no 
road is traversed twice? 

10. Suppose there are three routes from North Point to 
Boulder Creek, two routes from Boulder Creek to 
Beaver Dam, two routes from Beaver Dam to Star 
Lake, and four routes directly from Boulder Creek 
to Star Lake. (Draw a sketch.)
a. How many routes from North Point to Star 

Lake pass through Beaver Dam?
b. How many routes from North Point to Star 

Lake bypass Beaver Dam?

11. a.  A bit string is a finite sequence of 0’s and 1’s. 
How many bit strings have length 8?

b. How many bit strings of length 8 begin with 
three 0’s?

c. How many bit strings of length 8 begin and 
end with a 1?

12. Hexadecimal numbers are made using the sixteen 
hexadecimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F and are denoted using the subscript 16. 
For example, 9A2D16 and BC5416 are hexadecimal 
numbers.
a. How many hexadecimal numbers begin with 

one of the digits 3 through B, end with one of 
the digits 5 through F, and are 5 digits long?

b. How many hexadecimal numbers begin with 
one of the digits 4 through D, end with one of 
the digits 2 through E, and are 6 digits long?

13. A coin is tossed four times. Each time the result H 
for heads or T for tails is recorded. An outcome of 
HHTT means that heads were obtained on the first 
two tosses and tails on the second two. Assume 
that heads and tails are equally likely on each toss.
a. How many distinct outcomes are possible?
b. What is the probability that exactly two heads 

occur?

exerCiSe SeT 9.2 
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c. What is the probability that exactly one head 
occurs?

14. Suppose that in a certain state, all automobile 
license plates have four uppercase letters followed 
by three digits.
a. How many different license plates are 

possible?
b. How many license plates could begin with A 

and end in 0?
c. How many license plates could begin with 

TGIF?
d. How many license plates are possible in which 

all the letters and digits are distinct?
e. How many license plates could begin with AB 

and have all letters and digits distinct? 
15. A combination lock requires three selections of 

numbers, each from 1 through 30.
a. How many different combinations are  

possible?
b. Suppose the locks are constructed in such a 

way that no number may be used twice.  
How many different combinations are  
possible?

16. a.  How many integers are there from 10  
through 99?

b. How many odd integers are there from 10 
through 99?

c. How many integers from 10 through 99 have 
distinct digits?

d. How many odd integers from 10 through 99 
have distinct digits?

e. What is the probability that a randomly chosen 
two-digit integer has distinct digits? has dis-
tinct digits and is odd?

17. a.  How many integers are there from 1000 
through 9999?

b. How many odd integers are there from 1000 
through 9999?

c. How many integers from 1000 through 9999 
have distinct digits?

d. How many odd integers from 1000 through 
9999 have distinct digits?

e. What is the probability that a randomly chosen 
four-digit integer has distinct digits? has dis-
tinct digits and is odd?

18. The following diagram shows the keypad for an 
automatic teller machine. As you can see, the 
same sequence of keys represents a variety of 

different PINs. For instance, 2133, AZDE, and 
BQ3F are all keyed in exactly the same way.

1
QZ

2
ABC

3
DEF

4
GHI

5
JKL

6
MNO

7
PRS

8
TUV

9
WXY

0

a. How many different PINs are represented by 
the same sequence of keys as 2133?

b. How many different PINs are represented by 
the same sequence of keys as 5031?

c. How many different numeric sequences on the 
machine contain no repeated digit?

19. Three officers—a president, a treasurer, and a sec-
retary—are to be chosen from among four people: 
Ann, Bob, Cyd, and Dan. Suppose that Bob is not 
qualified to be treasurer and Cyd’s other commit-
ments make it impossible for her to be secretary. 
How many ways can the officers be chosen? 
Can the multiplication rule be used to solve this 
problem?

20. Modify Example 9.2.4 by supposing that a  
PIN must not begin with any of the letters A–M 
and must end with a digit. Continue to assume 
that no symbol may be used more than once  
and that the total number of PINs is to be  
determined.
a. Find the error in the following “solution.”

  “Constructing a PIN is a four-step process.

Step 1: Choose the left-most symbol.

Step 2:  Choose the second symbol from the left.

Step 3: Choose the third symbol from the left.

Step 4: Choose the right-most symbol. 
 Because none of the thirteen letters from A 
through M may be chosen in step 1, there are 
36213 5 23 ways to perform step 1. There 
are 35 ways to perform step 2 and 34 ways to 
perform step 3 because previously used sym-
bols may not be used. Since the symbol chosen 
in step 4 must be a previously unused digit, 
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there are 1023 5 7 ways to perform step 4. 
Thus there are 23?35?34?7 5 191,590 differ-
ent PINs that satisfy the given conditions.”

b. Reorder steps 1–4 in part (a) as follows:

Step 1: Choose the right-most symbol.

Step 2: Choose the left-most symbol.

Step 3:  Choose the second symbol from  
the left.

Step 4: Choose the third symbol from the left. 
   Use the multiplication rule to find the number 

of PINs that satisfy the given conditions.

21. Suppose A is a set with m elements and B is a set 
with n elements.
a. How many relations are there from A to B? 

Explain.
b. How many functions are there from A to B? 

Explain.
c. What fraction of the relations from A to B are 

functions?

22. a.  How many functions are there from a set with 
three elements to a set with four elements?

b. How many functions are there from a set with 
five elements to a set with two elements?

c. How many functions are there from a set with 
m elements to a set with n elements, where m 
and n are positive integers?

23. In Section 2.5 we showed how integers can be 
represented by strings of 0’s and 1’s inside a 
digital computer. In fact, through various cod-
ing schemes, strings of 0’s and 1’s can be used 
to represent all kinds of symbols. One com-
monly used code is the Extended Binary-Coded 
Decimal Interchange Code (EBCDIC) in which 
each symbol has an 8-bit representation. How 
many distinct symbols can be represented by 
this code? 

In each of 24–28, determine how many times the inner-
most loop will be iterated when the algorithm segment is 
implemented and run. (assume that m, n, p, a, b, c, and d 
are all positive integers.)

24. for i :5 1 to 30

for j :5 1 to 15

[Statements in body of inner loop. 
None contain branching statements that 
lead outside the loop.]

next j

next i

25. for j :5 1 to m

for k :5 1 to n

[Statements in body of inner loop. 
None contain branching statements that 
lead outside the loop.]

next k

next j

26. for i :5 1 to m

for j :5 1 to n

for k :5 1 to p

[Statements in body of inner loop. 
None contain branching statements 
that lead outside the loop.]

next k

next j

next i

27. for i :5 5 to 50

for j :5 10 to 20

[Statements in body of inner loop. 
None contain branching statements that 
lead outside the loop.]

next j

next i

28. Assume a # b and c # d.

for i :5 a to b

for j :5 c to d

[Statements in body of inner loop. 
None contain branching statements that 
lead outside the loop.]

next j

next i

29. Consider the numbers 1 through 99,999 in their 
ordinary decimal representations. How many con-
tain exactly one of each of the digits 2, 3, 4, and 5?

30. Let n 5 pk1
1   

pk2
2

Á pkm
m  where p1, p2, . . . , pm are 

distinct prime numbers and k1, k2, . . . , km are 
positive integers. How many ways can n be written 
as a product of two positive integers that have no 
common factors, assuming the following?
a. Order matters (that is, 8?15 and 15?8 are 

regarded as different).
b. Order does not matter (that is, 8?15 and 15?8 

are regarded as the same).

H

H*

*
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31. a.  If p is a prime number and a is a positive inte-
ger, how many distinct positive divisors does 
pa have?

b. If p and q are distinct prime numbers and a 
and b are positive integers, how many distinct 
positive divisors does paqb have?

c. If p, q, and r are distinct prime numbers and 
a, b, and c are positive integers, how many 
distinct positive divisors does paqbrc have?

d. If p1, p2, . . . , pm are distinct prime num-
bers and a1, a2, . . . , am are positive integers, 
how many distinct positive divisors does 
pa1

1  p
a2
2

Á pam
m  have?

e. What is the smallest positive integer with 
exactly 12 divisors?

32. a.  How many ways can the letters of the word 
ALGORITHM be arranged in a row?

b. How many ways can the letters of the word 
ALGORITHM be arranged in a row if A and L 
must remain together (in order) as a unit?

c. How many ways can the letters of the word 
ALGORITHM be arranged in a row if the let-
ters GOR must remain together (in order) as  
a unit?

33. Six people attend the theater together and sit in a 
row with exactly six seats.
a. How many ways can they be seated together in 

the row?
b. Suppose one of the six is a doctor who must sit 

on the aisle in case she is paged. How many 
ways can the people be seated together in the 
row with the doctor in an aisle seat?

c. Suppose the six people consist of three mar-
ried couples and each couple wants to sit 
together with the older partner on the left. How 
many ways can the six be seated together in 
the row?

34. Five people are to be seated around a circular 
table. Two seatings are considered the same if one 
is a rotation of the other. How many different seat-
ings are possible?

35. Write all the 2-permutations of {W, X, Y, Z}.

36. Write all the 3-permutations of {s, t, u, v}.

37. Evaluate the following quantities.
a. P(6, 4)  b.  P(6, 6)  c.  P(6, 3)  d.  P(6, 1)

38. a.  How many 3-permutations are there of a set of 
five objects?

b. How many 2-permutations are there of a set of 
eight objects?

39. a.  How many ways can three of the letters of the 
word ALGORITHM be selected and written in 
a row?

b. How many ways can six of the letters of the 
word ALGORITHM be selected and written in 
a row?

c. How many ways can six of the letters of the 
word ALGORITHM be selected and written in 
a row if the first letter must be A?

d. How many ways can six of the letters of the 
word ALGORITHM be selected and written in 
a row if the first two letters must be OR?

40. Prove that for every integer n $ 2, 
P (n11, 3) 5 n3 2n.

41. Prove that for every integer n $ 2,

P (n11, 2)2P (n, 2) 5 2P (n, 1).

42. Prove that for every integer n $ 3,

P (n11, 3)2P (n, 3) 5 3P (n, 2).

43. Prove that for every integer n $ 2, 
P (n, n) 5 P (n, n21).

44. Prove Theorem 9.2.1 by mathematical induction.

45. Prove Theorem 9.2.2 by mathematical induction.

46. Prove Theorem 9.2.3 by mathematical induction.

47. A permutation on a set can be regarded as a  
function from the set to itself. For instance, one 
permutation of {1, 2, 3, 4} is 2341. It can be iden-
tified with the function that sends each position 
number to the number occupying that position. 
Since position 1 is occupied by 2, 1 is sent to 2 or 
1 S 2; since position 2 is occupied by 3, 2 is sent 
to 3 or 2 S 3; and so forth. The entire permuta-
tion can be written using arrows as follows:

1   2   3   4

T  T  T  T
2   3   4   1

a. Use arrows to write each of the six permuta-
tions of {1, 2, 3}.

b. Use arrows to write each of the permutations 
of {1, 2, 3, 4} that keep 2 and 4 fixed.

c. Which permutations of {1, 2, 3} keep no ele-
ments fixed?

d. Use arrows to write all permutations of  
{1, 2, 3, 4} that keep no elements fixed.

*

H

*
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1. n1n2
Á nk ways 2. an ordering of the elements of the set in a row 3. n! 4. an ordered selection of r of the elements of the 

set 5. P(n, r) 6. n(n21)(n22) Á (n2 r11); 
n!

(n2 r)!

ANSwerS FOr TeST YOurSeLF 

Counting elements of Disjoint Sets:  
The Addition rule
The whole of science is nothing more than a refinement of everyday thinking. 
—Albert Einstein, 1879–1955

In the last section we discussed counting problems that can be solved using possibility trees. 
In this section we look at counting problems that can be solved by counting the number of 
elements in the union of two sets, the difference of two sets, or the intersection of two sets.

The basic rule underlying the calculation of the number of elements in a union or dif-
ference or intersection is the addition rule. This rule states that the number of elements in 
a union of mutually disjoint finite sets equals the sum of the number of elements in each 
of the component sets.

9.3

Theorem 9.3.1 The Addition rule

Suppose a finite set A equals the union of k distinct mutually disjoint subsets A1,  
A2, Á , Ak. Then

N(A) 5 N(A1)1N(A2)1 Á 1N(Ak).

A formal proof of this theorem uses mathematical induction and is left to the exercises.

Counting the Number of integers Divisible by 5

How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

Solution One solution to this problem was discussed in Example 9.1.4. Another approach 
uses the addition rule. Integers that are divisible by 5 end either in 5 or in 0. Thus the set of 
all three-digit integers that are divisible by 5 can be split into two mutually disjoint subsets 
A1 and A2 as shown in Figure 9.3.1.

example 9.3.1

Three-Digit Integers That Are Divisible by 5

three-digit integers
that end in 0

three-digit integers
that end in 5

A1 A2

A1 ø A2 5 

A1 ù A2 5 

the set of all three-digit integers
that are divisible by 5

Figure 9.3.1

Now there are as many three-digit integers that end in 0 as there are possible choices 
for the left-most and middle digits (because the right-most digit must be a 0). As illustrated 
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below, there are nine choices for the left-most digit (the digits 1 through 9) and ten choices 
for the middle digit (the digits 0 through 9). Hence N(A1) 5 9?10 5 90.

   
 c c c
 9 choices 10 choices number ends in 0
 1, 2, 3, 4, 5, 6, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Similar reasoning shows that there are as many three-digit integers that end in 5 as 
there are possible choices for the left-most and middle digits, which are the same as for the 
integers that end in 0. Hence, N(A2) 5 90. So

 3the number of
three{digit integers
that are divisible by 5

4 5 N(A1)1N(A2) 5 90190 5 180. ■

The Difference Rule
An important consequence of the addition rule is the fact that if the number of elements in 
a set A and the number in a subset B of A are both known, then the number of elements that 
are in A and not in B can be computed.

Theorem 9.3.2 The Difference rule

If A is a finite set and B is a subset of A, then

N(A2B) 5 N(A)2N(B).

The difference rule is illustrated in Figure 9.3.2.

A (n elements)

B (k elements) A – B (n –  k elements)

Figure 9.3.2 The Difference Rule

The difference rule holds for the following reason: If B is a subset of A, then the two 
sets B and A2B have no elements in common and B ø (A2B) 5 A. Hence, by the addi-
tion rule,

N(B)1N(A2B) 5 N(A).

Subtracting N(B) from both sides gives the equation

N(A2B) 5 N(A)2N(B).

Counting PiNs with repeated Symbols

Consider again the PINs discussed in Example 9.2.2. These are made from exactly four 
symbols chosen from the 26 uppercase letters of the Roman alphabet and the ten digits. 

example 9.3.2
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Example 9.2.2 showed that there are 1,679,616 PINs with repetition allowed and 265,896 
PINs with no repeated symbol.

a. How many PINs contain at least one repeated symbol?

b. If all PINs are equally likely, what is the probability that a randomly chosen PIN con-
tains at least one repeated symbol?

Solution
a. Let S be the set of all the PINs with repetition allowed, and let A be the set of PINs 

with no repeated symbol. Then S2A is the set of PINs with at least one repeated sym-
bol, and, by the difference rule, 

N(S2A) 5 N(S)2N(A)

5 1,679,61621,413,720 

5 265,896.

Hence, there are 265,896 PINs that contain at least one repeated symbol.

b. Solution 1: Because there are 1,679,616 PINs in all and 265,896 of these contain at 
least one repeated symbol, by the equally likely probability formula, the probability 
that a randomly chosen PIN contains a repeated symbol is

265,896

1,679,616
> 0.158 5 15.8%.

Solution 2: P(A) is the probability that a randomly chosen PIN has no repeated sym-
bol, and so P  (S2A) is the probability that a randomly chosen PIN has at least one 
repeated symbol. Then

P (S2A) 5
N(S2A)

N(S)
 by definition of probability in the equally likely case

5
N(S)2N(A)

N(S)
 by the difference rule

5
N(S)

N(S)
2

N(A)

N(S)
 by the laws of fractions

5 12P (A) by definition of probability in the equally likely case

> 120.842 by Example 9.2.2

> 0.158 5 15.8%.  ■

Solution 2 illustrates a general property of probabilities: that the probability of the 
complement of an event is obtained by subtracting the probability of the event from the 
number 1. In Section 9.8 we derive this formula from the axioms for probability.

Formula for the Probability of the Complement of an event

If S is a finite sample space and A is an event in S, then

P (Ac  ) 5 12P (A),

where Ac 5 S2A, the complement of A in S.
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Passwords with 3–5 Letters

A certain computer access password consists of 3 through 5 uppercase letters chosen from 
the 26 letters in the Roman alphabet, with repetitions allowed.

a. How many different passwords are possible?

b. How many different passwords have no repeated letter?

c. How many different passwords have at least one repeated letter?

d. If all passwords are equally likely, what is the probability that a randomly chosen 
password has at least one repeated letter? 

Solution
a. The set of all passwords can be partitioned into three subsets consisting of passwords 

with lengths 3, 4, and 5, as shown in Figure 9.3.3.

example 9.3.3

Set of All Passwords of Lengths 3, 4, or 5

passwords
of length 3

passwords
of length 4

passwords
of length 5

Figure 9.3.3

By the addition rule, the total number of passwords equals the number with length 3, 
plus the number with length 4, plus the number with length 5. The multiplication rule 
can be used to compute the number of passwords of each length. Thus the

number of passwords with length 3 5 263  because forming such a password can 
be thought of as a three-step process 
with 26 ways to perform each step

number of passwords with length 4 5 264  because forming such a password can 
be thought of as a four-step process 
with 26 ways to perform each step

number of passwords with length 5 5 265  because forming such a password can 
be thought of as a five-step process with 
26 ways to perform each step. 

Hence the total number of passwords is

263 1264 1265 5 12,355,928.

b. Constructing a password with length 3 and no repeated letter is a three-step process 
with 26 choices for step 1, 25 choices for step 2, and 24 choices for step 3. Thus there 
are 26?25?24 passwords with length three and no repeated letter. Similarly, there are 
26?25?24?23 passwords with length 4 and no repeated letter and 26?25?24?23?22 
passwords with length 5 and no repeated letter. Hence the total number of passwords 
with no repeated letter is

26?25?24126?25?24?23126?25?24?23?22 5 8,268,000.

c. By part (a) the total number of passwords is 12,355,928, and by part (b) 8,268,000 of 
these passwords do not have a repeated letter. Thus, by difference rule, the number of 
passwords with at least one repeated letter is 4,087,928.
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d. Given the assumption that all passwords are equally likely, the equally likely prob-
ability formula can be used. So the probability that a randomly chosen password has at 
least one repeated letter is

 
3# of passwords with

no repeated letter 4
total # of passwords

5
4,087,928

12,355,928
> 33.1%. ■

Number of Python identifiers of eight or Fewer Characters

In the computer language Python, identifiers must start with one of 53 symbols: either 
one of the 52 letters of the upper- and lower-case Roman alphabet or an underscore 
(_). The initial character may stand alone, or it may be followed by any number of 
additional characters chosen from a set of 63 symbols: the 53 symbols allowed as an 
initial character plus the ten digits. Certain keywords, however, such as and, if, print, 
and so forth, are set aside and may not be used as identifiers. In one implementation 
of Python there are 31 such reserved keywords, none of which has more than eight 
characters. How many Python identifiers are there that are less than or equal to eight 
characters in length?

Solution The set of all Python identifiers with eight or fewer characters can be parti-
tioned into eight subsets—identifiers of length 1, identifiers of length 2, and so on—as 
shown in Figure 9.3.4. The reserved words have various lengths (all less than or equal to 
8), so the set of reserved words is shown overlapping the various subsets.

example 9.3.4

Set of Python Identi�ers with Eight or Fewer Characters

Reserved words

length
1

length
2

length
3

length
4

length
5

length
6

length
7

length
8

Figure 9.3.4

According to the rules for creating Python identifiers, there are

53 potential identifiers of length 1  because there are 53 choices for the first char-
acter

53?63 potential identifiers of length 2  because the first character can be any one of 
53 symbols, and the second character can be 
any one of 63 symbols

53?632 potential identifiers of length 3  because the first character can be any one of 
53 symbols, and each of the next two characters 
can be any one of 63 symbols

o

53?637 potential identifiers of length 8  because the first character can be any one of 
53 symbols, and each of the next seven charac-
ters can be any one of 63 symbols.
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Thus, by the addition rule, the number of potential Python identifiers with eight or fewer 
characters is

53153?63153?632 153?633 153?634 153?635 153?636 153?637

5 53S638 21

6321 D by Theorem 5.2.2

5 212,133,167,002,880.

Now 31 of these potential identifiers are reserved, so by the difference rule, the actual 
number of Python identifiers with eight or fewer characters is

 212,133,167,002,880231 5 212,133,167,002,849. ■

internet Addresses

In order to communicate effectively, each computer in a network needs a distinguish-
ing name called an address. For the Internet this address is currently a 32-bit number 
called the Internet Protocol (IP) address (although 128-bit addresses are being phased 
in to accommodate the growth of the Internet). For technical reasons some computers 
have more than one address, whereas other sets of computers, which use the Internet only 
sporadically, may share a pool of addresses that are assigned on a temporary basis. Like 
telephone numbers, IP addresses are divided into parts: one, the network ID, specifies the 
local network to which a given computer belongs, and the other, the host ID, specifies the 
particular computer.

An example of an IP address is 10001100 11000000 00100000 10001000, where the 
32 bits have been divided into four groups of 8 for easier reading. To make the reading even 
easier, IP addresses are normally written as “dotted decimals,” in which each group of 8 bits 
is converted into a decimal number between 0 and 255. For instance, the IP address above 
converts into 140.192.32.136.

In order to accommodate the various sizes of the local networks connected through the 
Internet, the network IDs are divided into several classes, the most important of which are 
called A, B, and C. In every class, a host ID may not consist of either all 0’s or all 1’s.

Class A network IDs are used for very large local networks. The left-most bit is set to 
0, and the left-most 8 bits give the full network ID. The remaining 24 bits are used for 
individual host IDs. However, neither 00000000 nor 01111111 is allowed as a network ID 
for a class A IP address.

Network ID Host ID

Class A: 0

Class B network IDs are used for medium to large local networks. The two left-most 
bits are set to 10, and the left-most 16 bits give the full network ID. The remaining 16 bits 
are used for individual host IDs.

Network ID Host ID

Class B: 1 0

Class C network IDs are used for small local networks. The three left-most bits are set 
to 110, and the left-most 24 bits give the full network ID. The remaining 8 bits are used for 
individual host IDs.

example 9.3.5
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Network ID Host ID

Class C: 1 1 0

a. Check that the dotted decimal form of 10001100 11000000 00100000 10001000 is 
140.192.32.136.

b. How many Class B networks can there be?

c. What is the dotted decimal form of the IP address for a computer in a Class B 
network?

d. How many host IDs can there be for a Class B network? 
Solution
a. 10001100 5 1?27 11?23 11?22 5 1281814 5 140

11000000 5 1?27 11?26 5 128164 5 192
00100000 5 1?25 5 32
10001000 5 1?27 11?23 5 12818 5 136

b. The network ID for a Class B network consists of 16 bits and begins with 10. Because 
there are two choices for each of the remaining 14 positions (either 0 or 1), the total 
number of possible network IDs is 214, or 16,384.

c. The network ID part of a Class B IP address goes from

10000000 00000000 to 10111111 11111111.

As dotted decimals, these numbers range from 128.0 to 191.255 because 100000002 5 
12810, 000000002 5 010, 101111112 5 19110, 111111112 5 25510. Thus the dotted deci-
mal form of the IP address of a computer in a Class B network is w.x.y.z, where  
128 # w # 191, 0 # x # 255, 0 # y # 255, and 0 # z # 255. However, y and z are 
not allowed both to be 0 or both to be 255 because host IDs may not consist of either 
all 0’s or all 1’s.

d. For a class B network, 16 bits are used for host IDs. Having two choices (either 0 or 1) for 
each of 16 positions gives a potential total of 216, or 65,536, host IDs. But because two of 
these are not allowed (all 0’s and all 1’s), the total number of host IDs is 65,534. ■

The Inclusion/Exclusion Rule
The addition rule says how many elements are in a union of sets if the sets are mutually 
disjoint. Now consider the question of how to determine the number of elements in a union 
of sets when some of the sets overlap. For simplicity, begin by looking at a union of two 
sets A and B, as shown in Figure 9.3.5.

Figure 9.3.5

A B

A B

A B
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First observe that the number of elements in A ø B varies according to the number 
of elements the two sets have in common. If A and B have no elements in common, then 
N(A ø B) 5 N(A)1N(B). If A and B coincide, then N(A ø B) 5 N(A). Thus any general 
formula for N(A ø B) must contain a reference to the number of elements the two sets have 
in common, N(A ù B), as well as to N(A) and N(B).

The simplest way to derive a formula for N(A ø B) is to reason as follows: The number 
N(A) counts the elements that are in A and not in B as well as the elements that are in both 
A and B. Similarly, the number N(B) counts the elements that are in B and not in A as well 
as the elements that are in both A and B. Hence when the two numbers N(A) and N(B) are 
added, the elements that are in both A and B are counted twice. To get an accurate count of 
the elements in A ø B, it is necessary to subtract the number of elements that are in both A 
and B. Because these are exactly the elements that are in A ù B,

N(A ø B) 5 N(A)1N(B)2N(A ù B).

A similar analysis gives a formula for the number of elements in a union of three sets, 
as shown in Theorem 9.3.3.

Note An alternative 
proof is outlined in exer-
cise 46 at the end of this 
section.

Theorem 9.3.3 The inclusion/exclusion rule for Two or Three Sets

If A, B, and C are any finite sets, then

N(A ø B) 5 N(A)1N(B)2N(A ù B)

and

N(A ø B ø C) 5 N(A)1N(B)1N(C)2N(A ù B)2N(A ù C)
2N(B ù C)1N(A ù B ù C).

It can be shown using mathematical induction (see exercise 48 at the end of this sec-
tion) that formulas analogous to those of Theorem 9.3.3 hold for unions of any finite 
number of sets.

Counting elements of a general union

a. How many integers from 1 through 1,000 are multiples of 3 or multiples of 5?

b. How many integers from 1 through 1,000 are neither multiples of 3 nor multiples of 5? 
Solution
a. Let A 5 the set of all integers from 1 through 1,000 that are multiples of 3.

Let B 5 the set of all integers from 1 through 1,000 that are multiples of 5.

Then

A ø B 5 the set of all integers from 1 through 1,000 that are multiples of 3 
or multiples of 5

and

A ù B 5 the set of all integers from 1 through 1,000 that are multiples 
of both 3 and 5

5 the set of all integers from 1 through 1,000 that are multiples of 15.

[Now calculate N(A), N(B), and N(A ù B) and use the inclusion/exclusion rule to solve for 
N(A ø B).]

example 9.3.6
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Because every third integer from 3 through 999 is a multiple of 3, each can be rep-
resented in the form 3k, for some integer k from 1 through 333. Hence there are 333 
multiples of 3 from 1 through 1,000, and so N(A) 5 333.

1 2 3 4 5 6 Á  996 997 998 999
D D D D

3?1 3?2 3?332 3?333

Similarly, each multiple of 5 from 1 through 1,000 has the form 5k, for some integer k 
from 1 through 200.

1 2 3 4 5 6 7 8 9 10 Á  995 996 997 998 999 1,000
D D D D

5?1 5?2 5?199 5?200

Thus there are 200 multiples of 5 from 1 through 1,000 and N(B) 5 200. Finally, 
each multiple of 15 from 1 through 1,000 has the form 15k, for some integer k from 1 
through 66 (since 990 5 66?15).

1 2 Á 15 Á  30 Á  975 Á  990 Á  999 1,000

D D D D
15?1 15?2 15?65 15?66

Hence there are 66 multiples of 15 from 1 through 1,000, and N(A ù B) 5 66. It fol-
lows by the inclusion/exclusion rule that

N(A ø B) 5 N(A)1N(B)2N(A ù B)

5 3331200266

5 467. 

Thus, 467 integers from 1 through 1,000 are multiples of 3 or multiples of 5.

b. There are 1,000 integers from 1 through 1,000, and by part (a), 467 of these are multi-
ples of 3 or multiples of 5. Thus, by the set difference rule, there are 1,0002467 5 533 
that are neither multiples of 3 nor multiples of 5.  ■

Note that the solution to part (b) of Example 9.3.6 hid a use of De Morgan’s law. The 
number of elements that are neither in A nor in B is N(Ac ù Bc), and by De Morgan’s 
law, Ac ù Bc 5 (A ø B)c. So N((A ø B)c) was calculated using the set difference rule: 
N((A ø B)c) 5 N(U)2N(A ø B), where the universe U was the set of all integers from 
1 through 1,000. Exercises 37–39 at the end of this section explore this technique further.

Counting the Number of elements in an intersection

A professor in a discrete mathematics class passes out a form asking students to check all 
the mathematics and computer science courses they have recently taken. She found that, 
out of a total of 50 students in the class,

30 took precalculus; 16 took both precalculus and Python;
18 took calculus; 8 took both calculus and Python;
26 took Python; 47 took at least one of the three courses.
9 took both precalculus and calculus; 

example 9.3.7
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Note that when we write “30 students took precalculus,” we mean that the total number 
of students who took precalculus is 30, and we allow for the possibility that some of these 
students may have taken one or both of the other courses. If we want to say that 30 students 
took precalculus only (and not either of the other courses), we will say so explicitly.

a. How many students did not take any of the three courses?

b. How many students took all three courses?

c. How many students took precalculus and calculus but not Python? How many students 
took precalculus but neither calculus nor Python? 

Solution
a. By the difference rule, the number of students who did not take any of the three 

courses equals the number in the class minus the number who took at least one course. 
Thus the number of students who did not take any of the three courses is

50247 5 3.

b. Let

P 5 the set of students who took precalculus

C 5 the set of students who took calculus

Y 5 the set of students who took Python. 

Then, by the inclusion/exclusion rule,

N(P ø C ø Y) 5 N(P)1N(C)1N(Y)2N(P ù C)2N(P ù Y)

2 N(C ù Y)1N(P ù C ù Y)

Substituting known values, we get

47 5 3011812629216281N(P ù C ù Y).

Solving for N(P ù C ù Y) gives

N(P ù C ù Y) 5 6.

Hence there are six students who took all three courses. In general, if you know any 
seven of the eight terms in the inclusion/exclusion formula for three sets, you can solve 
for the eighth term.

c. To answer the questions of part (c), look at the diagram in Figure 9.3.6.

Figure 9.3.6

11
10

6

7

8

3 2

P Y

C

The number of
students who
took all three
courses

The number of
students who
took both
precalculus and
calculus
but not Python 3

Since N(P ù C ù Y) 5 6, put the number 6 inside the innermost region. Then work 
outward to find the numbers of students represented by the other regions of the diagram. 
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For example, since nine students took both precalculus and calculus and six took all three 
courses, 926 5 3 students took precalculus and calculus but not Python. Similarly, 
since 16 students took precalculus and Python and six took all three courses, 1626 5 10 
students took precalculus and Python but not calculus. Now the total number of students 
who took precalculus is 30. Of these 30, three also took calculus but not Python, ten took 
Python but not calculus, and six took both calculus and Python. That leaves 11 students 
who took precalculus but neither of the other two courses.

A similar analysis can be used to fill in the numbers for the other regions of the 
diagram. ■

1. The addition rule says that if a finite set A equals 
the union of k distinct mutually disjoint subsets  
A1, A2, Á  Ak , then .

2. The difference rule says that if A is a finite set and 
B is a subset of A, then .

3. If S is a finite sample space and A is an event in S, 
then the probability of Ac equals .

4. The inclusion/exclusion rule for two sets says that 
if A and B are any finite sets, then .

5. The inclusion/exclusion rule for three sets says that 
if A, B, and C are any finite sets, then .

TeST YOurSeLF 

1. a.  How many bit strings consist of from one 
through four digits? (Strings of different 
lengths are considered distinct. Thus 10 and 
0010 are distinct strings.)

b. How many bit strings consist of from five 
through eight digits? 

2. a.  How many strings of hexadecimal digits con-
sist of from one through three digits? (Recall 
that hexadecimal numbers are constructed 
using the 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 
B, C, D, E, F.)

b. How many strings of hexadecimal digits con-
sist of from two through five digits?

3. a.  How many integers from 1 through 999 do not 
have any repeated digits?

b. How many integers from 1 through 999 have at 
least one repeated digit?

c. What is the probability that an integer chosen 
at random from 1 through 999 has at least one 
repeated digit?

4. How many arrangements in a row of no more than 
three letters can be formed using the letters of the 
word NETWORK (with no repetitions allowed)?

5. a.  How many five-digit integers (integers from 
10,000 through 99,999) are divisible by 5?

b. What is the probability that a five-digit integer 
chosen at random is divisible by 5?

6. In a certain state, all license plates consist of from 
four to six symbols chosen from the 26 uppercase 
letters of the Roman alphabet together with the ten 
digits 0–9.
a. How many license plates are possible if repeti-

tion of symbols is allowed?
b. How many license plates do not contain any 

repeated symbols?
c. How many license plates have at least one 

repeated symbol?
d. What is the probability that a license plate cho-

sen at random has at least one repeated symbol? 
7. At a certain company, passwords must be from 

3–5 symbols long and composed from the 26 
uppercase letters of the Roman alphabet, the ten 
digits 0–9, and the 14 symbols !, @, #, $, %, ^, &, 
*, (, ), 2, 1, {, and }.
a. How many passwords are possible if repetition 

of symbols is allowed?
H

exerCiSe SeT 9.3 

94193_ch09_ptg01.indd   599 12/11/18   5:23 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



600  ChAPTer 9 countInG and ProbabIlIty

b. How many passwords contain no repeated 
symbols?

c. How many passwords have at least one re-
peated symbol?

d. What is the probability that a password chosen 
at random has at least one repeated symbol?

8. In a certain country license plates consist of zero 
or one digit followed by four or five uppercase let-
ters from the Roman alphabet.
a. How many different license plates can the 

country produce?
b. How many license plates have no repeated letter?
c. How many license plates have at least one 

repeated letter?
d. What is the probability that a license plate has 

a repeated letter?

9. a. Consider the following algorithm segment:

for i :5 1 to 4

for j :5 1 to i

[Statements in body of inner loop. 
None contain branching statements 
that lead outside the loop.]

next j

next i

How many times will the inner loop be iterated 
when the algorithm is implemented and run?

b. Let n be a positive integer, and consider the 
following algorithm segment:

for i :5 1 to n

for j :5 1 to i

[Statements in body of inner loop. 
None contain branching statements 
that lead outside the loop.]

next j

next i
How many times will the inner loop be iterated 
when the algorithm is implemented and run?

10. A calculator has an eight-digit display and a 
decimal point that is located at the extreme right 
of the number displayed, or at the extreme left, 
or between any pair of digits. The calculator can 
also display a minus sign at the extreme left of 
the number. How many distinct numbers can the 
calculator display? (Note that certain numbers 
are equal, such as 1.9, 1.90, and 01.900, and 
should, therefore, not be counted twice.)

11. a.  How many ways can the letters of the word 
QUICK be arranged in a row?

b. How many ways can the letters of the word 
QUICK be arranged in a row if the Q and 
the U must remain next to each other in the 
order QU?

c. How many ways can the letters of the word 
QUICK be arranged in a row if the letters QU 
must remain together but may be in either the 
order QU or the order UQ?

12. a.  How many ways can the letters of the word 
THEORY be arranged in a row?

b. How many ways can the letters of the word 
THEORY be arranged in a row if T and H must 
remain next to each other as either TH or HT?

13. A group of eight people are attending the movies 
together.
a. Two of the eight insist on sitting side-by-side. 

In how many ways can the eight be seated 
together in a row?

b. Two of the people do not like each other and 
do not want to sit side-by-side. Now how 
many ways can the eight be seated together in 
a row?

14. An early compiler recognized variable names 
according to the following rules: Numeric vari-
able names had to begin with a letter, and then 
the letter could be followed by another letter or a 
digit or by nothing at all. String variable names 
had to begin with the symbol $ followed by a 
letter, which could then be followed by another 
letter or a digit or by nothing at all. How many 
distinct variable names were recognized by this 
compiler?

15. Identifiers in a certain database language must 
begin with a letter, and then the letter may be fol-
lowed by other characters, which can be letters, 
digits, or underscores (_). However, 82 keywords 
(all consisting of 15 or fewer characters) are 
reserved and cannot be used as identifiers. How 
many identifiers with 30 or fewer characters are 
possible? (Write the answer using summation 
notation and evaluate it using a formula from 
Section 5.2.)

16. a.  If any seven digits could be used to form a 
telephone number, how many seven-digit tele-
phone numbers would not have any repeated 
digits?

*

H
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b. How many seven-digit telephone numbers 
would have at least one repeated digit?

c. What is the probability that a randomly chosen 
seven-digit telephone number would have at 
least one repeated digit?

17. a.  How many strings of four hexadecimal digits 
do not have any repeated digits?

b. How many strings of four hexadecimal digits 
have at least one repeated digit?

c. What is the probability that a randomly chosen 
string of four hexadecimal digits has at least 
one repeated digit?

18. Just as the difference rule gives rise to a formula 
for the probability of the complement of an event, 
so the addition and inclusion/exclusion rules give 
rise to formulas for the probability of the union of 
mutually disjoint events and for a general union of 
(not necessarily mutually exclusive) events.
a. Prove that for mutually disjoint events A and B,

P (A ø B) 5 P (A)1P (B).

b. Prove that for any events A and B,

P (A ø B) 5 P (A)1P (B)2P (A ù B).

19. A combination lock requires three selections of 
numbers, each from 1 through 39. Suppose the 
lock is constructed in such a way that no number 
may be used twice in a row but the same number 
may occur both first and third. For example, 20 13 
20 would be acceptable, but 20 20 13 would not. 
How many different combinations are possible?

20. a.  How many integers from 1 through 100,000 
contain the digit 6 exactly once?

b. How many integers from 1 through 100,000 
contain the digit 6 at least once?

c. If an integer is chosen at random from 1 
through 100,000, what is the probability that it 
contains two or more occurrences of the digit 6?

21. Six new employees, two of whom are married to 
each other, are to be assigned six desks that are 
lined up in a row. If the assignment of employees 
to desks is made randomly, what is the probabil-
ity that the married couple will have nonadjacent 
desks? (Hint: The event that the couple have non-
adjacent desks is the complement of the event that 
they have adjacent desks.)

22. Consider strings of length n over the set {a, b, c, d}.
a. How many such strings contain at least one 

pair of adjacent characters that are the same?

b. If a string of length ten over {a, b, c, d} is cho-
sen at random, what is the probability that it 
contains at least one pair of adjacent characters 
that are the same?

23. a.  How many integers from 1 through 1,000 are 
multiples of 4 or multiples of 7?

b. Suppose an integer from 1 through 1,000 is 
chosen at random. Use the result of part (a) to 
find the probability that the integer is a mul-
tiple of 4 or a multiple of 7.

c. How many integers from 1 through 1,000 are 
neither multiples of 4 nor multiples of 7?

24. a.  How many integers from 1 through 1,000 are 
multiples of 2 or multiples of 9?

b. Suppose an integer from 1 through 1,000 is 
chosen at random. Use the result of part (a) to 
find the probability that the integer is a mul-
tiple of 2 or a multiple of 9.

c. How many integers from 1 through 1,000 are 
neither multiples of 2 nor multiples of 9?

25. Counting Strings:
a. Make a list of all bit strings of lengths 0, 1, 2, 

3, and 4 that do not contain the bit pattern 111.
b. For each integer n $ 0, let dn 5 the number of 

bit strings of length n that do not contain the 
bit pattern 111. Find d0, d1, d2, d3, and d4.

c. Find a recurrence relation for d0, d1, d2, Á .
d. Use the results of parts (b) and (c) to find the 

number of bit strings of length 5 that do not 
contain the pattern 111.

26. Counting Strings: Consider the set of all strings of 
a’s, b’s, and c’s.
a. Make a list of all of these strings of lengths 0, 

1, 2, and 3 that do not contain the pattern aa.
b. For each integer n $ 0, let sn 5 the number of 

strings of a’s, b’s, and c’s of length n that do not 
contain the pattern aa. Find s0, s1, s2, and s3.

c. Find a recurrence relation for s0, s1, s2, Á .
d. Use the results of parts (b) and (c) to find the 

number of strings of a’s, b’s, and c’s of length 
four that do not contain the pattern aa.

e. Use the technique described in Section 5.8 to 
find an explicit formula for s0, s1, s2, Á .

27. For each integer n $ 0, let ak be the number of bit 
strings of length n that do not contain the pattern 101.
a. Show that ak 5 ak21 1ak23 1ak24 1 Á 1

a0 12, for every integer k $ 3.
b. Use the result of part (a) to show that if k $ 3, 

then ak 5 2ak21 2  ak22 1ak23.

H

*

H*

*

H

H
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28. For each integer n $ 2 let an be the number of per-
mutations of {1, 2, 3, … , n} in which no number 
is more than one place removed from its “natural” 
position. Thus a1 5 1 since the one permutation 
of {1}, namely, 1, does not move 1 from its natural 
position. Also, a2 5 2 since neither of the two 
permutations of {1, 2}, namely, 12 and 21, moves 
either number more than one place from its natu-
ral position.
a. Find a3.
b. Find a recurrence relation for a1, a2, a3, Á .

29. Refer to Example 9.3.5.
a. Write the following IP address in dotted deci-

mal form:

11001010 00111000 01101011 11101110

b. How many Class A networks can there be?
c. What is the dotted decimal form of the IP ad-

dress for a computer in a Class A network?
d. How many host IDs can there be for a Class A 

network?
e. How many Class C networks can there be?
f. What is the dotted decimal form of the IP ad-

dress for a computer in a Class C network?
g. How many host IDs can there be for a Class 

C network?
h. How can you tell, by looking at the first of the 

four numbers in the dotted decimal form of an 
IP address, what kind of network the address is 
from? Explain.

i. An IP address is 140.192.32.136. What class of 
network does it come from?

j. An IP address is 202.56.107.238. What class of 
network does it come from?

30. A row in a classroom has n seats. Let sn be the num-
ber of ways nonempty sets of students can sit in the 
row so that no student is seated directly adjacent to 
any other student. (For instance, a row of three seats 
could contain a single student in any of the seats or a 
pair of students in the two outer seats. Thus s3 5 4.) 
Find a recurrence relation for s1, s2, s3, Á .

31. Assume that birthdays are equally likely to occur 
in any one of the 12 months of the year.
a. Given a group of four people, A, B, C, and D, 

what is the total number of ways in which birth 
months could be associated with A, B, C, and 
D? (For instance, A and B might have been born 
in May, C in September, and D in February. As 
another example, A might have been born in Jan-
uary, B in June, C in March, and D in October.)

b. How many ways could birth months be associ-
ated with A, B, C, and D so that no two people 
would share the same birth month?

c. How many ways could birth months be associ-
ated with A, B, C, and D so that at least two 
people would share the same birth month?

d. What is the probability that at least two people 
out of A, B, C, and D share the same birth 
month?

e. How large must n be so that in any group of n 
people, the probability that two or more share 
the same birth month is at least 50%?

32. Assuming that all years have 365 days and all birth-
days occur with equal probability, how large must n 
be so that in any randomly chosen group of n people, 
the probability that two or more have the same 
birthday is at least 1/2? (This is called the birthday 
problem. Many people find the answer surprising.)

33. A college conducted a survey to explore the aca-
demic interests and achievements of its students. It 
asked students to place checks beside the num-
bers of all the statements that were true of them. 
Statement #1 was “I was on the Dean’s list last 
term,” statement #2 was “I belong to an academic 
club, such as the math club or the Spanish club,” 
and statement #3 was “I am majoring in at least 
two subjects.” Out of a sample of 100 students, 28 
checked #1, 26 checked #2, and 14 checked #3, 8 
checked both #1 and #2, 4 checked both #1 and 
#3, 3 checked both #2 and #3, and 2 checked all 
three statements.
a. How many students checked at least one of the 

statements?
b. How many students checked none of 

the statements?
c. Let H be the set of students who checked #1, 

C the set of students who checked #2, and D 
the set of students who checked #3. Fill in the 
numbers for all eight regions of the diagram.

Sample of Students

H

C

D

*

*

H
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d. How many students checked #1 and #2 but 
not #3?

e. How many students checked #2 and #3 but 
not #1?

f. How many students checked #2 but neither of 
the other two?

34. A study was done to determine the efficacy of 
three different drugs—A, B, and C—in relieving 
headache pain. Over the period covered by the 
study, 50 subjects were given the chance to use all 
three drugs. The following results were obtained:

21 reported relief from drug A
21 reported relief from drug B
31 reported relief from drug C
9 reported relief from both drugs A and B
14 reported relief from both drugs A and C
15 reported relief from both drugs B and C
41 reported relief from at least one of the drugs. 

Note that some of the 21 subjects who reported 
relief from drug A may also have reported relief 
from drugs B or C. A similar occurrence may be 
true for the other data.
a. How many people got relief from none of the 

drugs?
b. How many people got relief from all three 

drugs?
c. Let A be the set of all subjects who got relief 

from drug A, B the set of all subjects who got 
relief from drug B, and C the set of all subjects 
who got relief from drug C. Fill in the numbers 
for all eight regions of the following diagram.

A

C

Sample of Subjects

B

d. How many subjects got relief from A only?

35. An interesting use of the inclusion/exclusion rule 
is to check survey numbers for consistency. For 
example, suppose a public opinion polltaker re-
ports that out of a national sample of 1,200 adults, 
675 are married, 682 are from 20 to 30 years old, 
684 are female, 195 are married and are from 

20 to 30 years old, 467 are married females, 318 
are females from 20 to 30 years old, and 165 are 
married females from 20 to 30 years old. Are the 
polltaker’s figures consistent? Could they have oc-
curred as a result of an actual sample survey?

36. Fill in the reasons for each step below. If A and B 
are sets in a finite universe U, then

N(A ù B) 5 N(U)2N((A ù B)c)  (a) 

5 N(U)2N(Ac ø Bc )  (b) 

5 N(U)2 (N(Ac )1N(Bc )2N(Ac ù Bc)) (c) .

For each of exercises 37−39, the number of elements 
in a certain set can be found by computing the num-
ber in a larger universe that are not in the set and 
subtracting this from the total in the larger universe. 
In each of these, as was the case for the solution to 
example 9.3.6(b), De Morgan’s laws and the inclusion/
exclusion rule can be used.

37. How many positive integers less than 1,000 have 
no common factors with 1,000?

38. How many permutations of abcde are there in 
which the first character is a, b, or c and the last 
character is c, d, or e?

39. How many integers from 1 through 999,999 
contain each of the digits 1, 2, and 3 at least once? 
(Hint: For each i 5 1, 2, and 3, let Ai be the set of 
all integers from 1 through 999,999 that do not 
contain the digit i.)

For 40 and 41, use the definition of the euler phi function 
w from Section 7.1, exercises 51–53.

40. Use the inclusion/exclusion principle to prove the 
following: If n 5 pq, where p and q are distinct 
prime numbers, then w(n) 5 (p21)(q21).

41. Use the inclusion/exclusion principle to prove the 
following: If n 5 pqr, where p, q, and r are distinct 
prime numbers, then w(n) 5 (p21)(q21)(r21).

42. A gambler decides to play successive games of 
blackjack until he loses three times in a row. (Thus 
the gambler could play five games by losing the 
first, winning the second, and losing the final 
three or by winning the first two and losing the 
final three. These possibilities can be symbolized 
as LWLLL and WWLLL.) Let gn be the number of 
ways the gambler can play n games.
a. Find g3, g4, and g5.
b. Find g6.
c. Find a recurrence relation for g3, g4, g5, Á .

*

H

H

*
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43. A derangement of the set {1, 2, Á , n} is a permu-
tation that moves every element of the set away 
from its “natural” position. Thus 21 is a derange-
ment of {1, 2}, and 231 and 312 are derangements 
of {1, 2, 3}. For each positive integer n, let dn be the 
number of derangements of the set {1, 2, Á , n}.
a. Find d1, d2, and d3.
b. Find d4.
c. Find a recurrence relation for d1, d2, d3, Á .

44. Note that a product x1x2x3 may be parenthesized 
in two different ways: (x1x2)x3 and x1(x2x3). Simi-
larly, there are several different ways to paren-
thesize x1x2x3x4. Two such ways are (x1x2)(x3x4) 
and x1((x2x3)x4). Let Pn be the number of different 
ways to parenthesize the product x1x2 Á x4. Show 
that if P1 5 1, then

Pn 5 o
n21

k51

Pk Pn2k   for every integer n $ 2.

(It turns out that the sequence P1, P2, P3, Á
is the same as the sequence of Catalan num-
bers: Pn 5 Cn21 for every integer n $ 1. 
See Example 5.6.4.)

45. Use mathematical induction to prove Theorem 9.3.1.

46. Prove the inclusion/exclusion rule for two sets A 
and B by showing that A ø B can be partitioned 

into A ù B, A2 (A ù B), and B2 (A ù B), and 
then using the addition and difference rules. (See 
the hint for exercise 39 in Section 6.2.)

47. Prove the inclusion/exclusion rule for three sets.

48. Use mathematical induction to prove the general 
inclusion/exclusion rule:

If A1, A2, Á , An are finite sets, then

N(A1 ø A2 ø Á ø An)

5 o
1#i#n

N(Ai) 2  o
1#i,j#n

N(Ai ù Aj)

1 o
1#i,j,k#n

N(Ai ù Aj ù Ak)

2 
Á 1 (21)n11N(A1 ù A2 ù Á ù An).

(The notation o1#i,j#n N(Ai ù Aj) means that 
quantities of the form N(Ai ù Aj) are to be added 
together for all integers i and j with 1 # i , j # n.)

49. A circular disk is cut into n distinct sectors, each 
shaped like a piece of pie and all meeting at the 
center point of the disk. Each sector is to be paint-
ed red, green, yellow, or blue in such a way that no 
two adjacent sectors are painted the same color. 
Let Sn be the number of ways to paint the disk.
a. Find a recurrence relation for Sk in terms of 

Sk21 and Sk22 for each integer k $ 4.
b. Find an explicit formula for Sn for n $ 2. 

*

H

H*

*

1. the number of elements in A equals N(A1)1N(A2)1 Á 1N(An) 2. the number of elements in A2B is the difference  
between the number of elements in A and the number of elements in B, that is, N(A2B) 5 N(A)2N(B). 3. 12P (A)  
4. N(A ø B) 5 N(A)1N(B)2N(A ù B) 5. N(A ø B ø C) 5 N(A)1N(B)1N(C)2N(A ù B)2N(A ù C)2

N(B ù C)1N(A ù B ù C)

ANSwerS FOr TeST YOurSeLF 

The Pigeonhole Principle
The shrewd guess, the fertile hypothesis, the courageous leap to a tentative 
conclusion—these are the most valuable coin of the thinker at work.  
—Jerome S. Bruner, 1960

The pigeonhole principle states that if n pigeons fly into m pigeonholes and n . m, 
then at least one hole must contain two or more pigeons. This principle is illustrated in 
Figure 9.4.1 for n 5 5 and m 5 4. Illustration (a) shows the pigeons perched next to their 
holes, and (b) shows the correspondence from pigeons to pigeonholes. The pigeonhole 
principle is sometimes called the Dirichlet box principle because it was first stated for-
mally by J. P. G. L. Dirichlet (1805–1859).

9.4
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9.4 the PIGeonhole PrIncIPle  605

Illustration (b) suggests the following mathematical way to phrase the principle.

1 2

3 4

(a) (b)

3

5

2

1

1

2

3

4

5

1

2

3

4

Pigeons Pigeonholes

4

Figure 9.4.1

Pigeonhole Principle

A function from one finite set to a smaller finite set cannot be one-to-one: There must 
be at least two elements in the domain that have the same image in the co-domain.

Thus an arrow diagram for a function from a finite set to a smaller finite set must have 
at least two arrows from the domain that point to the same element of the co-domain. In 
Figure 9.4.1(b), arrows from pigeons 1 and 4 both point to pigeonhole 3.

Since the truth of the pigeonhole principle is easy to accept intuitively, we move imme-
diately to applications, leaving a formal proof to the end of the section. Applications of the 
pigeonhole principle range from the totally obvious to the extremely subtle. A representa-
tive sample is given in the examples and exercises that follow.

Applying the Pigeonhole Principle

a. In a group of six people, must there be at least two who were born in the same month? 
In a group of thirteen people, must there be at least two who were born in the same 
month? Why?

b. Among the residents of New York City, must there be at least two people with the 
same number of hairs on their heads? Why? 

Solution
a. A group of six people need not contain two who were born in the same month. For in-

stance, the six people could have birthdays in each of the six months January through 
June.

A group of 13 people, however, must contain at least two who were born in the 
same month, for there are only 12 months in a year and 13 . 12. To get at the essence 
of this reasoning, think of the thirteen people as the pigeons and the twelve months of 
the year as the pigeonholes. Denote the thirteen people by the symbols x1, x2, Á , x13 
and define a function B from the set of people to the set of twelve months as shown in 
the following arrow diagram.

example 9.4.1
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606  ChAPTer 9 countInG and ProbabIlIty

The pigeonhole principle says that no matter what the particular assignment of months 
to people, there must be at least two arrows pointing to the same month. Thus at least 
two people must have been born in the same month.

b. The answer is yes. In this example the pigeons are the people of New York City and 
the pigeonholes are all possible numbers of hairs on any individual’s head. Call the 
population of New York City P. It is known that P is at least 8,000,000. Also, the 
maximum number of hairs on any person’s head is known to be less than 300,000. 
Define a function H from the set of people in New York City {x1, x2, Á , xp} to the set 
{0, 1, 2, 3, Á , 300,000}, as shown in the arrow diagram.

x1

x2

x12

x 13

B
Jan

Feb

Dec

B(xi) = birth month of xi

13 people (pigeons) 12 months (pigeonholes)

Since the number of people in New York City is larger than the number of possible 
hairs on their heads, the function H is not one-to-one; at least two arrows point to the 
same number. And this means that at least two people have the same number of hairs 
on their heads. ■

Finding the Number to Pick to ensure a result

A drawer contains ten black and ten white socks. You reach in and pull some out without 
looking at them. What is the least number of socks you must pull out to be sure to get a 
matched pair? Explain how the answer follows from the pigeonhole principle.

Solution If you pick just two socks, they may have different colors. But when you pick a 
third sock, it must be the same color as one of the socks already chosen. Hence the answer 
is three.

This answer could be phrased more formally as follows: Let the socks pulled out be 
denoted s1, s2, s3, Á , sn and consider the function C that sends each sock to its color, as 
shown on the next page.

example 9.4.2

x1

x2

x3

xp

H

0

1

2

300,000

H(xi) = the number of

People in New York City
(pigeons)

Possible number of hairs on
a person’s head (pigeonholes)

hairs on xi’s head
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9.4 the PIGeonhole PrIncIPle  607

If n 5 2, C could be a one-to-one correspondence (if the two socks pulled out were of dif-
ferent colors). But if n . 2, then the number of elements in the domain of C is larger than 
the number of elements in the co-domain of C. Thus by the pigeonhole principle, C is not 
one-to-one: C(si) 5 C(sj) for some si Þ sj. This means that if at least three socks are pulled 
out, then at least two of them have the same color. ■

Selecting a Pair of integers with a Certain Sum

Let A 5 {1, 2, 3, 4, 5, 6, 7, 8}.

a. If five integers are selected from A, must at least one pair of the integers have a sum of 9?

b. If four integers are selected from A, must at least one pair of the integers have a sum of 9? 
Solution
a. Yes. Partition the set A into the following four disjoint subsets:

{1, 8}, {2, 7}, {3, 6}, and {4, 5}.

Observe that each of the integers in A occurs in exactly one of the four subsets and 
that the sum of the integers in each subset is 9. Thus if five integers from A are chosen, 
then by the pigeonhole principle, two must be from the same subset. It follows that the 
sum of these two integers is 9.

To see precisely how the pigeonhole principle applies, let the pigeons be the five 
selected integers (call them a1, a2, a3, a4, and a5) and let the pigeonholes be the subsets 
of the partition. The function P from pigeons to pigeonholes is defined by letting P (ai) 
be the subset that contains ai.

example 9.4.3

s1

s2

sn

C

C(si ) = color of si

Socks pulled out (pigeons) Colors (pigeonholes)

white

black

a1

a2

a3

a4

a5

P

P(ai ) = the subset that

The 5 selected integers
(pigeons)

The 4 subsets in the partition of A
(pigeonholes)

{1, 8}

{2, 7}

{3, 6}

{4, 5}

contains ai

The function P is well defined because for each integer ai in the domain, ai belongs 
to one of the subsets (since the union of the subsets is A) and ai does not belong to 
more than one subset (since the subsets are disjoint).
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608  ChAPTer 9 countInG and ProbabIlIty

Because there are more pigeons than pigeonholes, at least two pigeons must go to 
the same hole. Thus two distinct integers are sent to the same set. But that implies 
that those two integers are the two distinct elements of the set, so their sum is 9. More 
formally, by the pigeonhole principle, since P is not one-to-one, there are integers ai 
and aj such that

P (ai) 5 P (aj) and ai Þ aj.

But then, by definition of P, ai and aj belong to the same subset. Since the elements in 
each subset add up to 9, ai 1aj 5 9.

b. The answer is no. This is a case where the pigeonhole principle does not apply; the 
number of pigeons is not larger than the number of pigeonholes. For instance, if you 
select the integers 1, 2, 3, and 4, then since the largest sum of any two of these integers 
is 7, no two of them add up to 9.  ■

Application to Decimal Expansions of Fractions
One important consequence of the pigeonhole principle is the fact that

the decimal expansion of any rational number either terminates or repeats.

A terminating decimal is one like

3.625,

and a repeating decimal is one like

2.38246,

where the bar over the digits 246 means that these digits are repeated forever.

Recall that a rational number is one that can be written as a ratio of integers—in other 
words, as a fraction. Recall also that the decimal expansion of a fraction is obtained by 
dividing its numerator by its denominator using long division. For example, the decimal 
expansion of 4y33 is obtained as follows:

Note Strictly speaking, a 
terminating decimal like 
3.625 can be regarded 
as a repeating decimal 
by adding trailing zeros: 
3.625 5 3.6250. This can 
also be written as 3.6249.

.1 2 1 2 1 2 1 2

33 4 0 0 0 0 0 0 0 0 0 0 0
3 3

7 0
6 6

4 0
3 3

7 0
6 6

4

These are the same number.

Because the number 4 reappears as a remainder in the long-division process, the sequence 
of quotients and remainders that give the digits of the decimal expansion repeats forever; 
hence the digits of the decimal expansion repeat forever.

In general, when one integer is divided by another, it is the pigeonhole principle (to-
gether with the quotient-remainder theorem) that guarantees that such a repetition of re-
mainders and hence decimal digits must always occur. This is explained in the following 
example. The analysis in the example uses an obvious generalization of the pigeonhole 
principle, namely, that a function from an infinite set to a finite set cannot be one-to-one.
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9.4 the PIGeonhole PrIncIPle  609

The Decimal expansion of a Fraction

Let a and b be integers and consider a fraction ayb, where for simplicity a and b are both 
assumed to be positive. The decimal expansion of ayb is obtained by dividing a by b as 
illustrated here for a 5 3 and b 5 14.

example 9.4.4

Let r0 5 a and let r1, r2, r3, Á be the successive remainders obtained in the long division 
of a by b. By the quotient-remainder theorem, each remainder must be between 0 and 
b21. (In this example, a is 3 and b is 14, and so the remainders are from 0 to 13.) If some 
remainder ri 5 0, then the division terminates and ayb has a terminating decimal expan-
sion. If no ri 5 0, then the division process and hence the sequence of remainders contin-
ues forever. By the pigeonhole principle, since there are more remainders than values that 
the remainders can take, some remainder value must repeat: rj 5 rk, for some indices j and 
k with j , k. This is illustrated below for a 5 3 and b 5 14.

r0

r1

r2

r7

0

1

3

2

13

F

F(ri) = value of ri

Sequence of remainders Values of remainders when b = 14

94193_ch09_ptg01.indd   609 12/11/18   5:24 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



610  ChAPTer 9 countInG and ProbabIlIty

If follows that the decimal digits obtained from the divisions between rj and rk21 repeat 
forever. In the case of 3y14, the repetition begins with r7 5 2 5 ri and the decimal ex-
pansion repeats the quotients obtained from the divisions from r1 through r6 forever: 
3y14 5 0.2142857. ■

Note that since the decimal expansion of any rational number either terminates or 
repeats, if a number has a decimal expansion that neither terminates nor repeats, then 
it cannot be rational. Thus, for example, the following number cannot be rational: 
0.01011011101111011111 Á (where each string of 1’s is one longer than the previous 
string).

Generalized Pigeonhole Principle
A generalization of the pigeonhole principle states that if n pigeons fly into m pigeon-
holes and, for some positive integer k, km , n, then at least one pigeonhole contains k11 
or more pigeons. This is illustrated in Figure 9.4.2 for m 5 4, n 5 9, and k 5 2. Since 
2?4 , 9, at least one pigeonhole contains three (211) or more pigeons. (In this example, 
pigeonhole 3 contains three pigeons.)

6

)b()a(

1
2
3
4
5
6
7
8
9

1

2

3

4

Pigeons Pigeonholes

13 8 21 4

47 932 5

Figure 9.4.2

generalized Pigeonhole Principle

For any function f from a finite set X with n elements to a finite set Y with m elements 
and for any positive integer k, if km , n, then there is some y [ Y  such that y is the 
image of at least k11 distinct elements of X.

Applying the generalized Pigeonhole Principle

Show how the generalized pigeonhole principle implies that in a group of 85 people, at 
least 4 must have the same last initial.

Solution In this example the pigeons are the 85 people and the pigeonholes are the 26 
possible last initials of their names. 

example 9.4.5
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9.4 the PIGeonhole PrIncIPle  611

Consider the function L from people to initials defined by the following arrow diagram.

x1

x2

x26

x85

L

L(xi ) = the initial of

)selohnoegip( slaitini 62)snoegip( elpoep 58

A

B

Z

xi’s last name

Since 3?26 5 78 , 85, the generalized pigeonhole principle states that some initial must 
be the image of at least four (311) people. Thus at least four people have the same last 
initial. ■

Consider the following contrapositive form of the generalized pigeonhole principle.

generalized Pigeonhole Principle (Contrapositive Form)

For any function f  from a finite set X with n elements to a finite set Y with m elements 
and for any positive integer k, if for each y [ Y , f 21(y) has at most k elements, then 
X has at most km elements; in other words, n # km.

You may find it natural to use the contrapositive form of the generalized pigeonhole prin-
ciple in certain situations. For instance, the result of Example 9.4.5 can be explained as 
follows:

Suppose no 4 people out of the 85 had the same last initial. Then at most 3 would 
share any particular one. By the generalized pigeonhole principle (contrapositive 
form), this would imply that the total number of people is at most 3?26 5 78. But 
this contradicts the fact that there are 85 people in all. Hence at least 4 people share 
a last initial. 

using the Contrapositive Form of the generalized Pigeonhole Principle

There are 42 students who are to share 12 computers. Each student uses exactly 1 com-
puter, and no computer is used by more than 6 students. Show that at least 5 computers are 
used by 3 or more students.

Solution
a. Using an Argument by Contradiction: Suppose not. Suppose that 4 or fewer comput-

ers are used by 3 or more students. [A contradiction will be derived.] Then 1224 5 8 
or more computers are used by 2 or fewer students. Divide the set of computers into 
two subsets: C1 and C2. Into C1 place 8 of the computers used by 2 or fewer students; 

example 9.4.6
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612  Chapter 9 COUNTING AND PROBABILITY

Since at most 6 students are served by any one computer, by the contrapositive 
form of the generalized pigeonhole principle, the computers in set C2 serve at most 
6?4 5 24 students. Since at most 2 students are served by any one computer in C1, 
by the generalized pigeonhole principle (contrapositive form), the computers in set 
C1 serve at most 2?8 5 16 students. Hence the total number of students served by the 
computers is 24116 5 40. But this contradicts the fact that each of the 42 students 
is served by a computer. Therefore, the supposition is false: At least 5 computers are 
used by 3 or more students.

b. Using a Direct Argument: Let k be the number of computers used by 3 or more 
students. [We must show that k $ 5.] Because each computer is used by at most 6 
students, these computers are used by at most 6k students (by the contrapositive 
form of the generalized pigeonhole principle). Each of the remaining 122k comput-
ers is used by at most 2 students. Hence, taken together, they are used by at most 
2(122k) 5 2422k students (again, by the contrapositive form of the generalized 
pigeonhole principle). Thus the maximum number of students served by the comput-
ers is 6k1 (2422k) 5 4k124. Because 42 students are served by the computers, 
4k124 $ 42. Solving for k gives that k . 4.5, and since k is an integer, this implies 
that k $ 5 [as was to be shown]. ■

Proof of the Pigeonhole Principle
The truth of the pigeonhole principle depends essentially on the sets involved being finite. 
Recall from Section 7.4 that a set is called finite if, and only if, it is the empty set or there 
is a one-to-one correspondence from {1, 2, Á , n} to it, where n is a positive integer. In the 
first case the number of elements in the set is said to be 0, and in the second case it is said 
to be n. A set that is not finite is called infinite.

Thus any finite set is either empty or can be written in the form {x1, x2, Á , xn} where 
n is a positive integer.

The Set of 12 Computers

Each of these computers
serves at most 2 students.
So the maximum number
served by these computers is
2 8 = 16.

Some or all of these computers serve
3 or more students. Each computer
serves at most 6 students. So the
maximum number served by these
computers is 6  4 = 24.

C2C1

Figure 9.4.3

into C2 place the computers used by 3 or more students plus any remaining computers 
(to make a total of 4 computers in C2). (See Figure 9.4.3.)
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9.4 the PIGeonhole PrIncIPle  613

Theorem 9.4.1 The Pigeonhole Principle

For any function f from a finite set X with n elements to a finite set Y with m ele-
ments, if n . m, then f is not one-to-one.

Proof: Suppose f is any function from a finite set X with n elements to a finite set Y 
with m elements where n . m. Denote the elements of Y by y1, y2, Á , ym. Recall that 
for each yi in Y, the inverse image set f 

21(yi) 5 {x [ X u  f (x) 5 yi}. Now consider 
the collection of all the inverse image sets for all the elements of Y:

f 
21(y1), f 

21(y2), Á , f 21(ym).

By definition of function, each element of X is sent by f to some element of Y. Hence 
each element of X is in one of the inverse image sets, and so the union of all these 
sets equals X. But also, by definition of function, no element of X is sent by f to 
more than one element of Y. Thus each element of X is in only one of the inverse 
image sets, and so the inverse image sets are mutually disjoint. By the addition rule, 
therefore,

 N(X) 5 N( f 
21(y1))1N( f 

21(y2))1 Á 1N( f  
21(ym)). 9.4.1

Now suppose that f is one-to-one [which is the opposite of what we want to prove]. 
Then each set f 

21(yi) has at most one element, and so

 N( f 21(y1))1N( f 21(y2))1 Á 1N( f 21(ym)) #  1111 Á 11 5 m 9.4.2('')''*
m terms

Putting equations (9.4.1) and (9.4.2) together gives that

n 5 N(X) # m 5 N(Y).

This contradicts the fact that n . m, and so the supposition that f is one-to-one must 
be false. Hence f is not one-to-one [as was to be shown].

An important theorem that follows from the pigeonhole principle states that a function 
from one finite set to another finite set of the same size is one-to-one if, and only if, it is 
onto. As shown in Section 7.4, this result does not hold for infinite sets.

Theorem 9.4.2 One-to-One and Onto for Finite Sets

Let X and Y be finite sets with the same number of elements and suppose f is a func-
tion from X to Y. Then f is one-to-one if, and only if, f is onto.

Proof: Suppose f is a function from X to Y, where X and Y are finite sets each with m 
elements. Let X 5 {x1, x2, Á , xm} and Y 5 {y1, y2, Á , ym}.

If f is one-to-one, then f is onto: Suppose f is one-to-one. Then f (x1), f (x2), Á , f(xm) 
are all distinct. Consider the set S of all elements of Y that are not the image of any 
element of X.

Then the sets

{ f (x1)}, { f (x2)}, Á ,{ f (xm)} and S

(continued on page 614)
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614  ChAPTer 9 countInG and ProbabIlIty

are mutually disjoint. By the addition rule,

N(Y) 5 N({ f (x1)})1N({ f (x2)})1 Á 1N({ f (xm)})1N(S)

5 1111 Á 111N(S)  because each { f (xi)}  
is a singleton set

(''')'''*
m terms

5 m1N(S).  

Thus

m 5 m1N(S)  because N(Y ) 5 m,

and so

 N(S) 5 0 by subtracting m from both sides.

Hence S is empty, and so there is no element of Y that is not the image of some ele-
ment of X. Consequently, f is onto.

If f is onto, then f is one-to-one: Suppose f is onto. Then, for each i 5 1,  
2, Á , m, f 21(yi) Þ [ and so N ( f 21(yi)) $ 1. As in the proof of the pigeon-
hole principle (Theorem 9.4.1), X is the union of the mutually disjoint sets 
f 21(y1), f 

21(y2), Á , f 21(ym). By the addition principle,

 N(X) 5  N( f 21(y1))1N( f 21(y2))1 Á 1N( f 21(ym)) $ m 9.4.3(''''''''''')'''''''''''*
m terms, each $1

Now if any one of the sets f 21(yi) has more than one element, then the sum of the m 
terms in equation (9.4.3) is greater than m. But we know this is not the case because 
N(X) 5 m. Hence each set f 21(yi) has exactly one element, and thus f is one-to-one 
[as was to be shown].

a
b
c
d

a
b
c
d

Note that Theorem 9.4.2 applies in particular to the case X 5 Y . Thus a one-to-one 
function from a finite set to itself is onto, and an onto function from a finite set to itself 
is one-to-one. Such functions are permutations of the sets on which they are defined. For 
instance, the function defined by the diagram on the left is another representation for the 
permutation cdba obtained by listing the images of a, b, c, and d in order.

1. The pigeonhole principle states that .

2. The generalized pigeonhole principle states that 
.

3. If X and Y are finite sets and f is a function from X 
to Y then f is one-to-one if, and only if, .

TeST YOurSeLF 

1. a.  If 4 cards are selected from a standard 52-
card deck, must at least 2 be of the same suit? 
Why?

b. If 5 cards are selected from a standard 52-
card deck, must at least 2 be of the same suit? 
Why? 

2. a.  If 13 cards are selected from a standard 
52-card deck, must at least 2 be of the same 
denomination? Why?

b. If 20 cards are selected from a standard 
52-card deck, must at least 2 be of the same 
denomination? Why? 

exerCiSe SeT 9.4 
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9.4 the PIGeonhole PrIncIPle  615

3. A small town has only 500 residents. Must there 
be 2 residents who have the same birthday? Why?

4. In a group of 700 people, must there be 2 who 
have the same first and last initials? Why?

5. a.  Given any set of four integers, must there 
be two that have the same remainder when 
divided by 3? Why?

b. Given any set of three integers, must there 
be two that have the same remainder when 
divided by 3? Why?

6. a.  Given any set of seven integers, must there 
be two that have the same remainder when 
divided by 6? Why?

b. Given any set of seven integers, must there 
be two that have the same remainder when 
divided by 8? Why?

7. Let S 5 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Suppose 
six integers are chosen from S. Must there be two 
integers whose sum is 15? Why?

8. Let T 5 {1, 2, 3, 4, 5, 6, 7, 8, 9}. Suppose five inte-
gers are chosen from T. Must there be two integers 
whose sum is 10? Why?

9. a.  If seven integers are chosen from between 1 
and 12 inclusive, must at least one of them be 
odd? Why?

b. If ten integers are chosen from between 1 and 
20 inclusive, must at least one of them be even? 
Why?

10. If n11 integers are chosen from the set

{1, 2, 3, Á , 2n},

where n is a positive integer, must at least one of 
them be odd? Why?

11. If n11 integers are chosen from the set

{1, 2, 3, Á , 2n},

where n is a positive integer, must at least one of 
them be even? Why?

12. How many cards must you pick from a standard 
52-card deck to be sure of getting at least 1 red 
card? Why?

13. Suppose six pairs of similar-looking boots are 
thrown together in a pile. How many individ-
ual boots must you pick to be sure of getting a 
matched pair? Why?

14. How many integers from 0 through 60 must you 
pick in order to be sure of getting at least one that 
is odd? at least one that is even?

15. If n is a positive integer, how many integers from 0 
through 2n must you pick in order to be sure of get-
ting at least one that is odd? at least one that is even?

16. How many integers from 1 through 100 must you 
pick in order to be sure of getting one that is divis-
ible by 5?

17. How many integers must you pick in order to 
be sure that at least two of them have the same 
remainder when divided by 7?

18. How many integers must you pick in order to 
be sure that at least two of them have the same 
remainder when divided by 15?

19. How many integers from 100 through 999 must 
you pick in order to be sure that at least two of 
them have a digit in common? (For example, 256 
and 530 have the digit 5 in common.)

20. a.  If repeated divisions by 20,483 are performed, 
how many distinct remainders can be obtained?

b. When 5y20483 is written as a decimal, what is 
the maximum length of the repeating section 
of the representation?

21. When 683y1493 is written as a decimal, what is 
the maximum length of the repeating section of 
the representation?

22. Is 0.101001000100001000001 Á (where each 
string of 0’s is one longer than the previous one) 
rational or irrational?

23. Is 56.556655566655556666 Á (where the strings 
of 5’s and 6’s become longer in each repetition) 
rational or irrational?

24. Show that within any set of thirteen integers 
chosen from 2 through 40, there are at least two 
integers with a common divisor greater than 1.

25. In a group of 30 people, must at least 3 have been 
born in the same month? Why?

26. In a group of 30 people, must at least 4 have been 
born in the same month? Why?

27. In a group of 2,000 people, must at least 5 have 
the same birthday? Why?

28. A programmer writes 500 lines of computer code 
in 17 days. Must there have been at least 1 day 

H
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when the programmer wrote 30 or more lines of 
code? Why?

29. A certain college class has 40 students. All the stu-
dents in the class are known to be from 17 through 
34 years of age. You want to make a bet that the 
class contains at least x students of the same age. 
How large can you make x and yet be sure to win 
your bet?

30. A penny collection contains twelve 1967 pennies, 
seven 1968 pennies, and eleven 1971 pennies. If 
you are to pick some pennies without looking at 
the dates, how many must you pick to be sure of 
getting at least five pennies from the same year?

31. A group of 15 executives are to share 5 assistants. 
Each executive is assigned exactly 1 assistant, and 
no assistant is assigned to more than 4 executives. 
Show that at least 3 assistants are assigned to 3 or 
more executives.

32. Let A be a set of six positive integers each of 
which is less than 13. Show that there must be two 
distinct subsets of A whose elements when added 
up give the same sum. (For example, if A 5 {5, 12, 
10, 1, 3, 4}, then the elements of the subsets  
S1 5 {1, 4, 10} and S2 5 {5, 10} both add up to 15.)

33. Let A be a set of six positive integers each of 
which is less than 15. Show that there must be 
two distinct subsets of A whose elements when 
added up give the same sum. (Thanks to Jonathan 
Goldstine for this problem.)

34. Let S be a set of ten integers chosen from 1 
through 50. Show that the set contains at least two 
different (but not necessarily disjoint) subsets of 
four integers that add up to the same number. (For 
instance, if the ten numbers are {3, 8, 9, 18, 24, 
34, 35, 41, 44, 50}, the subsets can be taken to be 
{8, 24, 34, 35} and {9, 18, 24, 50}. The numbers in 
both of these add up to 101.)

35. Given a set of 52 distinct integers, show that there 
must be 2 whose sum or difference is divisible by 
100.

36. Show that if 101 integers are chosen from 1 to 200 
inclusive, there must be 2 with the property that 
one is divisible by the other.

37. a.  Suppose a1, a2, Á , an is a sequence of n inte-
gers none of which is divisible by n. Show that 
at least one of the differences ai 2aj (for i Þ j) 
must be divisible by n.

b. Show that every finite sequence x1, x2, Á , xn 
of n integers has a consecutive subsequence 
xi11, xi12, Á , xj whose sum is divisible by n. 
(For instance, the sequence 3, 4, 17, 7, 16 has 
the consecutive subsequence 17, 7, 16 whose 
sum is divisible by 5.) (From: James E. Schultz 
and William F. Burger, “An Approach to 
Problem-Solving Using Equivalence Classes 
Modulo n,” College Mathematics Journal (15), 
No. 5, 1984, 401–405.)

38. Observe that the sequence 12, 15, 8, 13, 7, 18, 19, 
11, 14, 10 has three increasing subsequences of 
length four: 12, 15, 18, 19; 12, 13, 18, 19; and 8, 
13, 18, 19. It also has one decreasing subsequence 
of length four: 15, 13, 11, 10. Show that in any se-
quence of n2 11 distinct real numbers, there must 
be a sequence of length n11 that is either strictly 
increasing or strictly decreasing.

39. What is the largest number of elements that a set 
of integers from 1 through 100 can have so that no 
one integer in the set is divisible by another? (Hint: 
Imagine writing all the integers from 1 through 
100 in the form 2k?m, where k $ 0 and m is odd.)

40. Suppose X and Y are finite sets, X has more ele-
ments than Y, and F: X S Y is a function. By the pi-
geonhole principle, there exist elements a and b in X 
such that a Þ b and F(a) 5 F(b). Write a computer 
algorithm to find such a pair of elements a and b. 

H

H*

H

H*

H*

*

H

H*

*

1. if n pigeons fly into m pigeonholes and n . m, then at 
least two pigeons fly into the same pigeonhole Or: a 
function from one finite set to a smaller finite set cannot be 
one-to-one 2. if n pigeons fly into m pigeonholes and, for 
some positive integer k, km , n, then at least one pigeonhole 

contains k11 or more pigeons Or: for any function f 
from a finite set X with n elements to a finite set Y with 
m elements and for any positive integer k, if km , n, then 
there is some y [ Y such that y is the image of at least k11 
distinct elements of Y 3. f is onto

ANSwerS FOr TeST YOurSeLF 

94193_ch09_ptg01.indd   616 12/11/18   5:24 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.5 countInG subsets of a set: coMbInatIons  617

Counting Subsets of a Set: Combinations
“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’” Alice objected. “When 
I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just what 
I choose it to mean—neither more nor less.” —Lewis Carroll, Through the Looking 
Glass, 1872

Consider the following question:

Suppose 5 members of a group of 12 are to be chosen to work as a team on a spe-
cial project. How many distinct 5-person teams can be selected?

This question is answered in Example 9.5.4. It is a special case of the following more gen-
eral question:

Given a set S with n elements, how many subsets of size r can be chosen from S?

The number of subsets of size r that can be chosen from S equals the number of subsets 
of size r that S has. Each individual subset of size r is called an r-combination of the set.

Definition r-combination

Let n and r be nonnegative integers with r # n. An r-combination of a set of n ele-
ments is a subset of r of the n elements.

Notation _nr+
The symbol _nr+, read “n choose r,” denotes the number of subsets of size r (or r-
combinations) that can be formed from a set of n elements.

As noted in Section 5.1, calculators generally use symbols like C(n, r), nCr, Cn,r, or nCr 

instead of _nr+.

3-Combinations

Consider a set consisting of 4 people: Ann, Bob, Cyd, and Dan.

a. Given the set {Ann, Bob, Cyd, and Dan}, each subset of size 3 is a 3-combination of 
its elements. List all the 3-combinations of the set.

b. Use the result of part (a) to find _43+.
c. In how many ways can the people in the set form a committee of size 3? 
Solution

a. Each 3-combination (subset of size 3) can be obtained by leaving out one of the ele-
ments of the set:

{Bob, Cyd, Dan} leave out Ann

{Ann, Cyd, Dan} leave out Bob

{Ann, Bob, Dan} leave out Cyd

{Ann, Bob, Cyd} leave out Dan.

9.5

Note Although there is 
a convenient formula for 
computing values of _nr+, 
it is helpful to think of _nr+ 
simply as a way to count 
the number of subsets of 
size r that can be formed 
from a set of n elements.

example 9.5.1
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b. There are 4 items in the list of 3-combinations in part (a). So, _43+ 5 4.

c. The number of ways for the people in the set to form a committee of size 3 is the num-
ber of distinct such committees, which is the same as the number of subsets of size 3 
and equals the number of 3-combinations of elements in the set. Thus there are 4 ways 
the people in the set can form a committee of size 3.  ■

There are two distinct methods that can be used to select r objects from a set of n ele-
ments. In an ordered selection, it is not only what elements are chosen but also the order 
in which they are chosen that matters. Two ordered selections are said to be the same if 
the elements chosen are the same and also if the elements are chosen in the same order. 
An ordered selection of r elements from a set of n elements is an r-permutation of the set.

In an unordered selection, on the other hand, it is only the identity of the chosen ele-
ments that matters. Two unordered selections are said to be the same if they consist of the 
same elements, regardless of the order in which the elements are chosen. An unordered 
selection of r elements from a set of n elements is the same as a subset of size r or an  
r-combination of the set.

unordered Selections

How many unordered selections of two elements can be made from the set {0, 1, 2, 3}?

Solution An unordered selection of two elements from {0, 1, 2, 3} is the same as a  
2-combination, or subset of size 2, taken from the set. These can be listed systematically:

{0, 1}, {0, 2}, {0, 3} subsets containing 0

{1, 2}, {1, 3} subsets containing 1 but not already listed

{2, 3} subsets containing 2 but not already listed.

Since this listing exhausts all possibilities, there are six subsets in all. Thus _42+ 5 6, which 
is the number of unordered selections of two elements from a set of four. ■

When the values of n and r are small, it is reasonable to calculate values of _nr+ using 
the method of complete enumeration (listing all possibilities), which was illustrated in 
Examples 9.5.1 and 9.5.2. But when n and r are large, it is not feasible to compute these 
numbers by listing and counting all possibilities.

The general values of _nr+ can be found by a somewhat indirect but simple method. An 

equation is derived that contains _nr+ as a factor. Then this equation is solved to obtain a 

formula for _nr+. The method is illustrated by Example 9.5.3.

relation between Permutations and Combinations

Write all 2-permutations of the set {0, 1, 2, 3}. Find an equation relating the number of 

2-permutations, P  (4, 2), and the number of 2-combinations, _42+, and solve this equation for _42+.
Solution According to Theorem 9.2.3, the number of 2-permutations of the set {0, 1, 2, 3} 
is P (4, 2), which equals

4!

(422)!
5

4?3?2!

2!
5 12.

Now the act of constructing a 2-permutation of {0, 1, 2, 3} can be thought of as a two-
step process:

Step 1: Choose a subset of two elements from {0, 1, 2, 3}.

Step 2: Choose an ordering for the two-element subset. 

example 9.5.2

example 9.5.3
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This process can be illustrated by the possibility tree shown in Figure 9.5.1.

Start

Step 1: Write the 2-combinations
of {0, 1, 2, 3}.

Step 2: Order the 2-combinations
to obtain 2-permutations.

{0, 1}

{0, 2}

{0, 3}

{1, 2}

{1, 3}

{2, 3}

01

10

02

20

03

30
12

21

13

31

23

32

Figure 9.5.1 Relation between Permutations and Combinations

The number of ways to perform step 1 is _42+, the same as the number of subsets of size 
2 that can be chosen from {0, 1, 2, 3}. The number of ways to perform step 2 is 2!, the 
number of ways to order the elements in a subset of size 2. Because the number of ways of 
performing the whole process is the number of 2-permutations of the set {0, 1, 2, 3}, which 
equals P (4, 2), it follows from the product rule that

P (4, 2) 5 14

22?2!. This is an equation that relates P  (4, 2) and _42+.

Solving the equation for S4

2D gives

14

22 5
P (4, 2)

2!

Recall that P  (4, 2) 5
4!

(4 2 2)! So, substituting yields

 14

22 5

4!

(422)!

2!
5

4!

2!(422)!
5 6. ■

The reasoning used in Example 9.5.3 applies in the general case as well. To form an 
r-permutation of a set of n elements, first choose a subset of r of the n elements (there are _nr+ 
ways to perform this step), and then choose an ordering for the r elements (there are r! ways 
to perform this step). Thus the number of r-permutations is

P (n, r) 5 1n
r2?r!.

Now solve for Sn
rD to obtain the formula

1n
r2 5

P (n, r)

r!
.

Since P (n, r) 5
n!

(n 2 r)!, substitution gives

1n
r2 5

n!

(n2 r)!

r!
5

n!

r!(n2 r)!
.
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620  ChAPTer 9 countInG and ProbabIlIty

The result of this discussion is summarized and extended in Theorem 9.5.1.

Theorem 9.5.1 Computational Formula for Sn

rD
The number of subsets of size r (or r-combinations) that can be chosen from a set of 
n elements, _nr+, is given by the formula

1n

r2 5
P (n, r)

r!
  first version 

or, equivalently,

1n

r2 5
n!

r!(n2 r)!
  second version

where n and r are nonnegative integers with r # n.

Note that the analysis presented before the theorem proves the theorem in all cases 
where n and r are positive. If r is zero and n is any nonnegative integer, then _n0+ is the 
number of subsets of size zero of a set with n elements. But you know from Section 6.2 that 
there is only one set that does not have any elements. Consequently, _n0+ 5 1. Also

n!

0!(n20)!
5

n!

1?n!
5 1

since 0! 5 1 by definition. (Remember we said that definition would turn out to be conve-
nient!) Hence the formula

1n

02 5
n!

0!(n20)!

holds for every integer n $ 0, and so the theorem is true for all nonnegative integers n and 
r with r # n.

Calculating the Number of Teams

Consider again the problem of choosing five members from a group of twelve to work as a 
team on a special project. How many distinct five-person teams can be chosen?

Solution The number of distinct five-person teams is the same as the number of subsets 
of size 5 (or 5-combinations) that can be chosen from the set of 12. This number is _12

5 +. 
By Theorem 9.5.1,

S12

5 D 5
12!

5!(1225)!
5

12?11?10?9?8?7!

(5?4?3?2?1)?7!
5 11?9?8 5 792.

Thus there are 792 distinct five-person teams. ■

The formula for the number of r-combinations of a set can be applied in a wide variety 
of situations. Some of these are illustrated in the following examples.

Teams That Contain Both or Neither

Suppose two members of the group of 12 insist on working as a pair—any team must con-
tain either both or neither. How many five-person teams can be formed?

example 9.5.4

example 9.5.5
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Solution Call the two members of the group that insist on working as a pair A and B. 
Then any team formed must contain both A and B or neither A nor B. The set of all possible 
teams can be partitioned into two subsets as shown in Figure 9.5.2 below.

A team that contains both A and B looks like

                        

where the three question marks are replaced by three people from the remaining ten in the 
group. Hence there are as many such teams as there are subsets of three people that can be 
chosen from the remaining ten, and by Theorem 9.5.1, this number is

3  4

S10

3 D 5
10!

3!?7!
5

10?9?8?7!

3?2?1?7!
5 120.

A team that contains neither A nor B looks like

                         

where the five question marks are replaced by five people from the remaining ten. Thus 
there are as many such teams as there are subsets of five people that can be chosen from 
the remaining ten, and by Theorem 9.5.1, this number is

2        2

S10

5 D 5
10!

5!?5!
5

10?9?8?7?6?5!

5?4?3?2?1?5!
5 252.

Because the set of teams that contain both A and B is disjoint from the set of teams that 
contain neither A nor B, by the addition rule,

3the number of teams

containing both A and B 

or neither A nor B
4 5 3the number of teams

containing

both A and B
413the number of teams

containing

neither A nor B
4

5 1201252 5 372.

This reasoning is summarized in Figure 9.5.2.

All Possible Five-Person Teams
Containing Both or Neither

teams with
both A and B

teams with
neither A nor B

There are
10
3( ) = 120 of these.

There are
10
5( ) = 252 of these.

So the total number of teams
that contain either both A and B
or neither A nor B is
120 + 252 = 372.

 Figure 9.5.2 ■

Teams That Do Not Contain Both

Suppose two members of the group don’t get along and refuse to work together on a team. 
How many five-person teams can be formed?

A B ? ? ?

? ? ? ? ?

example 9.5.6
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Solution Call the two people who refuse to work together C and D. There are two dif-
ferent ways to answer the given question: One uses the addition rule and the other uses the 
difference rule.

To use the addition rule, partition the set of all teams that don’t contain both C and D 
into three subsets as shown in Figure 9.5.3 below.

Because any team that contains C but not D contains exactly four other people from the 
remaining ten in the group, by Theorem 9.5.1 the number of such teams is

3

S10

4 D 5
10!

4!(1024)!
5

10?9?8?7?6!

4?3?2?1?6!
5 210.

Similarly, there are _10
4 + 5 210 teams that contain D but not C. Finally, by the same reason-

ing as in Example 9.5.5, there are 252 teams that contain neither C nor D. Thus, by the 
addition rule,

3the number of teams that do

not contain both C and D 4 5 21012101252 5 672.

This reasoning is summarized in Figure 9.5.3.

All Possible Five-Person Teams
That Do Not Contain Both C and D

teams that
contain C
but not D

There are
10
4( ) = 210

of these.

teams that
contain D
but not C

There are
10
4( ) = 210

of these.

teams that
contain neither 
C nor D

There are
10
5( ) = 252

of these.

So the total number of teams that
do not contain both C and D is
210 + 210 + 252 = 672.

Figure 9.5.3

The alternative solution by the difference rule is based on the following observation: 
The set of all five-person teams that don’t contain both C and D equals the set difference 
between the set of all five-person teams and the set of all five-person teams that contain 
both C and D. By Example 9.5.4, the total number of five-person teams is _12

5 + 5 792. Thus, 
by the difference rule,

3the number of teams that don’t

contain both C and D 4 5 3the total number of

teams of five 423the number of teams that

contain both C and D 4
5 S12

5 D2S10

3 D 5 7922120 5 672.

This reasoning is summarized in Figure 9.5.4.
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All Five-Person Teams

teams that do
not contain
both C and D

teams that
contain
both C and D

So there are
792 – 120 = 672 of these.

There are
12
5( ) = 792 of these.

There are
10
3( ) = 120 of these.

 Figure 9.5.4 ■

Before we begin the next example, a remark on the phrases at least and at most is in 
order:

The phrase at least n means “n or more.”

The phrase at most n means “n or fewer.”

For instance, if a set consists of three elements and you are to choose at least two, you will 
choose two or three; if you are to choose at most two, you will choose none, or one, or two.

Teams with Members of Two Types

Suppose the group of twelve consists of five men and seven women.

a. How many five-person teams can be chosen that consist of three men and two women?

b. How many five-person teams contain at least one man?

c. How many five-person teams contain at most one man?

Solution
a. To answer this question, think of forming a team as a two-step process:

Step 1: Choose the men.

Step 2: Choose the women. 
There are _53+ ways to choose the three men out of the five and _72+ ways to choose the 
two women out of the seven. Hence, by the product rule,

3the number of teams of five that

contain three men and two women4 5 S5

3DS7

2D 5
5!

3!2!
?

7!

2!5!

5
5!?7?6?5?4?3!

3!?2?1?2?1?5!

5 210.

b. This question can also be answered either by the addition rule or by the difference 
rule. The solution by the difference rule is shorter and is shown first.

Observe that the set of five-person teams containing at least one man equals the set 
difference between the set of all five-person teams and the set of five-person teams 
that do not contain any men. See Figure 9.5.5 on the next page.

example 9.5.7
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Now a team with no men consists entirely of five women chosen from the seven 
women in the group, so there are _75+ such teams. Also, by Example 9.5.4, the total num-
ber of five-person teams is _12

5 + 5 792. Hence, by the difference rule,

3the number of teams
with at least
one man 4 5 3the total number

of teams
of five 423the number of teams

of five that do not
contain any men 4

5 S12

5 D2S7

5D 5 7922
7!

5!?2!

3

5 7922
7?6?5!

5!?2?1
5 792221 5 771.

This reasoning is summarized in Figure 9.5.5.

All Five-Person Teams

teams that 
contain at
least one man

teams that
contain no men

So there are
792 – 21 = 771 of these.

There are
7
5( ) = 21 of these.

There are
12
5( ) = 792 of these.

Figure 9.5.5

Alternatively, to use the addition rule, observe that the set of teams containing 
at least one man can be partitioned as shown in Figure 9.5.6. The number of teams 
in each subset of the partition is calculated using the method illustrated in part (a). 
There are 

S5

1D S7

4D teams with one man and four women

S5

2DS7

3D teams with two men and three women

S5

3DS7

2D teams with three men and two women

S5

4DS7

1D teams with four men and one woman

S5

5DS7

0D teams with five men and no women.
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Hence, by the addition rule,

3the number of teams

with at least one man4
5 S5

1DS7

4D1S5

2DS7

3D1S5

3DS7

2D1S5

4DS7

1D1S5

5DS7

0D
5

5!

1!4!
?

7!

4!3!
1

5!

2!3!
?

7!

3!4!
1

5!

3!2!
?

7!

2!5!
1

5!

4!1!
?

7!

1!6!
1

5!

5!0!
?

7!

0!7!
2

5
5?4!?7?6?5?4!

1?4!?4!?3?2?1
1

5?4?3!?7?6?5?4!

2?1?3!?3?2?1?4!
1

5?4?3!?7?6?5!

3!?2?1?2?1?5!
1

5?4!?7?6!

4!?6!
1

5!?7!

5!?7!

5 5?7?515?2?7?515?7?615?711 5 1751350121013511 5 771. 

This reasoning is summarized in Figure 9.5.6.

Teams with At Least One Man

teams with
one man

teams with
two men

teams with
three men

teams with
four men

teams with
�ve men

There are
5
1

7
4( )( ) = 175

of these.

There are
5
2

7
3( )( ) = 350

of these.

There are
5
3

7
2( )( ) = 210

of these.

There are
5
4

7
1( )( ) = 35

of these.

There are
5
5

7
0( )( ) = 1

of these.

So the total number of
teams with at least
one man is
175 + 350 + 210 + 35 + 1 = 771.

Figure 9.5.6

c. As shown in Figure 9.5.7, the set of teams containing at most one man can be parti-
tioned into the set without any men and the set with exactly one man. Hence, by the 
addition rule,

3the number of teams
with at 
most one man 4 5 3the number of

teams without
any men

413the number of 
teams with
one man 4

5 S5

0DS7

5D1S5

1DS7

4D 5 211175 5 196.

This reasoning is summarized in Figure 9.5.7.

Teams with At Most One Man

teams without
any men

teams with
one man

There are
5
0

7
5( )( ) = 21

of these.

There are
5
1

7
4( )( ) = 175

of these.

So the total number of
teams with at most one
man is 21 + 175 = 196.

 Figure 9.5.7 ■
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An Application to graphs

a. Use the multiplication rule to show that Km,n, a complete bipartite graph on (m, n) 
vertices, has mn edges.

b. Use 2-combinations to show that Kn, a complete graph on n vertices, has 
n(n 2 1)

2  edges. 

Solution
a. A complete bipartite graph on (m, n) vertices, Kmn, is a simple graph whose vertices 

can be divided into two distinct, nonoverlapping sets—say, V with m vertices and W 
with n vertices—in such a way that there is exactly one edge from each vertex of V 
to each vertex of W, there is no edge from any one vertex of V to any other vertex of V, 
and there is no edge from any one vertex of W to any other vertex of W. Label the m 
vertices of V as v1, v2, Á , vm. Think of constructing the edges between the vertices 
of V and the vertices of W as an m-step process: for each integer k from 1 through m, 
draw exactly one edge from vk to each of the n edges of W. Because each step can be 
performed in n ways and there are m steps, by the multiplication rule there are mn ways 
to construct all the edges. Thus Km,n has mn edges.

b. A complete graph on n vertices, Kn, is a simple graph with n vertices and exactly one 
edge between each pair of vertices. If n 5 1, then Kn has one vertex and 0 edges, and 

since 
n(n 2 1)

2 5
1(1 2 1)

2 5 0, then Kn has 
n(n 2 1)

2  edges. If n $ 2, then, since any two 
distinct vertices of Kn are connected by exactly one edge, there are as many edges 
in Kn as there are subsets of size two in the set of n vertices. By Theorem 9.5.1, there 

are _n2+ such sets, and

Sn

2D 5
n!

2!(n22)!
5

n(n21)

2

Hence Kn has 
n(n 2 1)

2  edges.  ■

Poker hand Problems

The game of poker is played with an ordinary deck of 52 cards (see Example 9.1.1). Various 
five-card holdings are given special names, and certain holdings beat certain other hold-
ings. The named holdings are listed from highest to lowest below.

Royal flush: 10, J, Q, K, A of the same suit

Straight flush: five adjacent denominations of the same suit but not a royal flush—
aces can be high or low, so A, 2, 3, 4, 5 of the same suit is a straight flush

Four of a kind: four cards of one denomination—the fifth card can be any other in the deck

Full house: three cards of one denomination, two cards of another denomination

Flush: five cards of the same suit but not a straight or a royal flush

Straight: five cards of adjacent denominations but not all of the same suit—aces can 
be high or low

Three of a kind: three cards of the same denomination and two other cards of different 
denominations

Two pairs: two cards of one denomination, two cards of a second denomination, and a 
fifth card of a third denomination

One pair: two cards of one denomination and three other cards all of different 
denominations

No pairs: all cards of different denominations but not a straight, or straight flush, or 
flush, or royal flush 

example 9.5.8

example 9.5.9
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a. How many five-card poker hands contain two pairs?

b. If a five-card hand is dealt at random from an ordinary deck of cards, what is the 
probability that the hand contains two pairs? 

Solution
a. Consider forming a hand with two pairs as a four-step process:

Step 1: Choose the two denominations for the pairs.

Step 2: Choose two cards from the smaller denomination.

Step 3: Choose two cards from the larger denomination.

Step 4: Choose one card from those remaining. 
The number of ways to perform step 1 is _13

2 + because there are 13 denominations in 
all. The number of ways to perform each of steps 2 and 3 is _42+ because there are four 
cards of each denomination, one in each suit. The number of ways to perform step 4 is 
_44

1 + because the fifth card is chosen from the eleven denominations not included in the 
pair and there are four cards of each denomination. Thus

3the total number of
hands with two pairs4 5 S13

2 DS4
2DS4

2DS44
1 D

5
13!

2!(1322)!
?

4!

2!(422)!
?

4!

2!(422)!
?

44!

1!(4421)!

5
13?12?11!

(2?1)?11!
?

4?3?2!

(2?1)?2!
?

4?3?2!

(2?1)?2!
?
44?43!

1?43!

5 78?6?6?44 5 123,552.

b. The total number of five-card hands from an ordinary deck of cards is _52
5 +, which 

equals 2,598,960. Thus if all hands are equally likely, the probability of obtaining a 

hand with two pairs is 
123,552

2,598,960 > 4.75%.

Number of Bit Strings with Fixed Number of 1’s

How many eight-bit strings have exactly three 1’s?

Solution To solve this problem, imagine eight empty positions into which the 0’s and 1’s 
of the bit string will be placed. In step 1, choose positions for the three 1’s, and in step 2, 
put the 0’s into place.

Three 1’s and
�ve 0’s to be
put into the
positions

1 2 3 4 5 6 7 8

Once a subset of three positions has been chosen from the eight to contain 1’s, then the 
remaining five positions must all contain 0’s (since the string is to have exactly three 1’s). 
It follows that the number of ways to construct an eight-bit string with exactly three 1’s is 
the same as the number of subsets of three positions that can be chosen from the eight into 

example 9.5.10
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which to place the 1’s. By Theorem 9.5.1, this equals

 S8

3D 5
8!

3! ?5!
5

8?7?6?5!

3?2?5!
5 56. ■

Permutations of a Set with repeated elements

Consider various ways of ordering the letters in the word MISSISSIPPI:

IIMSSPISSIP, ISSSPMIIPIS, PIMISSSSIIP, and so on.

How many distinguishable orderings are there?

Solution This example generalizes Example 9.5.10. Imagine placing the 11 letters of 
MISSISSIPPI one after another into 11 positions.

Letters of
MISSISSIPPI
to be placed
into the
positions

1 2 3 4 5 6 7 8 9 10 11

Because copies of the same letter cannot be distinguished from one another, once the posi-
tions for a certain letter are known, then all copies of the letter can go into the positions 
in any order. It follows that constructing an ordering for the letters can be thought of as a 
four-step process:

Step 1: Choose a subset of four positions for the S’s.

Step 2: Choose a subset of four positions for the I’s.

Step 3: Choose a subset of two positions for the P’s.

Step 4: Choose a subset of one position for the M. 

Since there are 11 positions in all, there are _11
4 + subsets of four positions for the S’s. 

Once the four S’s are in place, there are seven positions that remain empty, so there are _74+ 
subsets of four positions for the I’s. After the I’s are in place, there are three positions left 

empty, so there are _32+ subsets of two positions for the P’s. That leaves just one position for 

the M. But 1 5 _11+. Hence by the multiplication rule,

3number of ways to
position all the letters4 5 S11

4 DS7
4DS3

2DS1
1D

5
11!

4!?7!
?

7!

4!?3!
?

3!

2!?1!
?

1!

1!?0!

5
11!

4!?4!?2!?1!
5 34,650. ■

In exercise 18 at the end of the section, you are asked to show that changing the order in 
which the letters are placed into the positions does not change the answer to this example.

The same reasoning used in this example can be used to derive the following general 
theorem.

example 9.5.11
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Some Advice about Counting
Students learning counting techniques often ask, “How do I know what to multiply and 
what to add? When do I use the multiplication rule and when do I use the addition rule?” 
Unfortunately, these questions have no easy answers. You need to imagine, as vividly as 
possible, the objects you are to count. In fact, it is helpful to start making a list of the items 
you need to count to get a sense for how to obtain them in a systematic way. You should 
then construct a model that would allow you to continue counting the objects one by one 
if you had enough time. If you can imagine the elements to be counted as being obtained 
through a multistep process (in which each step is performed in a fixed number of ways 
regardless of how preceding steps were performed), then you can use the multiplication 
rule. The total number of elements will be the product of the number of ways to perform 
each step. If, however, you can imagine the set of elements to be counted as being broken 
up into disjoint subsets, then you can use the addition rule. The total number of elements 
in the set will be the sum of the number of elements in each subset.

One of the most common mistakes students make is to count certain possibilities more 
than once.

Double Counting

Consider again the problem of Example 9.5.7(b). A group consists of five men and seven 
women. How many teams of five contain at least one man?

Incorrect Solution
Imagine constructing the team as a two-step process:

Step 1: Choose a subset of one man from the five men.

Step 2: Choose a subset of four others from the remaining eleven people. 
Hence, by the multiplication rule, there are _51+?_

11
4 + 5 1,650 five-person teams that contain 

at least one man.

Analysis of the Incorrect Solution The problem with the solution above is that some 
teams are counted more than once. Suppose the men are Anwar, Ben, Carlos, Dwayne, and 

example 9.5.12

Theorem 9.5.2 Permutations with Sets of indistinguishable Objects

Suppose a collection consists of n objects of which

n1 are of type 1 and are indistinguishable from each other

n2 are of type 2 and are indistinguishable from each other

o
nk are of type k and are indistinguishable from each other, 

and suppose that n1 1n2 1 Á 1nk 5 n. Then the number of distinguishable permu-
tations of the n objects is

S n

n1
DSn2n1

n2
DSn2n1 2n2

n3
DÁ Sn2n1 2n2 2 Á 2nk21

nk
D

5
n!

n1!n2!n3! Á nk!
.

!
Caution!  Be careful 
to avoid counting items 
twice when using the mul-
tiplication rule.
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Ed and the women are Fumiko, Gail, Hui-Fan, Inez, Jill, Kim, and Laura. According to the 
method described previously, one possible outcome of the two-step process is as follows:

Outcome of step 1: Anwar

Outcome of step 2: Ben, Gail, Inez, and Jill. 
In this case the team would be {Anwar, Ben, Gail, Inez, Jill}. But another possible 

outcome is

Outcome of step 1: Ben

Outcome of step 2: Anwar, Gail, Inez, and Jill, 
which also gives the team {Anwar, Ben, Gail, Inez, Jill}. Thus this one team is given by 
two different branches of the possibility tree, and so it is counted twice. ■ 

The best way to avoid mistakes such as the one just described is to visualize the pos-
sibility tree that corresponds to any use of the multiplication rule and the set partition that 
corresponds to a use of the addition rule. Check how your division into steps works by ap-
plying it to some actual data—as was done in the analysis above—and try to pick data that 
are as typical or generic as possible.

It often helps to ask yourself (1) “Am I counting everything?” and (2) “Am I counting 
anything twice?” When using the multiplication rule, these questions become (1) “Does 
every outcome appear as some branch of the tree?” and (2) “Does any outcome appear on 
more than one branch of the tree?” When using the addition rule, the questions become 
(1) “Does every outcome appear in some subset of the diagram?” and (2) “Do any two 
subsets in the diagram share common elements?”

1. The number of subsets of size r that can be formed 
from a set with n elements is denoted , 
which is read as “ .”

2. The number of r-combinations of a set of n ele-
ments is .

3. Two unordered selections are said to be the same 
if the elements chosen are the same, regardless 
of  .

4. A formula relating _nr+ and p  (n, r) is .

5. The phrase “at least n” means , and the 
phrase “at most n” means .

TeST YOurSeLF 

1. a.  List all 2-combinations for the set {x1, x2, x3}. 
Deduce the value of _32+.

b. List all unordered selections of four elements 
from the set {a, b, c, d, e}. Deduce the value of 
_54+.

2. a.  List all 3-combinations for the set {x1, x2, x3, 
x4, x5}. Deduce the value of _53+.

b. List all unordered selections of two elements 
from the set {x1, x2, x3, x4, x5, x6}. Deduce the 
value of _62+.

3. Write an equation relating P (7, 2) and S7

2D.

4. Write an equation relating P  (8, 3) and S8

3D.

5. Use Theorem 9.5.1 to compute each of the following.

a.  _60+  b.  _61+  c.  _62+
d.  _63+  e.  _64+  f.  _65+  g.  _66+

6. A student council consists of 15 students.
a. In how many ways can a committee of six be 

selected from the membership of the council?
b. Two council members have the same major 

and are not permitted to serve together on a 
committee. How many ways can a committee  

exerCiSe SeT 9.5 
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of six be selected from the membership of 
the council?

c. Two council members always insist on serving 
on committees together. If they can’t serve 
together, they won’t serve at all. How many 
ways can a committee of six be selected from 
the council membership?

d. Suppose the council contains eight men and 
seven women.
(i)  How many committees of six contain 

three men and three women?
(ii)  How many committees of six contain at 

least one woman?
e. Suppose the council consists of three fresh-

men, four sophomores, three juniors, and five 
seniors. How many committees of eight con-
tain two representatives from each class? 

7. A computer programming team has 13 members.
a. How many ways can a group of seven be cho-

sen to work on a project?
b. Suppose seven team members are women and 

six are men.
(i)  How many groups of seven can be chosen 

that contain four women and three men?
(ii)  How many groups of seven can be chosen 

that contain at least one man?
(iii)  How many groups of seven can be chosen 

that contain at most three women? 
c. Suppose two team members refuse to work to-

gether on projects. How many groups of seven 
can be chosen to work on a project?

d. Suppose two team members insist on either 
working together or not at all on projects. How 
many groups of seven can be chosen to work 
on a project? 

8. An instructor gives an exam with fourteen questions. 
Students are allowed to choose any ten to answer.
a. How many different choices of ten questions 

are there?
b. Suppose six questions require proof and eight 

do not.
(i)  How many groups of ten questions con-

tain four that require proof and six that 
do not?

(ii)  How many groups of ten questions con-
tain at least one that requires proof?

(iii)  How many groups of ten questions con-
tain at most three that require proof?

c. Suppose the exam instructions specify that at 
most one of questions 1 and 2 may be included 

among the ten. How many different choices of 
ten questions are there?

d. Suppose the exam instructions specify that 
either both questions 1 and 2 are to be included 
among the ten or neither is to be included. 
How many different choices of ten questions 
are there?

9. A club is considering changing its bylaws. In an 
initial straw vote on the issue, 24 of the 40 mem-
bers of the club favored the change and 16 did not. 
A committee of six is to be chosen from the 40 club 
members to devote further study to the issue.
a. What is the total number of committees of six 

that can be formed from the club membership?
b. How many of the total number of committees 

will contain at least three club members who, 
in the preliminary survey, favored the change 
in the bylaws?

10. Two new drugs are to be tested using a group of 
60 laboratory mice, each tagged with a number 
for identification purposes. Drug A is to be given 
to 22 mice, drug B is to be given to another 22 
mice, and the remaining 16 mice are to be used 
as controls. How many ways can the assignment 
of treatments to mice be made? (A single assign-
ment involves specifying the treatment for each 
mouse—whether drug A, drug B, or no drug.)

11. Refer to Example 9.5.9. For each poker holding be-
low, (1) find the number of five-card poker hands 
with that holding; (2) find the probability that a 
randomly chosen set of five cards has that holding.
a. royal flush b.  straight flush
c. four of a kind d.  full house e.  flush
f. straight (including a straight flush and a royal 

flush)
g. three of a kind h.  one pair
i. neither a repeated denomination nor five of the 

same suit nor five adjacent denominations

12. How many pairs of two distinct integers chosen from 
the set {1, 2, 3, Á , 101} have a sum that is even?

13. A coin is tossed ten times. In each case the 
outcome H (for heads) or T (for tails) is recorded. 
(One possible outcome of the ten tosses is denoted 
T H H T T T H T T H.)
a. What is the total number of possible outcomes 

of the coin-tossing experiment?
b. In how many of the possible outcomes are 

exactly five heads obtained?

H

*
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c. In how many of the possible outcomes are at 
least eight heads obtained?

d. In how many of the possible outcomes is at 
least one head obtained?

e. In how many of the possible outcomes is at 
most one head obtained?

14. a.  How many 16-bit strings contain exactly seven 
1’s?

b. How many 16-bit strings contain at least thir-
teen 1’s?

c. How many 16-bit strings contain at least one 1?
d. How many 16-bit strings contain at most  

one 1?

15. a. How many even integers are in the set

{1, 2, 3, Á , 100}?

b. How many odd integers are in the set

{1, 2, 3, Á , 100}?

c. How many ways can two integers be selected 
from the set {1, 2, 3, Á , 100} so that their sum 
is even?

d. How many ways can two integers be selected 
from the set {1, 2, 3, Á , 100} so that their sum 
is odd?

16. Suppose that three microchips in a production run 
of forty are defective. A sample of five is to be 
selected to be checked for defects.
a. How many different samples can be chosen?
b. How many samples will contain at least one 

defective chip?
c. What is the probability that a randomly chosen 

sample of five contains at least one defective 
chip?

17. Ten points labeled A, B, C, D, E, F, G, H, I, J are 
arranged in a plane in such a way that no three lie 
on the same straight line.
a. How many straight lines are determined by the 

ten points?
b. How many of these straight lines do not pass 

through point A?
c. How many triangles have three of the ten 

points as vertices?
d. How many of these triangles do not have point 

A as a vertex?

18. Suppose that you placed the letters in Example 
9.5.11 into positions in the following order: first 

the M, then the I’s, then the S’s, and then the P’s. 
Show that you would obtain the same answer for 
the number of distinguishable orderings.

19. a.  How many distinguishable ways can the letters 
of the word HULLABALOO be arranged in 
order?

b. How many distinguishable orderings of the let-
ters of HULLABALOO begin with U and end 
with L?

c. How many distinguishable orderings of the let-
ters of HULLABALOO contain the two letters 
HU next to each other in order?

20. a.  How many distinguishable ways can the letters 
of the word MILLIMICRON be arranged in 
order?

b. How many distinguishable orderings of the let-
ters of MILLIMICRON begin with M and end 
with N?

c. How many distinguishable orderings of the let-
ters of MILLIMICRON contain the letters CR 
next to each other in order and also the letters 
ON next to each other in order?

21. In Morse code, symbols are represented by vari-
able-length sequences of dots and dashes. (For ex-
ample, A 5 ?2, 1 5 ? 2 2 2 2, ? 5 ?? 2 2??.) 
How many different symbols can be represented by 
sequences of seven or fewer dots and dashes?

22. Each symbol in the Braille code is represented 
by a rectangular arrangement of six dots, each 
of which may be raised or flat against a smooth 
background. For instance, when the word Braille 
is spelled out, it looks like this:

? ?? ?? ? ? ?? ?? ? ? ?? ?? ? ? ?? ?? ? ? ?? ?? ? ? ?? ?? ? ? ?? ?? ?
Given that at least one of the six dots must be 
raised, how many symbols can be represented in 
the Braille code?

23. On an 8 3 8 chessboard, a rook is allowed to 
move any number of squares either horizontally 
or vertically. How many different paths can a rook 
follow from the bottom-left square of the board to 
the top-right square of the board if all moves are 
to the right or upward?

24. The number 42 has the prime factorization 2?3?7. 
Thus 42 can be written in four ways as a product 
of two positive integer factors (without regard to 
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the order of the factors): 1?42, 2?21, 3?14, and 
6?7. Answer a–d below without regard to the 
order of the factors.
a. List the distinct ways the number 210 can be 

written as a product of two positive integer 
factors.

b. If n 5 p1  p2  p3  p4, where the pi are distinct 
prime numbers, how many ways can n be writ-
ten as a product of two positive integer factors?

c. If n 5 p1  p2  p3  p4  p5, where the pi are distinct 
prime numbers, how many ways can n be writ-
ten as a product of two positive integer factors?

d. If n 5 p1p2 Á  pk, where the pi are distinct 
prime numbers, how many ways can n be 
written as a product of two positive integer 
factors?

25. a.  How many one-to-one functions are there from 
a set with three elements to a set with four ele-
ments?

b. How many one-to-one functions are there from 
a set with three elements to a set with two ele-
ments?

c. How many one-to-one functions are there from 
a set with three elements to a set with three 
elements?

d. How many one-to-one functions are there 
from a set with three elements to a set with five 
elements?

e. How many one-to-one functions are there from 
a set with m elements to a set with n elements, 
where m # n?

26. a.  How many onto functions are there from a set 
with three elements to a set with two elements?

b. How many onto functions are there from a set 
with three elements to a set with five elements?

c. How many onto functions are there from a set 
with three elements to a set with three elements?

d. How many onto functions are there from a set 
with four elements to a set with two elements?

e. How many onto functions are there from 
a set with four elements to a set with three 
elements?

f. Let cm,n be the number of onto functions from 
a set of m elements to a set of n elements, 
where m $ n $ 1. Find a formula relating cm,n 
to cm21,n and cm21,n21.

27. Let A be a set with eight elements.
a. How many relations are there on A?
b. How many relations on A are reflexive?
c. How many relations on A are symmetric?
d. How many relations on A are both reflexive 

and symmetric?

28. A student council consists of three freshmen, four 
sophomores, four juniors, and five seniors. How 
many committees of eight members of the council 
contain at least one member from each class?

29. An alternative way to derive Theorem 9.5.1 uses 
the following division rule: Let n and k be integers 
so that k divides n. If a set consisting of n ele-
ments is divided into subsets that each contain k 
elements, then the number of such subsets is nyk. 
Explain how Theorem 9.5.1 can be derived using 
the division rule.

30. Find the error in the following reasoning: “Con-
sider forming a poker hand with two pairs as a 
five-step process.

Step 1:  Choose the denomination of one of the 
pairs.

Step 2:  Choose the two cards of that denomination.
Step 3:  Choose the denomination of the other of 

the pairs.
Step 4:  Choose the two cards of that second de-

nomination.
Step 5:  Choose the fifth card from the remaining 

denominations. 
There are _13

1 + ways to perform step 1, _42+ ways 

to perform step 2, _12
1 + ways to perform step 

3, _42+ ways to perform step 4, and _44
1 + ways 

to perform step 5. Therefore, the total num-
ber of five-card poker hands with two pairs is 
13?6?12?6?44 5 247,104.” 

H

H

H*

H*

*

1. _nr+; n choose r   2. _nr+ (Or: n choose r) 3. the order in which they are chosen 4. 1n

r2 5
P (n, r)

r!
  5. n or more; n or fewer

ANSwerS FOr TeST YOurSeLF 
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634  ChAPTer 9 countInG and ProbabIlIty

r-Combinations with repetition Allowed
The value of mathematics in any science lies more in disciplined analysis and 
abstract thinking than in particular theories and techniques. —Alan Tucker, 1982

In Section 9.5 we showed that there are _nr+ r-combinations, or subsets of size r, of a set of n 
elements. In other words, there are _nr+ ways to choose r distinct elements without regard to 
order from a set of n elements. For instance, there are _43+ 5 4 ways to choose three elements 
out of a set of four: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}.

In this section we ask: How many ways are there to choose r elements without regard to 
order from a set of n elements if repetition is allowed? A good way to imagine this is to vi-
sualize the n elements as categories of objects from which multiple selections may be made. 
For instance, if the categories are labeled 1, 2, 3, and 4 and three elements are chosen, it is 
possible to choose two elements of type 3 and one of type 1, or all three of type 2, or one 
each of types 1, 2, and 4, and so forth. We denote such choices by [3, 3, 1], [2, 2, 2], and [1, 
2, 4], respectively. Note that because order does not matter, [3, 3, 1] 5 [3, 1, 3] 5 [1, 3, 3], 
for example.

Definition and Notation

An r-combination with repetition allowed, or multiset of size r, chosen from a set 
X of n elements is an unordered selection of elements taken from X with repetition 
allowed. If X 5 {x1, x2, . . . , xn}, we write an r-combination with repetition allowed, 
or multiset of size r, as fxi1, xi2, Á , xirg where each xij is in X and some of the xij may 
equal each other.

r-Combinations with repetition Allowed

Write a complete list to find the number of 3-combinations with repetition allowed, or 
multisets of size 3, that can be selected from {1, 2, 3, 4}. Observe that because the order 
in which the elements are chosen does not matter, the elements of each selection may be 
written in increasing order, and writing the elements in increasing order will ensure that 
no combinations are overlooked.

Solution

[1, 1, 1]; [1, 1, 2]; [1, 1, 3]; [1, 1, 4] all combinations that start with 1, 1

[1, 2, 2]; [1, 2, 3]; [1, 2, 4]; all additional combinations that start with 1, 2

[1, 3, 3]; [1, 3, 4]; [1, 4, 4]; all additional combinations that start with 1, 3 or 1, 4

[2, 2, 2]; [2, 2, 3]; [2, 2, 4]; all additional combinations that start with 2, 2

[2, 3, 3]; [2, 3, 4]; [2, 4, 4]; all additional combinations that start with 2, 3 or 2, 4

[3, 3, 3]; [3, 3, 4]; [3, 4, 4]; all additional combinations that start with 3, 3 or 3, 4

[4, 4, 4] the only additional combination that starts with 4, 4.

Thus there are twenty 3-combinations with repetition allowed. ■

How could the number twenty have been predicted other than by making a complete 
list? Consider the numbers 1, 2, 3, and 4 as categories and imagine choosing a total of three 
numbers from the categories with multiple selections from any category allowed. The re-
sults of several such selections are represented by the table on the next page.

9.6

example 9.6.1
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9.6 r-coMbInatIons wIth rePetItIon allowed  635

Category 1 Category 2 Category 3 Category 4 Result of the Selection

u 3 u u 3 3 one from category 2 
two from category 4

3 u u 3 u 3 one each from  
categories 1, 3, and 4

3 3 3 u u u three from category 1

As you can see, each selection of three numbers from the four categories can be repre-
sented by a string of vertical bars and crosses. Three vertical bars are used to separate the 
four categories, and three crosses are used to indicate how many items from each category 
are chosen. Each distinct string of three vertical bars and three crosses represents a distinct 
selection. For instance, the string

3 3 u  u 3 u

represents the selection: two from category 1, none from category 2, one from category 3, 
and none from category 4. Thus the number of distinct selections of three elements that can 
be formed from the set {1, 2, 3, 4} with repetition allowed equals the number of distinct 
strings of six symbols consisting of three u’s and three 3’s. And this equals the number of 
ways to select three positions out of six because once three positions have been chosen for 
the 3’s, the u’s are placed in the remaining three positions. Thus the answer is

16

32 5
6!

3!(623)!
5

6?5?4?3!

3?2?1?3!
5 20,

as was obtained earlier by a careful listing.
The analysis of this example extends to the general case. To count the number of r-

combinations with repetition allowed, or multisets of size r, that can be selected from a set 
of n elements, think of the elements of the set as categories. Then each r-combination with 
repetition allowed can be represented as a string of n21 vertical bars (to separate the n 
categories) and r crosses (to represent the r elements to be chosen). The number of 3’s in 
each category represents the number of times the element represented by that category is 
repeated.

r ’s to be placed in categories

Category 1 Category 2 Category 3 Category n –  1 Category n

3

The number of strings of n21 vertical bars and r crosses is the number of ways to choose 
r positions, into which to place the r crosses, out of a total of r1 (n21) positions, leav-
ing the remaining positions for the vertical bars. And by Theorem 9.5.1, this number is

_r 1 n 2 1
r +.
This discussion proves the following theorem.
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Theorem 9.6.1

The number of r-combinations with repetition allowed (or multisets of size r) that 
can be selected from a set of n elements is

1r1n21
r 2.

This equals the number of ways r objects can be selected from n categories of objects 
with repetition allowed.

Selecting 15 Cans of Soft Drinks of Five Different Types

A person giving a party wants to set out 15 assorted cans of soft drinks for his guests. He 
shops at a store that sells five different types of soft drinks.

a. How many different selections of cans of 15 soft drinks can he make?

b. If root beer is one of the types of soft drink, how many different selections include at 
least six cans of root beer?

c. If the store has only five cans of root beer but at least 15 cans of each other type of 
soft drink, how many different selections are there? 

Solution

a. Think of the five different types of soft drinks as the n categories and the 15 cans of 
soft drinks to be chosen as the r objects (so n 5 5 and r 5 15). Each selection of cans 
of soft drinks is represented by a string of 521 5 4 vertical bars (to separate the 
categories of soft drinks) and 15 crosses (to represent the cans selected). For instance, 
the string

3 3 3 u 3 3 3 3 3 3 3 u  u 3 3 3 u 3 3

represents a selection of three cans of soft drinks of type 1, seven of type 2, none of 
type 3, three of type 4, and two of type 5. The total number of selections of 15 cans of 
soft drinks of the five types is the number of strings of 19 symbols, 521 5 4 of them u  
and 15 of them 3: 

1151521

15 2 5
19!

15!?(19215)!
5 119

152 5
19?18

6
?17?16

2
?15!

15!?4?3?2?1
5 3,876.

b. If at least six cans of root beer are to be included in the selection, you can imagine 
choosing six such cans first and then choosing nine additional cans. The choice of the 
nine additional cans can be represented as a string of 9 3’s and 4 u’s. For example, if 
root beer is type 1, then the string 3 3 3 u u 3 3 u 3 3 3 3 u represents a selection 
of three cans of root beer (in addition to the six chosen initially), none of type 2, two 
of type 3, four of type 4, and none of type 5. Thus the total number of selections of 
15 cans of soft drinks of the five types, including at least six cans of root beer, is the 
number of strings of 13 symbols, 4 (5521) of them u and 9 of them 3:

1914

9 2 5
13!

9!?(1329)!
5 113

9 2 5
13?12?11?10

 5
?9!

9! ?4?3?2?1
5 715. 

example 9.6.2
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c. If the store has only five cans of root beer, then the number of different selections of 
15 cans of soft drinks of the five types is the same as the number of different selec-
tions that contain five or fewer cans of root beer. Let T be the set of all possible 
selections assuming that there are at least 15 cans of each type, let R#5 be the set of 
selections from T that contain five or fewer cans of root beer, and let R$6 be the set of 
selections from T that contain six or more cans of root beer. Then

T 5 R#5 ø R$6 and R#5 ù R$6 5 [.

By part (a) N(T) 5 3,876 and by part (b) N(R$6) 5 715. Thus, by the difference rule,

N(R#5) 5 N(T)2N(R$6) 5 3,8762715 5 3,161.

So, when there are only five or fewer cans of root beer, the number of different selec-
tions of soft drinks is 3,161.  ■

Counting Triples (i, j, k) with 1 # i # j # k # n

If n is a positive integer, how many triples of integers from 1 through n can be formed in 
which the elements of the triple are written in increasing order but are not necessarily dis-
tinct? In other words, how many triples of integers (i, j, k) are there with 1 # i # j # k # n?

Solution Any triple of integers (i, j, k) with 1 # i # j # k # n can be represented as a 
string of n21 vertical bars and three crosses, with the positions of the crosses indicating 
which three integers from 1 to n are included in the triple. The table below illustrates this 
for n 5 5.

Category
Result of the Selection1 2 3 4 5

u u 3 3 u u 3 (3, 3, 5)

3 u 3 u u u (1, 2, 4)

Thus the number of such triples is the same as the number of strings of (n21) u’s and 
3 3’s, which is

   131 (n21)

3 2 5 1n12

3 2 5
(n12)!

3!(n1223)!
 

    5
(n12)(n11)n(n21)!

3!(n21)!
5

n(n11)(n12)

6
. ■

Note that in Examples 9.6.2 and 9.6.3 the reasoning behind Theorem 9.6.1 was used 
rather than the statement of the theorem itself. Alternatively, in either example we could 
invoke Theorem 9.6.1 directly by recognizing that the items to be counted either are  
r-combinations with repetition allowed or are the same in number as such combinations. 
For instance, in Example 9.6.3 we might observe that there are exactly as many triples 
of integers (i, j, k) with 1 # i # j # k # n as there are 3-combinations of integers from 1 
through n with repetition allowed because the elements of any such 3-combination can be 
written in increasing order in only one way.

Counting iterations of a Loop

How many times will the innermost loop be iterated when the algorithm segment below is 
implemented and run? (Assume n is a positive integer.)

example 9.6.3

example 9.6.4
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for k :5 1 to n

  for j :5 1 to k

   for i :5 1 to j

     [Statements in the body of the inner loop, 
none containing branching statements that lead 
outside the loop]

   next i

  next j

next k

Solution Construct a trace table for the values of k, j, and i for which the statements in 
the body of the innermost loop are executed.

k 1 2 3 n

j 1 1 2 1 2 3 1 2 n

i 1 1 1 2 1 1 2 1 2 3 1 1 2 1 n

Because i goes from 1 to j, it is always the case that i # j. Similarly, because j goes 
from 1 to k, it is always the case that j # k. To focus on the details of the table construc-
tion, consider what happens when k 5 3. In this case, j takes each value 1, 2, and 3. When 
j 5 1, i can only take the value 1 (because i # j). When j 5 2, i takes each value 1 and 2 
(again because i # j). When j 5 3, i takes each value 1, 2, and 3 (yet again because i # j).

Observe that there is one iteration of the innermost loop for each column of the table, and 
there is one column of the table for each triple of integers (i, j, k) with 1 # i # j # k # n. 
Now Example 9.6.3 showed that the number of such triples is [n(n11)(n12)]/6. Thus 
there are [n(n11)(n12)]/6 iterations of the innermost loop.  ■

The solution in Example 9.6.4 is elegant and generalizable. (See exercises 8 and 9.) An 
alternative solution using summations is outlined in exercise 21.

The Number of integral Solutions of an equation

How many solutions are there to the equation x1 1x2 1x3 1x4 5 10 if x1, x2, x3, and x4 are 
nonnegative integers?

Solution Think of the number 10 as divided into ten individual units and the variables 
x1, x2, x3, and x4 as four categories into which these units are placed. The number of units 
in each category xi indicates the value of xi in a solution of the equation. Each solution can, 
then, be represented by a string of three vertical bars (to separate the four categories) and 
ten crosses (to represent the ten individual units). For example, in the following table, the 
two crosses under x1, five crosses under x2, and three crosses under x4 represent the solu-
tion x1 5 2, x2 5 5, x3 5 0, and x4 5 3.

Categories
Solution to the Equation x1 1x2 1x3 1x4 5 10x1 x2 x3 x4

3 3 u 3 3 3 3 3 u u 3 3 3 x1 5 2, x2 5 5, x3 5 0, and x4 5 3

3 3 3 3 u 3 3 3 3 3 3 u u x1 5 4, x2 5 6, x3 5 0, and x4 5 0

example 9.6.5
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Therefore, there are as many solutions to the equation as there are strings of ten crosses 
and three vertical bars, namely,

  11013

10 2 5 113

102 5
13!

10!(13210)!
5

13?12?11?10!

10!?3?2?1
5 286. ■

Example 9.6.6 illustrates a variation on Example 9.6.5.

Additional Constraints on the Number of Solutions

How many integer solutions are there to the equation x1 1x2 1x3 1x4 5 10 if each xi $ 1?

Solution In this case imagine starting by putting one cross in each of the four categories. 
Then distribute the remaining six crosses among the categories. Such a distribution can be 
represented by a string of three vertical bars and six crosses. For example, the string

3 3 3 u    u 3 3 u 3

indicates that there are three more crosses in category x1 in addition to the one cross al-
ready there (so x1 5 4), no more crosses in category x2 in addition to the one already there 
(so x2 5 1), two more crosses in category x3 in addition to the one already there (so x3 5 3), 
and one more cross in category x4 in addition to the one already there (so x4 5 2). It follows 
that the number of solutions to the equation that satisfy the given condition is the same as 
the number of strings of three vertical bars and six crosses, namely,

1613

6 2 5 19

62 5
9!

6!(926)!
5

9?8?7?6!

6!?3?2?1
5 84.

An alternative solution to this example is based on the observation that since each xi $ 1, 
we may introduce new variables yi 5 xi 21 for each i 5 1, 2, 3, 4. Then each yi $ 0, and 
y1 1y2 1y3 1y4 5 6. Thus the number of solutions of y1 1y2 1y3 1y4 5 6 in nonnega-
tive integers is the same as the number of solutions of x1 1x2 1x3 1x4 5 10 in positive  
integers. ■

Remark: Deciding Which Formula to Use
In Sections 9.2, 9.3, 9.5, and 9.6 we discussed four different ways of choosing k elements 
from n. The order in which the choices are made may or may not matter, and repetition 
may or may not be allowed. The following table summarizes which formula to use in 
which situation.

Order Matters Order Does Not 
Matter

Repetition Is Allowed nk 1k1n21

k 2
Repetition Is Not Allowed P  (n, k) 1n

k2

example 9.6.6

1. Given a set X 5 {x1, x2, . . . , xn}, an r-combination 
with repetition allowed, or a multiset of size r,  
chosen from X is , which is denoted .

2. If X 5 {x1, x2, . . . , xn}, the number of  
r-combinations with repetition allowed (or  
multisets of size r) chosen from X is .

TeST YOurSeLF 
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1. a.  According to Theorem 9.6.1, how many 
5-combinations with repetition allowed can be 
chosen from a set of three elements?

b. List all of the 5-combinations that can be  
chosen with repetition allowed from the set  
{1, 2, 3}.

2. a.  According to Theorem 9.6.1, how many  
multisets of size four can be chosen from a set 
of three elements?

b. List all of the multisets of size four that can be 
chosen from the set {x, y, z}.

3. A bakery produces six different kinds of pastry, 
one of which is éclairs. Assume there are at least 
20 pastries of each kind.
a. How many different selections of twenty  

pastries are there?
b. How many different selections of twenty pas-

tries are there if at least three must be éclairs?
c. How many different selections of twenty  

pastries contain at most two éclairs?

4. A camera shop stocks eight different types of bat-
teries, one of which is type A76. Assume there are 
at least 30 batteries of each type.
a. How many ways can a total inventory of 30 

batteries be distributed among the eight differ-
ent types?

b. How many ways can a total inventory of 30 
batteries be distributed among the eight differ-
ent types if the inventory must include at least 
four A76 batteries?

c. How many ways can a total inventory of 30 
batteries be distributed among the eight dif-
ferent types if the inventory includes at most 
three A76 batteries? 

5. If n is a positive integer, how many 4-tuples of 
integers from 1 through n can be formed in which 

the elements of the 4-tuple are written in increas-
ing order but are not necessarily distinct? In other 
words, how many 4-tuples of integers (i, j, k, m) 
are there with 1 # i # j # k # m # n?

6. If n is a positive integer, how many 5-tuples of 
integers from 1 through n can be formed in which 
the elements of the 5-tuple are written in decreas-
ing order but are not necessarily distinct? In other 
words, how many 5-tuples of integers (h, i, j, k, m) 
are there with n $ h $ i $ j $ k $ m $ 1?

7. Another way to count the number of nonnega-
tive integral solutions to an equation of the form 
x1 1x2 1 Á 1xn 5 m is to reduce the problem to 
one of finding the number of n-tuples (y1, y2, . . . , 
yn) with 0 # y1 # y2 # Á # yn # m. The reduc-
tion results from letting yi 5 x1 1x2 1 Á 1xi for 
each i 5 1, 2, . . . , n. Use this approach to derive 
a general formula for the number of nonnegative 
integral solutions to x1 1x2 1 Á 1xn 5 m.

In 8 and 9, how many times will the innermost loop be 
iterated when the algorithm segment is implemented and 
run? assume n, m, k, and j are positive integers.

8. for m :5 1 to n

   for k :5 1 to m

     for j :5 1 to k

      for i :5 1 to j

         [Statements in the body of the inner 
loop, none containing branching 
statements that lead outside the 
loop]

      next i
     next j
   next k
 next m

exerCiSe SeT 9.6 

3. When choosing k elements from a set of n ele-
ments, order may or may not matter and repetition 
may or may not be allowed.

 ● The number of ways to choose the k elements 
when repetition is allowed and order matters 
is .

 ● The number of ways to choose the k elements 
when repetition is not allowed and order mat-
ters is .

 ● The number of ways to choose the k elements 
when repetition is not allowed and order does 
not matter is .

 ● The number of ways to choose the k elements 
when repetition is allowed and order does not 
matter is .
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9. for k :5 1 to n

   for j :5 k to n

     for i :5 j to n

       [Statements in the body of the inner loop, 
none containing branching statements 
that lead outside the loop]

     next i

   next j

 next k
In 10–14, find how many solutions there are to the given 
equation that satisfy the given condition.

10. x1 1x2 1x3 5 20, each xi is a nonnegative integer.

11. x1 1x2 1x3 5 20, each xi is a positive integer.

12. y1 1y2 1y3 1y4 5 30, each yi is a nonnegative 
integer.

13. y1 1y2 1y3 1y4 5 30, each yi is an integer that is 
at least 2.

14. a1b1c1d1e 5 500, each of a, b, c, d, and e is 
an integer that is at least 10.

15. For how many integers from 1 through 99,999 is 
the sum of their digits equal to 10?

16. Consider the situation in Example 9.6.2.
a. Suppose the store has only six cans of lem-

onade but at least 15 cans of each of the other 
four types of soft drink. In how many dif-
ferent ways can fifteen cans of soft drink be 
selected?

b. Suppose that the store has only five cans of 
root beer and only six cans of lemonade but at 
least 15 cans of each of the other three types 
of soft drink. In how many different ways can 
fifteen cans of soft drink be selected? 

17. a.  A store sells 8 colors of balloons with at least 
30 of each color. How many different combina-
tions of 30 balloons can be chosen?

b. If the store has only 12 red balloons but at least 
30 of each other color of balloon, how many 
combinations of balloons can be chosen?

c. If the store has only 8 blue balloons but at least 
30 of each other color of balloon, how many 
combinations of balloons can be chosen?

d. If the store has only 12 red balloons and only 
8 blue balloons but at least 30 of each other 
color of balloon, how many combinations of 
balloons can be chosen?

18. A large pile of coins consists of pennies, nickels, 
dimes, and quarters.
a. How many different collections of 30 coins 

can be chosen if there are at least 30 of each 
kind of coin?

b. If the pile contains only 15 quarters but at least 
30 of each other kind of coin, how many col-
lections of 30 coins can be chosen?

c. If the pile contains only 20 dimes but at least 
30 of each other kind of coin, how many col-
lections of 30 coins can be chosen?

d. If the pile contains only 15 quarters and only 
20 dimes but at least 30 of each other kind of coin, 
how many collections of 30 coins can be chosen?

19. Suppose the bakery in exercise 3 has only ten 
éclairs but has at least twenty of each of the other 
kinds of pastry.
a. How many different selections of twenty pas-

tries are there?
b. Suppose in addition to having only ten éclairs, the 

bakery has only eight napoleon slices. How many 
different selections of twenty pastries are there? 

20. Suppose the camera shop in exercise 4 can obtain 
at most ten A76 batteries but can get at least 30 of 
each of the other types.
a. How many ways can a total inventory of 30 

batteries be distributed among the eight differ-
ent types?

b. Suppose that in addition to being able to obtain 
only ten A76 batteries, the store can get only 
six of type D303. How many ways can a total 
inventory of 30 batteries be distributed among 
the eight different types? 

21. Observe that the number of columns in the trace 
table for Example 9.6.4 can be expressed as the sum

11 (112)1 (11213)1 Á 1 (1121 Á 1n).

  Explain why this is so, and show how this sum 
simplifies to the same expression given in the 
solution of Example 9.6.4. (Hint: A formula from 
exercise 13 in Section 5.2 will be helpful.) 

*

H

H

1. an unordered selection of elements taken from X with repetition allowed; fxi1, xi2, . . . , xirg where each xij is in X and some of 
the xij may equal each other 2. _r 1 n 2 1

r + 3. nk; n(n21)(n22) Á (n2k11) (Or: P (n, k)); _nk+; _k 1 n 2 1
k +

ANSwerS FOr TeST YOurSeLF 
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642  ChAPTer 9 countInG and ProbabIlIty

Pascal’s Formula and the Binomial Theorem
I’m very well acquainted, too, with matters mathematical, I understand equations both 
the simple and quadratical. About binomial theorem I am teaming with a lot of news. 
—William S. Gilbert, The Pirates of Penzance, 1880

In this section we derive several formulas for values of _nr+. The most important is Pascal’s 
formula, which is the basis for Pascal’s triangle and is a crucial component of one of the 
proofs of the binomial theorem. We offer two distinct proofs for both Pascal’s formula and 
the binomial theorem. One of them is called “algebraic” because it relies to a great extent 
on algebraic manipulation, and the other is called “combinatorial,” because it is based on 
the kind of counting arguments we have been discussing in this chapter.

Values of S n
nD, S n

n 2 1D, S n
n 2 2D

Think of Theorem 9.5.1 as a general template: Regardless of what nonnegative integers are 
placed in the boxes, if the integer in the lower box is no greater than the integer in the top 
box, then

Sh

e
D 5

h!

e!sh2ed!
.

Use Theorem 9.5.1 to show that for every integer n $ 0,

 Sn
nD 5 1 9.7.1

 S n

n21D 5 n, if n $ 1 9.7.2

 S n

n21D 5
nsn21d

2
, if n $ 2. 9.7.3

Solution

Sn
nD 5

n!

n!(n2n)!
5

1

0!
5 1 since 0! 5 1 by definition

S n

n21D 5
n!

(n21)!(n2 (n21))!

5
n?(n21)!

(n21)!(n2n11)!
5

n

1
5 n

S n

n22D 5
n!

(n22)!(n2 (n22))!

 5
n?(n21)?(n22)!

(n22)!2!
5

n(n21)

2
 ■

Note that the result derived algebraically above, that _nn+ equals 1, agrees with the fact 
that a set with n elements has just one subset of size n, namely, itself. Similarly, exercise 1 
at the end of the section asks you to show algebraically that _n0+ 5 1, which agrees with the fact 

9.7 

example 9.7.1
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9.7 Pascal’s forMula and the bInoMIal theoreM  643

that a set with n elements has one subset, the empty set, of size 0. In exercise 2 you are also 
asked to show algebraically that _n1+ 5 n. This result agrees with the fact that there are n 
subsets of size 1 that can be chosen from a set with n elements, namely the subsets consist-
ing of each element taken alone.

 Sn
rD5 S n

n 2 rD
In exercise 5 at the end of the section you are asked to verify algebraically that

Sn
rD 5 S n

n2 rD
for all nonnegative integers n and r with r # n.

An alternative way to deduce this formula is to interpret it as saying that a set A with 
n elements has exactly as many subsets of size r as it has subsets of size n2 r. Derive the 
formula using this reasoning.

Solution Observe that any subset of size r can be specified either by saying which r ele-
ments lie in the subset or by saying which n2 r elements lie outside the subset.

A, a Set with n Elements

B, a subset
with r
elements

A – B, a subset
with n – r
elements

Any subset B with r
elements completely
determines a subset,
A – B, with n – r elements.

Suppose A has k subsets of size r: B1, B2, Á , Bk. Then each Bi can be paired up with 
exactly one set of size n2 r, namely, its complement A2Bi, as shown below.

Subsets of Size r Subsets of Size n – r

B1

B2

Bk

A – B1

A – B2

A – Bk

All subsets of size r are listed in the left-hand column, and all subsets of size n2 r are 
listed in the right-hand column. The number of subsets of size r equals the number of sub-
sets of size n2 r, and so _nr+ 5 _ n

n 2 r+. ■

The type of reasoning used in this example is called combinatorial, because it is ob-
tained by counting things that are combined in different ways. A number of theorems have 
both combinatorial proofs and proofs that are purely algebraic.

Pascal’s Formula
Pascal’s formula, named after the seventeenth-century French mathematician and philoso-
pher Blaise Pascal, is one of the most famous and useful in combinatorics (which is the 
formal term for the study of counting and listing problems). It relates the value of _n 1 1

r + to 
the values of _ n

r 2 1+ and _nr+. Specifically, it says that

Sn11
r D 5 S n

r21D1Sn
rD

example 9.7.2

Blaise Pascal 
(1623–1662)

Hu
lto

n 
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Ge

tt
y 

Im
ag

es
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644  ChAPTer 9 countInG and ProbabIlIty

whenever n and r are positive integers with r # n. This formula makes it easy to compute 
higher combinations in terms of lower ones: If all the values of _nr+ are known, then the 
values of _n 1 1

r + can be computed for every integer r such that 0 , r # n.
Pascal’s triangle, shown in Table 9.7.1, is a geometric version of Pascal’s formula. Some-

times it is simply called the arithmetic triangle because it was used centuries before Pascal 
by Chinese and Persian mathematicians. But Pascal discovered it independently, and ever 
since 1654, when he published a treatise that explored many of its features, it has generally 
been known as Pascal’s triangle.

TABLe 9.7.1 Pascal’s Triangle for Values of _nr+

          r 
       n

0 1 2 3 4 5 … r 2 1 r …

0 1 ∙ ∙ …

1 1 ∙ ∙ …

2 1 2 1 ∙ ∙ …

3 1 3 3 1 ∙ ∙ …

4 1 4 6 1 4 1 ∙ ∙ …

5 1 5 10 5 10 5 1 ∙ ∙ …

o o o o o o o o o o o o

n Sn

0D Sn

1D Sn

2D Sn

3D Sn

4D Sn

5D Á S n

r21D 1 Sn

rD Á

n11 Sn11

0 D Sn11

1 D Sn11

2 D Sn11

3 D Sn11

4 D Sn11

5 D Á 5 Sn11

r D Á

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ Á
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ Á
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ Á

Each entry in the triangle is a value of _nr+. Pascal’s formula translates into the fact that the 
entry in row n11, column r equals the sum of the entry in row n, column r21 plus the 
entry in row n, column r. That is, the entry in a given interior position equals the sum of 
the two entries directly above and to the above left. The left-most and right-most entries 
in each row are 1 because _nn+ 5 1 by Example 9.7.1 and _n0+ 5 1 by exercise 1 at the end of 
this section.

Calculating Sn
rD using Pascal’s Triangle

Use Pascal’s triangle to compute the values of

S6

2D and S6

3D.

Solution By construction, the value in row n, column r of Pascal’s triangle is the value 

of _nr+, for every pair of positive integers n and r with r # n. By Pascal’s formula, _n 1 1
r + can 

example 9.7.3 
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9.7 Pascal’s forMula and the bInoMIal theoreM  645

be computed by adding together _ n
r 2 1+ and _nr+, which are located directly above and above 

left of _n 1 1
r +. Thus,

S6

2D 5 S5

1D1S5

2D 5 5110 5 15 and

 S6

3D 5 S5

2D1S5

3D 5 10110 5 20. ■

Pascal’s formula can be derived by two entirely different arguments. One is algebraic; 
it uses the formula for the number of r-combinations obtained in Theorem 9.5.1. The other 
is combinatorial; it uses the definition of the number of r-combinations as the number of 
subsets of size r taken from a set with a certain number of elements. We give both proofs 
since both approaches have applications in many other situations.

Theorem 9.7.1 Pascal’s Formula

Let n and r be positive integers with r # n. Then

Sn11

r D 5 S n

r21D1Sn

rD.

Proof (algebraic version): Let n and r be positive integers with r # n. We will show 
that the right-hand side of Pascal’s formula equals its left-hand side. By Theorem 9.5.1,

S n

r21D1Sn
rD 5

n!

(r21)! (n2 (r21))!
1

n!

r! (n2 r)!

5
n!

(r21)! (n2 r11)!
1

n!

r! (n2 r)!

To add these fractions, a common denominator is needed, so multiply the nu-
merator and denominator of the left-hand fraction by r and multiply the numerator 
and denominator of the right-hand fraction by (n2 r11). Then

S n

r21D1Sn
rD 5

n!

(r21)! (n2 r11)!
?
r
r

1
n!

r! (n2 r)!
?
(n2 r11)

(n2 r11)

5
n!?r

(n2 r11)!?  r   (r21)!
1

n?n!2n!?r1n!

(n2 r11)(n2 r)! ?r!

5
n!?r1n!?n2n!?r1n!

(n2 r11)! r!
5

n! (n11)

(n112 r)! r!

5
(n11)!

((n11)2 r)! r!
5 Sn11

r D.  This is what was to be shown.

Proof (combinatorial version): Let n and r be positive integers with r # n. Suppose 
S is a set with n11 elements. The number of subsets of S of size r can be calculated 
by thinking of S as consisting of two pieces: one with n elements {x1, x2, Á , xn} and 
the other with one element {xn11}.

Any subset of S with r elements either contains xn11 or it does not. If it contains 
xn11, then it contains r21 elements from the set {x1, x2, Á , xn}. If it does not con-
tain xn11, then it contains r elements from the set {x1, x2, Á , xn}.

(continued on page 646)
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646  ChAPTer 9 countInG and ProbabIlIty

Subsets of Size r of {x1, x2, . . . , xn+1}

subsets of size r
that consist entirely
of elements from
{x1, x2, . . . , xn}

subsets of size r
that contain xn+1
and r – 1 elements
from {x1, x2, . . . , xn}

There are
n
r( )of these.

There are
n

r – 1(    )of these.

By the addition rule,

3the number of subsets
of {x1, x2, Á , xn, xn11}
of size r 4 5 3the number of subsets

 of {x1, x2, Á , xn}
of size r21 413the number of subsets

of {x1, x2, Á , xn}
of size r 4

By Theorem 9.5.1, the set {x1, x2, Á , xn, xn11} has _n 1 1
r + subsets of size r, the set  

{x1, x2, Á , xn} has _ n
r 2 1+ subsets of size r21, and the set {x1, x2, Á , xn} has _nr+ 

subsets of size r. Thus

Sn11
r D 5 S n

r21D1Sn
rD,

as was to be shown.

Deriving New Formulas from Pascal’s Formula

Use Pascal’s formula to derive a formula for _n 1 2
r + in terms of values of _nr+, _

n
r 2 1+, and _ n

r 2 2+. 
Assume n and r are nonnegative integers and 2 # r # n.

Solution By Pascal’s formula,

Sn12
r D 5 Sn11

r21D1Sn11
r D.

Now apply Pascal’s formula to _n 1 1
r 2 1+ and _n 1 1

r + and substitute into the above to obtain

Sn12
r D 5 3S n

r22D1S n

r21D413S n

r21D1Sn
rD4.

Combining the two middle terms gives

Sn12
r D 5 S n

r22D12S n

r21D1Sn
rD

for all nonnegative integers n and r such that 2 # r # n. ■

The Binomial Theorem
In algebra a sum of two terms, such as a1b, is called a binomial. The binomial theorem 
gives an expression for the powers of a binomial (a1b)n, for each nonnegative integer n 
and all real numbers a and b.

example 9.7.4
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9.7 Pascal’s forMula and the bInoMIal theoreM  647

Consider what happens when you calculate the first few powers of a1b. According 
to the distributive law of algebra, you take the sum of the products of all combinations of 
individual terms:

(a1b)2 5 (a1b)(a1b) 5 aa1ab1ba1bb,

(a1b)3 5 (a1b)(a1b)(a1b)

5 aaa1aab1aba1abb1baa1bab1bba1bbb,

(a1b)4 5 (a1b)(a1b)(a1b)(a1b)(')'*(')'*(')'*(')'*
 1st 2nd 3rd 4th
 factor factor factor factor

5 aaaa1aaab1aaba1aabb1abaa1abab1abba1abbb

1baaa1baab1baba1babb1bbaa1bbab1bbba1bbbb. 

Now focus on the expansion of (a1b)4. (It is concrete, and yet it has all the features of 
the general case.) A typical term of this expansion is obtained by multiplying one of the 
two terms from the first factor times one of the two terms from the second factor times one 
of the two terms from the third factor times one of the two terms from the fourth factor. 
For example, the term abab is obtained by multiplying the a’s and b’s marked with arrows 
below.

T T T T
(a1b)(a1b)(a1b)(a1b)

Since there are two possible values—a or b—for each term selected from one of the four 
factors, there are 24 5 16 terms in the expansion of (a1b)4.

Now some terms in the expansion are “like terms” and can be combined. Consider all 
possible orderings of three a’s and one b, for example. By the techniques of Section 9.5, 
there are _41+ 5 4 of them. And each of the four occurs as a term in the expansion of (a1b)4:

aaab aaba abaa baaa.

By the commutative and associative laws of algebra, each such term equals a3b, so all 
four are “like terms.” When the like terms are combined, therefore, the coefficient of a3b 
equals _41+.

Similarly, the expansion of (a1b)4 contains the _42+ 5 6 different orderings of two a’s 
and two b’s,

aabb abab abba baab baba bbaa,

all of which equal a2b2, so the coefficient of a2b2 equals _42+. By a similar analysis, 

the coefficient of ab3 equals _43+. Also, since there is only one way to order four a’s, the coef-

ficient of a4 is 1 (which equals _40+), and since there is only one way to order four b’s, the 

coefficient of b4 is 1 (which equals _44+). Thus, when all of the like terms are combined,

(a1bd4 5 S4

0Da4 1S4

1Da3b1S4

2Da2b2 1S4

3Dab3 1S4

4Db4

5 a4 14a3b16a2b2 14ab3 1b4.

The binomial theorem generalizes this formula to an arbitrary nonnegative integer n.

94193_ch09_ptg01.indd   647 12/11/18   5:25 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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Note that the second expression equals the first because _n0+ 5 1 and _nn+ 5 1, for every 
nonnegative integer n, since b0 5 1 and an2n 5 1.

It is instructive to see two proofs of the binomial theorem: an algebraic proof and a 
combinatorial proof. Both require a precise definition of integer power.

Theorem 9.7.2 Binomial Theorem

Given any real numbers a and b and any nonnegative integer n,

(a1b)n 5 o
n

k50
Sn

kDan2kbk

5 an 1Sn

1Dan21b1 1Sn

2Dan22b2 1 Á 1S n

n21Da1bn21 1bn.

Definition

For any real number a and any nonnegative integer n, the nonnegative integer 
powers of a are defined as follows:

an 5 51

a?an21  
if n 5 0

if n . 0.

In some mathematical contexts, 00 is left undefined. Defining it to be 1, as indicated 
in Section 5.1, makes it possible to write general formulas such as on

i50 xi 5 1
1 2 x without 

having to exclude values of the variables that result in the expression 00.
The algebraic version of the binomial theorem uses mathematical induction and calls 

upon Pascal’s formula at a crucial point.

Proof of the Binomial Theorem (algebraic version):

Suppose a and b are real numbers. We use mathematical induction and let the prop-
erty P (n) be the equation

(a1b)n 5 o
n

k50
Sn

kDan2kbk.  d P  (n)

Show that P  (0) is true: When n 5 0, the binomial theorem states that:

(a1b)0 5 o
0

k50
S0

kDa02kbk.  d P  (0)

Now the left-hand side is (a1b)0 5 1 [by definition of power], and the right-hand 
side is

o
0

k50
S0

kDa02kbk 5 S0

0Da020b0

5
0!

0!?(020)!
?1?1 5

1

1?1
5 1

also [since 0! 5 1, a0 5 1, and b0 5 1]. Hence P  (0) is true.

94193_ch09_ptg01.indd   648 12/11/18   5:25 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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Show that for each integer m $ 0, if P  (m) is true then P (m11) is true: Let m be 
any integer with m $ 0, and suppose P  (m) is true. That is, suppose

(a1b)m 5 o
m

k50
Sm

kDam2kbk.  P  (m) inductive hypothesis.

We need to show that P (m11) is true:

(a1b)m11 5 o
m11

k50
Sm11

k Da(m11)2kbk.  P (m11)

Now, by definition of the (m11)st power,

(a1b)m11 5 (a1b)?(a1b)m,

so by substitution from the inductive hypothesis,

(a1b)m11 5 (a1b)? o
m

k50
Sm

kDam2kbk

5 a? o
m

k50
Sm

kDam2kbk 1b? o
m

k50
Sm

kDam2kbk

5 o
m

k50
Sm

kDam112kbk 1 o
m

k50
Sm

kDam2kbk11

We transform the second summation on the right-hand side by making the change 
of variable j 5 k11. When k 5 0, then j 5 1. When k 5 m, then j 5 m11. And 
since k 5 j21, the general term is

Sm

kDam2kbk11 5 S m

j21Dam2 ( j21)bj 5 S m

j21Dam112jb j.

Hence the second summation on the right-hand side above is

o
m11

j51
S 

m

j21Dam112jb j.

But the j in this summation is a dummy variable; it can be replaced by the letter k, as 
long as the replacement is made everywhere the j occurs:

o
m11

j51
S 

m

j21Dam112jb j 5 o
m11

k51
S m

k21Dam112kbk.

Substituting back, we get

(a1b)m11 5 o
m

k50
Sm

kDam112kbk 1 o
m11

k51
S m

k21Dam112kbk.

[The reason for the above maneuvers was to make the powers of a and b agree so that 
we can add the summations together term by term, except for the first and the last terms, 
which we must write separately.]

(continued on page 650)

by the generalized distributive  
law and the facts that  
a?am2k 5 a11m2k 5 am112k  
and b?bk 5 b11k 5 bk11.
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It is instructive to write out the product (a1b)?(a1b)m without using the summation 
notation but using the inductive hypothesis about (a1b)m:

(a1b)m11 5 (a1b)?3am 1Sm

1Dam21b1 Á 1S m

k21Dam2(k21)bk21

1Sm

kDam2kbk 1 Á 1S m

m21Dabm21 1bm4.

You will see that the first and last coefficients are clearly 1 and that the term contain-

ing am112kbk is obtained from multiplying am2kbk by a and am2(k21)bk21 by b [because 

m112k 5 m2 (k21)]. Hence the coefficient of am112kbk equals the sum of _mk + and _ m
k 2 1+. 

This is the crux of the algebraic proof.
If n and r are nonnegative integers and r # n, then _nr+ is called a binomial coefficient 

because it is one of the coefficients in the expansion of the binomial expression (a1b)n.
The combinatorial proof of the binomial theorem follows.

Thus

(a1bdm11 5 Sm

0Dam1120b0 1 o
m

k51
3Sm

kD1S m

k21D4am112kbk

1S m

(m11)21Dam112(m11)bm11

5 am11 1 o
m

k51
3Sm

kD1S m

k21D4am112kbk 1bm11

since a0 5 b0 5 1  

and _m0 + 5 _mm+ 5 1.

But

3Sm

kD1S m

k21D4 5 Sm11

k D by Pascal’s formula.

Hence

(a1b)m11 5 am11 1 o
m

k51
Sm11

k Da(m11)2kbk 1bm11

5 o
m11

k50
Sm11

k Da(m11)2kbk because _m 1 1
0 + 5 _m 1 1

m 1 1+ 51

 This is what was to be shown.

Proof of Binomial Theorem (combinatorial version):

[The combinatorial argument used here to prove the binomial theorem works only for 
n $ 1. If we were giving only this combinatorial proof, we would have to prove the case 
n 5 0 separately. Since we have already given a complete algebraic proof that includes 
the case n 5 0, we do not prove it again here.]
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Substituting into the Binomial Theorem

Expand the following expressions using the binomial theorem:

a. (a1b)5  b.  (x24y)4

Solution

a. (a1b)5 5 o
5

k50
S5

kDa52kbk

5 a5 1S5

1Da521b1 1S5

2Da522b2 1S5

3Da523b3 1S5

4Da524b4 1b5

5 a5 15a4b110a3b2 110a2b3 15ab4 1b5

b. Observe that (x24y)4 5 (x1 (24y))4. So let a 5 x and b 5 (24y), and substitute into 
the binomial theorem.

(x24y)4 5 o
4

k50
S4

kDx42k(24y)k

 5 x4 1S4

1Dx421(24yd1 1S4

2Dx422(24y)2 1S4

3Dx423(24yd3 1 (24y)4

 5 x4 14x3(24y)16x2(16y2)14x1(264y3)1 (256y4)

 5 x4 216x3y196x2y2 2256xy3 1256y4  ■

Deriving Another Combinatorial identity from the Binomial Theorem

Use the binomial theorem to show that

2n 5 o
n

k50
Sn

kD 5 Sn

0D1Sn

1D1Sn

2D1 Á 1Sn
nD

for each integer n $ 0.

example 9.7.5

example 9.7.6 

Let a and b be real numbers and n an integer that is at least 1. The expression 
(a1b)n can be expanded into products of n letters, where each letter is either a or b.

For each k 5 0, 1, 2, Á , n, the product

an2kbk 5 a?a?a? Á a?b?b?b Á b(++)++* (++)++*
n2k factors   k factors

occurs as a term in the sum the same number of times as there are orderings of 
(n 2  k) a’s and k b’s. But this number equals _nk+, the number of ways to choose k 
positions into which to place the b’s. [The other n2k positions will be filled by a’s.] 
Hence, when like terms are combined, the coefficient of an2kbk in the sum is _nk+. 
Thus

(a1b)n 5 o
n

k50
Sn

kDan2kbk,

as was to be shown.
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Solution Since 2 5 111, 2n 5 (111)n. Apply the binomial theorem to this expression 
by letting a 5 1 and b 5 1. Then

2n 5 o
n

k50
Sn

kD?1n2k?1k 5 o
n

k50
Sn

kD?1?1

because 1n2k 5 1 and 1k 5 1. Consequently,

 2n 5 o
n

k50
Sn

kD 5 Sn

0D1Sn

1D1Sn

2D1 Á 1Sn
nD. ■

using a Combinatorial Argument to Derive the Same identity

According to Theorem 6.3.1, a set with n elements has 2n subsets. Apply this fact to give a 
combinatorial argument to justify the identity

Sn

0D1Sn

1D1Sn

2D1Sn

3D1 Á 1Sn
nD 5 2n.

Solution Suppose S is a set with n elements. Then every subset of S has some number 
of elements k, where k is between 0 and n. It follows that the total number of subsets of S,  
N(3(S)), can be expressed as the following sum:

3the number 
of subsets
of S 4 5 3the number

of subsets of
size 0 413the number

of subsets
of size 1 41 Á 13the number

of subsets
of size n 4

Now, for each integer k from 1 through n, the number of subsets of size k of a set with n 
elements is _nk+. Hence the

number of subsets of S 5 Sn

0D1Sn

1D1Sn

2D1 Á 1Sn
nD.

By Theorem 6.3.1, S has 2n subsets. Hence

 Sn

0D1Sn

1D1Sn

2D1Sn

3D1 Á 1Sn
nD 5 2n. ■

using the Binomial Theorem to Simplify a Sum

Express the following sum in closed form (without using a summation symbol and without 
using an ellipsis Á ):

o
n

k50
Sn

kD9k.

Solution When the number 1 is raised to any power, the result is still 1. Thus

o
n

k50
Sn

kD9k 5 o
n

k50
Sn

kD1n2k9k

5 (119)n by the binomial theorem with a 5 1 and b 5 9

5 10n. ■

example 9.7.7

example 9.7.8
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1. If n and r are nonnegative integers with r # n, 
then the relation between _nr+ and _ n

n 2 r+ is .

2. Pascal’s formula says that if n and r are positive 
integers with r # n, then .

3. The crux of the algebraic proof of Pascal’s formu-
la is that to add two fractions you need to express 
both of them with a .

4. The crux of the combinatorial proof of Pascal’s 
formula is that the set of subsets of size r of a set 
{x1, x2, Á , xn11} can be partitioned into the set of 
subsets of size r that contain  and the set of 
subsets of size r that .

5. The binomial theorem says that given any  
real numbers a and b and any nonnegative  
integer n,  .

6. The crux of the algebraic proof of the bino-
mial theorem is that, after making a change 
of variable so that two summations have the 
same lower and upper limits and the exponents 
of a and b are the same, you use the fact that 
_mk +1 _ m

k 2 1+ 5  .

7. The crux of the combinatorial proof of the 
binomial theorem is that the number of ways to 
arrange k b’s and (n2k) a’s in a row is .

TeST YOurSeLF 

In 1–4, use theorem 9.5.1 to compute the values of the 
indicated quantities. (assume n is an integer.)

1. _n0+, for n $ 0 2. _n1+, for n $ 1

3. _n2+, for n $ 2 4. _n3+, for n $ 3

5. Use Theorem 9.5.1 to prove algebraically that 
_nr+ 5 _ n

n 2 r+, for integers n and r with 0 # r # n. 
(This can be done by direct calculation; it is not 
necessary to use mathematical induction.) 

Justify the equations in 6–9 either by deriving them from 
formulas in example 9.7.1 or by direct computation from 
theorem 9.5.1. assume m, n, k, and r are integers.

6. _ m 1 k
m 1 k 2 1+ 5 m1k, for m1k $ 1

7. _n 1 3
n 1 1+ 5

(n 1 3)(n 1 2)
2 , for n $ 21

8. _k 2 r
k 2 r+ 5 1, for k2 r $ 0

9. _2(n 1 1d
2n + 5 (n11)(2n11), for n $ 0

10. a.  Use Pascal’s triangle given in Table 9.7.1 to 

compute the values of _62+, _
6
3+, _

6
4+, and _65+.

b. Use the result of part (a) and Pascal’s formula 

to compute _73+, _
7
4+, and _75+.

c. Complete the row of Pascal’s triangle that  
corresponds to n 5 7. 

11. The row of Pascal’s triangle that corresponds to 
n 5 8 is as follows:

1 8 28 56 70 56 28 8 1.

What is the row that corresponds to n 5 9?

12. Use Pascal’s formula repeatedly to derive 
a formula for _n 1 3

r + in terms of values of _nk+ 
with k # r. (Assume n and r are integers with 
n $ r $ 3.)

13. Use Pascal’s formula to prove by mathematical 
induction that if n is an integer and n $ 1, then

o
n11

i52
S i

2D 5 S2

2D1S3

2D1 Á 1Sn11

2 D
5 Sn12

3 D.

14. Prove that if n is an integer and n $ 1, then

1?212?31 Á 1n(n11) 5 2Sn12

3 D.

15. Prove the following generalization of exercise 13: 
Let r be a fixed nonnegative integer. For every 
integer n with n $ r,

o
n

i52
Si

rD 5 Sn11

r11D.

16. Think of a set with m1n elements as composed 
of two parts, one with m elements and the other 
with n elements. Give a combinatorial argument to 
show that

Sm1n
r D 5 Sm

0DSn
rD1Sm

1DS m

r21D1 Á 1Sm
rDSn

0D,

where m and n are positive integers and r is an 
integer that is less than or equal to both m and n.
This identity gives rise to many useful additional 

H

exerCiSe SeT 9.7 
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654  ChAPTer 9 countInG and ProbabIlIty

identities involving the quantities _nk+. Because 
Alexander Vandermonde published an influen-
tial article about it in 1772, it is generally called 
the Vandermonde convolution. However, it was 
known at least in the 1300s in China by Chu 
Shih-chieh.

17. Prove that for every integer n $ 0,

Sn

0D2

1Sn

1D2

1 Á 1Sn
nD2

5 S2n
n D.

18. Let m be any nonnegative integer. Use mathemati-
cal induction and Pascal’s formula to prove that 
for every integer n $ 0,

Sm

0D1Sm11

1 D1 Á 1Sm1n
n D 5 Sm1n11

n D.

Use the binomial theorem to expand the expres-
sions in 19–27.

19. (11x)7 20. (p1q)6 21. (12x)6

22. (u2v)5 23. (p22q)4 24. (u23v)4

25. Sx1
1
xD5

26. S3
a

2
a

3D5

27. Sx2 1
1
xD5

28. In Example 9.7.5 it was shown that

(a1b)5 5 a5 15a4b110a3b2 110a2b3 15ab4 1b5.

Evaluate (a1b)6 by substituting the expression 
above into the equation

(a1b)6 5 (a1b)(a1b)5

and then multiplying out and combining like 
terms. 

In 29–34, find the coefficient of the given term when the 
expression is expanded by the binomial theorem.

29. x6y3 in (x1y)9 30. x7 in (2x13)10

31. a5b7 in (a22b)12 32. u16v4 in (u2 2v2)10

33. p16q7 in (3p2 22q)15 34. x9y10 in (2x23y2)14

35. As in the proof of the binomial theorem, trans-
form the summation

o
n

k50
Sm

kDam2kbk11

by making the change of variable j 5 k11. 

Use the binomial theorem to prove each statement in 36–41.

36. For every integer n $ 1,

Sn

0D2Sn

1D1Sn

2D2 Á 1 (21)nSn
nD 5 0.

(Hint: Use the fact that 11 (21) 5 0.)

37. For every integer n $ 0,

3n 5 Sn

0D12Sn

1D122Sn

2D1 Á 12nSn
nD.

38. For every integer m $ 0, o
m

i50

(21)iSm

i D2m2i 5 1.

39. For every integer n $ 0, o
n

i50

(21)iSn

iD3n2i 5 2n.

40. For every integer n $ 0 and for every nonnegative 
real number x, 11nx # (11x)n.

41. For every integer n $ 1,

 Sn

0D2
1

2Sn

1D1
1

22Sn

2D2
1

23Sn

3D
1 Á 1 (21)n21 1

2n21S n

n21D 5 5 0 if n is even
1

2n21 if n is odd.

42. Use mathematical induction to prove that for 
every integer n $ 1, if S is a set with n elements, 
then S has the same number of subsets with an 
even number of elements as with an odd number 
of elements. Use this fact to give a combinatorial 
argument to justify the identity of exercise 36. 

express each of the sums in 43–54 in closed form (with-
out using a summation symbol and without using an 
ellipsis Á ).

43. o
n

k50
 Sn

kD  5k 44. o
m

i50
 Sm

i D  4i

45. o
n

i50
 Sn

iD  xi 46. o
n

k50
 Sm

kD  2m2k   xk

47. o
2n

j50
  
(21)   

j S2n

j D  x j 48. o
n

r50
  Sn

rD   x2r

49. o
m

i50
 Sm

i D pm2iq2i 50. o
n

k50
 Sn

kD 

1

2k

51. o
m

i50 

 
(21)i Sm

i D 

1

2i 52. o
n

k50
 Sn

k
 D32n22k 22k

H H

H
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9.8 PROBABILITY AXIOMS AND EXPECTED VALUE  655

53. o
m

i50
 
(21)i Sn

iD 5n2i 2i 54. o
n

k50
 
(21)k Sn

kD 32n22k 22k

55. (For students who have studied calculus.)
a. Explain how the equation below follows from 

the binomial theorem:

(11x)n 5 o
n

k50
Sn

kDxk.

b. Write the formula obtained by taking the de-
rivative of both sides of the equation in part (a) 
with respect to x.

c. Use the result of part (b) to derive the formulas 
below.

(i) 2n21 5
1
n

 3Sn

1D12Sn

2D13Sn

3D1 Á 1nSn
nD4

(ii) o
n

k50
 
k Sn

kD (21dk 5 0

d. Express o
n

k51
 
k Sn

kD 3k in closed form (without using 

a summation sign or ellipsis). 

*

1. _nr+ 5 _ n
n 2 r+    2. _n 1 1

r + 5 _ n
r 2 1+1 _nr+    3. common denominator    4. xn11; do not contain xn11

5. (a1b)n 5 o
n

k50
 
_nk+ 

an2k  bk    6. _m 1 1
k +    7. _nk+

Answers for TesT Yourself  

Probability Axioms and expected Value
The theory of probability is at bottom nothing but common sense reduced to a 
calculus. —Pierre-Simon Laplace (1749–1827)

Up to this point, we have calculated probabilities only for situations, such as tossing a fair 
coin or rolling a pair of balanced dice, where the outcomes in the sample space are all 
equally likely. But coins are not always fair and dice are not always balanced. How is it 
possible to calculate probabilities for these more general situations?

The following axioms were formulated by A. N. Kolmogorov in 1933 to provide a theo-
retical foundation for a far-ranging theory of probability. In this section we state the axi-
oms, derive a few consequences, and introduce the notion of expected value.

Recall that a sample space is a set of all outcomes of a random process or experiment 
and that an event is a subset of a sample space.

Probability Axioms

Let S be a sample space. A probability function P from the set of all events in S to the 
set of real numbers satisfies the following three axioms: For all events A and B in S:

1. 0 # P (A) # 1.

2. P ([) 5 0 and P (S) 5 1.

3. If A and B are disjoint (that is, if A ù B 5 [), then the probability of the union 
of A and B is

P (A ø B) 5 P (A)1P (B).

Applying the Probability Axioms

Suppose that A and B are events in a sample space S. If A and B are disjoint, could 
P (A) 5 0.6 and P (B) 5 0.8?

9.8

example 9.8.1

Andrei Nikolaevich 
Kolmogorov (1903–1987)

IT
A

R-
TA

SS
 N

ew
s 

Ag
en

cy
/A

la
m

y
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Solution No. Probability axiom 3 would imply that P (A ø B) 5 P (A)1P (B) 5 0.61
0.8 5 1.4, and since 1.4 . 1, this result would violate probability axiom 1. ■

The Probability of the Complement of an event

Suppose that A is an event in a sample space S. Deduce that P (Ac) 5 12P(A).

Solution By Theorem 6.2.2(5), with S representing the universal set U,

A ù Ac 5 [ and A ø Ac 5 S.

Thus S is the disjoint union of A and Ac, and so

P (A ø Ac) 5 P (A)1P (Ac) 5 P (S) 5 1.

So P (A)1P (Ac) 5 1 and subtracting P (A) from both sides gives the result that 
P (Ac) 5 12P (A). ■

Probability of the Complement of an event

If A is any event in a sample space S, then

  P(Ac) 5 12P(A). 9.8.1

It is important to check that Kolmogorov’s probability axioms are consistent with the 
results obtained using the equally likely probability formula. To see that this is the case, let 
S be a finite sample space with outcomes a1, a2, a3, . . . , an. It is clear that all the singleton 
sets {a1}, {a2}, {a3}, . . . , {an} are mutually disjoint and that their union is S. Since P (S) 5 1, 
probability axiom 3 can be applied multiple times (see exercise 13 at the end of this section) 
to obtain

P (ha1j ø ha2j ø ha3j ø Á ø hanj) 5 o
n

k51

P (hakj) 5 1.

If, in addition, all the outcomes are equally likely, there is a positive real number c so that

P (ha1j ) 5 P (ha2j ) 5 P (ha3j ) 5 Á 5 P (hanj ) 5 c.

Hence

1 5 o
n

k51

c 5 c1c1 Á 1c 5 nc,
 
 n terms

and thus

c 5
1
n

.

It follows that if A is any event with outcomes ai1, ai2, ai3, . . . , aim, then

P (A) 5 o
m

k51

P(haikj) 5 o
m

k51

1
n

5
m
n

5
N(A)

N(S)
,

which is the result given by the equally likely probability formula.

example 9.8.2
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9.8 ProbabIlIty axIoMs and exPected Value  657

The Probability of a general union of Two events

Follow the steps outlined in parts (a) and (b) below to prove the following formula:

Probability of a general union of Two events

If S is any sample space and A and B are any events in S, then

  P (A ø B) 5 P (A)1P (B)2P (A ù B). 9.8.2

In both steps, suppose that A and B are any events in a sample space S.

a. Show that A ø B is a disjoint union of the following sets: A2 (A ù B), B2 (A ù B), 
and A ù B.

b. For any events U and V in a sample space S, if U # V then P (V2U) 5 P (V)2P (U). 
Use this result (which you are asked to prove in exercise 12 at the end of this section) 
and the result of part (a) to finish the proof of the formula. 

Solution

a. Refer to Figure 9.8.1 as you read the following explanation. Elements in the set 
A2 (A ù B) are in the region shaded blue, elements in B2 (A ù B) are in the region 
shaded gray, and elements in A ù B are in the white region.

A BA – (A B) B – (A B)

BA

Figure 9.8.1

Part 1: Show that A : B  sA 2 sA " Bdd :  sB 2 sA " Bdd :  sA " Bd: Given any 
element x in A ø B, x satisfies exactly one of the following three conditions:

(1) x [ A and x [ B

(2) x [ A and x Ó B

(3) x [ B and x Ó A.

1. In the first case, x [ A ù B, and so x [ (A2 (A ù B)) ø (B2 (A ù B)) ø (A ù B) 
by definition of union.

2. In the second case, x Ó A ù B (because x Ó B), and so x [ A2 (A ù B). There-
fore x [ (A2 (A ù B)) ø (B2 (A ù B)) ø (A ù B) by definition of union.

3. In the third case, x Ó A ù B (because x Ó A), and hence x [ B2 (A ù B). So, 
again, x [ (A2 (A ù B)) ø (B2 (A ù B)) ø (A ù B) by definition of union.

Hence, in all three cases, x [ (A2 (A ù B)) ø (B2 (A ù B)) ø (A ù B), which com-
pletes the proof of part 1.

Moreover, since the three conditions are mutually exclusive, the three sets A2 (A ù B), 
B2 (A ù B), and A ù B are mutually disjoint.

Part 2: Show that sA 2 sA " B dd : sB 2 sA " B dd : sA " B d    A : B: Suppose 
x is any element in (A2 (A ù B)) ø (B2 (A ù B)) ø (A ù B). By definition of union, 
x [ A2 (A ù B) or x [ B2 (A ù B) or x [ A ù B.

example 9.8.3
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1. In the first case, x [ A2 (A ù B), and so x [ A and x Ó A ù B by definition of 
set difference. In particular, x [ A and thus x [ A ø B.

2. In the second case, x [ B2 (A ù B), and so x [ B and x Ó A ù B by definition 
of set difference. In particular, x [ B and thus x [ A ø B.

3. In the third case, x [ A ù B, and so, in particular, x [ A. Thus x [ A ø B.

Hence, in all three cases, x [ A ø B, which completes the proof of part 2.

b.  P (A ø B) 5 P ((A2 (A ù B)) ø (B2 (A ù B)) ø (A ù B)) by part (a)

 5 P (A2 (A ù B))1P (B2 (A ù B))1P (A ù B)  
  by exercise 13 at the end of the section and the fact that 

A2 (A ù B), B2 (A ù B), and A ù B are mutually disjoint

 5 P (A)2P (A ù B)1P (B)2P (A ù B)1P (A ù B)  
  by exercise 12 at the end of the section because 

A ù B # A and A ù B # B

 5 P  (A)1P  (B)2P  (A ù B) by algebra. ■

Computing the Probability of a general union of Two events

Suppose a card is chosen at random from an ordinary 52-card deck (see Section 9.1). What 
is the probability that the card is a face card (jack, queen, or king) or is from one of the red 
suits (hearts or diamonds)?

Solution Let A be the event that the chosen card is a face card, and let B be the event that 
the chosen card is from one of the red suits. The event that the card is a face card or is from 
one of the red suits is A ø B. Now N(A) 5 4?3 5 12 (because each of the four suits has 
three face cards), and so P (A) 5 12/52. Also N(B) 5 26 (because half the cards are red), 
and so P (B) 5 26/52. Finally, N(A ù B) 5 6 (because there are three face cards in hearts 
and another three in diamonds), and so P (A ù B) 5 6/52. It follows from the formula for 
the probability of a union of any two events that

P (A ø B) 5 P (A)1P (B)2P (A ù B) 5
12

52
1

26

52
2

6

52
5

32

52
> 61.5%.

Thus the probability that the chosen card is a face card or is from one of the red suits is 
approximately 61.5%. ■

Expected Value
People who regularly buy lottery tickets often justify the practice by saying that, even 
though they know that on average they will lose money, they are hoping for one significant 
gain, after which they believe they will quit playing. Unfortunately, when people who have 
lost money on a string of losing lottery tickets win some or all of it back, they generally 
decide to keep trying their luck instead of quitting.

The technical way to say that on average a person will lose money on the lottery is to 
say that the expected value of playing the lottery is negative.

example 9.8.4

Definition

Suppose the possible outcomes of an experiment, or random process, are real num-
bers a1, a2, a3, . . . , an, which occur with probabilities p1, p2, p3, . . . , pn. The ex-
pected value of the process is

o
n

k51

ak  
pk 5 a1  

p1 1a2  
p2 1a3  

p3 1 Á 1an  
pn.
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expected Value of a Lottery

Suppose that 500,000 people pay $5 each to play a lottery game with the following prizes: 
one grand prize of $1,000,000, 10 second prizes of $1,000 each, 1,000 third prizes of $500 
each, and 10,000 fourth prizes of $10 each. What is the expected value of a ticket?

Solution Each of the 500,000 lottery tickets has the same chance as any other of con-
taining a winning lottery number, and so pk 5 1

500,000 for each k 5 1, 2, 3, . . . , 500,000. 
Let ai be the net gain for an individual ticket ai, where a1 5 999,995 (the net gain for 
the grand-prize ticket, which is one million dollars minus the $5 cost of the winning 
ticket), a2 5 a3 5 Á 5 a11 5 995 (the net gain for each of the 10 second-prize tickets), 
a12 5 a13 5 Á 5 a1,011 5 495 (the net gain for each of the 1,000 third-prize tickets), and 
a1,012 5 a1,013 5 Á 5 a11,011 5 5 (the net gain for each of the 10,000 fourth-prize tickets). 
Since the remaining 488,989 tickets just lose $5, a11,012 5 a11,013 5 Á 5 a500,000 5 25.

The expected value of a ticket is therefore

 o
500,000

k51

akpk 5 o
500,000

k51
1ak?

1

500,0002 because each pk 5 1y500,000

 5
1

500,000 o
500,000

k51

ak    by theorem 5.1.1(2)

 5
1

500,000
(999,995110?99511,000?495110,000?51 (25)?488,989)

 5
1

500,000
(999,99519,9501495,000150,00022,444,945)

 5 21.78.

In other words, a person who continues to play this lottery for a very long time will prob-
ably win some money occasionally but on average will lose $1.78 per ticket. ■

gambler’s ruin

A gambler repeatedly bets $1 that a coin will come up heads when tossed. Each time the 
coin comes up heads, the gambler wins $1; each time it comes up tails, he loses $1. The 
gambler will quit playing either when he is ruined (loses all his money) or when he has $M 
(where M is a positive number he has decided in advance). Let Pn be the probability that 
the gambler is ruined if he begins playing with $n. Then, if the coin is fair (has an equal 
chance of coming up heads or tails),

Pk21 5
1

2
 Pk 1

1

2
 Pk22 for each integer k with 2 # k # M.

(This follows from the fact that if the gambler has $(k21), then he has an equal chance of 
winning $1 or losing $1. If he wins $1 then his chance of being ruined is Pk, whereas if he 
loses $1 then his chance of being ruined is Pk22.) Also P0 5 1 (because if he has $0, he is 
certain of being ruined) and PM 5 0 (because once he has $M, he quits and so stands no 
chance of being ruined). Find an explicit formula for Pn. How should the gambler choose 
M to minimize his chance of being ruined?

Solution Multiplying both sides of Pk21 5 1
2 

Pk 1 1
2 

Pk22 by 2 and subtracting Pk22 from 
both sides gives

Pk 5 2Pk21 2Pk22.

example 9.8.5

example 9.8.6
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This is a second-order homogeneous recurrence relation with constant coefficients. Be-
cause Pk 22Pk21 1Pk22 5 0, its characteristic equation is

t2 22t11 5 0,

which has the single root r 5 1. Thus, by the single-root theorem from Section 5.8,

Pn 5 Crn 1Dnrn 5 C1Dn

(since r 5 1), where C and D are determined by two values of the sequence. Since P0 5 1 
and PM 5 0, 

 1 5 P0 5 C1D?0 5 C

 0 5 PM 5 C1D?M 5 11D?M.

It follows that C 5 1 and D 5 2 1
M, and so

Pn 5 12
1

M
  n 5

M2n

M
  for each integer n with 0 # n # M.

For instance, a gambler who starts with $20 and decides to quit either if his total grows to 
$100 or if he goes broke has the following chance of going broke:

P20 5
100220

100
5

80

100
5 80%.

Observe that the larger M is relative to n, the closer Pn is to 1. In other words, the larger the 
amount of money the gambler sets himself as a target, the more likely he is to go broke. 
Conversely, the more modest he is in his goal, the more likely he is to reach it. ■

1. If A is an event in a sample space S, P(A) can 
take values between  and . Moreover, 
P (S) 5  and P ([) 5  .

2. If A and B are disjoint events in a sample space S, 
P (A ø B) 5 .

3. If A is an event in a sample space S, P (Ac) 5 .

4. If A and B are any events in a sample space S, 
P(A ø B) 5 .

5. If the possible outcomes of a random process or 
experiment are real numbers a1, a2, . . . , an, which 
occur with probabilities p1, p2, . . . , pn, then the 
expected value of the process is .

TeST YOurSeLF 

1. In any sample space S, what is P ([)?

2. Suppose A, B, and C are mutually exclusive events 
in a sample space S, A ø B ø C 5 S, and A and B 
have probabilities 0.3 and 0.5, respectively.
a. What is P (A ø B)? b.  What is P(C)? 

3. Suppose A and B are mutually exclusive events 
in a sample space S, C is another event in S, 
A ø B ø C 5 S, and A and B have probabilities 
0.4 and 0.2, respectively.
a. What is P (A ø B)?
b. Is it possible that P (C) 5 0.2? Explain. 

4. Suppose A and B are events in a sample space S 
with probabilities 0.8 and 0.7, respectively. Sup-
pose also that P (A ù B) 5 0.6. What is P (A ø B)?

5. Suppose A and B are events in a sample space S 
and suppose that P (A) 5 0.6, P (Bc ) 5 0.4, and 
P (A ù B) 5 0.2. What is P (A ø B)?

6. Suppose U and V are events in a sample space S 
and suppose that P (Uc ) 5 0.3, P (V) 5 0.6, and 
P (Uc ø V c ) 5 0.4. What is P (U ø V)?

7. Suppose a sample space S consists of three out-
comes: 0, 1, and 2. Let A 5 {0}, B 5 {1}, and 
C 5 {2}, and suppose P (A) 5 0.4 and P (B) 5 0.3. 
Find each of the following:
a. P (A ø B)
b. P (C)
c. P (A ø C)
d. P (Ac)

exerCiSe SeT 9.8 
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e. P (Ac ù Bc)
f. P (Ac ø Bc)

8. Redo exercise 7 assuming that P(A) 5 0.5 and 
P (B) 5 0.4.

9. Let A and B be events in a sample space S, 
and let C 5 S2 (A ø B). Suppose P (A) 5 0.4, 
P (B) 5 0.5, and P (A ù B) 5 0.2. Find each of the 
following:
a. P (A ø B)
b. P (C)
c. P (Ac)
d. P (Ac ù Bc)
e. P (Ac ø Bc)
f. P (Bc ù C)

10. Redo exercise 9 assuming that P (A) 5 0.7, 
P (B) 5 0.3, and P (A ù B) 5 0.1.

11. Prove that if S is any sample space and U and V 
are events in S with U # V, then P (U) # P(V).

12. Prove that if S is any sample space 
and U and V are any events in S, then 
P (V2U) 5 P (V)2P (U ù V).

13. Use the axioms for probability and mathematical 
induction to prove that for each integer n $ 2, if 
A1, A2, A3, . . . , An are any mutually disjoint events 
in a sample space S, then

P (A1 ø A2 ø A3 ø Á ø An) 5 o
n

k51

P (Ak).

14. A lottery game offers $2 million to the grand 
prize winner, $20 to each of 10,000 second prize 
winners, and $4 to each of 50,000 third prize 
winners. The cost of the lottery is $2 per ticket. 
Suppose that 1.5 million tickets are sold. What is 
the expected gain or loss of a ticket?

15. A company offers a raffle whose grand prize is a 
$40,000 new car. Additional prizes are a $1,000 
television and a $500 computer. Tickets cost $20 
each. Ticket income over the cost of the prizes will 
be donated to charity. If 3,000 tickets are sold, 
what is the expected gain or loss of each ticket?

16. An urn contains four balls numbered 2, 2, 5, and 
6. If a person selects a set of two balls at random, 

what is the expected value of the sum of the num-
bers on the balls?

17. An urn contains five balls numbered 1, 2, 2, 8, 
and 8. If a person selects a set of two balls at ran-
dom, what is the expected value of the sum of the 
numbers on the balls?

18. An urn contains five balls numbered 1, 2, 2, 8, 
and 8. If a person selects a set of three balls at 
random, what is the expected value of the sum of 
the numbers on the balls?

19. When a pair of balanced dice are rolled and the 
sum of the numbers showing face up is com-
puted, the result can be any number from 2 to 12, 
inclusive. What is the expected value of the sum?

20. Suppose a person offers to play a game with 
you. In this game, when you draw a card from a 
standard 52-card deck, if the card is a face card 
you win $3, and if the card is anything else you 
lose $1. If you agree to play the game, what is your 
expected gain or loss?

21. A person pays $1 to play the following game: The 
person tosses a fair coin four times. If no heads 
occur, the person pays an additional $2, if one 
head occurs, the person pays an additional $1, if 
two heads occur, the person just loses the initial 
dollar, if three heads occur, the person wins 
$3, and if four heads occur, the person wins $4. 
What is the person’s expected gain or loss?

22. A fair coin is tossed until either a head comes up 
or four tails are obtained. What is the expected 
number of tosses?

23. A gambler repeatedly bets that a die will come up 
6 when rolled. Each time the die comes up 6, the 
gambler wins $1; each time it does not, the gambler 
loses $1. He will quit playing either when he is ru-
ined or when he wins $300. If Pn is the probability 
that the gambler is ruined when he begins play with 
$n, then Pk21 5 1

6 
Pk 1

5
6 

Pk22 for every integer k 
with 2 # k # 300. Also P0 5 1 and P300 5 0. Find 
an explicit formula for Pn and use it to calculate 
P20. (Exercise 33 in Section 9.9 asks you to derive 
the recurrence relation for this sequence.) 

H

H

H

H

H

H

1. 0; 1; 1; 0 2. P (A)1P(B) 3. 12P (A) 4. P (A)1P (B)2P (A ù B) 5. a1p1 1a2p2 1 Á 1anpn

ANSwerS FOr TeST YOurSeLF 
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Conditional Probability, Bayes’ Formula,  
and independent events
It is remarkable that a science which began with the consideration of games of 
chance should have become the most important object of human knowledge.... 
The most important questions of life are, for the most part, really only problems of 
probability. —Pierre-Simon Laplace, 1749–1827

In this section we introduce the notion of conditional probability and discuss Bayes’ 
theorem and the kind of interesting results to which it leads. We then define the concept of 
independent events and give some applications.

Conditional Probability
Imagine a couple with two children, each of whom is equally likely to be a boy or a girl. 
Now suppose you are given the information that one is a boy. What is the probability that 
the other child is a boy?

Figure 9.9.1 shows four equally likely combinations of gender for the children. You can 
imagine that the first letter refers to the older child and the second letter to the younger. 
Thus the combination BG indicates that the older child is a boy and the younger is a girl.

BB BG GB GG

Figure 9.9.1

There are three combinations where one of the children is a boy, and in one of these 
three combinations the other child is also a boy. Given that you know one child is a boy, 
only these three combinations could be the case. So you can think of the set of those out-
comes as a new sample space with three elements, all of which are equally likely. Within 
the new sample space, there is one combination where the other child is a boy. Thus it 
would be reasonable to say that the likelihood that the other child is a boy, given that at 
least one is a boy, is 1y3 5 331

3%. Given that the original sample space contained four 
outcomes note that the following computation gives the same result:

P (at least one child is a boy and the other child is also a boy)

P (at least one child is a boy)
5

1
4
3
4

5
1

3
.

A generalization of this observation forms the basis for the following definition.

Definition

Let A and B be events in a sample space S. If P (A) Þ 0, then the conditional prob-
ability of B given A, denoted P (B uA), is

  P (B uA) 5
P (A ù B)

P(A)
. 9.9.1

9.9
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Computing a Conditional Probability

A pair of fair dice, one blue and the other gray, are rolled. What is the probability that the 
sum of the numbers showing face up is 8, given that both of the numbers are even?

Solution The sample space is the set of all 36 outcomes obtained from rolling the two 
dice and noting the numbers showing face up on each. As in Section 9.1, denote by ab 
the outcome that the number showing face up on the blue die is a and the one on the 
gray die is b. Let A be the event that both numbers are even and B the event that the sum 
of the numbers is 8. Then A 5 {22, 24, 26, 42, 44, 46, 62, 64, 66}, B 5 {26, 35, 44, 53, 
62}, and A ù B 5 {26, 44, 62}. Because the dice are fair (so all outcomes are equally 
likely), P (A) 5 9y36, P (B) 5 5y36, and P (A ù B) 5 3y36. By definition of conditional 
probability,

  P (B uA) 5
P (A ù B)

P (A)
5

3
36
9

36

5
3

9
5

1

3
. ■

Note that when both sides of the formula for conditional probability (formula 9.9.1) are 
multiplied by P  (A), a formula for P (A ù B) is obtained:

 
P (A ù B) 5 P (B uA)?P(A).

 
9.9.2

And dividing both sides of formula (9.9.2) by P (B uA) gives a formula for P(A):

 

P (A) 5
P (A ù B)

P (B uA)
.

 
9.9.3

representing Conditional Probabilities with a Tree Diagram

An urn contains 5 blue and 7 gray balls. Let us say that 2 are chosen at random, one after 
the other, without replacement.

a. Find the following probabilities and illustrate them with a tree diagram: the probabil-
ity that both balls are blue, the probability that the first ball is blue and the second is 
not blue, the probability that the first ball is not blue and the second ball is blue, and 
the probability that neither ball is blue.

b. What is the probability that the second ball is blue?

c. What is the probability that at least one of the balls is blue?

d. If the experiment of choosing two balls from the urn is repeated many times over, 
what is the expected value of the number of blue balls?

Solution Let S denote the sample space of all possible choices of two balls from the urn, 
let B1 be the event that the first ball is blue, and let B2 be the event that the second ball is 
blue. Then B c

1  is the event that the first ball is not blue and B c
2  is the event that the second 

ball is not blue.

a. Because there are 12 balls of which 5 are blue and 7 are gray, the probability that the 
first ball is blue is

P (B1) 5
5

12

example 9.9.1

example 9.9.2
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and the probability that the first ball is not blue is

P (B c
1 ) 5

7

12
.

If the first ball is blue, then the urn would contain 4 blue balls and 7 gray balls, and so

P (B2 uB1) 5
4

11
 and P (B c

2   

uB1) 5
7

11
,

where P (B2 uB1) is the probability that the second ball is blue given that the first ball is 
blue and P (B c

2 uB1) is the probability that the second ball is not blue given that the first 
ball is blue. It follows from formula (9.9.2) that the probability that both balls are blue is

P (B1 ù B2) 5 P (B2 uB1)?P (B1) 5
4

11
?

5

12
5

20

132
.

And the probability that the first ball is blue and the second ball is not blue is

P (B1 ù B c
2 ) 5 P (B c

2   

u
 

B1)?P (B1) 5
7

11
?

5

12
5

35

132
.

Similarly, if the first ball is not blue, then the urn would contain 5 blue balls and 
6 gray balls, and so

P (B2 uB c
1 ) 5

5

11
 and P (B c

2  

uB c
1 ) 5

6

11
,

where P (B2 uB c
1 ) is the probability that the second ball is blue given that the first ball 

is not blue and P (B c
2 u B c

1 ) is the probability that the second ball is not blue given that 
the first ball is not blue. It follows from formula (9.9.2) that the probability that the 
first ball is not blue but the second ball is blue is

P (B c
1 ù B2) 5 P (B2 u B c

1 )?P (B c
1 ) 5

5

11
?

7

12
5

35

132
.

And the probability that neither the first ball nor the second ball is blue is

P(B c
1 ù B c

2 ) 5 P(B c
2 u B c

1 )?P(B c
1 ) 5

6

11
?

7

12
5

42

132
.

The tree diagram in Figure 9.9.2 is a convenient way to help calculate these results.

P(B1) =
 —
5
12

P(B2
   B1) =

 —
4
11

4
11

5
12

20
132

P(B1    B 
c) = — · — = —–

P(B1    B2) = — · — = —–

7
11

5
12

35
132

B1     B2

B1

B1     B 
c

P(B 
c    B 

c) = — · — = —–6
11

7
12

42
132

7
12

P(B c
 ) = —1

B 
c

1

6
11

P(B c 
 B c

 ) = —2 1

2

5
11P(B 

   B 
c

 ) = —
1

7
11

P(B c   B 
 ) = —2

1

B 
c     B21

2

P(B2    B 
c) = — · — = —–5

11
7
12

35
1321

12
B 

c     B 
c

21

2

Figure 9.9.2

b. The event that the second ball is blue can occur in one of two mutually exclusive ways: 
Either the first ball is blue and the second is also blue, or the first ball is gray (not 
blue) and the second is blue.
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In other words, B2 is the disjoint union of B2 ù B1 and B2 ù B c
1 . Hence

 P (B2) 5 P ((B2 ù B1) ø (B2 ù B c
1 ))

 5 P (B2 ù B1)1P (B2 ù B c
1 ) by probability axiom 3

 5
20

132
1

35

132
 by part (a)

 5
55

132
5

5

12
.

Thus the probability that the second ball is blue is 5y12, the same as the probability 
that the first ball is blue.

c. By formula 9.8.2, for the union of any two events,

P (B1 ø B2) 5 P (B1)1P (B2)2P (B1 ù B2)

5
5

12
1

5

12
2

20

132
      by parts (a) and (b)

5
90

132
5

15

22
.

Thus the probability is 15y22, or approximately 68.2%, that at least one of the balls is 
blue.

d. The event that neither ball is blue is the complement of the event that at least one of 
the balls is blue, and so

P (0 blue balls) 5 12P (at least one ball is blue)  by formula 9.8.1

5 12
15

22
 by part (c)

5
7

22
.

The event that one ball is blue can occur in one of two mutually exclusive ways: 
Either the second ball is blue and the first is not, or the first ball is blue and the 

second is not. Part (a) showed that the probability of the first way is 35
132, and the 

probability of the second way is also 35
132. Thus, by probability axiom 3,

P (1 blue ball) 5
35

132
1

35

132
5

70

132
.

Finally, by part (a),

P (2 blue balls) 5
20

132
.

Therefore,

3the expected value

of the number

of blue balls
4 5 0?P (0 blue balls)11?P (1 blue ball)12?P (2 blue balls)

5 0?
7

22
11?

70

132
12?

20

132

5
110

132
> 0.8. ■

94193_ch09_ptg01.indd   665 12/11/18   5:26 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



666  ChAPTer 9 countInG and ProbabIlIty

Bayes’ Theorem
Suppose that one urn contains 3 blue and 4 gray balls and a second urn contains 5 blue and 
3 gray balls. A ball is selected by choosing one of the urns at random and then picking a 
ball at random from that urn. If the chosen ball is blue, what is the probability that it came 
from the first urn?

This problem can be solved by carefully interpreting all the information that is known 
and putting it together in just the right way. Let A be the event that the chosen ball is blue, 
B1 the event that the ball came from the first urn, and B2 the event that the ball came from 
the second urn. Because 3 of the 7 balls in urn one are blue, and 5 of the 8 balls in urn two 
are blue,

P (A uB1) 5
3

7
 and P (A uB2) 5

5

8
.

And because the urns are equally likely to be chosen,

P (B1) 5 P (B2) 5
1

2
.

Moreover, by formula (9.9.2),

P (A ù B1) 5 P (A uB1)?P (B1) 5
3

7
?
1

2
5

3

14
 and

P (A ù B2) 5 P (A uB2)?P (B2) 5
5

8
?
1

2
5

5

16
.

Now A is the disjoint union of (A ù B1) and (A ù B2), and so by probability axiom 3,

P (A) 5 P ((A ù B1) ø (A ù B2)) 5 P (A ù B1)1P (A ù B2) 5
3

14
1

5

16
5

59

112
.

Finally, by definition of conditional probability,

P (B1 uA) 5
P (B1 ù A)

P (A)
5

3
14
59

112

5
336

826
> 40.7%.

Thus, if the chosen ball is blue, the probability is approximately 40.7% that it came from 
the first urn.

The steps used to derive the answer in the previous example can be generalized to prove 
Bayes’ theorem. (See exercises 9 and 10 at the end of this section.) Thomas Bayes was 
an English Presbyterian minister who devoted much of his energies to mathematics. The 
theorem that bears his name was published posthumously in 1763. The portrait at the left is 
the only one attributed to him, but its authenticity has recently come into question.

Thomas Bayes 
(1702–1761)

St
ep

he
n 

M
. S

tig
le

r

Theorem 9.9.1 Bayes’ Theorem

Suppose a sample space S is a union of mutually disjoint events B1, B2, B3, Á , Bn, 
suppose A is an event in S, and suppose both A and each Bk have nonzero probabilities 
for every integer k with 1 # k # n. Then

P (Bk uA) 5
P (A uBk)P (Bk)

P (A uB1)P (B1)1P (A uB2)P (B2)1 Á 1P (A uBn)P (Bn)
.
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Applying Bayes’ Theorem

Most medical tests occasionally produce incorrect results, called false positives and false neg-
atives. When a test is designed to determine whether a patient has a certain disease, a false 
positive result indicates that a patient has the disease when the patient does not have it. A false 
negative result indicates that a patient does not have the disease when the patient does have it.

When large-scale health screenings are performed for diseases with relatively low inci-
dence, those who develop the screening procedures have to balance several considerations: 
the per-person cost of the screening, follow-up costs for further testing of false positives, 
and the possibility that people who have the disease will develop unwarranted confidence 
in the state of their health.

Consider a medical test that screens for a disease found in 5 people in 1,000. Suppose 
that the false positive rate is 3% and the false negative rate is 1%. Then 99% of the time a 
person who has the condition tests positive for it, and 97% of the time a person who does 
not have the condition tests negative for it. (See exercise 4 at the end of this section.)

a. What is the probability that a randomly chosen person who tests positive for the dis-
ease actually has the disease?

b. What is the probability that a randomly chosen person who tests negative for the dis-
ease does not in fact have the disease? 

Solution Consider a person chosen at random from among those screened. Let A be the 
event that the person tests positive for the disease, B1 the event that the person actually has 
the disease, and B2 the event that the person does not have the disease. Then

P (A uB1) 5 0.99, P (Ac uB1) 5 0.01, P (Ac uB2) 5 0.97, and P (A uB2) 5 0.03.

Also, because 5 people in 1,000 have the disease,

P (B1) 5 0.005 and P (B2) 5 0.995.

a. By Bayes’ theorem,

P (B1 uA) 5
P (A uB1)P (B1)

P (A uB1)P (B1)1P (A uB2)P (B2)

5
(0.99)(0.005)

(0.99)(0.005)1 (0.03)(0.995)

> 0.1422 > 14.2%.

Thus the probability that a person with a positive test result actually has the disease is 
approximately 14.2%.

b. By Bayes’ theorem,

P (B2 uAc) 5
P (Ac uB2)P (B2)

P (Ac uB1)P (B1)1P (Ac uB2)P (B2)

5
(0.97)(0.995)

(0.01)(0.005)1 (0.97)(0.995)

> 0.999948 > 99.995%.

Thus the probability that a person with a negative test result does not have the disease is 
approximately 99.995%.

You might be surprised by these numbers, but they are fairly typical of the situation 
where the screening test is significantly less expensive than a more accurate test for the 

example 9.9.3
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same disease yet produces positive results for nearly all people with the disease. Using the 
screening test limits the expense of unnecessarily using the more costly test to a relatively 
small percentage of the population being screened, while only rarely indicating that a per-
son who has the disease is free of it. ■

Independent Events
Suppose a fair coin is tossed twice. It seems intuitively clear that the outcome of the first 
toss does not depend in any way on the outcome of the second toss, and conversely, the out-
come of the second toss does not depend on the outcome of the first toss. In other words, if, 
for instance, A is the event that a head is obtained on the first toss and B is the event that a 
head is obtained on the second toss, then if the coin is tossed randomly both times, events 
A and B should be independent in the sense that P (A uB) 5 P (A) and P (B uA) 5 P (B). This 
intuitive idea of independence is supported by the following analysis. If the coin is fair, 
then the four outcomes HH, HT, TH, and TT are equally likely, and

A 5 {HH, HT}, B 5 {TH, HH}, A ù B 5 {HH}.

Hence

P (A) 5 P (B) 5
2

4
5

1

2
.

But also

P (A uB) 5
P (A ù B)

P (B)
5

1
4
1
2

5
1

2
  and  P (B uA) 5

P (A ù B)

P (A)
5

1
4
1
2

5
1

2
,

and thus P (A uB) 5 P (A) and P (B uA) 5 P (B).
To obtain more convenient form for the definition of independence, observe that

if P (B) Þ 0 and P (A uB) 5 P (A), then P (A ù B) 5 P (A uB)?P (B) 5 P (A)?P (B).

By the same argument,

if P (A) Þ 0 and P (B uA) 5 P (B) then P (A ù B) 5 P (A)?P (B).

Conversely (see exercise 18 at the end of this section),

if P (A ù B) 5 P (A)?P (B) and P (A) Þ 0 then P (B uA) 5 P (B)

and

if P (A ù B) 5 P (A)?P (B) and P (B) Þ 0 then P (A uB) 5 P (A).

Thus, we can eliminate the requirement that the probabilities be nonzero if we use the fol-
lowing product formula to define independent events.

Note It would be natural 
to think that mutually 
disjoint events would be 
independent, but in fact 
almost the opposite is 
true: Mutually disjoint 
events with nonzero prob-
abilities are dependent.

Definition

If A and B are events in a sample space S, then A and B are independent if, and 
only if,

P (A ù B) 5 P (A)?P (B).

Disjoint events and independence

Let A and B be events in a sample space S, and suppose A ù B 5 [, P (A) Þ 0, and 
P (B) Þ 0. Show that P (A ù B) Þ P (A)?P (B).

example 9.9.4
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Solution Because A ù B 5 [, P (A ù B) 5 0 by probability axiom 2. But P (A)?P (B) Þ 0 
because neither P (A) nor P (B) equals zero. Thus P (A ù B) Þ P (A)?P (B). ■

The following example and its immediate consequence show how the independence of 
two events extends to their complements.

The Probability of A " Bc when A and B Are independent events

Suppose A and B are independent events in a sample space S. Show that A and Bc are also 
independent.

Solution The solutions for exercises 8 and 28 in Section 6.2 show that for all sets A and B,

(1) (A ù B) ø (A ù Bc) 5 A

and

(2) (A ù B) ù (A ù Bc) 5 [.

It follows that probability axiom 3 may be applied to equation (1) to obtain

P ((A ù B) ø (A ù Bc)) 5 P (A ù B)1P (A ù Bc) 5 P (A).

Solving for P(A ù Bc) gives that

P (A ù Bc) 5 P (A)2P (A ù B)

5 P (A)2P (A)?P (B) because A and B are independent

5 P (A)(12P (B)) by factoring out P(A)

5 P (A)?P (Bc) by formula 9.8.1.

Thus A and Bc are independent events. ■

It follows immediately from Example 9.9.5 that if A and B are independent, then Ac and 
B are also independent and so are Ac and Bc. (See exercise 22 at the end of this section.) 
These results are applied in Example 9.9.6.

Computing Probabilities of intersections of Two independent events

A coin is loaded so that the probability of heads is 0.6. Suppose the coin is tossed twice. 
Although the probability of heads is greater than the probability of tails, there is no reason 
to believe that whether the coin lands heads or tails on one toss will affect whether it lands 
heads or tails on the other toss. Thus it is reasonable to assume that the results of the tosses 
are independent.

a. What is the probability of obtaining two heads?

b. What is the probability of obtaining one head?

c. What is the probability of obtaining no heads?

d. What is the probability of obtaining at least one head? 
Solution The sample space S consists of the four outcomes {HH, HT, TH, TT}, which are 
not equally likely. Let E be the event that a head is obtained on the first toss, and let F be 
the event that a head is obtained on the second toss. Then P (E) 5 P (F) 5 0.6, and it is to 
be assumed that E and F are independent.

a. The event of obtaining two heads is E ù F. And because E and F are independent,

P (two heads) 5 P (E ù F) 5 P (E)?P (F) 5 (0.6)(0.6) 5 0.36 5 36%.

example 9.9.5

example 9.9.6
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b. One head can be obtained in two mutually exclusive ways: head on the first toss and 
tail on the second, or tail on the first toss and head on the second. Thus, the event of 
obtaining exactly one head is (E ù Fc) ø (Ec ù F). Also (E ù Fc) ù (Ec ù F) 5 [, 
and, moreover, by the formula for the probability of the complement of an event,  
P (Ec) 5 P (Fc) 5 120.6 5 0.4. Hence

P (one head) 5 P ((E ù Fc) ø (Ec ù F))

5 P (E)?P (Fc)1P (Ec)?P (F) by Example 9.9.5 and exercise 22

5 (0.6)(0.4)1 (0.4)(0.6)

5 0.48 5 48%.

c. The event of obtaining no heads is Ec ù Fc. Thus, by exercise 22,

P(no heads) 5 P(Ec ù F c) 5 P(Ec) ?P(Fc) 5 (0.4)(0.4) 5 0.16 5 16%.

d. There are two ways to solve this problem. One is to observe that because the event of 
obtaining one head and the event of obtaining two heads are mutually disjoint,

P (at least one head) 5 P (one head)1P (two heads)

5 0.4810.36      by parts (a) and (b)

5  0.84 5 84%.

The second way is to use the fact that the event of obtaining at least one head is the 
complement of the event of obtaining no heads. So

P(at least one head) 5 12P(no heads)

5 120.16    by part (c)

5 0.84 5 84%. ■

expected Value of Tossing a Loaded Coin Twice

Suppose that a coin is loaded so that the probability of heads is 0.6, and suppose the coin 
is tossed twice. If this experiment is repeated many times, what is the expected value of 
the number of heads?

Solution Think of the outcomes of the coin tosses as just 0, 1, or 2 heads. Example 9.9.6 
showed that the probabilities of these outcomes are 0.16, 0.48, and 0.36, respectively. Thus, 
by definition of expected value, the

 expected number of heads 5 0?(0.16)11?(0.48)12?(0.36) 5 1.2. ■

What if a loaded coin is tossed more than twice? Suppose it is tossed ten times, or a 
hundred times. What are the probabilities of various numbers of heads? 

The previous examples illustrated the fact that the probability of an intersection of two 
events is the product of their probabilities whenever the two events are independent. Is 
there a way to generalize the concept of independence so that the probability of the inter-
section of more than two events can be found by multiplying their probabilities? 

To answer this question, we first define three events A, B, and C to be pairwise inde-
pendent if, and only if,

P (A ù B) 5 P (A)?P (B), P (A ù C) 5 P (A)?P (C), and P (B ù C) 5 P (B)?P (C).

However, as the next example shows, events can be pairwise independent without having 
the probability of their intersection be the product of their probabilities. Moreover, events 
can satisfy the condition P (A ù B ù C) 5 P (A)?P (B)?P (C) without being pairwise inde-
pendent (see exercise 26 at the end of this section).

example 9.9.7
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exploring independence for Three events

Suppose that a fair coin is tossed twice. Let A be the event that a head is obtained on the 
first toss, B the event that a head is obtained on the second toss, and C the event that either 
two heads or two tails are obtained. Show that A, B, and C are pairwise independent but do 
not satisfy the condition P (A ù B ù C) 5 P (A)?P (B)?P (C).

Solution Because there are four equally likely outcomes—HH, HT, TH, and TT—it is 
clear that P (A) 5 P (B) 5 P (C) 5 1

2. You can also see that A ù B 5 {HH}, A ù C 5 {HH}, 
B ù C 5 {HH}, and A ù B ù C 5 {HH}. Hence P (A ù B) 5 P (A ù C) 5 P (B ù C) 5
1
4, and so P (A ù B) 5 P (A)?P (B), P (A ù C) 5 P (A)?P (C), and P (B ù C) 5 P (B)?P (C). 
Thus A, B, and C are pairwise independent. However,

 P (A ù B ù C) 5 P ({HH}) 5
1

4
Þ S1

2D3

5 P (A)?P (B)?P (C) ■

Because of situations like the ones in Example 9.9.8 and exercise 26, four conditions 
must be included in the definition of independence for three events.

example 9.9.8

Definition

Let A, B, and C be events in a sample space S. A, B, and C are pairwise independent 
if, and only if, they satisfy conditions 1–3 below. They are mutually independent if, 
and only if, they satisfy all four conditions below.

1. P (A ù B) 5 P  (A)?P  (B)

2. P  (A ù C) 5 P  (A)?P  (C)

3. P  (B ù C) 5 P (B)?P (C)

4. P (A ù B ù C) 5 P (A)?P (B)?P (C) 

Definition

Events A1, A2, A3, . . . , An in a sample space S are mutually independent if, and only 
if, the probability of the intersection of any subset of the events is the product of the 
probabilities of the events in the subset.

The definition of mutual independence for any collection of n events with n $ 2 general-
izes the two definitions given previously.

Tossing a Loaded Coin Ten Times

A coin is loaded so that the probability of heads is 0.6 (and thus the probability of tails is 
0.4). Suppose the coin is tossed ten times. As in Example 9.9.6, it is reasonable to assume 
that the results of the tosses are mutually independent.

a. What is the probability of obtaining eight heads?

b. What is the probability of obtaining at least eight heads? 
Solution
a. For each i 5 1, 2, . . . , 10, let Hi be the event that a head is obtained on the i  th toss, 

and let Ti be the event that a tail is obtained on the i  th toss. Suppose that the eight 

example 9.9.9
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heads occur on the first eight tosses and that the remaining two tosses are tails. This is 
the event H1 ù H2 ù H3 ù H4 ù H5 ù H6 ù H7 ù H8 ù T9 ù T10. For simplicity, we 
denote it as HHHHHHHHTT. By definition of mutually independent events,

P (HHHHHHHHTT) 5 (0.6)8(0.4)2.

Because of the commutative law for multiplication, if the eight heads occur on any 
other of the ten tosses, the same number is obtained. For instance, if we denote the 
event H1 ù H2 ù T3 ù H4 ù H5 ù H6 ù H7 ù H8 ù T9 ù H10 by H H T H H H H H 
T H, then

P (H H T H H H H H T H) 5 (0.6)2(0.4)(0.6)5(0.4)(0.6) 5 (0.6)8(0.4)2.

Now there are as many different ways to obtain eight heads in ten tosses as there are 
subsets of eight elements (the toss numbers on which heads are obtained) that can be 
chosen from a set of ten elements. This number is _10

8 +. It follows that, because the dif-
ferent ways of obtaining eight heads are all mutually exclusive,

P (eight heads) 5 S10

8 D(0.6)8(0.4)2.

b. By reasoning similar to that in part (a),

P (nine heads) 5 3the number of different
ways nine heads can be
obtained in ten tosses 4?(0.6)9(0.4)1 5 S10

9 D(0.6)9(0.4),

and

P (ten heads) 5 3the number of different
ways ten heads can be
obtained in ten tosses 4?(0.6)10(0.4)0 5 S10

10D(0.6)10.

Because obtaining eight, obtaining nine, and obtaining ten heads are mutually disjoint 
events,

P (at least eight heads) 5 P (eight heads)1P (nine heads)1P (ten heads)

5 S10

8 D(0.6)8(0.4)2 1S10

9 D(0.6)9(0.4)1S10

10D(0.6)10

> 0.167 5 16.7%. ■

Note the occurrence of the binomial coefficients _nk+ in solutions to problems like the one 
in Example 9.9.9. For that reason, probabilities of the form

Sn

kDpn2k(12p)k,

where 0 # p # 1, are called binomial probabilities.

Note Binomial proba-
bilities occur in situations 
with multiple, mutually 
independent repetitions of 
a random process, all of 
which have the same two 
possible outcomes with 
the same probabilities on 
each repetition.

1. If A and B are any events in a sample space S and 
P (A) Þ 0, then the conditional probability of B 
given A, denoted P (B uA), equals .

2. Bayes’ theorem says that if a sample space S is a 
union of mutually disjoint events B1, B2, Á , Bn, 
each with a nonzero probability, if A is an event 

TeST YOurSeLF 
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in S with P (A) Þ 0, and if k is an integer with 
1 # k # n, then .

3. Events A and B in a sample space S are indepen-
dent if, and only if, .

4. Events A, B, and C in a sample space S are mutually 
independent if, and only if, , , , 
and .

1. Suppose P (A uB) 5 1y2 and P (A ù B) 5 1y6. 
What is P(B)?

2. Suppose P (X uY) 5 1y3 and P (Y) 5 1y4. What is 
P (X ù Y)?

3. The instructor of a discrete mathematics class 
gave two tests. Twenty-five percent of the students 
received an A on the first test and 15% of the stu-
dents received A’s on both tests. What percent of 
the students who received A’s on the first test also 
received A’s on the second test?

4. a.  Prove that if A and B are any events in 
a sample space S, with P (B) Þ 0, then 
P (Ac uB) 5 12P (A uB).

b. Explain how the result in part (a) justifies the 
following statements: (1) If the probability of a 
false positive on a test for a condition is 4%, then 
there is a 96% probability that a person who 
does not have the condition will have a negative 
test result. (2) If the probability of a false nega-
tive on a test for a condition is 1%, then there is a 
99% probability that a person who does have the 
condition will test positive for it. 

5. Suppose that A and B are events in a sample space 
S and that P (A), P (B), and P (A uB) are known. 
Derive a formula for P (A uBc).

6. An urn contains 25 red balls and 15 blue balls. 
Two are chosen at random, one after the other, 
without replacement.
a. Use a tree diagram to help calculate the follow-

ing probabilities: the probability that both balls 
are red, the probability that the first ball is red 
and the second is not, the probability that the 
first ball is not red and the second is red, the 
probability that neither ball is red.

b. What is the probability that the second ball 
is red?

c. What is the probability that at least one of the 
balls is red? 

7. Redo exercise 6 assuming that the urn contains 
30 red balls and 40 blue balls.

8. A pool of 10 semifinalists for a job consists of 
7 men and 3 women. Because all are considered 
equally qualified, the names of two of the semifi-
nalists are drawn, one after the other, at random, 
to become finalists for the job.
a. What is the probability that both finalists are 

women?
b. What is the probability that both finalists are 

men?
c. What is the probability that one finalist is a 

woman and the other is a man?

9. Prove Bayes’ theorem for n 5 2. That is, prove 
that if a sample space S is a union of mutually 
disjoint events B1 and B2, if A is an event in S with 
P (A) Þ 0, and if k 5 1 or k 5 2, then

P (Bk uA) 5
P (A uBk)P (Bk)

P (A uB1)P (B1)1P (A uB2)P (B2)
.

10. Prove the full version of Bayes’ theorem.

11. One urn contains 12 blue balls and 7 white balls, 
and a second urn contains 8 blue balls and 19 white 
balls. An urn is selected at random, and a ball is 
chosen from the urn.
a. What is the probability that the chosen ball is 

blue?
b. If the chosen ball is blue, what is the probabil-

ity that it came from the first urn? 
12. Redo exercise 11 assuming that the first urn con-

tains 4 blue balls and 16 white balls and the sec-
ond urn contains 10 blue balls and 9 white balls.

13. One urn contains 10 red balls and 25 green balls, 
and a second urn contains 22 red balls and 15 green 
balls. A ball is chosen as follows: First an urn is se-
lected by tossing a loaded coin with probability 0.4 
of landing heads up and probability 0.6 of landing 
tails up. If the coin lands heads up, the first urn is 
chosen; otherwise, the second urn is chosen. Then a 
ball is picked at random from the chosen urn.
a. What is the probability that the chosen ball is 

green?

H

H

H

H

H

exerCiSe SeT 9.9 
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b. If the chosen ball is green, what is the prob-
ability that it was picked from the first urn? 

14. A drug-screening test is used in a large popula-
tion of people of whom 4% actually use drugs. 
Suppose that the false positive rate is 3% and the 
false negative rate is 2%. Thus a person who uses 
drugs tests positive for them 98% of the time, and 
a person who does not use drugs tests negative for 
them 97% of the time.
a. What is the probability that a randomly chosen 

person who tests positive for drugs actually 
uses drugs?

b. What is the probability that a randomly chosen 
person who tests negative for drugs does not 
use drugs? 

15. Two different factories both produce a certain 
automobile part. The probability that a component 
from the first factory is defective is 2%, and the 
probability that a component from the second 
factory is defective is 5%. In a supply of 180 of the 
parts, 100 were obtained from the first factory and 
80 from the second factory.
a. What is the probability that a part chosen at 

random from the 180 is from the first factory?
b. What is the probability that a part chosen 

at random from the 180 is from the second 
factory?

c. What is the probability that a part chosen at 
random from the 180 is defective?

d. If the chosen part is defective, what is the 
probability that it came from the first factory? 

16. Three different suppliers—X, Y, and Z—provide 
produce for a grocery store. Twelve percent of 
produce from X is superior grade, 8% of produce 
from Y is superior grade, and 15% of produce 
from Z is superior grade. The store obtains 20% of 
its produce from X, 45% from Y, and 35% from Z.
a. If a piece of produce is purchased, what is the 

probability that it is superior grade?
b. If a piece of produce in the store is superior 

grade, what is the probability that it is from X?

17. Prove that if A and B are events in a sample space 
S with the property that P (A uB) 5 P (A) and 
P (A) Þ 0, then P (B uA) 5 P (B).

18. Prove that if P (A ù B) 5 P (A)?P (B), P (A) Þ 0, and 
P (B) Þ 0, then P (A uB) 5 P (A) and P (B uA) 5 P (B).

19. A pair of fair dice, one blue and the other gray, 
are rolled. Let A be the event that the number face 

up on the blue die is 2, and let B be the event that 
the number face up on the gray die is 4 or 5. Show 
that P (A uB) 5 P (A) and P (B uA) 5 P (B).

20. Suppose a fair coin is tossed three times. Let A 
be the event that a head appears on the first toss, 
and let B be the event that an even number of 
heads is obtained. Show that P (A uB) 5 P (A) and 
P (B uA) 5 P (B).

21. If A and B are events in a sample space S and 
A ù B 5 [, what must be true in order for A and 
B to be independent? Explain.

22. Prove that if A and B are independent events in a 
sample space S, then Ac and B are also indepen-
dent, and so are Ac and Bc.

23. A student taking a multiple-choice exam does 
not know the answers to two questions. All have 
five choices for the answer. For one of the two 
questions, the student can eliminate two answer 
choices as incorrect but has no idea about the 
other answer choices. For the other question, the 
student has no clue about the correct answer at all. 
Assume that whether the student chooses the cor-
rect answer on one of the questions does not affect 
whether the student chooses the correct answer on 
the other question.
a. What is the probability that the student will 

answer both questions correctly?
b. What is the probability that the student will 

answer exactly one of the questions correctly?
c. What is the probability that the student will 

answer neither question correctly?

24. A software company uses two quality assurance 
(QA) checkers X and Y to check an application for 
bugs. X misses 12% of the bugs and Y misses 15%. 
Assume that the QA checkers work independently.
a. What is the probability that a randomly chosen 

bug will be missed by both QA checkers?
b. If the program contains 1,000 bugs, what num-

ber can be expected to be missed?

25. A coin is loaded so that the probability of heads is 
0.7 and the probability of tails is 0.3. Suppose that 
the coin is tossed twice and that the results of the 
tosses are independent.
a. What is the probability of obtaining exactly 

two heads?
b. What is the probability of obtaining exactly 

one head?
c. What is the probability of obtaining no heads?

H

94193_ch09_ptg01.indd   674 12/11/18   5:26 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.9 condItIonal ProbabIlIty, bayes’ forMula, and IndePendent eVents  675

d. What is the probability of obtaining at least 
one head?

26. Describe a sample space and events A, B, and C, 
where P (A ù B ù C) 5 P (A)?P (B)?P (C) but A, 
B, and C are not pairwise independent.

27. The example used to introduce conditional prob-
ability described a family with two children each 
of whom was equally likely to be a boy or a girl. 
The example showed that if it is known that one 
child is a boy, the probability that the other child 
is a boy is 1y3. Now imagine the same kind of 
family—two children each of whom is equally 
likely to be a boy or a girl. Suppose you meet one 
of the children and that child is a boy. What is the 
probability that the other child is a boy? Explain. 
(Be careful. The answer may surprise you.)

28. A coin is loaded so that the probability of heads is 
0.7 and the probability of tails is 0.3. Suppose that 
the coin is tossed ten times and that the results of 
the tosses are mutually independent.
a. What is the probability of obtaining exactly 

seven heads?
b. What is the probability of obtaining exactly 

ten heads?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least 

one head?

29. Suppose that ten items are chosen at random from 
a large batch delivered to a company. The manu-
facturer claims that just 3% of the items in the 
batch are defective. Assume that the batch is large 
enough so that even though the selection is made 
without replacement, the number 0.03 can be used 
to approximate the probability that any one of the 
ten items is defective. In addition, assume that be-
cause the items are chosen at random, the outcomes 
of the choices are mutually independent. Finally, 
assume that the manufacturer’s claim is correct.
a. What is the probability that none of the ten is 

defective?
b. What is the probability that at least one of the 

ten is defective?
c. What is the probability that exactly four of the 

ten are defective?
d. What is the probability that at most two of the 

ten are defective?

30. Suppose the probability of a false positive result 
on a mammogram is 4% and that radiologists’ 

interpretations of mammograms are mutually in-
dependent in the sense that whether or not a radi-
ologist finds a positive result on one mammogram 
does not influence whether or not a radiologist 
finds a positive result on another mammogram. 
Assume that a woman has a mammogram every 
year for ten years.
a. What is the probability that she will have no 

false positive results during that time?
b. What is the probability that she will have at 

least one false positive result during that time?
c. What is the probability that she will have ex-

actly two false positive results during that time?
d. Suppose that the probability of a false negative 

result on a mammogram is 2%, and assume 
that the probability that a randomly chosen 
woman has breast cancer is 0.0002.
 (i)  If a woman has a positive test result one 

year, what is the probability that she actu-
ally has breast cancer?

 (ii)  If a woman has a negative test result one 
year, what is the probability that she actu-
ally has breast cancer?

31. Empirical data indicate that approximately 103 out 
of every 200 children born are male. Hence the 
probability of a newborn being male is about 
51.5%. Suppose that a family has six children, and 
suppose that the genders of all the children are 
mutually independent.
a. What is the probability that none of the chil-

dren is male?
b. What is the probability that at least one of the 

children is male?
c. What is the probability that exactly five of the 

children are male?

32. A person takes a multiple-choice exam in which 
each question has four possible answers. Suppose 
that the person has no idea about the answers to 
three of the questions and simply chooses ran-
domly for each one.
a. What is the probability that the person will 

answer all three questions correctly?
b. What is the probability that the person will 

answer exactly two questions correctly?
c. What is the probability that the person will 

answer exactly one question correctly?
d. What is the probability that the person will 

answer no questions correctly?
e. Suppose that the person gets one point of cred-

it for each correct answer and that 1y3 point 

*

H

H
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is deducted for each incorrect answer. What is 
the expected value of the person’s score for the 
three questions?

33. In exercise 23 of Section 9.8, let Ck be the event 
that the gambler has k dollars, wins the next roll  
of the die, and is eventually ruined, let Dk be the 
event that the gambler has k dollars, loses the next 
roll of the die, and is eventually ruined, and let 
Pk be the probability that the gambler is eventu-
ally ruined if he has k dollars. Use the probability 

axioms and the definition of conditional probability 
to derive the equation

Pk21 5
1

6
 Pk 1

5

6
 Pk22.

34. Use conditional probability to analyze exercise 
20 in Section 9.1. Let X be the event that the prize 
is not behind door A, and let Y be the event that 
you switch and choose the door with the prize. 
Should you switch? Explain why or why not. 

H

1. 
P (A ù B)

P (A)
 2. P (Bk uA) 5

P (A uBk)P (Bk)

P (A uB1)P (B1)1P (A uB2)P (B2)1 Á 1P (A uBn)P (Bn)
 3. P(A ù B) 5 P(A)?P(B)

4. P (A ù B) 5 P (A)?P (B); P (A ù C) 5 P (A)?  P(C  ); P (B ù C ) 5 P (B)?P (C); P  (A ù B ù C) 5 P (A)?P (B)?P (C)

ANSwerS FOr TeST YOurSeLF 
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Chapter 10

Throughout the book graphs and trees have been used as convenient visualizations. For in-
stance, a graph can model a wide variety of structures such as the arrangement of electric 
power lines or fiber optic cables, a transportation system, a knowledge base, or a collection 
of computers ranging from a small local area network to the entire world wide web. A graph 
model can be used to solve a logical problem, color a map, or schedule meetings. A possibil-
ity tree shows all potential results of a multistep operation with a finite number of outcomes 
for each step, the directed graph of a relation on a set shows which element of the set are 
related to which, a Hasse diagram illustrates the relations among elements in a partially or-
dered set, and a PERT diagram shows which tasks must precede which in executing a project.

In Chapter 1 we introduced the basic terminology of graphs, and in Section 4.9 we used 
properties of even and odd integers and direct and indirect proof to prove the handshake 
theorem and derive some of its consequences. We first proved the formula for the number 
of edges in a complete graph on n vertices using the handshake theorem, and then reproved 
it using mathematical induction in Section 5.3, recursion in Section 5.6, and combinatorial 
reasoning in Section 9.5.

In this chapter we go more deeply into the mathematics of graphs and trees by exploring 
the concepts of connectedness, Euler and Hamiltonian circuits, representation of graphs 
by matrices, isomorphisms of graphs, the relations between the number of vertices and the 
number of edges in a tree, properties of rooted trees, spanning trees, and finding short-
est paths in graphs. Applications include uses of graphs and trees in the study of decision 
problems, chemistry, data storage, computer language syntax, and transportation networks.

Trails, Paths, and Circuits
One can begin to reason only when a clear picture has been formed in the 
imagination. —W. W. Sawyer, Mathematician’s Delight, 1943

The subject of graph theory began in the year 1736 when the great mathematician Leon- 
hard Euler published a paper giving the solution to the following puzzle:

 The town of Königsberg in Prussia (now Kaliningrad in Russia) was built at a point where 
two branches of the Pregel River came together. It consisted of an island and some land 
along the river banks. These were connected by seven bridges as shown in Figure 10.1.1.

The question is this: Is it possible for a person to take a walk around town, starting 
and ending at the same location and crossing each of the seven bridges exactly once?*

10.1

THEORY OF GRAPHS  
AND TREES

*In his original paper, Euler did not require the walk to start and end at the same point. The analysis of the 
problem is simplified, however, by adding this condition. Later in the section we discuss walks that start and 
end at different points.
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678  CHAPTER 10 THEORY OF GRAPHS AND TREES

To solve this puzzle, Euler translated it into a graph theory problem. He noticed that all 
points of a given land mass can be identified with each other since a person can travel from 
any one point to any other point of the same land mass without crossing a bridge. Thus for 
the purpose of solving the puzzle, the map of Königsberg can be identified with the graph 
shown in Figure 10.1.2, in which the vertices A, B, C, and D represent land masses and the 
seven edges represent the seven bridges.

A

D

B C

FiGuRE 10.1.2 Graph Version of Königsberg Map

In terms of this graph, the question becomes the following:

Is it possible to find a route through the graph that starts and ends at 
some vertex, one of A, B, C, or D, and traverses each edge exactly once?

Equivalently:

Is it possible to trace this entire graph, starting and ending at the same 
point, without either ever lifting your pencil from the paper or crossing 
an edge more than once?

Take a few minutes to think about the question yourself. Can you find a route that meets 
the requirements? Try it!

Looking for a route is frustrating because you continually find yourself at a vertex 
that does not have an unused edge on which to leave, while elsewhere there are unused 
edges that must still be traversed. If you start at vertex A, for example, each time you 
pass through vertex B, C, or D, you use up two edges because you arrive on one edge 
and depart on a different one. So, if it is possible to find a route that uses all the edges 

Leonhard Euler  
(1707–1783)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es

Pregel River B

D

A

C
B

D

A

C

FiGuRE 10.1.1 The Seven Bridges of Königsberg
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G 
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10.1 TRAilS, PATHS, AND CiRCuiTS  679

of the graph and starts and ends at A, then the total number of arrivals and departures 
from each vertex B, C, and D must be a multiple of 2. Or, in other words, the degrees 
of the vertices B, C, and D must be even. But they are not: deg(B) 5 5, deg(C) 5 3, and 
deg(D) 5 3. Hence there is no route that solves the puzzle by starting and ending at A. 
Similar reasoning can be used to show that there are no routes that solve the puzzle by 
starting and ending at B, C, or D. Therefore, it is impossible to travel all around the city 
crossing each bridge exactly once.

Definitions
Travel in a graph is accomplished by moving from one vertex to another along a sequence 
of adjacent edges. In the graph below, for instance, you can go from u1 to u4 by taking f1 to 
u2 and then f7 to u4. This is represented by writing

u1 f1u2 f7u4.

f1
f2

f7
f4

f3

f5

f6

u1

u5

u2

u4

u3

Or you could take the roundabout route

u1 f1 u2    f3 u3  f4 u2  f3 u3  f5 u4  f6 u4  f7 u2  f3 u3  f5  u4.

Certain types of sequences of adjacent vertices and edges are of special importance 
in graph theory: those that do not have a repeated edge, those that do not have a repeated 
vertex, and those that start and end at the same vertex.

Definition

Let G be a graph, and let v and w be vertices in G.

A walk from v to w is a finite alternating sequence of adjacent vertices and edges of 
G. Thus a walk has the form

v0 e1 v1 e2
Á vn21en vn,

where the v’s represent vertices, the e’s represent edges, v0 5 v, vn 5 w, and for each 
i 5 1, 2, Á  n, vi21 and vi are the endpoints of ei. The trivial walk from v to v con-
sists of the single vertex v.

A trail from v to w is a walk from v to w that does not contain a repeated edge.

A path from v to w is a trail that does not contain a repeated vertex.

A closed walk is a walk that starts and ends at the same vertex.

A circuit is a closed walk that contains at least one edge and does not contain a 
repeated edge.

A simple circuit is a circuit that does not have any other repeated vertex except the 
first and last.
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680  CHAPTER 10 THEORY OF GRAPHS AND TREES

For ease of reference, these definitions are summarized in the following table:

Repeated 
Edge?

Repeated 
Vertex?

Starts and Ends at 
the Same Point?

Must Contain at 
Least One Edge?

Walk allowed allowed allowed no

Trail no allowed allowed no

Path no no no no

Closed walk allowed allowed yes no

Circuit no allowed yes yes

Simple 
circuit

no first and 
last only

yes yes

Often a walk can be specified unambiguously by giving either a sequence of edges or a 
sequence of vertices. The next two examples show how this is done.

Notation for Walks

a. In the graph below, the notation e1e2e4e3 refers unambiguously to the following walk: 
v1e1v2e2v3e4v3e3v2. On the other hand, the notation e1 is ambiguous if used by itself to 
refer to a walk. It could mean either v1e1v2 or v2e1v1.

�1 �2 �3

e2

e3

e1
e4

b. In the graph of part (a), the notation v2v3 is ambiguous if used to refer to a walk. 
It could mean v2e2v3 or v2e3v3. On the other hand, in the graph below, the notation 
v1v2v2v3 refers unambiguously to the walk v1e1v2e2v2e3v3.

 

�1 �2 �3

e2

e1 e3

 

■

Note that if a graph G does not have any parallel edges, then any walk in G is uniquely 
determined by its sequence of vertices.

Walks, Trails, Paths, and Circuits

In the graph below, determine which of the following walks are trails, paths, circuits, or 
simple circuits.

a. v1e1v2e3v3e4v3e5v4 b. e1e3e5e5e6 c. v2v3v4v5v3v6v2

d. v2v3v4v5v6v2 e. v1e1v2e1v1 f. v1

�1 �2

�6

�3 �4

�5

e2

e5

e9

e4

e3

e7

e8

e10
e6

e1

Example 10.1.1

Example 10.1.2
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10.1 TRAilS, PATHS, AND CiRCuiTS  681

Solution

a. This walk has a repeated vertex but does not have a repeated edge, so it is a trail from 
v1 to v4 but not a path.

b. This is just a walk from v1 to v5. It is not a trail because it has a repeated edge.

c. This walk starts and ends at v2, contains at least one edge, and does not have a re-
peated edge, so it is a circuit. Since the vertex v3 is repeated in the middle, it is not a 
simple circuit.

d. This walk starts and ends at v2, contains at least one edge, does not have a repeated 
edge, and does not have a repeated vertex. Thus it is a simple circuit.

e. This is just a closed walk starting and ending at v1. It is not a circuit because edge e1 is 
repeated.

f. The first vertex of this walk is the same as its last vertex, but it does not contain an edge, 
and so it is not a circuit. It is a closed walk from v1 to v1. (It is also a trail from v1 to v1.) ■

Because most of the major developments in graph theory have happened relatively recently 
and in a variety of different contexts, the terms used in the subject have not been standard-
ized. For example, what this book calls a graph is sometimes called a multigraph, what 
this book calls a simple graph is sometimes called a graph, what this book calls a vertex 
is sometimes called a node, and what this book calls an edge is sometimes called an arc. 
Similarly, instead of the word trail, the word path is sometimes used; instead of the word 
path, the words simple path are sometimes used; and instead of the words simple circuit, 
the word cycle is sometimes used. The terminology in this book is among the most com-
mon, but if you consult other sources, be sure to check their definitions.

Subgraphs 

Definition

A graph H is said to be a subgraph of a graph G if, and only if, every vertex in H is 
also a vertex in G, every edge in H is also an edge in G, and every edge in H has the 
same endpoints as it has in G.

Subgraphs

List all subgraphs of the graph G with vertex set {v1, v2} and edge set {e1, e2, e3}, where 
the endpoints of e1 are v1 and v2, the endpoints of e2 are v1 and v2, and e3 is a loop at v1.

Solution G can be drawn as shown below.

�1

�2

e1

e2

e3

There are 11 subgraphs of G, which can be grouped according to those that do not have any 
edges, those that have one edge, those that have two edges, and those that have three edges. 
The 11 subgraphs are shown in Figure 10.1.3 on the next page.

Example 10.1.3
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682  CHAPTER 10 THEORY OF GRAPHS AND TREES

Connectedness
It is easy to understand the concept of connectedness on an intuitive level. Roughly speak-
ing, a graph is connected if it is possible to travel from any vertex to any other vertex along 
a sequence of adjacent edges of the graph. The formal definition of connectedness is stated 
in terms of walks.

�1

�2�2

e1

e2

�1

�2

e1

e2

e3
�1 e3

�1

�2

e1

e3 �1

�2

e2

e3

�1�1

�2

e2

�2

e3
�1 �1

�2

�1

�2

e1

1 2 3 4 5 6

7 8 9 10 11

 FiGuRE 10.1.3 ■

Definition

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is 
a walk from v to w. The graph G is connected if, and only if, given any two vertices 
v and w in G, there is a walk from v to w. Symbolically:

G is connected 3 5 vertices v and w in G, E a walk from v to w.

If you take the negation of this definition, you will see that a graph G is not connected 
if, and only if, there exist two vertices of G that are not connected by any walk.

Connected and Disconnected Graphs

Which of the following graphs are connected?

�1
�1 �3

�2

�3

�4

�5

�6

�2 �2

�3

�6

�5
�1

�4�4

�5

�8 �7

�6

(a) (b) (c)

Solution The graph represented in (a) is connected, whereas those of (b) and (c) are 
not. To understand why (c) is not connected, recall that in a drawing of a graph, two 

Example 10.1.4
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10.1 TRAilS, PATHS, AND CiRCuiTS  683

edges may cross at a point that is not a vertex. Thus the graph in (c) can be redrawn as 
follows:

 

�1

�2

�3

�4

�6

�5

 

■

Some useful facts relating circuits and connectedness are collected in the following 
lemma. Proofs of (a) and (b) are left for the exercises. The proof of (c) is in Section 10.4.

Lemma 10.1.1

Let G be a graph.

a. If G is connected, then any two distinct vertices of G can be connected by a path.

b.  If vertices v and w are part of a circuit in G and one edge is removed from the 
circuit, then there still exists a trail from v to w in G.

c.  If G is connected and G contains a circuit, then an edge of the circuit can be re-
moved without disconnecting G.

Look back at Example 10.1.4. The graphs in (b) and (c) are both made up of three pieces, 
each of which is itself a connected graph. A connected component of a graph is a con-
nected subgraph of largest possible size.

Definition

A graph H is a connected component of a graph G if, and only if,

1. H is subgraph of G;

2. H is connected; and

3.  no connected subgraph of G has H as a subgraph and contains vertices or edges 
that are not in H.

The fact is that any graph is a kind of union of its connected components.

Connected Components

Find all connected components of the following graph G.

�1

�2

�4

�5

�8

�6

�7�3

e2 e4

e1

e3

e5

Solution G has three connected components: H1, H2, and H3 with vertex sets V1, V2, and 
V3 and edge sets E1, E2, and E3, where

V1 5 {v1, v2, v3}, E1 5 {e1, e2},

V2 5 {v4}, E2 5 [,

 V3 5 {v5, v6, v7, v8}, E3 5 {e3, e4, e5}. ■

Example 10.1.5
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684  CHAPTER 10 THEORY OF GRAPHS AND TREES

Euler Circuits
Now we return to consider general problems similar to the puzzle of the Königsberg bridges. 
The following definition is made in honor of Euler.

Definition

Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and 
every edge of G. That is, an Euler circuit for G is a sequence of adjacent vertices and 
edges in G that has at least one edge, starts and ends at the same vertex, uses every 
vertex of G at least once, and uses every edge of G exactly once.

The analysis used earlier to solve the puzzle of the Königsberg bridges generalizes to 
prove the following theorem:

Theorem 10.1.2

If a graph has an Euler circuit, then every vertex of the graph has positive even degree.

Proof: 
Suppose G is a graph that has an Euler circuit. [We must show that given any vertex v of G, 
the degree of v is even.] Let v be any particular but arbitrarily chosen vertex of G. Since the 
Euler circuit contains every edge of G, it contains all edges incident on v. Now imagine 
taking a journey that begins in the middle of one of the edges adjacent to the start of the 
Euler circuit and continues around the Euler circuit to end in the middle of the starting 
edge. (See Figure 10.1.4. There is such a starting edge because the Euler circuit has at least 
one edge.) Each time v is entered by traveling along one edge, it is immediately exited by 
traveling along another edge (since the journey ends in the middle of an edge).

Start here First entry/exit
pair of edges

Second entry/exit
pair of edges

�1

�5

�2
�0

�3

�4

In this example, the Euler circuit
is �0�1�2�3�4�2�5�0 , and � is �2.
Each time �2 is entered by one
edge, it is exited by another edge.

FiGuRE 10.1.4 Example for the Proof of Theorem 10.1.2

Because the Euler circuit uses every edge of G exactly once, every edge inci-
dent on v is traversed exactly once in this process. Hence the edges incident on 
v occur in entry/exit pairs, and consequently the degree of v must be a positive 
multiple of 2. But that means that v has positive even degree [as was to be shown].

Recall that the contrapositive of a statement is logically equivalent to the statement. The 
contrapositive of Theorem 10.1.2 is as follows:

Contrapositive Version of Theorem 10.1.2

If some vertex of a graph has odd degree, then the graph does not have an Euler circuit.

94193_ch10_ptg01.indd   684 12/11/18   6:06 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.1 TRAilS, PATHS, AND CiRCuiTS  685

This version of Theorem 10.1.2 is useful for showing that a given graph does not have 
an Euler circuit.

Showing That a Graph Does Not Have an Euler Circuit

Show that the graph below does not have an Euler circuit.

�1 �4

�3

e2

e7

e6

e5
e4

e3

e1�2

Solution Vertices v1 and v3 both have degree 3, which is odd. Hence by (the contraposi-
tive form of) Theorem 10.1.2, this graph does not have an Euler circuit. ■

Now consider the converse of Theorem 10.1.2: If every vertex of a graph has even de-
gree, then the graph has an Euler circuit. Is this true? The answer is no. There is a graph G 
such that every vertex of G has even degree but G does not have an Euler circuit. In fact, 
there are many such graphs. The illustration below shows one example.

�1

�2

e2

e1

�4

�3

e4

Every vertex has even degree,
but the graph does not have
an Euler circuit.

e3

Note that the graph in the preceding drawing is not connected. It turns out that 
although the converse of Theorem 10.1.2 is false, a modified converse is true: If ev-
ery vertex of a graph has positive even degree and if the graph is connected, then 
the graph has an Euler circuit. The proof of this fact is constructive: It contains an 
algorithm to find an Euler circuit for any connected graph in which every vertex has 
even degree.

Example 10.1.6

Theorem 10.1.3

If a graph G is connected and the degree of every vertex of G is a positive even inte-
ger, then G has an Euler circuit.

Proof: 
Suppose that G is any connected graph and suppose that every vertex of G is a positive 
even integer. [We must find an Euler circuit for G.] Construct a circuit C by the following 
algorithm:

Step 1: Pick any vertex v of G at which to start.
[This step can be accomplished because the vertex set of G is nonempty by 
assumption.]

Step 2:  Pick any sequence of adjacent vertices and edges, starting and ending at v 
and never repeating an edge. Call the resulting circuit C.

(continued on page 686)
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686  CHAPTER 10 THEORY OF GRAPHS AND TREES

[This step can be performed for the following reasons: Since the degree of each 
vertex of G is a positive even integer, as each vertex of G is entered by traveling 
on one edge, either the vertex is v itself and there is no other unused edge adja-
cent to v, or the vertex can be exited by traveling on another previously unused 
edge. Since the number of edges of the graph is finite (by definition of graph), 
the sequence of distinct edges cannot go on forever. The sequence eventually 
returns to v because the degree of v is a positive even integer, and so each time 
an edge leads out from v to another vertex, there must be a different edge that 
connects back in to v.]

Step 3:  Check whether C contains every edge and vertex of G. If so, C is an Euler 
circuit, and we are finished. If not, perform the following steps.

Step 3a:  Remove all edges of C from G and also any vertices that become 
isolated when the edges of C are removed. Call the resulting sub-
graph G9.
[Note that G9 may not be connected (as illustrated in Figure 10.1.5), 
but every vertex of G9 has positive, even degree (since removing the 
edges of C removes an even number of edges from each vertex, the dif-
ference of two even integers is even, and isolated vertices with degree 0 
were removed).]

G:

u

�

C

G'

FiGuRE 10.1.5

Step 3b: Pick any vertex w common to both C and G9.
[There must be at least one such vertex since G is connected. (See exer-
cise 50.) (In Figure 10.1.5 there are two such vertices: u and w.)]

Step 3c:  Pick any sequence of adjacent vertices and edges of G9, starting 
and ending at w and never repeating an edge. Call the resulting 
circuit C9.

[This can be done since each vertex of G9 has positive, even degree and 
G9 is finite. See the justification for step 2.]

Step 3d:  Patch C and C9 together to create a new circuit C0 as follows: Start 
at v and follow C all the way to w. Then follow C9 all the way 
back to w. After that, continue along the untraveled portion of C to 
return to v.
[The effect of executing steps 3c and 3d for the graph of Figure 10.1.5 is 
shown in Figure 10.1.6.]
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10.1 TRAilS, PATHS, AND CiRCuiTS  687

Finding an Euler Circuit

Use Theorem 10.1.3 to check that the graph below has an Euler circuit. Then use the algo-
rithm from the proof of the theorem to find an Euler circuit for the graph.

a

b
c

d

e

f
i

j

h
g

Solution Observe that

deg(a) 5 deg(b) 5 deg(c) 5 deg( f) 5 deg(g) 5 deg(i) 5 deg( j) 5 2
and that deg(d) 5 deg(e) 5 deg(h) 5 4. 

Hence all vertices have even degree. Also, the graph is connected. Thus, by Theorem 10.1.3, 
the graph has an Euler circuit.

To construct an Euler circuit using the algorithm of Theorem 10.1.3, let v 5 a and let 
C be

C: abcda.

C is represented by the labeled edges shown below.

a

b
c

d

e

f
i

j

h
g

2

4

1
3

Example 10.1.7

G:

u

�

C

C''

C'

FiGuRE 10.1.6

Step 3e: Let C 5 C0 and go back to step 3. 

Since the graph G is finite, execution of the steps outlined in this algorithm must 
eventually terminate. At that point an Euler circuit for G will have been constructed. 
(Note that because of the element of choice in steps 1, 2, 3b, and 3c, a variety of dif-
ferent Euler circuits can be produced by using this algorithm.) 
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688  CHAPTER 10 THEORY OF GRAPHS AND TREES

Observe that C is not an Euler circuit for the graph but that C intersects the rest of the graph 
at d. Let C9 be

C9: d e g h j i d.

Patch C9 into C to obtain

C0: a b c d e g h j i d a.

Set C 5 C0. Then C is represented by the labeled edges shown below.

a

b
c

d

e

f
i

j

h
g

2

10

1
3 4

5
6

7

8

9

Observe that C is not an Euler circuit for the graph but that it intersects the rest of the graph 
at e and h. Let C9 be

C9: e f h e.

Patch C9 into C to obtain

C0: a b c d e f h e g h j i d a.

Set C 5 C0. Then C is represented by the labeled edges shown below.

a

b
c

d

e

f
i

j

h
g

2

13

1
3 4

5
67

10

11

12

8
9

Since C includes every edge of the graph exactly once, C is an Euler circuit for the graph. ■

In exercise 51 at the end of this section you are asked to show that any graph with 
an Euler circuit is connected. This result can be combined with Theorems 10.1.2 and 
10.1.3 to give a complete characterization of graphs that have Euler circuits, as stated in 
Theorem 10.1.4.

Theorem 10.1.4

A graph G has an Euler circuit if, and only if, G is connected and every vertex of G 
has positive even degree.

A corollary to Theorem 10.1.4 gives a criterion for determining when it is possible to 
find a walk from one vertex of a graph to another, passing through every vertex of the 
graph at least once and every edge of the graph exactly once.

Definition

Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail from 
v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes 
through every vertex of G at least once, and traverses every edge of G exactly once.
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10.1 TRAilS, PATHS, AND CiRCuiTS  689

The proof of this corollary is left as an exercise.

Finding an Euler Trail

The floor plan shown below is for a house that is open for public viewing. Is it possible to 
find a trail that starts in room A, ends in room B, and passes through every interior door-
way of the house exactly once? If so, find such a trail.

A

B

C D
J K

I

E

HG

F

Solution Let the floor plan of the house be represented by the graph below, where the 
edges indicate the openings between the rooms.

 
A

B

C

G

H

F

D

E
J

I

K

 

Each vertex of this graph has even degree except for A and B, each of which has degree 1. 
Hence by Corollary 10.1.5, there is an Euler trail from A to B. One such trail is

 A G H F E I H E K J D C B. ■

Hamiltonian Circuits
Theorem 10.1.4 completely answers the following question: Given a graph G, is it possible 
to find a circuit for G in which all the edges of G appear exactly once? A related question 
is this: Given a graph G, is it possible to find a circuit for G in which all the vertices of G 
(except the first and the last) appear exactly once?

In 1859 the Irish mathematician Sir William Rowan Hamilton introduced a puzzle in 
the shape of a dodecahedron (DOH-dek-a-HEE-dron). (Figure 10.1.7 contains a drawing of 
a dodecahedron, which is a solid figure with 12 identical pentagonal faces.)

FiGuRE 10.1.7 Dodecahedron

Example 10.1.8

Corollary 10.1.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler trail 
from v to w if, and only if, G is connected, v and w have odd degree, and all other 
vertices of G have positive even degree.

Sir William Hamilton 
(1805–1865)

Hu
lto

n 
Ar

ch
iv

e/
Ge

tt
y 

Im
ag

es
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690  CHAPTER 10 THEORY OF GRAPHS AND TREES

Each vertex was labeled with the name of a city—London, Paris, Hong Kong, New York, 
and so on. The problem Hamilton posed was to start at one city and tour the world by 
visiting each other city exactly once and returning to the starting city. One way to solve 
the puzzle is to imagine the surface of the dodecahedron stretched out and laid flat in the 
plane, as follows:

B

A

C

D

E

F

G

J

Q

M

T H

S

R P

KI
O

L
N

One solution is the circuit  

A B C D E F G H I J K L M N O P Q R S T A,

whose edges are indicated with black lines. Note that although every city is visited, many 
edges are omitted from the circuit. (More difficult versions of the puzzle required that 
certain cities be visited in a certain order.)

The following definition is made in honor of Hamilton.

Definition

Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every 
vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent vertices 
and distinct edges in which every vertex of G appears exactly once, except for the 
first and the last, which are the same.

Note that although an Euler circuit for a graph G must include every vertex of G, it may 
visit some vertices more than once and hence may not be a Hamiltonian circuit. On the 
other hand, a Hamiltonian circuit for G does not need to include all the edges of G and 
hence may not be an Euler circuit.

Despite the analogous-sounding definitions of Euler and Hamiltonian circuits, the 
mathematics of the two are very different. Theorem 10.1.4 gives a simple criterion for de-
termining whether a given graph has an Euler circuit. Unfortunately, there is no analogous 
criterion for determining whether a given graph has a Hamiltonian circuit, nor is there even 
an efficient algorithm for finding such a circuit. There is, however, a simple technique that 
can be used in many cases to show that a graph does not have a Hamiltonian circuit. This 
follows from the following considerations:

Suppose a graph G with at least two vertices has a Hamiltonian circuit C, given con-
cretely as

C: v0e1v1e2
Á vn21envn (5v0).
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10.1 TRAilS, PATHS, AND CiRCuiTS  691

Since C is a simple circuit, all the ei are distinct and all the vj are distinct except that 
v0 5 vn. Let H be the subgraph of G that is formed using the vertices and edges of C. An 
example of such an H is shown below.

C: �0 e1�1e2 �2 e3�3 e4�4 e5�5 e6�6 e7�7e8 �0 

The edges of H are shown in black.

�1

e1

�2e2

�3e3

�4

e4�5
e5

�6 e6

�7

e7�0

e8

Note that H has the same number of edges as it has vertices since all its edges are distinct 
and so are its vertices. Also, by definition of Hamiltonian circuit, every vertex of G is a 
vertex of H, and H is connected since any two of its vertices lie on a circuit. In addition, ev-
ery vertex of H has degree 2. The reason for this is that there are exactly two edges incident 
on any vertex. These are ei and ei11 for any vertex vj except v0 5 vn, and they are e1 and en 
for v0 

(5vn). These observations have established the truth of the following proposition in 
all cases where G has at least two vertices.

Proposition 10.1.6

If a graph G has a Hamiltonian circuit, then G has a subgraph H with the following 
properties:

1. H contains every vertex of G.

2. H is connected.

3. H has the same number of edges as vertices.

4. Every vertex of H has degree 2. 

Note that if G contains only one vertex and G has a Hamiltonian circuit, then the circuit 
has the form v e v, where v is the vertex of G and e is an edge incident on v. In this case, the 
subgraph H consisting of v and e satisfies conditions (1)–(4) of Proposition 10.1.6.

Recall that the contrapositive of a statement is logically equivalent to the statement. The 
contrapositive of Proposition 10.1.6 says that if a graph G does not have a subgraph H with 
properties (1)–(4), then G does not have a Hamiltonian circuit.

Showing That a Graph Does Not Have a Hamiltonian Circuit

Prove that the graph G shown below does not have a Hamiltonian circuit.

a

e

b

c

d

Solution If G has a Hamiltonian circuit, then by Proposition 10.1.6, G has a subgraph H 
that (1) contains every vertex of G, (2) is connected, (3) has the same number of edges as 
vertices, and (4) is such that every vertex has degree 2. Suppose such a subgraph H exists. 

Example 10.1.9
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692  CHAPTER 10 THEORY OF GRAPHS AND TREES

In other words, suppose there is a connected subgraph H of G such that H has five vertices 
(a, b, c, d, e) and five edges and such that every vertex of H has degree 2. Since the degree 
of b in G is 4 and every vertex of H has degree 2, two edges incident on b must be removed 
from G to create H. Edge {a, b} cannot be removed because if it were, vertex a would have 
degree less than 2 in H. Similar reasoning shows that edges {e, b}, {b, a}, and {b, d} can-
not be removed either. It follows that the degree of b in H must be 4, which contradicts the 
condition that every vertex in H has degree 2 in H. Hence no such subgraph H exists, and 
so G does not have a Hamiltonian circuit. ■

The next example illustrates a type of problem known as a traveling salesman problem. 
It is a variation of the problem of finding a Hamiltonian circuit for a graph.

A Traveling Salesman Problem

Imagine that the drawing below is a map showing four cities and the distances in kilometers be-
tween them. Suppose that a salesman must travel to each city exactly once, starting and ending 
in city A. Which route from city to city will minimize the total distance that must be traveled?

B

DA

C

2535

40

30

30 50

Solution This problem can be solved by writing all possible Hamiltonian circuits start-
ing and ending at A and calculating the total distance traveled for each.

Route Total Distance (In Kilometers)

A B C D A 30130125140 5 125

A B D C A 30135125150 5 140

A C B D A 50130135140 5 155

A C D B A 140  [A B D C A backward]

A D B C A 155  [A C B D A backward]

A D C B A 125  [A B C D A backward]

Thus either route A B C D A or A D C B A gives a minimum total distance of 125   
kilometers. ■

The general traveling salesman problem involves finding a Hamiltonian circuit to mini-
mize the total distance traveled for an arbitrary graph with n vertices in which each edge is 
marked with a distance. One way to solve the general problem is to use the method of Exam-
ple 10.1.10: Write down all Hamiltonian circuits starting and ending at a particular vertex, 
compute the total distance for each, and pick one for which this total is minimal. However, 
even for medium-sized values of n this method is impractical. For a complete graph with 
30 vertices, it would be necessary to check (29!)/2 > 4.42 3 1030 Hamiltonian circuits that 
start and end at a particular vertex. Even if each circuit could be found and its total distance 
computed in just one nanosecond, it would require approximately 1.4 3 1014 years to finish 
the computation. At present, there is no known algorithm for solving the general traveling 
salesman problem that is more efficient. However, there are efficient algorithms that find 
“pretty good” solutions—that is, circuits that, while not necessarily having the least possible 
total distances, have smaller total distances than most other Hamiltonian circuits.

Example 10.1.10
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10.1 TRAilS, PATHS, AND CiRCuiTS  693

answers to test Yourself questions are located at the end 
of each section.

1. Let G be a graph and let v and w be vertices in G.

(a) A walk from v to w is .

(b) A trail from v to w is .

(c) A path from v to w is .

(d) A closed walk is .

(e) A circuit is .

(f) A simple circuit is .

(g) A trivial walk is .

(h)  Vertices v and w are connected if, and only 
if,  .

2. A graph is connected if, any only if, .

3. Removing an edge from a circuit in a graph does 
not .

4. An Euler circuit in a graph is .

5. A graph has a Euler circuit if, and only if, .

6. Given vertices v and w in a graph, there is an 
Euler trail from v to w if, and only if, .

7. A Hamiltonian circuit in a graph is .

8. If a graph G has a Hamiltonian circuit, then G has 
a subgraph H with the following properties: , 

, , and .

9. A traveling salesman problem involves finding  
a  that minimizes the total distance traveled for 
a graph in which each edge is marked with a distance. 

TEST YOuRSELF  

1. In the graph below, determine whether the follow-
ing walks are trails, paths, closed walks, circuits, 
simple circuits, or just walks.
a. v0e1v1e10v5e9v2e2v1 b. v4e7v2e9v5e10v1e3v2e9v5

c. v2 d. v5v2v3v4v4v5

e. v2v3v4v5v2v4v3v2 f. e5e8e10e3

�1

�2

�3

�5 �4

�0

e2

e3

e9

e7
e5

e6

e4e1

e10

e8

2. In the graph below, determine whether the follow-
ing walks are trails, paths, closed walks, circuits, 
simple circuits, or just walks.
a. v1e2v2e3v3e4v4e5v2e2v1e1v0 b. v2v3v4v5v2

c. v4v2v3v4v5v2v4 d. v2v1v5v2v3v4v2

e. v0v5v2v3v4v2v1 f. v5v4v2v1

�1

�2

�3

�5 �4

�0

e2

e7
e8e10

e5
e4

e3e1

e9

e6

3. Let G be the graph

�1 �2

e2

e1

and consider the walk v1e1v2e2v1.

a. Can this walk be written unambiguously as 
v1v2v1? Why?

b. Can this walk be written unambiguously as 
e1e2? Why?

4. Consider the following graph.

�1 �2 �3 �4

e2

e1 e5e3

e4

a. How many paths are there from v1 to v4?
b. How many trails are there from v1 to v4?
c. How many walks are there from v1 to v4? 

5. Consider the following graph.

e2

e1

e5
e3

e4

ca
b

a. How many paths are there from a to c?
b. How many trails are there from a to c?
c. How many walks are there from a to c? 

6. An edge whose removal disconnects the graph 
of which it is a part is called a bridge. Find all 
bridges for each of the graphs at the top of the 
next page.

ExERCiSE SET 10.1p

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.
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694  CHAPTER 10 THEORY OF GRAPHS AND TREES

a. a. �1

�5

�2

�4

�3

b. �0 �1 �2

�7

�8

�3
�4

�5�6

c. �1

�9

�2 �3
�4

�5
�6 �7

�8

�10

b. a. �1

�5

�2

�4

�3

b. �0 �1 �2

�7

�8

�3
�4

�5�6

c. �1

�9

�2 �3
�4

�5
�6 �7

�8

�10

c. 

a. �1

�5

�2

�4

�3

b. �0 �1 �2

�7

�8

�3
�4

�5�6

c. �1

�9

�2 �3
�4

�5
�6 �7

�8

�10

7. Given any positive integer n, (a) find a connected 
graph with n edges such that removal of just one 
edge disconnects the graph; (b) find a connected 
graph with n edges that cannot be disconnected by 
the removal of any single edge.

8. Find the number of connected components for 
each of the following graphs.
a. a.

a c hf

b
e

g

d

b.

u

z x

�

y

c.

a

j h

e

db
c

i

g

f

d.

�1 �3

�2

�4

b. 

a.

a c hf

b
e

g

d

b.

u

z x

�

y

c.

a

j h

e

db
c

i

g

f

d.

�1 �3

�2

�4

c. 

a.

a c hf

b
e

g

d

b.

u

z x

�

y

c.

a

j h

e

db
c

i

g

f

d.

�1 �3

�2

�4

 d. 

a.

a c hf

b
e

g

d

b.

u

z x

�

y

c.

a

j h

e

db
c

i

g

f

d.

�1 �3

�2

�4

9. Each of (a)–(c) describes a graph. In each case an-
swer yes, no, or not necessarily to this question: Does 
the graph have an Euler circuit? Justify your answers.
a. G is a connected graph with five vertices of 

degrees 2, 2, 3, 3, and 4.
b. G is a connected graph with five vertices of 

degrees 2, 2, 4, 4, and 6.
c. G is a graph with five vertices of degrees 2, 2, 

4, 4, and 6.

10. The solution for Example 10.1.6 shows a graph 
for which every vertex has even degree but which 

does not have an Euler circuit. Give another ex-
ample of a graph satisfying these conditions.

11. Is it possible for a citizen of Königsberg to make 
a tour of the city and cross each bridge exactly 
twice? (See Figure 10.1.1.) Explain. 

Determine which of the graphs in 12–17 have euler circuits. 
If the graph does not have an euler circuit, explain why 
not. If it does have an euler circuit, describe one.

12. 

�1

�2

�4

�5 �3

e2

e1

e8

e4

e5

e7

e3

e6

 13. 

�1

�0�9

�8

�6�7

�4

�2

�5 �3

14. a

b

c
f

de

i

h

g

15. 

r z y x

s

�t

u

16. �1

�4

�0

�5

�2

�3

17. 

E

C

A

F

D

B

18. Is it possible to take a walk around the city whose 
map is shown below, starting and ending at the 
same point and crossing each bridge exactly once? 
If so, how can this be done? 

B

E

A C

D

River
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For each of the graphs in 19–21, determine whether 
there is an euler trial from u to w. If there is, find such 
a trail.

19. 

�1
�7

�4

�0

�5

�2
�6

u

�3

20. 

a u f

h

e

b c d

g

21. 

�1

�2�3

�4

�0�7

�6

�5

u

22. The following is a floor plan of a house. Is it 
possible to enter the house in room A, travel 
through every interior doorway of the house 
exactly once, and exit out of room E? If so, how 
can this be done?

A B

G

F

C

D

E

H

23. Find all subgraphs of each of the following graphs.

a.

�1

�2

e2

e1

b.

�0

�1

c.

�1 �3

�2

Definition: If G is a simple graph, the complement of G, 
denoted G9, is obtained as follows: The vertex set of G9 
is identical to the vertex set of G. However, two distinct 
vertices v and w of G9 are connected by an edge if, and 
only if, v and w are not connected by an edge in G. For 
example, if G is the graph

�1

�2

�4

�3

then G9 is

�2

�4

�1 �3

24. Find the complement of each of the following 
graphs.

a.

�1 �3

�2

�4

b. �1

�4

�2

�3

25. a.  Find the complement of the graph K4, the com-
plete graph on four vertices.

b. Find the complement of the graph K3,2, the 
complete bipartite graph on (3, 2) vertices.

26. Suppose that in a group of five people A, B, C, D, 
and E the following pairs of people are acquainted 
with each other.
A and C, A and D, B and C, C and D, C and E.
a. Draw a graph to represent this situation.
b. Draw a graph that illustrates who among these 

five people are not acquainted. That is, draw 
an edge between two people if, and only if, 
they are not acquainted.

27. Let G be a simple graph with n vertices. What is 
the relation between the number of edges of G and 
the number of edges of the complement G9?

28. Show that at a party with at least two people, there 
are at least two mutual acquaintances or at least 
two mutual strangers. 

H
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Find Hamiltonian circuits for each of the graphs in 29 and 30.

29. �0

�1

�3

�6

�5

�7

�2

�4

30. a

l

k

j

h
b

c

d

g

f

i

e

Show that none of the graphs in 31–33 has a Hamiltonian 
circuit.

31. 

a e

b d

g f

c

32. a

j h

c

b

i f

e

d

g

33. 

A

F

G

C

D

E

B

In 34–37, find Hamiltonian circuits for those graphs that 
have them. Explain why the other graphs do not.

34. a b

f g

e d c

35. 

a

g

c

e

b

d

f

36. 

�0

�4

�7

�2

�1

�3

�6�5

37. 

a c

b

e f

h g

d

38. Give two examples of graphs that have Euler cir-
cuits but not Hamiltonian circuits.

39. Give two examples of graphs that have Hamilto-
nian circuits but not Euler circuits.

40. Give two examples of graphs that have circuits 
that are both Euler circuits and Hamiltonian 
circuits.

41. Give two examples of graphs that have Euler 
circuits and Hamiltonian circuits that are not the 
same.

42. A traveler in Europe wants to visit each of the 
cities shown on the map exactly once, starting 
and ending in Brussels. The distance (in kilome-
ters) between each pair of cities is given in the 
table. Find a Hamiltonian circuit that minimizes 
the total distance traveled. (Use the map to 
narrow the possible circuits down to just a few. 
Then use the table to find the total distance for 
each of those.)

Berlin

Brussels
Düsseldorf
Luxembourg
Munich
Paris

783
564
764
585

1,057

223
219
771
308

224
613
497

517
375 832

Brussels
Düsseldorf

Luxembourg

Berlin Brussels Düsseldorf Luxembourg Munich

Munich

Paris

43. a.  Prove that if a walk in a graph contains a re-
peated edge, then the walk contains a repeated 
vertex.

H

H

H

H

H

H
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b. Explain how it follows from part (a) that any 
walk with no repeated vertex has no repeated 
edge.

44. Prove Lemma 10.1.1(a): If G is a connected graph, 
then any two distinct vertices of G can be con-
nected by a path. (You may use the result stated in 
exercise 43.)

45. Prove Lemma 10.1.1(b): If vertices v and w are 
part of a circuit in a graph G and one edge is 
removed from the circuit, then there still exists a 
trail from v to w in G.

46. Draw a picture to illustrate Lemma 10.1.1(c): If 
a graph G is connected and G contains a circuit, 
then an edge of the circuit can be removed without 
disconnecting G.

47. Prove that if there is a trail in a graph G from a ver-
tex v to a vertex w, then there is a trail from w to v.

48. If a graph contains a circuit that starts and ends at 
a vertex v, does the graph contain a simple circuit 
that starts and ends at v? Why?

49. Prove that if there is a circuit in a graph that starts 
and ends at a vertex v and if w is another vertex in 
the circuit, then there is a circuit in the graph that 
starts and ends at w.

50. Let G be a connected graph, and let C be any cir-
cuit in G that does not contain every vertex of C. 
Let G9 be the subgraph obtained by removing all 
the edges of C from G and also any vertices that 
become isolated when the edges of C are removed. 
Prove that there exists a vertex v such that v is in 
both C and G9.

51. Prove that any graph with an Euler circuit is con-
nected.

52. Prove Corollary 10.1.5.

53. For what values of n does the complete graph 
Kn with n vertices have (a) an Euler circuit? (b) a 
Hamiltonian circuit? Justify your answers.

54. For what values of m and n does the complete 
bipartite graph on (m, n) vertices have (a) an Euler 
circuit? (b) a Hamiltonian circuit? Justify your 
answers.

55. What is the maximum number of edges a simple 
disconnected graph with n vertices can have? 
Prove your answer.

56. a.   Prove that if G is any bipartite graph, then ev-
ery circuit in G has an even number of edges.

b. Prove that if G is any graph with at least two 
vertices and if G does not have a circuit with 
an odd number of edges, then G is bipartite.

57. An alternative proof for Theorem 10.1.3 has 
the following outline. Suppose G is a con-
nected graph in which every vertex has even 
degree. Suppose the path C: v1e1v2e2v3 Á envn11 
has maximum length in G. That is, C has at 
least as many vertices and edges as any other 
path in G. First derive a contradiction from 
the assumption that v1 Þ vn. Next let H be the 
subgraph of G that contains all the vertices and 
edges in C. Then derive a contraction from the 
assumption that H Þ G. Show that H contains 
every vertex of G, and show that H contains 
every edge of G. 

H

*

*

*H

1. (a) a finite alternating sequence of adjacent vertices and 
edges of G (b) a walk that does not contain a repeated 
edge (c) a trail that does not contain a repeated vertex  
(d) a walk that starts and ends at the same vertex (e) a 
closed walk that contains at least one edge and does not 
contain a repeated edge (f) a circuit that does not have 
any repeated vertex other than the first and the last (g) a 
walk consisting of a single vertex and no edge (h) there is 
a walk from v to w 2. given any two vertices in the graph, 

there is a walk from one to the other 3. disconnect the 
graph 4. a circuit that contains every vertex and every edge 
of the graph 5. the graph is connected, and every vertex 
has positive, even degree 6. the graph is connected, v and 
w have odd degree, and all other vertices have positive even 
degree 7. a simple circuit that includes every vertex of the 
graph 8. H contains every vertex of G; H is connected; 
H has the same number of edges as vertices; every vertex of 
H has degree 2 9. Hamiltonian circuit

ANSWERS FOR TEST YOuRSELF 
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698  CHAPTER 10 THEORY OF GRAPHS AND TREES

Matrix Representations of Graphs
Order and simplification are the first steps toward the mastery of a subject. 
—Thomas Mann, The Magic Mountain, 1924

How can graphs be represented inside a computer? It happens that all the information 
needed to specify a graph can be conveyed by a structure called a matrix, and matrices 
(matrices is the plural of matrix) are easy to represent inside computers. This section con-
tains some basic definitions about matrices and matrix operations, a description of the 
relation between graphs and matrices, and some applications.

Matrices
Matrices are two-dimensional analogues of sequences. They are also called two-dimensional 
arrays.

Definition

An m 3 n (read “m by n”) matrix A over a set S is a rectangular array of elements 
of S arranged into m rows and n columns:

 A 5 3
a11 a12

Á a1 j
Á a1n

a21 a22
Á a2 j

Á a 2n 

o o o o
ai1 ai2

Á ai  j
Á ai n

o o o o
am1 am2

Á am j
Á am n

4 d i th row of A

j  th column of A

We write A 5 (ai j).

c

The i  th row of A is

fai1 ai2
Á ai ng

and the j  th column of A is

3
a1j

a2  j

o
am j

4.

The entry ai  j in the i th row and j  th column of A is called the i  j  th entry of A. An m 3 n 
matrix is said to have size m 3 n. If A and B are matrices, then A 5 B if, and only if, 
A and B have the same size and the corresponding entries of A and B are all equal; that is,

ai  j 5 bi  j for every i 5 1, 2, . . . , m and j 5 1, 2, . . . , n.

A matrix for which the numbers of rows and columns are equal is called a square 
matrix. If A is a square matrix of size n 3 n, then the main diagonal of A consists of all 
the entries a11, a22, . . . , ann:

10.2
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10.2 MATRix REPRESENTATiONS OF GRAPHS  699

3
a11 a12

Á a1i
Á a1n

a21 a22
Á a2  i

Á a2n

o o o o
ai1 ai2

Á ai i
Á ai n

o o o o
an1 an2

Á an  i
Á an  n

4
main diagonal of A

Matrix Terminology

The following is a 3 3 3 matrix over the set of integers.

A 5 3
1 0 23

4 21 5

22 2 0
4

a. What is a23, the entry in row 2, column 3?

b. What is the second column of A?

c. What are the entries in the main diagonal of A? 

Solution

a. a23 5 5   b. 3
0

21

2
4   c. 1, 21, and 0 ■

Matrices and Directed Graphs
Consider the directed graph shown in Figure 10.2.1. This graph can be represented by the 
matrix A 5 (ai  j) for which ai j 5 the number of arrows from vi to vj, for every i 5 1, 2, 3 
and j 5 1, 2, 3. Thus a11 5 1 because there is one arrow from v1 to v1; a12 5 0 because 
there is no arrow from v1 to v2, a23 5 2 because there are two arrows from v2 to v3, and so 
forth. A is called the adjacency matrix of the directed graph. For convenient reference, the 
rows and columns of A are often labeled with the vertices of the graph G.

�1

�3

�2

e2

e4

e5e6

e3e1

Directed Graph G Adjacency Matrix of G

(b)(a)

A

�1 �2 �3

�1 1 0 0
�2 1 1 2
�3 1 0 0

FiGuRE 10.2.1 A Directed Graph and Its Adjacency Matrix

Definition

Let G be a directed graph with ordered vertices v1, v2, . . . , vn. The adjacency matrix 
of G is the n 3 n matrix A 5 (ai j) over the set of nonnegative integers such that

ai  j 5 the number of arrows from vi to vj for all i, j 5 1, 2, . . . , n.

c

Example 10.2.1
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700  CHAPTER 10 THEORY OF GRAPHS AND TREES

Note that nonzero entries along the main diagonal of an adjacency matrix indicate the 
presence of loops, and off-diagonal entries larger than 1 correspond to parallel edges. 
Moreover, if the vertices of a directed graph are reordered, then the entries in the rows and 
columns of the corresponding adjacency matrix are moved around.

The Adjacency Matrix of a Graph

The two directed graphs shown below differ only in the ordering of their vertices. Find 
their adjacency matrices.

�1

�3

�2
e2

e4

e5

e1

e3

�3

�2

�1
e2

e4

e5

e1

e3

(a) (b)

Solution Since both graphs have three vertices, both adjacency matrices are 3 3 3 ma-
trices. For (a), all entries in the first row are 0 since there are no arrows from v1 to any other 
vertex. For (b), the first two entries in the first row are 1 and the third entry is 0 since from 

v1 there are single arrows to v1 and to v2 and no arrows to v3. Continuing the analysis in this 
way, you obtain the following two adjacency matrices:

A 5 3
0 0 0

0 1 1

2 1 0
4    A 5 3

1 1 0

1 0 2

0 0 0
4

 (a) (b) ■

If you are given a square matrix with nonnegative integer entries, you can construct a 
directed graph with that matrix as its adjacency matrix. However, the matrix does not tell 
you how to label the edges, so the directed graph is not uniquely determined.

Obtaining a Directed Graph from a Matrix

Let

A 5 3
0 1 1 0

1 1 0 2

0 0 1 1

2 1 0 0
4.

Draw a directed graph that has A as its adjacency matrix.

Solution Let G be the graph corresponding to A, and let v1, v2, v3, and v4 be the vertices of 
G. Label A across the top and down the left side with these vertex names, as shown below.

A 5 3
0 1 1 0

1 1 0 2

0 0 1 1

2 1 0 0
4

Then, for instance, the 2 in the fourth row and the first column means that there are two 
arrows from v4 to v1. The 0 in the first row and the fourth column means that there is no 
arrow from v1 to v4. A corresponding directed graph is shown on the next page (without 
edge labels because the matrix does not determine those).

Example 10.2.2

v1   v2   v3

v1 

v2 

v3

v1   v2   v3

v1 

v2 

v3

Example 10.2.3

v1   v2   v3   v4
v1 

v2 

v3 

v4
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10.2 MATRix REPRESENTATiONS OF GRAPHS  701

  

�1

�2

�3

�4

 ■

Matrices and Undirected Graphs
Once you know how to associate a matrix with a directed graph, the definition of the ma-
trix corresponding to an undirected graph should seem natural to you. As before, you must 
order the vertices of the graph, but in this case you simply set the i  j  th entry of the adja-
cency matrix equal to the number of edges connecting the i  th and j  th vertices of the graph.

Definition

Let G be an undirected graph with ordered vertices v1, v2, . . . , vn. The adjacency ma-
trix of G is the n 3 n matrix A 5 (ai  j) over the set of nonnegative integers such that

ai  j 5 the number of edges connecting vi and vj

for every i and j 5 1, 2, . . . , n.

Finding the Adjacency Matrix of a Graph

Find the adjacency matrix for the graph G shown below.

�1 �2

�3
�4

e3

e4

e6

e1 e5

e2

Solution

  A 5 3
0 1 0 1

1 1 2 1

0 2 0 0

1 1 0 1
4

 ■

The entries of A satisfy the condition, aij 5 aj i 

, for every i, j 5 1, 2, . . . , n. This implies 
that the appearance of A remains the same if the entries of A are flipped across its main 
diagonal. A matrix, like A, with this property is said to be symmetric.

Definition

An n 3 n square matrix A 5 (ai j) is called symmetric if, and only if, for every  
i and j 5 1, 2, . . . , n,

aij 5 aj i 

.

Example 10.2.4

v1   v2   v3   v4

v1 

v2 

v3 

v4
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702  CHAPTER 10 THEORY OF GRAPHS AND TREES

Symmetric Matrices

Which of the following matrices are symmetric?

a. 31 0

1 24   b. 3
0 1 2

1 1 0

2 0 3
4   c. 32 0 0

0 1 04
Solution Only (b) is symmetric. In (a) the entry in the first row and the second column 
differs from the entry in the second row and the first column; the matrix in (c) is not even 
square. ■

It is easy to see that the matrix of any undirected graph is symmetric since it is always 
the case that the number of edges joining vi and vj equals the number of edges joining vj 

and vi for every i and j 5 1, 2, . . . , n.

Matrices and Connected Components
Consider a graph G, as shown below, that consists of several connected components.

�1

�2

�4
�6

�7

�5

�3

e2

e3
e7

e4

e5

e6

e8

e1

The adjacency matrix of G is

A 5 3
1 0 1 0 0 0 0
0 0 2 0 0 0 0
1 2 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 0 2
0 0 0 0 0 2 0

4
As you can see, A consists of square matrix blocks (of different sizes) down its diagonal 
and blocks of 0’s everywhere else. The reason is that vertices in each connected component 
share no edges with vertices in other connected components. For instance, since v1, v2, and 
v3 share no edges with v4, v5, v6, or v7, all entries in the top three rows to the right of the 
third column are 0 and all entries in the left three columns below the third row are also 0. 
Sometimes matrices whose entries are all 0’s are themselves denoted 0. If this convention 
is followed here, A is written as

A 5 3
1 0 1
0 0 2
1 2 0

0 1
1 1

0 2
2 0

4

Example 10.2.5
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10.2 MATRix REPRESENTATiONS OF GRAPHS  703

The previous reasoning can be generalized to prove the following theorem:

Theorem 10.2.1

Let G be a graph with connected components G1, G2, . . . , Gk. If there are ni vertices 
in each connected component Gi and these vertices are numbered consecutively, 
then the adjacency matrix of G has the form

3
A1 O O Á O O

O A2 O Á O O

O O A3
Á O O

o o o o o
O O O Á O Ak

4
where each Ai is the ni 3 ni adjacency matrix of Gi, for every i 5 1, 2, . . . , k, and the 
O’s represent matrices whose entries are all 0.

Matrix Multiplication
Matrix multiplication is an enormously useful operation that arises in many contexts, in-
cluding the investigation of walks in graphs. Although matrix multiplication can be de-
fined in quite abstract settings, the definition for matrices whose entries are real numbers 
will be sufficient for our applications. The product of two matrices is built up of scalar or 
dot products of their individual rows and columns.

Definition

Suppose that all entries in matrices A and B are real numbers. If the number of ele-
ment, n, in the i  th row of A equals the number of elements in the j  th column of B, 
then the scalar product or dot product of the i th row of A and j  th column of B is 
the real number obtained as follows:

fai1 ai  2
Á ai n g 3

b1 j

b2 j

o
bn  j

45 ai1b1 j 1ai 2  

b2  j 1 Á 1a i n  

bn j 

.

Multiplying a Row and a Column

   f3 0 21 2g 3
21

2

3

0
45 3?(21)10?21  (21)?312?0 

   5 23102310 5 26  ■

More generally, if A and B are matrices whose entries are real numbers and if A and B 
have compatible sizes in the sense that the number of columns of A equals the number of 
rows of B, then the product AB is defined. It is the matrix whose i  j  th entry is the scalar 
product of the i  th row of A times the j  th column of B, for all possible values of i and j.

Example 10.2.6
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704  CHAPTER 10 THEORY OF GRAPHS AND TREES

Definition

Let A 5 (aij) be an m 3 k matrix and B 5 (bi  j) a k 3 n matrix with real entries. The 
(matrix) product of A times B, denoted AB, is that matrix (ci  j ) defined as follows:

3
a11 a12

Á a1k

a21 a22
Á a2k

o o o
ai1 ai 2

Á ai k

o o o
am1 am 2

Á am k

4 3
b11 b12

Á b1j
Á b1n

b21 b22
Á b 2  j

Á b2n

? ? ?
? ? ?
? ? ?

bk1 bk2
Á bk   j

Á bk   n

4
5 3

c11 c12
Á c1j

Á c1n

c21 c22
Á c2j

Á c2n

o o o o
ci1 ci 2

Á ci j
Á ci n

o o o o
cm1 cm 2

Á cm  j
Á cm  n

4
where

ci j 5 ai1b1j 1ai2  

b2j 1 Á 1ai  k   

bk  j 5 o
k

r51

ai rbr  j 

,

for each i 5 1, 2, . . . , m and j 5 1, 2, . . . , n.

Computing a Matrix Product

Let A 5 3 2 0 3
21 1 04 and B 5 3 4 3

2 2

22 21
4. Compute AB.

Solution A has size 2 3 3 and B has size 3 3 2, so the number of columns of A equals 
the number of rows of B and the matrix product of A and B can be computed. Then

3 2 0 3

21 1 04 3
4 3

2 2

22 21
45 3c11 c12

c21 c22
4,

where

c11 5 2?410?213?(22) 5 2 3 2 0 3

21 1 04 3
4 3

2 2

22 21
4

c12 5 2?310?213?(21) 5 3 3 2 0 3

21 1 04 3
4 3

2 2

22 21
4

c21 5 (21)?411?210?(22) 5 22 3 2 0 3

21 1 04 3
4 3

2 2

22 21
4

c22 5 (21)?311?210?(21) 5 21 3 2 0 3

21 1 04 3
4 3

2 2

22 21
4.

Example 10.2.7

94193_ch10_ptg01.indd   704 12/11/18   6:07 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.2 MATRix REPRESENTATiONS OF GRAPHS  705

Hence

  AB 5 3 2 3

22 214. 
■

Matrix multiplication is both similar to and different from multiplication of real num-
bers. One difference is that although the product of any two numbers can be formed, only 
matrices with compatible sizes can be multiplied. For example, if A is a 3 3 2 matrix and 
B is a 2 3 4 matrix, then AB can be computed because the number of columns of A equals 
the number of rows of B. But BA does not exist because B has 4 columns, A has 3 rows, 
and 4 Þ 3.

Another difference is that multiplication of real numbers is commutative (for all real 
numbers a and b, ab 5 ba), whereas matrix multiplication is not. For instance,

31 1

0 1430 1

0 14 5 30 2

0 14 but 30 1

0 1431 1

0 14 5 30 1

0 14.

On the other hand, both real number and matrix multiplications are associative: 
(ab)c 5 a(bc), for all elements a, b, and c for which the products are defined. This is 
proved in Example 10.2.8 for products of 2 3 2 matrices. Additional exploration of matrix 
multiplication is offered in the exercises at the end of this section.

Associativity of Matrix Multiplication for 2 3 2 Matrices

Prove that if A, B, and C are 2 3 2 matrices over the set of real numbers, then 
(AB)C 5 A(BC).

Solution Suppose A 5 (ai  j), B 5 (bi  j), and C 5 (ci  j) are particular but arbitrarily cho-
sen 2 3 2 matrices with real entries. Since the numbers of rows and columns are all the 
same, AB, BC, (AB)C, and A(BC) are defined. Let AB 5 (di  j) and BC 5 (ei  j). Then for 
each integer i 5 1, 2 and j 5 1, 2,

 the i j  th entry of (AB)C 5 o
2

r51

d ir cr  j

 5 di1c1  j 1di  2  

c2  j

 5 1o
2

r51

air    

br12c1j 11o
2

r51

air  

br  22c2  j

 5 (ai1b11 1ai2b21)c1j 1 (ai1b12 1ai2b22)c2j

 5 ai1b11c1j 1ai2b21c1j 1ai1b12c2j 1ai2b22c2j.

Similarly, the i jth entry of A(BC) is

 (A(BC)) i  j 5 o
2

r51

ai  r    

er   j

 5 ai1e1j 1ai2e2j

 5 ai11o
2

r51

b1rcrj21ai21o
2

r51

b2rcrj2
 5 ai1(b11c1j 1b12c2j)1ai2(b21c1j 1b22c2j)

 5 ai1b11c1j 1ai1b12c2j 1ai2b21c1j 1ai2b22c2j

 5 ai1b11c1j 1ai2b21c1j 1ai1b12c2j 1ai2b22c2j.

Example 10.2.8

by definition of the 

product of AB and C

by definition of o

by definition of the 

product of A and B

by definition of o

94193_ch10_ptg01.indd   705 12/11/18   6:07 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



706  CHAPTER 10 THEORY OF GRAPHS AND TREES

Comparing the results of the two computations shows that for each i and j,

the i  j  th entry of (AB)C 5 the i  j  th entry of A(BC).

Since all corresponding entries are equal, (AB)C 5 A(BC), as was to be shown. ■

As far as multiplicative identities are concerned, there are both similarities and differ-
ences between real numbers and matrices. You know that the number 1 acts as a multi-
plicative identity for products of real numbers. It turns out that there are certain matrices, 
called identity matrices, that act as multiplicative identities for certain matrix products. 
For instance, mentally perform the following matrix multiplications to check that for any 
real numbers a, b, c, d, e, f, g, h, and i,

31 0

0 143a b c

d e f4 5 3a b c

d e f4
and

3
a b c

d e f

g h i
43

1 0 0

0 1 0

0 0 1
45 3

a b c

d e f

g h i
4.

These computations show that 31 0

0 14 acts as an identity on the left side for multiplication 

with 2 3 3 matrices and that 31 0 0

0 1 0

0 0 1
4 acts as an identity on the left side for multiplica-

tion with 3 3 3 matrices. Note that 31 0

0 14 cannot act as an identity on the right side for 

multiplication with 2 3 3 matrices because the sizes are not compatible.

Definition

For each positive integer n, the n 3 n identity matrix, denoted In 5 (di j) or just I 
(if the size of the matrix is obvious from context), is the n 3 n matrix in which all 
the entries in the main diagonal are 1’s and all other entries are 0’s. In other words,

�i j 5 51 if  i 5 j

0 if i Þ j
, for every i, j 5 1, 2, . . . , n.

The German mathematician Leopold Kronecker introduced the symbol �i  j to make matrix 
computations more convenient. In his honor, this symbol is called the Kronecker delta.

An identity Matrix Acts as an identity

Prove that if A is any m 3 n matrix and I is the n 3 n identity matrix, then AI 5 A. 

Proof:
Let A be any n 3 n matrix and let ai  j be the i  j  th entry of A for each integer i 5 1, 2, . . . , m 
and j 5 1, 2, . . . , n. Consider the product AI, where I is the n 3 n identity matrix. Observe 
that

Example 10.2.9

Leopold Kronecker 
(1823–1891)

ak
g-

im
ag

es
/a

kg
-im

ag
es
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3
a11 a12

Á a1n

a21 a22
Á a2n

o o o
am1 am2

Á am  n

43
1 0 Á 0

0 1 Á 0

o o o
0 0 Á 1

45 3
a11 a12

Á a1n

a21 a22
Á a2n

o o o
am1 am2

Á am n

4
because

  the i j  th entry of AI 5 o
n

r51

ai r   

�r  j by definition of 1

  5 ai1�1j 1ai2�2j 1 Á  by definition of o
1ai j�j j 1 Á 1ai  n  

�n   j

  5 ai j�j j since �k j 5 0 whenever k Þ j 

  5 ai  j since �j  j 5 1

  5 the i j th entry of A.

Thus AI 5 A, as was to be shown.  ■

In exercise 14 at the end of this section you are asked to show that if I is the m 3 m identity 
matrix, then IA 5 A.

There are also similarities and differences between real numbers and matrices with 
respect to the computation of powers. Any number can be raised to a nonnegative integer 
power, but a matrix can be multiplied by itself only if it has the same number of rows as 
columns. As for real numbers, however, the definition of matrix powers is recursive. Just as 
any number to the zeroth power is defined to be 1, so any n 3 n matrix to the zeroth power 
is defined to be the n 3 n identity matrix. The nth power of an n 3 n matrix A is defined 
to be the product of A with its (n21)st power.

Definition

For any n 3 n matrix A, the powers of A are defined as follows:

A0 5 I where I is the n 3 n identity matrix

An 5 AAn21 for every integer n $ 1.

Powers of a Matrix

Let A 5 31 2

2 04. Compute A0, A1, A2, and A3.

Solution  A0 5 the 2 3 2 identity matrix 5 31 0

0 14
  A1 5 AA0 5 AI 5 A

  A2 5 AA1 5 AA 5 31 2

2 0431 2

2 04 5 35 2

2 44
  A3 5 AA2 5 31 2

2 0435 2

2 44 5 3 9 10

10 4 4 ■

Counting Walks of Length N
A walk in a graph consists of an alternating sequence of vertices and edges. If repeated 
edges are counted each time they occur, then the number of edges in the sequence is called 

Example 10.2.10
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708  CHAPTER 10 THEORY OF GRAPHS AND TREES

the length of the walk. For instance, the walk v2e3v3e4v2e2v2e3v3 has length 4 (counting e3 
twice). Consider the following graph G:

�1

�2

�3

e2

e1
e4

e3

How many distinct walks of length 2 connect v2 and v2? You can list the possibilities sys-
tematically as follows: From v1, the first edge of the walk must go to some vertex of G: v1, 
v2, or v3. There is one walk of length 2 from v2 to v2 that starts by going from v2 to v1:

v2e1v1e1v2.

There is one walk of length 2 from v2 to v2 that starts by going from v2 to v2:

v2e2v2e2v2.

And there are four walks of length 2 from v2 to v2 that start by going from v2 to v3:

v2e3v3e4v2

v2e4v3e3v2

v2e3v3e3v2

v2e4v3e4v2.

Thus the answer is six.
The general question of finding the number of walks that have a given length and con-

nect two particular vertices of a graph can easily be answered using matrix multiplication. 
Consider the adjacency matrix A of the graph G shown above:

A 5 3
0 1 0

1 1 2

0 2 0
4. 

Compute A2 as follows:

3
0 1 0

1 1 2

0 2 0
43

0 1 0

1 1 2

0 2 0
45 3

1 1 2

1 6 2

2 2 4
4.

Note that the entry in the second row and the second column is 6, which equals the number 
of walks of length 2 from v2 to v2. This is no accident! To compute a22, you multiply the 
second row of A times the second column of A to obtain a sum of three terms:

f1 1 2g3
1

1

2
45 1?111?112?2.

Observe that

3the first term

of this sum 4 5 3
number of

edges from

v2 to v1
4?3

number of

edges from

v1 to v2
45 3

number of pairs

of edges from

v2 to v1 and v1 to v2
4.

v1   v2   v3

v1 

v2 

v3
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10.2 MATRix REPRESENTATiONS OF GRAPHS  709

Now consider the i  th term of this sum, for each i 5 1, 2, and 3. It equals the number of 
edges from v2 to vi times the number of edges from vi to v2. By the multiplication rule this 
equals the number of pairs of edges from v2 to vi and from vi back to v2. And this equals 
the number of walks of length 2 that start and end at v2 and pass through vi. Since this 
analysis holds for each term of the sum for i 5 1, 2, and 3, the sum as a whole equals the 
total number of walks of length 2 that start and end at v2:

1?111?112?2 5 11114 5 6.
More generally, if A is the adjacency matrix of a graph G, the i j  th entry of A2 equals the 

number of walks of length 2 connecting the i  th vertex to the j  th vertex of G. Even more 
generally, if n is any positive integer, the i  j  th entry of An equals the number of walks of 
length n connecting the ith and the j  th vertices of G.

Theorem 10.2.2

If G is a graph with vertices v1, v2, . . . , vm and A is the adjacency matrix of G, then 
for each positive integer n and for all integers i, j 5 1, 2, . . . , m,

the i  j  th entry of An 5 the number of walks of length n from vi to vj.

Proof (by mathematical induction): 
Suppose G is a graph with vertices v1, v2, . . . , vm and A is the adjacency matrix of 
G. Let P (n) be the sentence

For all integers i, j 5 1, 2, . . . . , m, d P (n)

the i  j  th entry of An 5 the number of walks of length n from vi to vj.

We will show that P (n) is true for every integer n $ 1.

Show that P (1) is true:

The ijth entry of A1 5 the i  j  th entry of A because A1 5 A

5 the number of edges by definition of adjacency matrix
connecting vi to vj

5 the number of walks of because a walk of length 1

length 1 from vi to vj contains a single edge.

Show that for every integer k with k $ 1, if P (k) is true then P (k11) is true:
Let k be any integer with k $ 1, and suppose that

For all integers i, j 5 1, 2, . . . , m, d P (k)

the i  j  th entry of Ak 5 the number of walks of length k from vi to vj    inductive  

hypothesis
We must show that

For all integers i, j 5 1, 2, . . . , m, d P (k+1)

the ijth entry of Ak11 5 the number of walks of length k11 from vi to vj.

Let A 5 (ai  j) and Ak 5 (bi  j). Since Ak11 5 AAk, the i  j  th entry of Ak11 is ob-
tained by multiplying the i  th row of A by the j  th column of Ak:

  the i  j  th entry of Ak11 5 ai1b1j 1ai2b2j 1 Á 1ai  m 

bm  j 10.2.1

for every i, j 5 1, 2, . . . , m. Now consider the individual terms of this sum: ai1 is the 
number of edges from vi to v1; and, by the inductive hypothesis, b1j is the number of 
walks of length k from v1 to vj. Now any edge from vi to v1 can be joined with any 

(continued on page 710)
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710  CHAPTER 10 THEORY OF GRAPHS AND TREES

walk of length k from v1 to vj to create a walk of length k11 from vi to vj with v1 as 
its second vertex. Thus, by the multiplication rule,

ai1b1j 5 3the number of walks of length k11 from

vi to vj that have v1 as their second vertex4.

More generally, for each integer r 5 1, 2, . . . , m,

ai rbr j 5 3the number of walks of length k11 from

vi to vj that have vr as their second vertex 4.

Because every walk of length k11 from vi to vj must have one of the vertices  
v1, v2, . . . , vm as its second vertex, the total number of walks of length k11 from vi 
to vj equals the sum in (10.2.1), which equals the i  j  th entry of Ak11. Hence

the i  j  th entry of Ak11 5 the number of walks of length k11 from vi to vj

[as was to be shown].
[Since both the basis step and the inductive step have been proved, the sentence P (n) is 
true for every integer n $ 1.]

1. In the adjacency matrix for a directed graph, the 
entry in the ith row and jth column is .

2. In the adjacency matrix for an undirected graph, 
the entry in the ith row and jth column is .

3. An n 3 n square matrix is called symmetric if, 
and only if, for all integers i and j from 1 to n, the 
entry in row  and column  equals the 
entry in row  and column . 

4. The i  j  th entry in the product of two matrices A 
and B is obtained by multiplying row  of A 
by row  of B.

5. In an n 3 n identity matrix, the entries on the 
main diagonal are all  and the off-diagonal 
entries are all .

6. If G is a graph with vertices v1, v2, . . . , vm and A 
is the adjacency matrix of G, then for each positive 
integer n and for all integers i and j with i, j 5 1, 
2, . . . , m, the i  j  th entry of An 5 .

TEST YOuRSELF 

1. Find real numbers a, b, and c such that the follow-
ing are true.

a. 3a1b a2c

c b2a4 5 3 1 0

21 34
b. 3 2a b1c

c2a 2b2a4 5 34 3

1 224
2. Find the adjacency matrices for the following 

directed graphs.

a.
�1 �2

�3

e2

e1

e3

b.

�1

�2

�3�4

e2
e5

e6

e1

e3 e4

3. Find directed graphs that have the following adja-
cency matrices:

a. 3
1 0 1 2

0 0 1 0

0 2 1 1

0 1 1 0
4   b. 3

0 1 0 0

2 0 1 0

1 2 1 0

0 0 1 0
4

ExERCiSE SET 10.2 
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4. Find adjacency matrices for the following (undi-
rected) graphs.

�1 �2

�3
�4

e2

e1 e4

e3 e5

b.

�1

�3

�2

�4

e1

e4

e3

e2

e5

e6

a.

c. K4, the complete graph on four vertices
d. K2,3, the complete bipartite graph on (2, 3) 

vertices

5. Find graphs that have the following adjacency 
matrices.

a. 3
1 0 1

0 1 2

1 2 0
4    b. 3

0 2 0

2 1 0

0 0 1
4

6. The following are adjacency matrices for graphs. 
In each case determine whether the graph is con-
nected by analyzing the matrix without drawing 
the graph.

a. 3
0 1 1

1 1 0

1 0 0
4   b. 3

0 2 0 0

2 0 0 0

0 0 1 1

0 0 1 1
4

7. Suppose that for every positive integer i, all 
the entries in the ith row and ith column of the 
adjacency matrix of a graph are 0. What can you 
conclude about the graph?

8. Find each of the following products.

a. f2 21g31

34  b. f4 21 7g3
1

2

0
4

9. Find each of the following products.

a. 33 0

1 22431 21 4

0 2 14

b. 32 0 1

0 21 043
1 3

5 24

22 2
4

c. 321

24f2 3g

d. 31 2

3 214
2

10. Let A 5 31 1 21

0 22 14, B 5 322 0

1 34, and 

C 5 3
0 22

3 1

1 0
4.

  For each of the following, determine whether 
the indicated product exists, and compute it if it 
does.
a. AB b. BA c. A2 d. BC e. CB 

f. B2 g. B3 h. C2 i. AC j. CA

11. Give an example different from that in the 
text to show that matrix multiplication is not 
commutative. That is, find 2 3 2 matrices A 
and B such that AB and BA both exist but 
AB Þ BA.

12. Let O denote the matrix 30 0

0 04. Find 2 3 2 

matrices A and B such that A Þ O and B Þ O but 
AB 5 O.

13. Let O denote the matrix 30 0

0 04. Find 2 3 2 

matrices A and B such that A Þ B, B Þ O, and 
AB Þ O, but BA 5 O.

In 14–18, assume the entries of all matrices are real 
numbers.

14. Prove that if I is the m 3 m identity matrix and A 
is any m 3 n matrix, then IA 5 A.

15. Prove that if A is an m 3 m symmetric matrix, 
then A2 is symmetric.

16. Prove that matrix multiplication is associative: If 
A, B, and C are any m 3 k, k 3 r, and r 3 n ma-
trices, respectively, then (AB)C 5 A(BC). (Hint: 
Summation notation is helpful.)

17. Use mathematical induction and the result of 
exercise 16 to prove that if A is any m 3 m matrix, 
then AnA 5 AAn for each integer n $ 1.

18. Use mathematical induction to prove that if A is 
an m 3 m symmetric matrix, then for any integer 
n $ 1, An is also symmetric.

H
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712  CHAPTER 10 THEORY OF GRAPHS AND TREES

19. a. Let A 5 3
1 1 2

1 0 1

2 1 0
4. Find A2 and A3.

b. Let G be the graph with vertices v1, v2, and v3 
and with A as its adjacency matrix. Use the 
answers to part (a) to find the number of walks 
of length 2 from v1 to v3 and the number of 
walks of length 3 from v1 to v3. Do not draw G 
to solve this problem.

c. Examine the calculations you performed in an-
swering part (a) to find five walks of length 2 
from v3 to v3. Then draw G and find the walks 
by visual inspection.

20. The following is an adjacency matrix for a graph:

A 5 3
0 1 1 0

1 0 2 1

1 2 0 1

0 1 1 1
4

  Answer the following questions by examining the 
matrix and its powers only, not by drawing the graph:
a. How many walks of length 2 are there from v2 

to v3?
b. How many walks of length 2 are there from v3 

to v4?
c. How many walks of length 3 are there from v1 

to v4?
d. How many walks of length 3 are there from v2 

to v3?

21. Let A be the adjacency matrix for K3, the complete 
graph on three vertices. Use mathematical induc-
tion to prove that for each positive integer n, all the 
entries along the main diagonal of An are equal to 
each other and all the entries that do not lie along 
the main diagonal are equal to each other.

22. a. Draw a graph that has

3
0 0 0 1 2

0 0 0 1 1

0 0 0 2 1

1 1 2 0 0

2 1 1 0 0
4

  as its adjacency matrix. Is this graph bipartite?

Definition: Given an m 3 n matrix A whose i  j  th entry is 
denoted ai  j, the transpose of A is the matrix At whose ijth 
entry is aj  i, for each i 5 1, 2, . . . , m and j 5 1, 2, . . . , n.

   Note that the first row of A becomes the first 
column of At, the second row of A becomes the 
second column of At, and so forth. For instance,

if A 5 30 2 1

1 2 34, then At 5 3
0 1

2 2

1 3
4.

b. Show that a graph with n vertices is bipartite 
if, and only if, for some labeling of its vertices, 
its adjacency matrix has the form

3O A
At O4

   where A is a k 3 (n2k) matrix for some integer 
k such that 0 , k , n, the top left O represents 
a k 3 k matrix all of whose entries are 0, At 
is the transpose of A, and the bottom right O 
represents an (n2k) 3 (n2k) matrix all of 
whose entries are 0.

23. a.  Let G be a graph with n vertices, and let v and 
w be distinct vertices of G. Prove that if there 
is a walk from v to w, then there is a walk from 
v to w that has length less than or equal to 
n21.

b. If A 5 (ai  j) and B 5 (bi  j) are any m 3 n 
matrices, the matrix A1B is the m 3 n 
matrix whose i  j  th entry is ai  j 1bi  j for each 
i 5 1, 2, . . . , m and j 5 1, 2, . . . , n. Let G 
be a graph with n vertices where n . 1, and 
let A be the adjacency matrix of G. Prove that 
G is connected if, and only if, every entry of 
A1A2 1 Á 1An21 is positive. 

v1   v2   v3   v4

v1 

v2 

v3 

v4

H

H

1. the number of arrows from vi (the i  th vertex) to vj (the 
j  th vertex) 2. the number of edges connecting vi (the i  th 

vertex) and vj (the j  th vertex) 3. i; j; j; i 4. i; j 5. 1; 0 
6. the number of walks of length n from vi to vj

ANSWERS FOR TEST YOuRSELF 
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10.3 iSOMORPHiSMS OF GRAPHS  713

isomorphisms of Graphs
Thinking is a momentary dismissal of irrelevancies. —R. Buckminster Fuller, 1969

The two drawings shown in Figure 10.3.1 both represent the same graph: Their vertex and 
edge sets are identical, and their edge-endpoint functions are the same. Call this graph G.

10.3

�1

�4 �3

�3

�5 �2

�4�5 �2

e2

e2

e5

e3

e4

e5 e1

e3

�1

e1

e4

FiGuRE 10.3.1

Now consider the graph G9 represented in Figure 10.3.2.

�1

�4 �5

�2 �3

e3e2

e4 e1

e5

FiGuRE 10.3.2

Observe that G9 is a different graph from G (for instance, in G the endpoints of e1 are v1 and 

v2, whereas in G9 the endpoints of e1 are v1 and v3). Yet G9 is certainly very similar to G. In 
fact, if the vertices and edges of G9 are relabeled by the functions shown in Figure 10.3.3, 
then G9 becomes the same as G.

FiGuRE 10.3.3

�1

�2

�3

�4

�5

�1

�2

�3

�4

�5

e1

e2

e3

e4

e5

e1

e2

e3

e4

e5

Vertices
of G

Vertices
of G'

Edges
of G

Edges
of G'

Note that these relabeling functions are one-to-one and onto.
Two graphs that are the same except for the labeling of their vertices and edges are 

called isomorphic. The word isomorphism comes from the Greek, meaning “same form.” 
Isomorphic graphs are those that have essentially the same form.

Definition

Let G and G9 be graphs with vertex sets V(G) and V(G9) and edge sets E(G) and 
E(G9), respectively. G is isomorphic to G9 if, and only if, there exist one-to-one cor-
respondences g : V(G) S V(G9) and h : E(G) S E(G9) that preserve the edge-endpoint 
functions of G and G9 in the sense that for each v [ V(G) and e [ E(G),

 v is an endpoint of e 3 g(v) is an endpoint of h(e). 10.3.1
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714  CHAPTER 10 THEORY OF GRAPHS AND TREES

In words, G is isomorphic to G9 if, and only if, the vertices and edges of G and G9 can 
be matched up by one-to-one, onto functions in such a way that the edges between cor-
responding vertices correspond to each other.

It is common in mathematics to identify isomorphic objects with each other. For in-
stance, if we are given a graph G with five vertices, where each pair of vertices is con-
nected by an edge, then we often identify G with K5, saying that G is K5 rather than that G 
is isomorphic to K5.

Showing That Two Graphs Are isomorphic

Show that the following two graphs are isomorphic.

Example 10.3.1

f1 f2 f5

f3

f7

f4

f6

1

�1

�2

�5

�3

�4
5

3

4

2

e1

e4

e5

e7

e6 e2 e3

GG '

Solution To solve this problem, you must find functions g : V(G) S V(G9) and  
h : E(G) S E(G9) such that for each v [ V(G) and e [ E(G), v is an endpoint of e if, and 
only if, g(v) is an endpoint of h(e). Setting up such functions is partly a matter of trial and er-
ror and partly a matter of deduction. For instance, since e2 and e3 are parallel [have the same 
endpoints], h(e2) and h(e3) must be parallel also. So h(e2) 5 f1 and h(e3) 5 f2 or h(e2) 5 f2 

and h(e3) 5 f1. Also, the endpoints of e2 and e3 must correspond to the endpoints of f1 and f2, 
and so g(v3) 5 w1 and g(v4) 5 w5 or g(v3) 5 w5 and g(v4) 5 w1.

Similarly, since v1 is the endpoint of four distinct edges (e1, e7, e5, and e4), g(v1) must 
also be the endpoint of four distinct edges [because every edge incident on g(v1) is the image 
under h of an edge incident on v1 and h is one-to-one and onto]. But the only vertex in G9 that 
has four edges coming out of it is w2, and so g(v1) 5 w2. Now if g(v3) 5 w1, then since v1 

and v3 are endpoints of e1 in G, g(v1) 5 w2 and g(v3) 5 w1 must be endpoints of h(e1) in G9. 
This implies that h(e1) 5 f3.

By continuing in this way, possibly making some arbitrary choices as you go, you even-
tually can find functions g and h to define the isomorphism between G and G9. One pair of 
functions (there are several) is the following:

�1

�2

�3

�4

�5

V(G) V(G') g

e1

e2

e3

e4

e6

e7

e5

f1
f2
f3
f4

f6
f7

f5

E (G) E(G') 
h

1

2

3

4

5

■

It is not hard to show that graph isomorphism is an equivalence relation on a set of 
graphs; in other words, it is reflexive, symmetric, and transitive.
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10.3 iSOMORPHiSMS OF GRAPHS  715

Finding Representatives of isomorphism Classes

Find all nonisomorphic graphs that have two vertices and two edges. In other words, find 
a collection of representative graphs with two vertices and two edges such that every graph 
with two vertices and two edges is isomorphic to one in the collection.

Solution There are four nonisomorphic graphs that have two vertices and two edges. 
These can be drawn without vertex and edge labels because any two labelings give iso-
morphic graphs.

Example 10.3.2

Theorem 10.3.1 Graph isomorphism is an Equivalence Relation

Let S be a set of graphs and let R be the relation of graph isomorphism on S. Then R 
is an equivalence relation on S.

Proof: 
R is reflexive: Given any graph G in S, define a graph isomorphism from G to G by 
using the identity functions on the set of vertices and on the set of edges of G.

R is symmetric: Given any graphs G and G9 in S such that G is isomorphic to G9, we 
must show that G9 is isomorphic to G.

This is true because if g and h are vertex and edge correspondences from G to 
G9 that preserve the edge-endpoint functions, then g21 and h21 are vertex and edge 
correspondences from G9 to G that preserve the edge-endpoint functions.

R is transitive: Given any graphs G, G9, and G0 in S such that G is isomorphic to G9 
and G9 is isomorphic to G0, we must show that G is isomorphic to G0.

This follows from the fact that if g1 and h1 are vertex and edge correspondences 
from G to G9 that preserve the edge-endpoint functions of G and G9 and if g2 and h2 
are vertex and edge correspondences from G9 to G0 that preserve the edge-endpoint 
functions of G9 and G0, then g2 + g1 and h2 + h1 are vertex and edge correspondences 
from G to G0 that preserve the edge-endpoint functions of G and G0.

Note  As a consequence 
of the symmetry property, 
you can simply say “G 
and G9 are isomorphic” 
instead of “G is isomor-
phic to G9” or “G9 is 
isomorphic to G.”

(a) (b) (c) (d)

To see that these four drawings show all the nonisomorphic graphs with two vertices 
and two edges, first check whether one of the edges joins the two vertices or not. If it does, 
there are two possibilities: The second edge can also join the two vertices (as in (a)) or 
it can be a loop incident on one of them (as in (b)—it makes no difference which vertex 
is chosen to have the loop because interchanging the two vertex labels gives isomorphic 
graphs). If neither edge joins the two vertices, then both edges are loops. In this case, there 
are only two possibilities: Either both loops are incident on the same vertex (as in (c)) or 
the two loops are incident on separate vertices (as in (d)). There are no other possibilities 
for placing the edges, so the listing is complete. ■

Now consider the question, “Is there a general method to determine whether graphs G 
and G9 are isomorphic?” In other words, is there some algorithm that will accept graphs 
G and G9 as input and produce a statement as to whether they are isomorphic? In fact, 
there is such an algorithm. It consists of generating all one-to-one, onto functions from the 
set of vertices of G to the set of vertices of G9 and from the set of edges of G to the set of 
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716  CHAPTER 10 THEORY OF GRAPHS AND TREES

edges of G9 and checking each pair to determine whether it preserves the edge-endpoint 
functions of G and G9. The problem with this algorithm is that it takes an unreasonably 
long time to perform, even on a high-speed computer. If G and G9 each have n vertices 
and m edges, the number of one-to-one correspondences from vertices to vertices is n! and 
the number of one-to-one correspondences from edges to edges is m!, so the total num-
ber of pairs of functions to check is n!?m!. For instance, if m 5 n 5 20, there would be 
20! ?20! > 5.9 3 1036 pairs to check. Assuming that each check takes just 1 nanosecond, 
the total time would be approximately 1.9 3 1020 years!

Unfortunately, there is no more efficient general method known for checking whether 
two graphs are isomorphic. However, there are some simple tests that can be used to show 
that certain pairs of graphs are not isomorphic. For instance, if two graphs are isomorphic, 
then they have the same number of vertices (because there is a one-to-one correspondence 
from the vertex set of one graph to the vertex set of the other). It follows that if you are given 
two graphs, one with 16 vertices and the other with 17, you can immediately conclude that 
the two are not isomorphic. More generally, a property that is preserved by graph isomor-
phism is called an isomorphic invariant. For instance, “having 16 vertices” is an isomor-
phic invariant: If one graph has 16 vertices, then so does any graph that is isomorphic to it.

Definition

A property P is called an invariant for graph isomorphism if, and only if, given any 
graphs G and G9, if G has property P and G9 is isomorphic to G, then G9 has property P.

Theorem 10.3.2

Each of the following properties is an invariant for graph isomorphism, where n, m, 
and k are all nonnegative integers:

1. has n vertices

2. has m edges

3. has a vertex of degree k

4. has m vertices of degree k

5. has a circuit of length k

6. has a simple circuit of length k

7. has m simple circuits of length k

8. is connected

9. has an Euler circuit

10. has a Hamiltonian circuit. 

Showing That Two Graphs Are Not isomorphic

Show that the following pairs of graphs are not isomorphic by finding an isomorphic in-
variant that they do not share.

Example 10.3.3

a.

G G'G G'

b.

H'H H'H
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Solution

a. G has nine edges; G9 has only eight.

b. H has a vertex of degree 4; H9 does not.  ■

We prove part (3) of Theorem 10.3.2 and leave the proofs of the other parts as exercises.

Proof of Theorem 10.3.2, Part (3)

Prove that if G is a graph that has a vertex of degree k and G9 is isomorphic to G, then G9 
has a vertex of degree k.

Proof:
Suppose G and G9 are isomorphic graphs and G has a vertex v of degree k, where k is a 
nonnegative integer. [We must show that G9 has a vertex of degree k.] Since G and G9 are iso-
morphic, there are one-to-one, onto functions g and h from the vertices of G to the vertices 
of G9 and from the edges of G to the edges of G9 that preserve the edge-endpoint functions 
in the sense that for all edges e and all vertices u of G, u is an endpoint of e if, and only if, 
g(u) is an endpoint of h(e). An example for a particular vertex v is shown below.

Example 10.3.4

e3

e4

e2 h(e2)
h(e1)

h(e4)

e5

e1

� g(�)

Degree � = 3 + 2 · 2 = 7 Degree g(�) = 3 + 2 · 2 = 7

h(e3)

h(e5)

Let e1, e2, Á , em be the m distinct edges that are incident on a vertex v in G, where m is a 
nonnegative integer. Then h(e1), h(e2), Á , h(em) are m distinct edges that are incident on 
g(v) in G9. [The reason why h(e1), h(e2), Á , h(em) are distinct is that h is one-to-one and e1, 
e2, Á , em are distinct. And the reason why h(e1), h(e2), Á , h(em) are incident on g(v) is that g 
and h preserve the edge-endpoint functions of G and G9 and e1, e2, Á , em are incident on v.]

Also, there are no edges incident on g(v) other than the ones that are images under h of 
edges incident on v [because g is onto and g and h preserve the edge-endpoint functions of 
G and G9]. Thus the number of edges incident on v equals the number of edges incident 
on g(v).

Finally, an edge e is a loop at v if, and only if, h(e) is a loop at g(v), so the number of 
loops incident on v equals the number of loops incident on g(v). [For since g and h preserve 
the edge-endpoint functions of G and G9, a vertex w is an endpoint of e in G if, and only if, g(w) 
is an endpoint of h(e) in G9. It follows that v is the only endpoint of e in G if, and only if, g(v) is 
the only endpoint of h(e) in G9.]

Now the degree of v, which is k, equals the number of edges incident on v that are not 
loops plus twice the number of edges incident on v that are loops (since each loop contrib-
utes 2 to the degree of v). But we have already shown that the number of edges incident on 
v equals the number of edges incident on g(v), with the number of loops incident on v equal 
to the number of loops incident on g(v). Hence g(v) also has degree k. ■

Graph Isomorphism for Simple Graphs
When graphs G and G9 are both simple, the definition of G being isomorphic to G9 can 
be written without referring to the correspondence between the edges of G and the edges 
of G9.
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718  CHAPTER 10 THEORY OF GRAPHS AND TREES

isomorphism of Simple Graphs

Are the two graphs shown below isomorphic? If so, define an isomorphism.

Example 10.3.5

Definition

If G and G9 are simple graphs, then G is isomorphic to G9 if, and only if, there exists 
a one-to-one correspondence g from the vertex set V(G) of G to the vertex set V(G9) 
of G9 that preserves the edge-endpoint functions of G and G9 in the sense that for all 
vertices u and v of G,

 {u, v} is an edge in G 3 {g(u), g(v)} is an edge in G9. 10.3.2

a

b

c

d

x

z

y

GG '

Solution Yes. Define g : V(G) S V(G9) by the arrow diagram shown below.

a
b
c
d

x
y
z

V(G) V(G')g

Then g is one-to-one and onto by inspection. The fact that g preserves the edge-endpoint 
functions of G and G9 is shown by the following table:

■

1. If G and G9 are graphs, then G is isomorphic to 
G9 if, and only if, there exist a one-to-one corre-
spondence g from the vertex set of G to the vertex 
set of G9 and a one-to-one correspondence h from 
the edge set of G to the edge set of G9 such that 
for every vertex v and every edge e in G, v is an 
endpoint of e if, and only if, .

2. A property P is an invariant for graph isomor-
phism if, and only if, given any graphs G and G9, 
if G has property P and G9 is isomorphic to G 
then .

3. Some invariants for graph isomorphisms are 
, , , , , ,  
, , , and .

TEST YOuRSELF 

Edges of G Edges of G9

{a, b} {y, w} 5 {g(a), g(b)}

{a, c} {y, x} 5 {g(a), g(c)}

{a, d} {y, z} 5 {g(a), g(d)}

{c, d} {x, z} 5 {g(c), g(d)}
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10.3 iSOMORPHiSMS OF GRAPHS  719

For each pair of graphs G and G9 in 1–5, determine 
whether G and G9 are isomorphic. If they are, give func-
tions g: V(G) S V(G9) and h: E(G) S E(G9) that define 
the isomorphism. If they are not, give an invariant for 
graph isomorphism that they do not share.

1. �1

3
2

4

�4

�2 �3

e1 e3

f1

f2e2

e4

G G'

f3

f4

1

2. 

�1

�5 �3
�4

�2

e2

e3

e1

e6

e7

e5

e4

G

2

1

4 6

3

f1 f2

f3

f4

f6

5f5

f7

G'

3. 

�1 �3

�2
�4

e6

e1 e3

e5

e2

e4

G

f6

f5

f2

f3

f1

1

3

2

4

f4

G'

4. 

�1

�2

�5 �4

�3
e2 e7

e1

e6

e5

e3

e4

G

1

2

3

5 4

f1

f3 f5

f6

f7

f2

f4

G'

5. 

�1

�5

�2

�3

�4

e2

e3

e4

e5

e7

e6

e1

G

1

5 4

3

2

f6

f4

f5

f3

f2

f1

f7

G'

For each pair of simple graphs G and G9 in 6–13, deter-
mine whether G and G9 are isomorphic. If they are, give a 
function g: V(G) S V (G9) that defines the isomorphism. 
If they are not, give an invariant for graph isomorphism 
that they do not share.

6.  

�1 �2 �3 �4

1

4

2

3

GG '

7.   
1

4

2

3

�1

�4

�2

�3

G G'

8.  

a

f

c

d

b

e y

�

u

z x

G G'

9.  

a

f

e

b

c

d

G

u

z y

x

�

G'

10.  

a

g

c

e

d

b

f

G

t

z

�

x

y

u

G'

11.  
a

f

c

d

b

e

G

u

z y

x

�

G'

12. a

d

b

c

f

e

h

g

G

s
x

�

t

u

G'

z y

a
f

d

e
b

c

G

h g

s
x

�

t

u

G'

z y

ExERCiSE SET 10.3 
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720  CHAPTER 10 THEORY OF GRAPHS AND TREES

Trees: Examples and Basic Properties
We are not very pleased when we are forced to accept a mathematical truth by virtue 
of a complicated chain of formal conclusions and computations, which we traverse 
blindly, link by link, feeling our way by touch. We want first an overview of the aim 
and of the road; we want to understand the idea of the proof, the deeper context. 
—Hermann Weyl, 1885–1955

If a friend asks what you are studying and you answer “trees,” your friend may think you 
are taking a course in botany. But trees are also a subject for mathematical investigation. In 
mathematics, a tree is a connected graph that does not contain any circuits. Mathematical 
trees are similar in certain ways to their botanical namesakes.

10.4

Definition

A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called 
a tree if, and only if, it is circuit-free and connected. A trivial tree is a graph that 
consists of a single vertex. A graph is called a forest if, and only if, it is circuit-free 
and not connected.

13. 

a

d

b

c

f

e

h

g

G

s
x

�

t

u

G'

z y

a
f

d

e
b

c

G

h g

s
x

�

t

u

G'

z y

14. Draw all nonisomorphic simple graphs with three 
vertices.

15. Draw all nonisomorphic simple graphs with four 
vertices.

16. Draw all nonisomorphic graphs with three verti-
ces and no more than two edges.

17. Draw all nonisomorphic graphs with four vertices 
and no more than two edges.

18. Draw all nonisomorphic graphs with four vertices 
and three edges.

19. Draw all nonisomorphic graphs with six vertices, 
all having degree 2.

20. Draw four nonisomorphic graphs with six verti-
ces, two of degree 4 and four of degree 3. 

prove that each of the properties in 21–29 is an invariant 
for graph isomorphism. assume that n, m, and k are all 
nonnegative integers.

21. Has n vertices 22. Has m edges

23. Has a circuit of length k

24. Has a simple circuit of length k

25. Has m vertices of degree k

26. Has m simple circuits of length k

27. Is connected 28. Has an Euler circuit

29. Has a Hamiltonian circuit

30. Show that the following two graphs are not iso-
morphic by supposing they are isomorphic and 
deriving a contradiction.

�1 �2 �3 �4 �5 �6

e1 e2
e3

e4

e5 e6

1 2 3 4 5 6

f1 f2 f3
f4

f5

f6

G

G'

H

H

H

1. g(v) is an endpoint of h(e)    2. G9 has property P    3. has n vertices; has m edges; has a vertex of degree k; has m vertices of 
degree k; has a circuit of length k; has a simple circuit of length k; has m simple circuits of length k; is connected; has an Euler 
circuit; has a Hamiltonian circuit

ANSWERS FOR TEST YOuRSELF 
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10.4 TREES: ExAMPlES AND BASiC PROPERTiES  721

Trees and Non-trees

All the graphs shown in Figure 10.4.1 are trees, whereas those in Figure 10.4.2 are not.

Example 10.4.1

(a) (b) (c) (d)

FiGuRE 10.4.1 Trees. All the graphs in (a)–(d) are connected and circuit-free.

(a) (b) (c) (d)

 FiGuRE 10.4.2 Non-trees. The graphs in (a), (b), and (c) all have circuits, and the graph in (d) is not connected. ■

Examples of Trees
The following examples illustrate just a few of the many and varied situations in which 
mathematical trees arise.

A Decision Tree

During orientation week, a college administers a mathematics placement exam to all enter-
ing students. The exam consists of two parts, and placement recommendations are made 
as indicated by the tree shown in Figure 10.4.3. Read the tree from left to right to decide 
what course should be recommended for a student who scored 9 on part I and 7 on part II.

Example 10.4.2

Score on
part I

Score on
part II

Math 100

Math 100

Math 110

Math 110

Math 120
Score on
part II

.10

,8

= 8, 9, 10

.10

#10

#6

.6

FiGuRE 10.4.3
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722  CHAPTER 10 THEORY OF GRAPHS AND TREES

Solution Since the student scored 9 on part I, the score on part II is checked. Since it is 
greater than 6, the student should be advised to take Math 110. ■

A Parse Tree

In the last 30 years, Noam Chomsky and others have developed new ways to describe the 
syntax (or grammatical structure) of natural languages such as English. As is discussed 
briefly in Chapter 12, this work has proved useful in constructing compilers for high-level 
computer languages. In the study of grammars, trees are often used to show the derivation 
of grammatically correct sentences from certain basic rules. Such trees are called syntac-
tic derivation trees or parse trees.

A very small subset of English grammar, for example, specifies that

1. a sentence can be produced by writing first a noun phrase and then a verb phrase;

2. a noun phrase can be produced by writing an article and then a noun;

3. a noun phrase can also be produced by writing an article, then an adjective, and then a noun;

4. a verb phrase can be produced by writing a verb and then a noun phrase;

5. one article is “the”;

6. one adjective is “young”;

7. one verb is “caught”;

8. one noun is “man”;

9. one (other) noun is “ball.” 
The rules of a grammar are called productions. It is customary to express them using the 

shorthand notation illustrated below. This notation, introduced by John Backus in 1959 and 
modified by Peter Naur in 1960, was used to describe the computer language Algol and is 
called the Backus–Naur notation. In the notation, the symbol u  represents the word or, and 
angle brackets K L are used to enclose terms to be defined (such as a sentence or noun phrase).

1. KsentenceL S Knoun phraseL Kverb phraseL

 2., 3. Knoun phraseL S KarticleL KnounL u  KarticleL KadjectiveL KnounL

 4. Kverb phraseL S KverbL Knoun phraseL

 5. KarticleL S the

6. KadjectiveL S young

7. KverbL S caught

8., 9. KnounL S man | ball

The derivation of the sentence “The young man caught the ball” from the above rules is 
described by the tree shown below.

Example 10.4.3

John Backus  
(1924–1998)

IB
M

 A
rc

hi
ve

s

sentence

noun phrase verb phrase

article adjective noun verb

caught

noun phrase

article noun

the ball

the young man

Peter Naur 
(1928–2016)
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10.4 TREES: ExAMPlES AND BASiC PROPERTiES  723

In the study of linguistics, syntax refers to the grammatical structure of sentences, and se-
mantics refers to the meanings of words and their interrelations. A sentence can be syntactically 
correct but semantically incorrect, as in the nonsensical sentence “The young ball caught the 
man,” which can be derived from the rules given above. Or a sentence can contain syntactic er-
rors but not semantic ones, as, for instance, when a two-year-old child says, “Me hungry!” ■

Structure of Hydrocarbon Molecules

The German physicist Gustav Kirchhoff (1824–1887) was the first to analyze the behavior 
of mathematical trees in connection with the investigation of electrical circuits. Soon af-
ter (and independently), the English mathematician Arthur Cayley used the mathematics 
of trees to enumerate all isomers for certain hydrocarbons. Hydrocarbon molecules are 
composed of carbon and hydrogen; each carbon atom can form up to four chemical bonds 
with other atoms, and each hydrogen atom can form one bond with another atom. Thus 
the structure of hydrocarbon molecules can be represented by graphs such as those shown 
below, in which the vertices represent atoms of hydrogen and carbon, denoted H and C, and 
the edges represent the chemical bonds between them.

Example 10.4.4

H

H

H

H

H

H HH

HH CC

C

C

H

H

H HC

H

H

C

H

H

C

H

H

C

IsobutaneButane

Note that each of these graphs has four carbon atoms and ten hydrogen atoms, but the two 
graphs show different configurations of atoms. When two molecules have the same chemi-
cal formulas (in this case C4H10) but different chemical bonds, they are called isomers.

Certain saturated hydrocarbon molecules contain the maximum number of hydrogen 
atoms for a given number of carbon atoms. Cayley showed that if such a saturated hydro-
carbon molecule has k carbon atoms, then it has 2k12 hydrogen atoms. The first step in 
doing so is to prove that the graph of such a saturated hydrocarbon molecule is a tree. Prove 
this using proof by contradiction. (You are asked to finish the derivation of Cayley’s result 
in exercise 4 at the end of this section.)

Solution Suppose there is a hydrocarbon molecule that contains the maximum number 
of hydrogen atoms for the number of its carbon atoms and whose graph G is not a tree. [We 
must derive a contradiction.] Since G is not a tree, G is not connected or G has a circuit. But 
the graph of any molecule is connected (all the atoms in a molecule must be connected to 
each other), and so G must have a nontrivial circuit. Now the edges of the circuit can link 
only carbon atoms because every vertex of a circuit has degree at least 2 and a hydrogen 
atom vertex has degree 1. Delete one edge of the circuit and add two new edges to join each 
of the newly disconnected carbon atom vertices to a hydrogen atom vertex as shown below.

Arthur Cayley  
(1821–1895)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es

C

C

C

C

H

H

Add
Delete

Rest of circuit
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724  CHAPTER 10 THEORY OF GRAPHS AND TREES

The resulting molecule has two more hydrogen atoms than the given molecule, but the 
number of carbon atoms is unchanged. This contradicts the supposition that the given mol-
ecule has the maximum number of hydrogen atoms for the given number of carbon atoms. 
Hence the supposition is false, and so G is a tree. ■

Characterizing Trees
There is a somewhat surprising relation between the number of vertices and the number of 
edges of a tree. It turns out that if n is a positive integer, then any tree with n vertices (no 
matter what its shape) has n21 edges. Perhaps even more surprisingly, a partial converse 
to this fact is also true—namely, any connected graph with n vertices and n21 edges is a 
tree. It follows from these facts that if even one new edge (but no new vertex) is added to a 
tree, the resulting graph must contain a circuit. Also, from the fact that removing an edge 
from a circuit does not disconnect a graph, it can be shown that every connected graph has 
a subgraph that is a tree. It follows that if n is a positive integer, any graph with n vertices 
and fewer than n21 edges is not connected.

A small but very important fact necessary to derive the first main theorem about trees 
is that any nontrivial tree must have at least one vertex of degree 1.

Lemma 10.4.1

Any tree that has more than one vertex has at least one vertex of degree 1.

A constructive way to understand this lemma is to imagine being given a tree T with 
more than one vertex. You pick a vertex v at random and then search outward along a path 
from v looking for a vertex of degree 1. As you reach each new vertex, you check whether 
it has degree 1. If it does, you are finished. If it does not, you exit from the vertex along a 
different edge from the one you entered on. Because T is circuit-free, the vertices included 
in the path never repeat. And since the number of vertices of T is finite, the process of 
building a path must eventually terminate. When that happens, the final vertex v9 of the 
path must have degree 1. This process is illustrated below.

Start here Search outward from � to
�nd vertex �' of degree 1.

e
e'

�

�'

This discussion is made precise in the following proof. 

Proof:

Let T be a particular but arbitrarily chosen tree that has more than one vertex, and 
consider the following algorithm:

Step 1: Pick a vertex v of T and let e be an edge incident on v.
[If there were no edge incident on v, then v would be an isolated vertex. But 
this would contradict the assumption that T is connected (since it is a tree) and 
has at least two vertices.]
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10.4 TREES: ExAMPlES AND BASiC PROPERTiES  725

Using Lemma 10.4.1 it is not difficult to show that, in fact, any tree that has more than 
one vertex has at least two vertices of degree 1. This extension of Lemma 10.4.1 is left to 
exercise 5 at the end of this section. Exercise 29 outlines a nonconstructive proof of this 
fact that uses proof by contradiction.

Step 2: While deg(v) . 1, repeat steps 2a, 2b, and 2c:

Step 2a:  Choose e9 to be an edge incident on v such that e9 Þ e. [Such an edge 
exists because deg(v) . 1 and so there are at least two edges incident 
on v.]

Step 2b:  Let v9 be the vertex at the other end of e9 from v. [Since T is a tree, e9 
cannot be a loop and therefore e9 has two distinct endpoints.]

Step 2c:  Let e 5 e9 and v 5 v9. [This is just a renaming process in preparation 
for repeating step 2.] 

The algorithm just described must eventually terminate because the set of verti-
ces of the tree T is finite and T is circuit-free. When it does, a vertex v of degree 1 
will have been found.

Definition

Let T be a tree. If T has at least two vertices, then a vertex of degree 1 in T is called 
a leaf (or a terminal vertex), and a vertex of degree greater than 1 in T is called 
an internal vertex (or a branch vertex). The unique vertex in a trivial tree is also 
called a leaf or terminal vertex.

Leaves and internal Vertices in Trees

Find all leaves (or terminal vertices) and all internal (or branch) vertices in the following 
tree:

Example 10.4.5

�8

�0

�7

�6

�1

�5

�3

�2

�4

Solution The leaves (or terminal vertices) are v0, v2, v4, v5, v7, and v8. The internal (or 
branch) vertices are v6, v1, and v3. ■

The following is the first of the two main theorems about trees:

Theorem 10.4.2

For any positive integer n, any tree with n vertices has n21 edges.

The proof is by mathematical induction. In the inductive step, we assume that any tree 
with k vertices has k21 edges, and our job is to show that any tree with k11 vertices has 
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726  CHAPTER 10 THEORY OF GRAPHS AND TREES

k edges. To do this, we start with an arbitrarily chosen tree T with k11 vertices. Then we 
try to find a vertex and an edge that we can remove from T to create a sub-tree T9 with k 
vertices. If this step is successful, we can apply the inductive hypothesis to show that T9 has 
k21 edges, and when we replace the vertex and edge that we removed, we can conclude 
that T has k edges. 

In order to find the vertex and edge to remove from T, we use Lemma 10.4.1, which 
states that T has a vertex v of degree 1. Since T is connected, v is attached to the rest of T 
by a single edge e as sketched below.

e
�

T:

Rest of T

If e and v are removed from T, what remains is a tree T9 with (k11)21 5 k vertices. By 
inductive hypothesis, then, T9 has k21 edges. Now the original tree T has one more vertex 
and one more edge than T9. Hence T must have (k21)11 5 k edges. A formal version of 
this argument is given below.

Proof (by mathematical induction):

Let the property P (n) be the sentence

Any tree with n vertices has n21 edges. dP (n)

We use mathematical induction to show that this property is true for every integer 
n $ 1.

Show that P (1) is true: Let T be any tree with one vertex. Then T has zero edges 
(since it contains no loops). Since 0 5 121, then P (1) is true.

Show that for every integer k $ 1, if P (k) is true then P (k11) is true:

Suppose k is any positive integer for which P (k) is true. In other words, suppose that

Any tree with k vertices has k21 edges. d P (k)  
inductive hypothesis

We must show that P (k11) is true. In other words, we must show that

Any tree with k11 vertices has (k11)21 5 k edges. dP (k11)

Let T be a particular but arbitrarily chosen tree with k11 vertices. [We must show 
that T has k edges.] Since k is a positive integer, (k11) $ 2, and so T has more than 
one vertex. Hence by Lemma 10.4.1, T has a vertex v of degree 1. Also, since T has 
more than one vertex, there is at least one other vertex in T besides v. Thus there is 
an edge e connecting v to the rest of T. Define a subgraph T9 of T so that

V(T 9) 5 V(T)2{v} and E(T 9) 5 E(T )2{e}.

Note We can’t assume 
anything about T except 
that it has k11 vertices.
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Determining Whether a Graph is a Tree

A graph G has ten vertices and twelve edges. Is it a tree?

Solution No. By Theorem 10.4.2, any tree with ten vertices has nine edges, not twelve. ■

Finding Trees Satisfying Given Conditions

Find all nonisomorphic trees with four vertices.

Solution By Theorem 10.4.2, any tree with four vertices has three edges. Thus the total 
degree of a tree with four vertices must be 6. Also, every tree with more than one vertex 
has at least two vertices of degree 1 (see the comment following Lemma 10.4.1 and exer-
cises 5 and 29 at the end of this section). Thus the following combinations of degrees for 
the vertices are the only ones possible:

1, 1, 1, 3 and 1, 1, 2, 2.

There are two nonisomorphic trees corresponding to both of these possibilities, as shown 
below.

and

■

To prove the second major theorem about trees, we need another lemma.

Example 10.4.6

Example 10.4.7

Then

1. The number of vertices of T9 is (k11)21 5 k.

2. T9 is circuit-free (since T is circuit-free, and removing an edge and a vertex can-
not create a circuit).

3. T9 is connected (see exercise 24 at the end of this section). 

Hence, by the definition of tree, T9 is a tree. Since T9 has k vertices, by inductive 
hypothesis

the number of edges of T9 5 (the number of vertices of T9)21

5 k21. 

It follows that

the number of edges of T 5 (the number of edges of T9)11

5 (k21)11

5 k.

[This is what was to be shown.]

Lemma 10.4.3

If G is any connected graph, C is any circuit in G, and any one of the edges of C is 
removed from G, then the graph that remains is connected.
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728  CHAPTER 10 THEORY OF GRAPHS AND TREES

Essentially, the reason why Lemma 10.4.3 is true is that any two vertices in a circuit are 
connected by two distinct paths. It is possible to draw the graph so that one of these goes 
“clockwise” and the other goes “counterclockwise” around the circuit. For example, in the 
circuit below, the clockwise path from v2 to v3 is

v2e3v3

and the counterclockwise path from v2 to v3 is

v2e2v1e1v0e6v5e5v4e4v3,  where v6 5 v0.

�2 �3

�0 �5

�1 �4

e2

e1

e4

e5

e3

e6

 Clockwise

 Counterclockwise

Proof:

Suppose G is a connected graph, C is a circuit in G, and e is an edge of C. Form a 
subgraph G9 of G by removing e from G. Thus

V(G9) 5 V(G)

E(G9) 5 E(G)2{e}.

We must show that G9 is connected. [To show a graph is connected, we must show 
that if u and w are any vertices of the graph, then there exists a walk in G9 from u to w.] 
Suppose u and w are any two vertices of G9. [We must find a walk from u to w.] Since 
the vertex sets of G and G9 are the same, because u and w are both vertices of G, and 
since G is connected, there is a walk W in G from u to w.

Case 1 (e is not an edge of W): The only edge in G that is not in G9 is e, so in this 
case W is also a walk in G9. Hence u is connected to w by a walk in G9.

Case 2 (e is an edge of W): In this case the walk W from u to w includes a section of 
the circuit C that contains e. Let C be denoted as follows:

C: v0e1v1e2v2
Á envn (5v0).

Now e is one of the edges of C, so, to be specific, let e 5 ek. Then the walk W con-
tains either the sequence

vk21ekvk or vkekvk21.

If W contains vk21ekvk, connect vk21 to vk by taking the “counterclockwise” walk W9 
defined as follows:

W9: vk21ek21vk22
Á v0envn21

Á ek11vk where vn 5 v0.

An example showing how to go from u to w while avoiding ek is given in Figure 10.4.4.
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10.4 TREES: ExAMPlES AND BASiC PROPERTiES  729

The second major theorem about trees is a modified converse for Theorem 10.4.2.

u

�k–1

�k+1

�k

�k–2

ek–1 ek+1

ek

To go from u to
while avoiding ek , go
counterclockwise
around the circuit.

FiGuRE 10.4.4 An Example of a Walk from u to w That Does Not Include Edge ek

If W contains vkekvk21, connect vk to vk21 by taking the “clockwise” walk W0 defined 
as follows:

W0: vkek11vk11
Á vne1v1e2

Á ek21vk21 where vn 5 v0.

Now patch either W9 or W0 into W to form a new walk from u to w. For instance, to 
patch W9 into W, start with the section of W from u to vk21, then take W9 from vk21 
to vk, and finally take the section of W from vk to w. If this new walk still contains 
an occurrence of e, just repeat the process described previously until all occurrences 
are eliminated. [This must happen eventually since the number of occurrences of e in 
C is finite.] The result is a walk from u to w that does not contain e and hence is a 
walk in G9.

The previous arguments show that both in case 1 and in case 2 there is a walk in 
G9 from u to w. Since the choice of u and w was arbitrary, G9 is connected.

Theorem 10.4.4

For any positive integer n, if G is a connected graph with n vertices and n21 edges, 
then G is a tree.

Proof: 
Let n be a positive integer and suppose G is a particular but arbitrarily chosen graph 
that is connected and has n vertices and n21 edges. [We must show that G is a tree. 
Now a tree is a connected, circuit-free graph. Since we already know G is connected, it 
suffices to show that G is circuit-free.] Suppose G is not circuit-free. That is, suppose 
G has a circuit C. [We must derive a contradiction.] By Lemma 10.4.3, an edge of C 
can be removed from G to obtain a graph G9 that is connected. If G9 has a circuit, 
then repeat this process: Remove an edge of the circuit from G9 to form a new con-
nected graph. Continue repeating the process of removing edges from circuits until 
eventually a graph G0 is obtained that is connected and is circuit-free. By definition, 
G0 is a tree. Since no vertices were removed from G to form G0, G0 has n vertices 
just as G does. Thus, by Theorem 10.4.2, G0 has n21 edges. But the supposition 
that G has a circuit implies that at least one edge of G is removed to form G0. Hence 
G0 has no more than (n21)21 5 n22 edges, which contradicts its having n21 
edges. So the supposition is false. Hence G is circuit-free, and therefore G is a tree 
[as was to be shown].

94193_ch10_ptg01.indd   729 12/11/18   6:08 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



730  CHAPTER 10 THEORY OF GRAPHS AND TREES

Theorem 10.4.4 is not a full converse of Theorem 10.4.2. Although it is true that every 
connected graph with n vertices and n21 edges (where n is a positive integer) is a tree, it 
is not true that every graph with n vertices and n21 edges is a tree.

A Graph with n Vertices and n 2 1 Edges That is Not a Tree

Give an example of a graph with five vertices and four edges that is not a tree.

Solution By Theorem 10.4.4, such a graph cannot be connected. One example of such an 
unconnected graph is shown below.

�1 �4

�5�2 �3

e2

e3

e1 e4

■

Example 10.4.8

Corollary 10.4.5

If G is any graph with n vertices and m edges, where m and n are positive integers 
and m $ n, then G has a circuit.

Proof (by contradiction): 
Suppose not. That is, suppose there is a graph G with n vertices and m edges, where 
m and n are positive integers and m $ n, and suppose G does not have a circuit. 
Let G1, G2, Á , Gk be the connected components of G, and let n1, n2, Á , nk be the 
number of vertices of G1, G2, Á , Gk, respectively. Because G1, G2, Á , Gk are the 
connected components of G,

o
k

i51

ni 5 n.

Since G does not have a circuit, none of G1, G2, Á , Gk have circuits either. So, since 
each is connected, each is a tree. By Theorem 10.4.4, the number of edges of each Gi 
is ni21. Now because G is composed of its connected components,

the number of edges of G 5 o
k

i51

(the number of edges of Gi)

5 (n1 21)1 (n2 21)1 Á 1 (nk 21)

5 (n1 1n2 1 Á 1nk)2 (1111 Á 11)(+++)+++*
k 1’s

5 n2k,

, n since k $ 1.

Thus the number of edges of G is less than n, which contradicts the hypothesis that 
the number of edges of G, namely, m, is greater than or equal to n. Hence the sup-
position is false and G has a circuit.
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10.4 TREES: ExAMPlES AND BASiC PROPERTiES  731

1. A circuit-free graph is a graph with .

2. A forest is a graph that is , and a tree is a 
graph that is .

3. A trivial tree is a graph that consists of .

4. Any tree with at least two vertices has at least one 
vertex of degree .

5. If a tree T has at least two vertices, then a terminal 
vertex (or leaf) in T is a vertex of degree  
and an internal vertex (or branch vertex) in T is a 
vertex of degree .

6. For any positive integer n, any tree with n vertices 
has .

7. For any positive integer n, if G is a connected 
graph with n vertices and n21 edges then .

TEST YOuRSELF 

1. Read the tree in Example 10.4.2 from left to right 
to answer the following questions.
a. A student scored 12 on part I and 4 on part II. 

What course should the student take?
b. A student scored 8 on part I and 9 on part II. 

What course should the student take? 
2. Draw trees to show the derivations of the 

following sentences from the rules given in 
Example 10.4.3.
a. The young ball caught the man.
b. The man caught the young ball. 

3. What is the total degree of a tree with n vertices? 
Why?

4. Let G be the graph of a hydrocarbon molecule 
with the maximum number of hydrogen atoms for 
the number of its carbon atoms.
a. Draw the graph of G if G has three carbon 

atoms and eight hydrogen atoms.
b. Draw the graphs of three isomers of C5H12.
c. Use Example 10.4.4 and exercise 3 to prove 

that if the vertices of G consist of k carbon at-
oms and m hydrogen atoms, then G has a total 
degree of 2k12m22.

d. Prove that if the vertices of G consist of k car-
bon atoms and m hydrogen atoms, then G has a 
total degree of 4k1m.

e. Equate the results of (c) and (d) to prove Cayley’s 
result that a saturated hydrocarbon molecule 
with k carbon atoms and a maximum number of 
hydrogen atoms has 2k12 hydrogen atoms. 

5. Extend the argument given in the proof of 
Lemma 10.4.1 to show that a tree with more than 
one vertex has at least two vertices of degree 1.

6. If graphs are allowed to have an infinite number of 
vertices and edges, then Lemma 10.4.1 is false. Give 
a counterexample that shows this. In other words, 
give an example of an “infinite tree” (a connected, 
circuit-free graph with an infinite number of verti-
ces and edges) that has no vertex of degree 1.

7. Find all leaves (or terminal vertices) and all inter-
nal (or branch) vertices for the following trees.

a.

�1 �4

�2

�3

�5

�7

�6

b. �1 �4
�2

�3
�5

�7

�6 �8

In each of 8–21, either draw a graph with the given specifi-
cations or explain why no such graph exists.

8. Tree, nine vertices, nine edges

9. Graph, connected, nine vertices, nine edges

10. Graph, circuit-free, nine vertices, six edges

11. Tree, six vertices, total degree 14

12. Tree, five vertices, total degree 8

13. Graph, connected, six vertices, five edges, has a 
circuit

H

H

H

ExERCiSE SET 10.4 
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732  CHAPTER 10 THEORY OF GRAPHS AND TREES

14. Graph, two vertices, one edge, not a tree

15. Graph, circuit-free, seven vertices, four edges

16. Tree, twelve vertices, fifteen edges

17. Graph, six vertices, five edges, not a tree

18. Tree, five vertices, total degree 10

19. Graph, connected, ten vertices, nine edges, has a 
circuit

20. Simple graph, connected, six vertices, six edges

21. Tree, ten vertices, total degree 24

22. A connected graph has twelve vertices and eleven 
edges. Does it have a vertex of degree 1? Why?

23. A connected graph has nine vertices and twelve 
edges. Does it have a circuit? Why?

24. Suppose that v is a vertex of degree 1 in a connect-
ed graph G and that e is the edge incident on v. Let 
G9 be the subgraph of G obtained by removing v 
and e from G. Must G9 be connected? Why?

25. A graph has eight vertices and six edges. Is it con-
nected? Why?

26. If a graph has n vertices and n22 or fewer edges, 
can it be connected? Why?

27. A circuit-free graph has ten vertices and nine 
edges. Is it connected? Why?

28. Is a circuit-free graph with n vertices and at least 
n21 edges connected? Why?

29. Prove that every nontrivial tree has at least two 
vertices of degree 1 by filling in the details and 
completing the following argument: Let T be a 
nontrivial tree and let S be the set of all paths from 
one vertex to another in T. Among all the paths 
in S, choose a path P with a maximum number of 
edges. (Why is it possible to find such a P?) What 
can you say about the initial and final vertices of 
P? Why?

30. Find all nonisomorphic trees with five vertices.

31. a.  Prove that the following is an invariant for 
graph isomorphism: A vertex of degree i is 
adjacent to a vertex of degree j.

b. Find all nonisomorphic trees with six vertices.

H

H

H

1. no circuits 2. circuit-free and not connected; connected and circuit-free 3. a single vertex (and no edges) 4. 1  
5. 1; greater than 1 (Or: at least 2) 6. n – 1 edges 7. G is a tree

ANSWERS FOR TEST YOuRSELF

Rooted Trees
Let us grant that the pursuit of mathematics is a divine madness of the  
human spirit, a refuge from the goading urgency of contingent happenings.  
—Alfred North Whitehead, 1861–1947

An outdoor tree is rooted and so is the kind of family tree that shows all the descendants 
of one particular person. The terminology and notation of rooted trees blends the language 
of botanical trees and that of family trees. In mathematics, a rooted tree is a tree in which 
one vertex has been distinguished from the others and is designated the root. Given any 
other vertex v in the tree, there is a unique path from the root to v. (After all, if there were 
two distinct paths, a circuit could be constructed.) The number of edges in such a path is 
called the level of v, and the height of the tree is the length of the longest such path. It is 
traditional in drawing rooted trees to place the root at the top (as is done in family trees) 
and show the branches descending from it.

10.5
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10.5 ROOTED TREES  733

Definition

A rooted tree is a tree in which there is one vertex that is distinguished from the 
others and is called the root. The level of a vertex is the number of edges along the 
unique path between it and the root. The height of a rooted tree is the maximum 
level of any vertex of the tree. Given the root or any internal vertex v of a rooted tree, 
the children of v are all those vertices that are adjacent to v and are one level farther 
away from the root than v. If w is a child of v, then v is called the parent of w, and 
two distinct vertices that are both children of the same parent are called siblings. 
Given two distinct vertices v and w, if v lies on the unique path between w and the 
root, then v is an ancestor of w and w is a descendant of v.

These terms are illustrated in Figure 10.5.1.

Level 0

Level 1

Level 2

Level 3

Level 4

u

�

Vertices in the enclosed region
are descendants of u, which
is an ancestor of each.

� is a child of u.
u is the parent of �.
� and  are siblings.

Root

FiGuRE 10.5.1 A Rooted Tree

Rooted Trees

Consider the tree with root v0 shown below.

a. What is the level of v5? b. What is the level of v0?

c. What is the height of this rooted tree? d. What are the children of v3?

e. What is the parent of v2? f. What are the siblings of v8?

g. What are the descendants of v3?

h. How many leaves (terminal vertices) are on the tree?

�1 �2 �3

�4

�7 �8 �9 �10

�5 �6

�0

Solution

a. 2   b. 0   c. 3   d. v5 and v6   e. v0   f. v7 and v9   g. v5, v6, v10   h. 6 
 ■

Example 10.5.1
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734  CHAPTER 10 THEORY OF GRAPHS AND TREES

Note that in the tree shown below, the root is v0, v1 has level 1, v1 is the child of v0, and 
both v0 and v1 are leaves (terminal vertices).

�1

�0

Binary Trees
When every vertex in a rooted tree has at most two children and each child is designated 
either the (unique) left child or the (unique) right child, the result is a binary tree.

Definition

A binary tree is a rooted tree in which every parent has at most two children. Each 
child in a binary tree is designated either a left child or a right child (but not both), 
and every parent has at most one left child and one right child. A full binary tree is 
a binary tree in which each parent has exactly two children.

Given any parent v in a binary tree T, if v has a left child, then the left subtree of 
v is the binary tree whose root is the left child of v, whose vertices consist of the left 
child of v and all its descendants, and whose edges consist of all those edges of T that 
connect the vertices of the left subtree. The right subtree of v is defined analogously.

These terms are illustrated in Figure 10.5.2.

� is the left
child of u.

�

u

Root

x is the right
child of .

x

Left subtree of Right subtree of 

FiGuRE 10.5.2 A Binary Tree

Representation of Algebraic Expressions

Binary trees are used in many ways in computer science. One use is to represent algebraic 
expressions with arbitrary nesting of balanced parentheses. For instance, the following 
(labeled) binary tree represents the expression ayb: The operator is at the root and acts on 
the left and right children of the root in left-to-right order.

/

a b

Example 10.5.2
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10.5 ROOTED TREES  735

More generally, the binary tree shown below represents the expression ay(c1d). In 
such a representation, the internal vertices are arithmetic operators, the leaves are vari-
ables, and the operator at each vertex acts on its left and right subtrees in left-to-right 
order.

c d

/

a +

Draw a binary tree to represent the expression ((a2b)?c)1 (dye).

Solution

  a

d e– c

+

· /

b  ■

An interesting theorem about binary trees says that if you know the number of internal 
vertices of a full binary tree, then you can calculate both the total number of vertices and 
the number of leaves, and conversely. More specifically, a full binary tree with k internal 
vertices has a total of 2k11 vertices of which k11 are leaves.

Theorem 10.5.1

If k is a positive integer and T is a full binary tree with k internal vertices, then (1) T 
has a total of 2k11 vertices, and (2) T has k11 leaves.

Proof:
Suppose k is a positive integer and T is a full binary tree with k internal vertices.  
(1) Observe that the set of all vertices of T can be partitioned into two disjoint sub-
sets: the set of all vertices that have a parent and the set of all vertices that do not 
have a parent. Now there is just one vertex that does not have a parent, namely the 
root. Also, since every internal vertex of a full binary tree has exactly two children, 
the number of vertices that have a parent is twice the number of parents, or 2k, since 
each parent is an internal vertex. Hence

3the total number

of vertices of T 4 5 3
the number of

vertices that

have a parent
413

the number of

vertices that do

not have a parent
4

  5  2k 1  1.

(continued on page 736)
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736  CHAPTER 10 THEORY OF GRAPHS AND TREES

(2) Because it is also true that the total number of vertices of T equals the number of 
internal vertices plus the number of leaves,

3the total number

of vertices of T 4 5 3the number of

internal vertices413the number of

leaves 4
  5  k 13the number of

leaves 4.

Now equate the two expressions for the total number of vertices of T:

2k11 5 k13the number of

leaves 4.

Solving this equation gives

3the number of 

leaves 4 5 (2k11)2k 5 k11.

Thus the total number of vertices is 2k11 and the number of leaves is k11 [as was 
to be shown].

Determining Whether a Certain Full Binary Tree Exists

Is there a full binary tree that has 10 internal vertices and 13 terminal vertices?

Solution No. By Theorem 10.5.1, a full binary tree with 10 internal vertices has 
1011 5 11 leaves, not 13. ■

Another interesting theorem about binary trees specifies the maximum number of 
leaves of a binary tree of a given height. Specifically, the maximum number of leaves of a 
binary tree of height h is 2h. Another way to say this is that a binary tree with t leaves has 
height of at least log2 t.

Theorem 10.5.2

For every integer h $ 0, if T is any binary tree with height h and t leaves, then

t # 2h.

Equivalently: log2 t # h.

Proof (by strong mathematical induction):
Let P (h) be the sentence

If T is any binary tree of height h, then T has at most 2h leaves.  d P (h)

Show that P (0) is true: We must show that if T is any binary tree of height 0, then 
T has at most 20 leaves. Suppose T is a tree of height 0. Then T consists of a single 
vertex, the root. By definition this is also a leaf, and so the number of leaves is 
t 5 1 5 20 5 2h. Hence t # 2h [as was to be shown].

Example 10.5.3
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10.5 ROOTED TREES  737

Show that for every integer k $ 0, if P (i) is true for each integer i from 0 through 
k, then it is true for k11:
Let k be any integer with k $ 0, and suppose that

For each integer i from 0 through k, if T is any d inductive hypothesis

binary tree of height i, then T has at most 2i leaves. 

We must show that

If T is any binary tree of height k11, then T  d P (k11) 
has at most 2k11 leaves.

Let T be a binary tree of height k11, root v, and t leaves. Because k $ 0, we have 
that k11 $ 1 and so v has at least one child.

Case 1 (v has only one child): In this case, we may assume without loss of generality that 
v’s child is a left child vL, and that vL is the root of the subtree TL of v. (This situation is 
illustrated in Figure 10.5.3.) Let tL be the number of leaves in TL. By inductive hypothesis, 
tL # 2k because the height of TL is one less than the height of T, which is k11. Also since 
the root v has only one child, v is also a leaf, and hence the total number of leaves in T is 
one more than the number of leaves in TL. Finally, 2k $ 20 5 1 because k $ 0.

Therefore,

t 5 tL 11 # 2k 11 # 2k 12k 5 2?2k 5 2(k11).

Level 0

Level 1

Level 2

Level 3

Left subtree TL

�L

�

FiGuRE 10.5.3 A Binary Tree Whose Root Has One Child

Case 2 (v has two children): In this case, v has both a left child, vL, and a right child, vR, 
and vL and vR are roots of a left subtree TL and a right subtree TR. Note that TL and TR 
are binary trees because T is a binary tree. (This situation is illustrated in Figure 10.5.4.)

Level 0

Level 1

Level 2

Level 3

Level 4

�

�L �R

Right subtree TRLeft subtree TL

FiGuRE 10.5.4 A Binary Tree Whose Root Has Two Children

(continued on page 738)
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738  CHAPTER 10 THEORY OF GRAPHS AND TREES

Let tL and tR be the numbers of leaves in TL and TR, respectively, and let hL and hR be 
the heights of TL and TR, respectively. Because T has height k11, then hL # k and 
hR # k, and so, by inductive hypothesis,

tL # 2hL and tR # 2hR.

Now the leaves of T consist exactly of the leaves of TL together with the leaves of 
TR. Therefore,

t 5 tL 1 tR # 2hL 12hR by inductive hypothesis  
since hL # k and hR # k.

Hence,

t # 2k 12k 5 2?2k 5 2k11 by basic algebra.

Thus the number of leaves is at most 2k11 [as was to be shown].

Since both the basis step and the inductive step have been proved, we conclude 
that for every integer h $ 0, if T is any binary tree with height h and t leaves, then 
t # 2h.

The equivalent inequality log2 t # h follows from the fact that the logarithmic 
function with base 2 is increasing. In other words, for all positive real numbers x 
and y,

if x , y then log2 x , log2 y.

Thus if we apply the logarithmic function with base 2 to both sides of

t # 2h,

we obtain

log2 t # log2(2
h).

Now by definition of logarithm, log2(2h) 5 h [because log2(2h) is the exponent to 
which 2 must be raised to obtain 2h]. Hence

log2 t # h

[as was to be shown].

Determining Whether a Certain Binary Tree Exists

Is there a binary tree that has height 5 and 38 leaves?

Solution No. By Theorem 10.5.2, any binary tree T with height 5 has at most 25 5 32 
leaves, so such a tree cannot have 38 leaves. ■

 

Corollary 10.5.3

A full binary tree of height h has 2h leaves.

To prove the corollary, start with the proof of Theorem 10.5.2, change the words “bi-
nary tree” to “full binary tree,” change the words “at most” to “exactly,” and change the 

Example 10.5.4
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10.5 ROOTED TREES  739

# sign to the 5 sign. Also delete Case 1 because the root of a full binary tree of height at 
least 1 is guaranteed to have two children.

Binary Search Trees
A binary search tree is a kind of binary tree in which data records, such as customer in-
formation, can be stored, searched, and processed very efficiently. To place records into a 
binary search tree, it must be possible to arrange them in a total order. In case they do not 
have a natural total order of their own, an element of a totally ordered set, such as a number 
or a word and called a key, may be added to each record. The keys are inserted into the 
vertices of the tree and provide access to the records to which they are attached.

Once it is built, a binary search tree has the following property: for every internal 
vertex v, all the keys in the left subtree of v are less than the key in v, and all the keys in 
the right subtree of v are greater than the key in v. For example, check that the following 
is a binary search tree for the set of records with the following keys: 15, 10, 19, 25, 12, 4.

15

19

2512

10

4

To build a binary search tree, start by making a root and insert a key into it. To add a 
new key, compare it to the key at the root. If the new key is less than the key at the root, 
give the root a left child and insert the new key into it. If the key is greater than the key at 
the root, give the root a right child and insert the new key into it. After the first couple of 
keys have been added, the root and other vertices may already have left and right children. 
So to add a key at a subsequent stage, work down the tree to find a place to put the new key, 
starting at the root and either moving left or right depending on whether the new key is less 
or greater than the key at the vertex to which it is currently being compared. This outline 
is expressed more precisely in the following algorithm.

Algorithm 10.5.1 Building a Binary Search Tree

Input: A totally ordered, nonempty set K of keys

Algorithm Body: 
Initialize T to have one vertex, the root, and no edges. Choose a key from K to insert 
into the root.

while (there are still keys to be added)
    Choose a key, newkey, from K to add. Let the root be called v, let key(v) be 

the key at the root, and let success 5 0.
        while (success 5 0)
            if (newkey , key(v))
                then if (v has a left child), call the left child vL and let v:5 vL

                else do 1. add a vertex vL to T as the left child for v 
                            2. add an edge to T to join v to vL

                            3. insert newkey as the key for vL

                            4. let success :5 1 end do
(continued on page 740)
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740  CHAPTER 10 THEORY OF GRAPHS AND TREES

            if (newkey . key(v)) 
                then if v has a right child
                 then call the right child vR, and let v :5 vR

                 else do 1. add a vertex vR to T as the right child for v
                                 2. add an edge to T to join v to vR

                                3. insert newkey as the key for vR

                                4. let success :5 1 end do
        end while
end while

Output: A binary search tree T for the set K of keys

Steps for Building a Binary Search Tree 

Go through the steps to build a binary search tree for the keys 15, 10, 19, 25, 12, 4, and 
insert the keys in the order in which they are listed. For simplicity, use the same names for 
the vertices and their associated keys.

Solution
Insert 15: Make 15 the root.

Insert 10: Compare 10 to 15.
Since 10 , 15 and 15 does not have a left child, make 10 the left child of 15 and add an 
edge joining 15 and 10.

Insert 19: Compare 19 to 15.
Since 19 . 15 and 15 does not have a right child, make 19 the right child of 15 and add an 
edge joining 15 and 19.

Insert 25: Compare 25 to 15.
Since 25 . 15 and 15 has a right child, namely 19, compare 25 to 19.
Since 25 . 19 and 19 does not have a right child, make 25 the right child of 19 and add an 
edge joining 19 and 25.

Insert 12: Compare 12 to 15.
Since 12 , 15 and 15 has a left child, namely 10, compare 12 to 10.
Since 12 . 10 and 10 does not have a right child, make 12 the right child of 10 and add an 
edge joining 10 and 12.

Insert 4: Compare 4 to 15.
Since 4 , 15 and 15 has a left child, namely 10, compare 4 to 10.
Since 4 , 10 and 10 does not have a left child, make 4 the left child of 10 and add an edge 
joining 10 and 4.

The sequence of steps is shown in the following diagrams.

  

15

19

2512

10

4

15

1910

15

19

2512

10

15

10

15

19

25

10

15

 ■

Example 10.5.5
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10.5 ROOTED TREES  741

Note that the algorithm does not specify an order in which keys are to be added as 
the tree is being built. In fact, adding keys in a different order usually results in a dif-
ferent binary search tree for the given set of keys. For example, if the keys shown in 
Example 10.5.5 are added in the order 19, 10, 25, 4, 15, 12, the result is the following 
binary search tree:

19

25

15

12

10

4

1. A rooted tree is a tree in which . The level of 
a vertex in a rooted tree is . The height of a 
rooted tree is .

2. A binary tree is a rooted tree in which .

3. A full binary tree is a rooted tree in which 
.

4. If k is a positive integer and T is a full binary tree 
with k internal vertices, then T has a total of 

 vertices and has  leaves.

5. If T is a binary tree that has t leaves and height  
h, then t and h are related by the inequality 

.

TEST YOuRSELF 

1. Consider the tree shown below with root a. 
a. What is the level of n?
b. What is the level of a?
c. What is the height of this rooted tree?
d. What are the children of n?
e. What is the parent of g?
f. What are the siblings of j?
g. What are the descendants of f ?
h. How many leaves (terminal vertices) are on  

the tree? 

j k

q r s t

x y z

l

e

b

a

d
c

f

m

u

n o p

g h i

�

2. Consider the tree shown below with root v0.
a. What is the level of v8?
b. What is the level of v0?
c. What is the height of this rooted tree?
d. What are the children of v10?
e. What is the parent of v5?
f. What are the siblings of v1?
g. What are the descendants of v12?
h. How many leaves (terminal vertices) are on the 

tree? 

�7

�1

�3 �4

�0

�2

�6

�12

�17

�19�18

�16�15�14�13

�10
�11�8 �9

�5

ExERCiSE SET 10.5 
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742  CHAPTER 10 THEORY OF GRAPHS AND TREES

3. Draw binary trees to represent the following 
expressions:

a. a?b2 (cy(d1e))  b. ay(b2c?d)

In each of 4–20, either draw a graph with the given speci-
fications or explain why no such graph exists.

4. Full binary tree, five internal vertices

5. Full binary tree, five internal vertices, seven 
leaves

6. Full binary tree, seven vertices, of which four are 
internal vertices

7. Full binary tree, twelve vertices

8. Full binary tree, nine vertices

9. Binary tree, height 3, seven leaves

10. Full binary tree, height 3, six leaves

11. Binary tree, height 3, nine leaves

12. Full binary tree, eight internal vertices, seven 
leaves

13. Binary tree, height 4, eight leaves

14. Full binary tree, seven vertices

15. Full binary tree, nine vertices, five internal vertices

16. Full binary tree, four internal vertices

17. Binary tree, height 4, eighteen leaves

18. Full binary tree, sixteen vertices

19. Full binary tree, height 3, seven leaves

20. What can you deduce about the height of a binary 
tree if you know that it has the following properties?
a. Twenty-five leaves
b. Forty leaves
c. Sixty leaves

In 21–25, use the steps of algorithm 10.5.1 to build binary 
search trees. Use numerical order in 21 and alphabetical 
order in 22–25. In parts (a) and (b) of 21 and 22, the ele-
ments in the lists are the same, but the trees are different 
because the lists are ordered differently.

21. a. 16, 24, 21, 3, 18, 9, 7
b. 16, 7, 3, 21, 18, 24, 9

22. a.  Asia, Africa, Australia, Antarctica, Europe, 
North America, South America

b. Australia, Antarctica, Africa, North America, 
Asia, South America, Europe

23. Carpe diem. Seize the day. Make your lives ex-
traordinary.1

24. May the force be with you.2

25. All good things which exist are the fruits of  
originality.3

1. one vertex is distinguished from the others and is called the 
root; the number of edges along the unique path between it 
and the root; the maximum level of any vertex of the tree  

2. every parent has at most two children 3. every parent 
has exactly two children 4. 2k11; k11 5. t # 2h, or, 
equivalently, log2 t # h

ANSWERS FOR TEST YOuRSELF 

1adapted from Dead Poets Society (film)
2Star Wars (film)
3John Stuart Mill, On Liberty

Spanning Trees and a Shortest Path Algorithm
I contend that each science is a real science insofar as it is mathematics. 
—Immanuel Kant, 1724–1804

An airline company wants to expand service to the midwestern part of the United States 
and has received permission from the U.S. Federal Aviation Authority to fly any of the 
routes shown in Figure 10.6.1.

10.6
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St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

FiGuRE 10.6.1

The company wishes to legitimately advertise service to all the cities shown but, for rea-
sons of economy, wants to use the least possible number of individual routes to connect 
them. One possible route system is given in Figure 10.6.2.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

FiGuRE 10.6.2

Clearly this system joins all the cities. Is the number of individual routes minimal? The 
answer is yes, and the reason may surprise you.

The fact is that the graph of any system of routes that satisfies the company’s wishes is 
a tree, because if the graph were to contain a circuit, then one of the routes in the circuit 
could be removed without disconnecting the graph (by Lemma 10.4.3), and that would 
give a smaller total number of routes. Now any tree with eight vertices has seven edges. 
Therefore, any system of routes that connects all eight vertices and yet minimizes the total 
number of routes consists of seven routes.

Definition

A spanning tree for a graph G is a subgraph of G that contains every vertex of G 
and is a tree.

The preceding discussion contains the essence of the proof of the following proposition:

Proposition 10.6.1

1. Every connected graph has a spanning tree.

2. Any two spanning trees for a graph have the same number of edges.

(continued on page 744)
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744  CHAPTER 10 THEORY OF GRAPHS AND TREES

Proof of part (1) of Proposition 10.6.1: 

Suppose G is a connected graph. If G is circuit-free, then G is its own spanning tree 
and we are done. If not, then G has at least one circuit C1. By Lemma 10.4.3, the 
subgraph of G obtained by removing an edge from C1 is connected. If this subgraph 
is circuit-free, then it is a spanning tree and we are done. If not, then it has at least 
one circuit C2, and, as above, an edge can be removed from C2 to obtain a connected 
subgraph. Continuing in this way, we can remove successive edges from circuits, un-
til eventually we obtain a connected, circuit-free subgraph T of G. [This must happen 
at some point because the number of edges of G is finite, and at no stage does removal 
of an edge disconnect the subgraph.] Also, T contains every vertex of G because no 
vertices of G were removed in constructing it. Thus T is a spanning tree for G.

You are asked to prove part (2) of Proposition 10.6.1 in exercise 17 at the end of this section. 

Spanning Trees

Find all spanning trees for the graph G pictured below.

�5

�0

�4

�1

�3

�2

Solution The graph G has one circuit v2v1v4v2, and removing any edge of the circuit 
gives a tree. Thus, as shown below, there are three spanning trees for G.

  

�5

�0

�4

�1

�3

�2

�5

�0

�4

�1

�3

�2

�5

�0

�4

�1

�3

�2 ■

Minimum Spanning Trees
The graph of the routes allowed by the U.S. Federal Aviation Authority shown in Fig-
ure 10.6.1 can be annotated by adding the distances (in miles) between each pair of cities. 
This is done in Figure 10.6.3.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

FiGuRE 10.6.3

Example 10.6.1
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10.6 SPANNiNG TREES AND A SHORTEST PATH AlGORiTHM  745

Now suppose the airline company wants to serve all the cities shown, but with a route 
system that minimizes the total mileage of the system as a whole. Note that such a system 
is a tree, because if the system contained a circuit, removal of an edge from the circuit 
would not affect a person’s ability to reach every city in the system from every other (again, 
by Lemma 10.4.3), but it would reduce the total mileage of the system.

More generally, a graph whose edges are labeled with numbers (known as weights) is 
called a weighted graph. A minimum-weight spanning tree, or simply a minimum spanning 
tree, is a spanning tree for which the sum of the weights of all the edges is as small as possible.

Definition and Notation

A weighted graph is a graph for which each edge has an associated positive real 
number weight. The sum of the weights of all the edges is the total weight of the 
graph. A minimum spanning tree for a connected, weighted graph is a spanning 
tree that has the least possible total weight compared to all other spanning trees for 
the graph.

If G is a weighed graph and e is an edge of G, then w(e) denotes the weight of e and 
w(G) denotes the total weight of G.

The problem of finding a minimum spanning tree for a graph is certainly solvable. One 
solution is to list all spanning trees for the graph, compute the total weight of each, and 
choose one for which this total is a minimum. (The well-ordering principle for the integers 
guarantees the existence of such a minimum total.) This solution, however, is inefficient 
in its use of computing time because the number of distinct spanning trees is so large. For 
instance, a complete graph with n vertices has nn22 spanning trees. Even using the fastest 
computers available today, examining all such trees in a graph with approximately 100 
vertices would require more time than is estimated to remain in the life of the universe.

In 1956 and 1957 Joseph B. Kruskal and Robert C. Prim each described much more 
efficient algorithms to construct minimum spanning trees. Even for large graphs, both 
algorithms can be implemented so as to take relatively short computing times.

Kruskal’s Algorithm
In Kruskal’s algorithm, the edges of a connected, weighted graph are examined one by one 
in order of increasing weight. At each stage the edge being examined is added to what will 
become the minimum spanning tree, provided that this addition does not create a circuit. 
After n21 edges have been added (where n is the number of vertices of the graph), these 
edges, together with the vertices of the graph, form a minimum spanning tree for the graph.

Algorithm 10.6.1 Kruskal

Input: G [a connected, weighted graph with n vertices, where n is a positive integer]

Algorithm Body:
[Build a subgraph T of G to consist of all the vertices of G with edges added in order of 
increasing weight. At each stage, let m be the number of edges of T.]

1. Initialize T to have all the vertices of G and no edges.

2. Let E be the set of all the edges of G, and let m :5 0.
(continued on page 746)

Joseph Kruskal 
(1928–2010)
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746  CHAPTER 10 THEORY OF GRAPHS AND TREES

3. while (m , n21)

3a. Find an edge e in E of least weight.

3b. Delete e from E.

3c. if addition of e to the edge set of T does not produce a circuit 
 then add e to the edge set of T and set m :5 m11

end while
Output: T [T is a minimum spanning tree for G.]

The following example shows how Kruskal’s algorithm works for the graph of the air-
line route system.

Action of Kruskal’s Algorithm

Describe the action of Kruskal’s algorithm on the graph shown in Figure 10.6.4, where 
n 5 8.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

FiGuRE 10.6.4

Solution

Iteration Number Edge Considered Weight Action Taken

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Chicago–Milwaukee
Louisville–Cincinnati
Louisville–Nashville
Cincinnati–Detroit
St. Louis–Louisville
St. Louis–Chicago
Chicago–Louisville
Louisville–Detroit
Louisville–Milwaukee
Minneapolis–Chicago

 74
 83
151
230
242
262
269
306
348
355

added
added
added
added
added
added
not added
not added
not added
added

Example 10.6.2
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The tree produced by Kruskal’s algorithm is shown in Figure 10.6.5.

Minneapolis

Milwaukee

Chicago

355

74

262

St. Louis
242

Nashville

Louisville

Cincinnati

Detroit

151

83

230

  FiGuRE 10.6.5 ■

When Kruskal’s algorithm is used on a graph in which some edges have the same weight 
as others, more than one minimum spanning tree can occur as output. To make the output 
unique, the edges of the graph can be placed in an array and edges having the same weight 
can be added in the order they appear in the array.

It is not obvious from the description of Kruskal’s algorithm that it does what it is sup-
posed to do. To be specific, what guarantees that it is possible at each stage to find an edge 
of least weight whose addition does not produce a circuit? And if such edges can be found, 
what guarantees that they will all eventually connect? And if they do connect, what guar-
antees that the resulting tree has minimum weight? Of course, the mere fact that Kruskal’s 
algorithm is printed in this book may lead you to believe that everything works out. But the 
questions above are real, and they deserve serious answers.

Theorem 10.6.2 Correctness of Kruskal’s Algorithm

When a connected, weighted graph is input to Kruskal’s algorithm, the output is a 
minimum spanning tree.

Proof: Suppose that G is a connected, weighted graph with n vertices and that T is a 
subgraph of G produced when G is input to Kruskal’s algorithm. Clearly T is circuit-
free [since no edge that completes a circuit is ever added to T]. Also, T is connected. 
For as long as T has more than one connected component, the set of edges of G that 
can be added to T without creating a circuit is nonempty. [The reason is that since G 
is connected, given any vertex v1 in one connected component C1 of T and any vertex 
v2 in another connected component C2, there is a path in G from v1 to v2. Since C1 and 
C2 are distinct, there is an edge e of this path that is not in T. Adding e to T does not 
create a circuit in T, because deletion of an edge from a circuit does not disconnect a 
graph and deletion of e would.] The preceding arguments show that T is circuit-free 
and connected. Since by construction T contains every vertex of G, T is a spanning 
tree for G.

Next we show that T has minimum weight. Let T1 be any minimum spanning tree 
for G such that the number of edges T1 and T have in common is a maximum. Sup-
pose that T Þ T1. Then there is an edge e in T that is not an edge of T1. [Since trees 
T and T1 both have the same vertex set, if they differ at all, they must have different, but 

(continued on page 748)
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748  CHAPTER 10 THEORY OF GRAPHS AND TREES

same-size, edge sets.] Now adding e to T1 produces a graph with a unique circuit (see 
exercise 19 at the end of this section). Let e9 be an edge of this circuit such that e9 is 
not in T. [Such an edge must exist because T is a tree and hence circuit-free.] Let T2 be 
the graph obtained from T1 by removing e9 and adding e. This situation is illustrated 
below.

e (add  to T1 to form T2.)

e' (remove  from T1 to form T2.)

The entire graph is G T1

has black edges. e is in T
but not T1 e is in T1 but
not T .

Note that T2 has n21 edges and n vertices and that T2 is connected [since by Lemma 
10.4.3 the subgraph obtained by removing an edge from a circuit in a connected graph 
is connected]. Consequently, T2 is a spanning tree for G. In addition,

w(T2) 5 w(T1)2w(e9)1w(e).

Now w(e) # w(e9) because at the stage in Kruskal’s algorithm when e was added to 
T, e9 was available to be added [since it was not already in T, and at that stage its ad-
dition could not produce a circuit since e was not in T], and e9 would have been added 
had its weight been less than that of e. Thus

 w(T2) 5 w(T1)2 fw(e9)2w(e)g

 # w(T1).

But T1 is a minimum spanning tree. So since T2 is a spanning tree with weight less 
than or equal to the weight of T1, T2 is also a minimum spanning tree for G.

Finally, note that by construction, T2 has one more edge in common with T than 
T1 does, which contradicts the choice of T1 as a minimum spanning tree for G with a 
maximum number of edges in common with T. Thus the supposition that T Þ T1 is 
false, and hence T itself is a minimum spanning tree for G.

$0

Prim’s Algorithm
Prim’s algorithm works differently from Kruskal’s. It builds a minimum spanning tree T by 
expanding outward in connected links from some vertex. One edge and one vertex are add-
ed at each stage. The edge added is the one of least weight that connects the vertices already 
in T with those not in T, and the vertex is the endpoint of this edge that is not already in T.

Robert Prim  
(born 1921)
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Algorithm 10.6.2

Input: G [a connected, weighted graph with n vertices where n is a positive integer]

Algorithm Body: 
[Build a subgraph T of G by starting with any vertex v of G and attaching edges (with 
their endpoints) one by one to an as-yet-unconnected vertex of G, each time choosing an 
edge of least weight that is adjacent to a vertex of T.]
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10.6 SPANNING TREES AND A SHORTEST PATH ALGORITHM  749

1. Pick a vertex v of G and let T be the graph with one vertex, v, and no edges.

2. Let V be the set of all vertices of G except v.

3. for i :5 1 to n21

3a. Find an edge e of G such that (1) e connects T to one of the vertices in V, and 
(2) e has the least weight of all edges connecting T to a vertex in V. Let w be 
the endpoint of e that is in V.

3b. Add e and w to the edge and vertex sets of T, and delete w from V. 
next i

Output: T [T is a minimum spanning tree for G.]

The following example shows how Prim’s algorithm works for the graph of the airline 
route system.

Action of Prim’s Algorithm

Describe the action of Prim’s algorithm for the graph in Figure 10.6.6 using the Minneapo-
lis vertex as a starting point.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

Figure 10.6.6

Solution

Iteration Number Vertex Added Edge Added Weight

0 Minneapolis

1 Chicago Minneapolis–Chicago 355

2 Milwaukee Chicago–Milwaukee 74

3 St. Louis Chicago–St. Louis 262

4 Louisville St. Louis–Louisville 242

5 Cincinnati Louisville–Cincinnati 83

6 Nashville Louisville–Nashville 151

7 Detroit Cincinnati–Detroit 230

Note that the tree obtained is the same as that obtained by Kruskal’s algorithm, but the 
edges are added in a different order.

example 10.6.3

■
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750  CHAPTER 10 THEORY OF GRAPHS AND TREES

As with Kruskal’s algorithm, in order to ensure a unique output, the edges of the graph 
could be placed in an array and those with the same weight could be added in the order 
they appear in the array. It is not hard to see that when a connected graph is input to Prim’s 
algorithm, the result is a spanning tree. What is not so clear is that this spanning tree is a 
minimum. The proof of the following theorem establishes that it is.

Theorem 10.6.3 Correctness of Prim’s Algorithm

When a connected, weighted graph G is input to Prim’s algorithm, the output is a 
minimum spanning tree for G.

Proof:
Let G be a connected, weighted graph, and suppose G is input to Prim’s algorithm. 
At each stage of execution of the algorithm, an edge must be found that connects a 
vertex in a subgraph to a vertex outside the subgraph. As long as there are vertices 
outside the subgraph, the connectedness of G ensures that such an edge can always 
be found. [For if one vertex in the subgraph and one vertex outside it are chosen, then 
by the connectedness of G there is a walk in G linking the two. As one travels along 
this walk, at some point one moves along an edge from a vertex inside the subgraph 
to a vertex outside the subgraph.]

Now it is clear that the output T of Prim’s algorithm is a tree because the edge and 
vertex added to T at each stage are connected to other edges and vertices of T and 
because at no stage is a circuit created since each edge added connects vertices in 
two disconnected sets. [Consequently, removal of a newly added edge produces a dis-
connected graph, whereas by Lemma 10.4.3, removal of an edge from a circuit produces 
a connected graph.] Also, T includes every vertex of G because T, being a tree with 
n21 edges, has n vertices [and that is all G has]. Thus T is a spanning tree for G.

Next we show that T has minimum weight. Suppose there is a minimum spanning 
tree for G, T1, such that the number of edges T1 and T have in common is a maximum, 
but T Þ T1. Then there is an edge e in T that is not an edge of T1. [Since trees T and 
T1 both have the same vertex set if they differ at all, they must have different, same-size 
edge sets.] Of all such edges, let e be the last that was added when T was constructed 
using Prim’s algorithm. Let S be the set of vertices of T just before the addition of e. 
Then one endpoint, say v of e, is in S and the other, say w, is not. Since T1 is a spanning 
tree, there is a path in T1 joining v to w. And since v [ S and w Ó S, as one travels 
along this path, one must encounter an edge e9 that joins a vertex in S to one that is 
not in S and that therefore is not in T because e was the last edge added to T. Now at 
the stage when e was added to T, e9 could have been added and it would have been 
added instead of e had its weight been less than that of e. Since e9 was not added at 
that stage, we conclude that

w(e9) $ w(e).

Let T2 be the graph obtained from T1 by removing e9 and adding e. [Thus T2 has 

one more edge in common with T than T1 does.]  Note that T2 is a tree. The reason 
is that since e9 is part of a path in T1 from v to w, and e connects v and w, add-
ing e to T1 creates a circuit. When e9 is removed from this circuit, the resulting 
subgraph remains connected and has the same number of edges as T. In fact, T2 is 
a spanning tree for G since no vertices were removed in forming T2 from T1. The 
argument showing that w(T2) # w(T1) is left as an exercise. [It is virtually identical
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Finding Minimum Spanning Trees

Find all minimum spanning trees for the following graph. Use Kruskal’s algorithm and 
Prim’s algorithm starting at vertex a. Indicate the order in which edges are added to form 
each tree.

a

b

c

d

e

f

6

5

1

6

4
3

3

2

Solution When Kruskal’s algorithm is applied, edges are added in one of the following 
two orders:

1. {d, f }, {a, c}, {a, b}, {c, d}, {d, e}

2. {d, f}, {a, c}, {b, c}, {c, d}, {d, e}

When Prim’s algorithm is applied starting at a, edges are added in one of the following 
two orders:

1. {a, c}, {a, b}, {c, d}, {d, f}, {d, e}

2. {a, c}, {b, c}, {c, d}, {d, f}, {d, e}

Thus, as shown below, there are two distinct minimum spanning trees for this graph.

 

aa

c e

dbdb

3

2
c e

2

4 5

11

ff 5
4

3

)b()a(

 

■

Dijkstra’s Shortest Path Algorithm
Although the trees produced by Kruskal’s and Prim’s algorithms have the least pos-
sible total weight compared to all other spanning trees for the given graph, they do not 
always reveal the shortest distance between any two points on the graph. For instance, 
according to the complete route system shown in Figure 10.6.3, one can fly directly 
from Nashville to Minneapolis for a distance of 695 miles, whereas if you use the 
minimum spanning tree shown in Figure 10.6.5 the only way to fly from Nashville 
to Minneapolis is by going through Louisville, St. Louis, and Chicago, which gives a 
total distance of 151124212621355 5 1,010 miles and the unpleasantness of three 
changes of plane.

Example 10.6.4

to part of the proof of Theorem 10.6.2.] It follows that T2 is a minimum spanning tree 
for G.

By construction, T2 has one more edge in common with T than T1 does, which 
contradicts the choice of T1 as a minimum spanning tree for G, not equal to T, with 
a maximum number of edges in common with T. It follows that T 5 T1, and hence T 
itself is a minimum spanning tree for G.
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752  CHAPTER 10 THEORY OF GRAPHS AND TREES

In 1959 the computing pioneer, Edsger Dijkstra (see Section 5.5), developed an algo-
rithm to find the shortest path between a starting vertex and an ending vertex in a weighted 
graph in which all the weights are positive. It is somewhat similar to Prim’s algorithm in 
that it works outward from a starting vertex a, adding vertices and edges one by one to 
construct a tree T. However, it differs from Prim’s algorithm in the way it chooses the next 
vertex to add, ensuring that for each added vertex v, the length of the shortest path from a 
to v has been identified.

At the start of execution of the algorithm, each vertex u of G is given a label L(u), which 
indicates the current best estimate of the length of the shortest path from a to u. L(a) is 
initially set equal to 0 because the shortest path from a to a has length 0, but, because 
there is no previous information about the lengths of the shortest paths from a to any other 
vertices of G, the label L(u) of each vertex u other than a is initially set equal to a number, 
denoted ,̀ that is greater than the sum of the weights of all the edges of G. As execution of 
the algorithm progresses, the values of L(u) are changed, eventually becoming the actual 
lengths of the shortest paths from a to u in G.

Because T is built up outward from a, at each stage of execution of the algorithm the 
only vertices that are candidates to join T are those that are adjacent to at least one vertex 
of T. Thus at each stage of Dijkstra’s algorithm, the graph G can be thought of as divided 
into three parts: the tree T that is being built up, the set of “fringe” vertices that are adja-
cent to at least one vertex of the tree, and the rest of the vertices of G. Each fringe vertex 
is a candidate to be the next vertex added to T. The one that is chosen is the one for which 
the length of the shortest path to it from a through T is a minimum among all the vertices 
in the fringe.

An essential observation underlying Dijkstra’s algorithm is that after each addition 
of a vertex v to T, the only fringe vertices for which a shorter path from a might be 
found are those that are adjacent to v [because the length of the path from a to v was a 
minimum among all the paths from a to vertices in what was then the fringe]. So after 
each addition of a vertex v to T, each fringe vertex u adjacent to v is examined and 
two numbers are compared: the current value of L(u) and the value of L(v)1w(v, u), 
where L(v) is the length of the shortest path to v (in T) and w(v, u) is the weight of 
the edge joining v and u. If L(v)1w(v, u) , L(u), then the value of L(u) is changed to 
L(v)1w(v, u).

At the beginning of execution of the algorithm, the tree consists only of the vertex 
a, and L(a) 5 0. When execution terminates, L(z) is the length of a shortest path from 
a to z.

As with Kruskal’s and Prim’s algorithms for finding minimum spanning trees, there 
is a simple but dramatically inefficient way to find the shortest path from a to z: compute 
the lengths of all the paths and choose one that is shortest. The problem is that even for 
relatively small graphs, using this method to find a shortest path could require billions of 
years, whereas Dijkstra’s algorithm could do the job in a few seconds.

Algorithm 10.6.3 Dijkstra

Input: G [a connected simple graph with a positive weight for every edge], ̀  [a number 
greater than the sum of the weights of all the edges in the graph], w(u, v) [the weight of 
edge {u, v}], a [the starting vertex], z [the ending vertex]

94193_ch10_ptg01.indd   752 12/11/18   6:08 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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Algorithm Body: 

1. Initialize T to be the graph with vertex a and no edges. Let V(T) be the set of 
vertices of T, and let E(T) be the set of edges of T.

2. Let L(a) 5 0, and for all vertices in G except a, let L(u) 5 `.
[The number L(x) is called the label of x.]

3. Initialize v to equal a and F to be {a}.
[The symbol v is used to denote the vertex most recently added to T.]

4. while (z Ó V(T))
4a. F :5 (F2{v}) ø {vertices that are adjacent to v and are not in V(T)}
 [The set F is called the fringe. Each time a vertex is added to T, it is removed 

from the fringe and the vertices adjacent to it are added to the fringe if they 
are not already in the fringe or the tree T.]

4b. For each vertex u that is adjacent to v and is not in V(T),
 if L(v)1w(v, u) , L(u) then

L(u) :5 L(v)1w(v, u)

D(u) :5 v

 [Note that adding v to T does not affect the labels of any vertices in the fringe 
F except those adjacent to v. Also, when L(u) is changed to a smaller value, the 
notation D(u) is introduced to keep track of which vertex in T gave rise to the 
smaller value.]

4c. Find a vertex x in F with the smallest label
 Add vertex x to V(T), and add edge {D(x), x} to E(T)
 v :5 x [This statement sets up the notation for the next iteration of the loop.] 

end while

Output: L(z) [L(z), a nonnegative integer, is the length of the shortest path from a 
 to z.]

Note The unique path 
in the tree T from a to z 
is the shortest path in G 
from a to z.

The action of Dijkstra’s algorithm is illustrated by the flow of the drawings in Ex-
ample 10.6.5.

Action of Dijkstra’s Algorithm

Show the steps in the execution of Dijkstra’s shortest path algorithm for the graph shown 
below with starting vertex a and ending vertex z.

a

b

c

d

e

z

12

7

1

25

3
6

4

Example 10.6.5

94193_ch10_ptg01.indd   753 12/11/18   6:08 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



754  CHAPTER 10 THEORY OF GRAPHS AND TREES

Solution
Step 1: Going into the while loop: V(T) 5 {a}, E(T) 5 [, and F 5 {a}

 During iteration: 
 F 5 {b, c}, L(b) 5 3, L(c) 5 4.
 Since L(b) , L(c), b is added to
 V(T), D(b) 5 a, and {a, b}
 is added to E(T).

Step 2: Going into the while loop: V(T) 5 {a, b}, E(T) 5 {{a, b}}

During iteration: 
F 5 {c, d, e}, L(c) 5 4, L(d) 5 9,
L(e) 5 8.

Since L(c) , L(d) and L(c) , L(e), c is 
added to V(T), D(c) 5 a, and {a,   c} 
is added to E(T).

Step 3: Going into the while loop: V(T) 5 {a, b, c}, E(T) 5 {{a, b}, {a, c}}

During iteration: 
F 5 {d, e}, L(d) 5 9, L(e) 5 5
L(e) becomes 5 because ace, which has 
length 5, is a shorter path to e than abe, 
which has length 8.

Since L(e) , L(d), e is added to V(T), 
D(e) 5 c, and {c, e} is added to E(T).

Step 4: Going into the while loop: V(T) 5 {a, b, c, e},
E(T) 5 {{a, b}, {a, c}, {c, e}}

During iteration: 
F 5 {d, z}, L(d) 5 7, L(z) 5 17
L(d) becomes 7 because aced, which has 
length 7, is a shorter path to d than abd, 
which has length 9.

Since L(d) , L(z), d is added to V(T), 
D(d) 5 e, and {e, d} is added to E(T).

Step 5: Going into the while loop: V(T) 5 {a, b, c, e, d},
E(T) 5 {{a, b}, {a, c}, {c, e}, {e, d}}

During iteration: 
F 5 {z}, L(z) 5 14
L(z) becomes 14 because acedz, which 
has length 14, is a shorter path to d than 
abdz, which has length 17.

Since z is the only vertex in F, its label 
is a minimum, and so z is added to  
V(T), D(z) 5 d, and {d, z} is added to 
E(T). 

Execution of the algorithm terminates at this point because z [ V(T). The shortest path 
from a to z has length L(z) 5 14.

a

b

c

d

e

z

12

7

1

6

25

3

4

a

b

c

d

e

z

12

7

1

6

25

3

4

a

b

c

d

e

z

12

7

1

6

25

3

4

a

b

c

d

e

z

12

7

1

6

25

3

4

a

b

c

d

e

z

12

7

1

6

25

3

4
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Keeping track of the steps in a table is a convenient way to show the action of the algo-
rithm. Table 10.6.1 does this for the graph in Example 10.6.5.

TABLE 10.6.1

Step V(T) E(T) F L(a) L(b) L(c) L(d) L(e) L(z)

0 {a} [ {a} 0 ` ` ` ` `

1 {a} [ {b, c} 0 3 4 ` ` `

2 {a, b} {{a, b}} {c, d, e} 0 3 4 9 8 `

3 {a, b, c} {{a, b}, {a, c}} {d, e} 0 3 4 9 5 `

4 {a, b, c, e} {{a, b}, {a, c}, {c, e}} {d, z} 0 3 4 7 5 17

5 {a, b, c, e, d} {{a, b}, {a, c}, {c, e}, {e, d}} {z} 0 3 4 7 5 14
6 {a, b, c, e, d, z} {{a, b}, {a, c}, {c, e}, {e, d}, {e, z}}

In step 1, D(b) 5 a; in step 2, D(c) 5 a; in step 3, D(e) 5 c; in step 4, D(d) 5 e; and in 
step 5, D(z) 5 e. Working backward gives the vertices in the shortest path. Because D(z) 5 d, 
D(d) 5 e, D(e) 5 c, and D(c) 5 a, the shortest path from a to z is acedz. ■

It is clear that Dijkstra’s algorithm keeps adding vertices to T until it has added z. The proof 
of the following theorem shows that when the algorithm terminates, the label for z, L(z), is 
the length of the shortest path to z from a.

Theorem 10.6.4 Correctness of Dijkstra’s Algorithm

When a connected, simple graph with a positive weight for every edge is input to Di-
jkstra’s algorithm with starting vertex a and ending vertex z, the output is the length 
of a shortest path from a to z.

Proof: 
Let G be a connected, weighted graph with no loops or parallel edges and with a 
positive weight for every edge. Let T be the graph built up by Dijkstra’s algorithm, 
and for each vertex u in G, let L(u) be the label given by the algorithm to vertex u. 
For each integer n $ 0, let the property P (n) be the sentence

After the nth iteration of the while loop in Dijkstra’s algorithm, 
(1) T is a tree, and (2) for every vertex v in T, L (v) is the length of a  dP (n) 
shortest path in G from a to v.

We will show by mathematical induction that P (n) is true for each integer n from 0 
through the termination of the algorithm.

Show that P (0) is true: When n 5 0, the graph T is a tree because it is defined to 
consist only of the vertex a and no edges. In addition, L (a) is the length of the short-
est path from a to a because the initial value of L (a) is 0.

Show that for every integer k $ 0, if P (k) is true then P (k11) is also true: Let k 
be any integer with k $ 0 and suppose that

After the kth iteration of the while loop in Dijkstra’s algorithm,  dP (k) 
inductive 
hypothesis

 
(1) T is a tree, and (2) for every vertex v in T, L (v) is the length    
of a shortest path in G from a to v.              

(continued on page 756)

94193_ch10_ptg01.indd   755 12/11/18   6:08 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



756  CHAPTER 10 THEORY OF GRAPHS AND TREES

We must show that

After the (k11)st iteration of the while loop in Dijkstra’s 
algorithm, (1) T is a tree, and (2) for every vertex v in T,        dP (k11) 
L(v) is the length of a shortest path in G from a to v.

Suppose that after the (k11)st iteration of the while loop in Dikjstra’s algorithm, the 
vertex v and edge {x, v} have been added to T, where x is in V (T). Clearly the new 
value of T is a tree because adding a new vertex to a tree along with the edge leading 
to it neither creates a circuit nor disconnects the tree. By inductive hypothesis, for 
each vertex y that is in the tree before the addition of v, L (y) is the length of a shortest 
path from a to y. So it remains only to show that L (v) is the length of a shortest path 
from a to v.

Now, according to the algorithm, the final value of L(v) 5 L(x)1w(x, v). Con-
sider any shortest path from a to v, and let {s, t} be the first edge in this path to leave 
T, where s [ V(T) and t Ó V(T). This situation is illustrated below.

a
s

x

v

t

Let LSP (a, v) be the length of a shortest path from a to v, and let LSP (a, s) be the 
length of a shortest path from a to s. Observe that

LSP(a, v) $ LSP(a, s)1w(s, t) because the path from t to v has length $ 0

$ L(s)1w(s, t) by inductive hypothesis because s is a vertex in T

$ L(x)1w(x, v) 
t is in the fringe of the tree, and so if L(s)1w(s, t)  
were less than L(x)1w(x, v) then t would have  
been added to T instead of r.

On the other hand,

L(x)1w(x, v) $ LSP(a, v) 
because L(x)1w(x, v) is the length of a path from  
a to v and so it is greater than or equal to the length  
of the shortest path from a to v.

Because both LSP(a, v) $ L(x)1w(x, v) and L(x)1w(x, v) $ LSP(a, v), we have 
that

LSP(a, v) 5 L(x)1w(x, v).

And since it is also the case that

L(v) 5 L(x)1w(x, v),

we conclude that

L(v) 5 LSP(a, v).

Therefore, L(v) is the length of a shortest path from a to v, which completes the proof 
by mathematical induction.
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1. A spanning tree for a graph G is .

2. A weighted graph is a graph for which , and 
the total weight of the graph is .

3. A minimum spanning tree for a connected, 
weighted graph is .

4. In Kruskal’s algorithm, the edges of a connected, 
weighted graph are examined one by one in order 
of  starting with .

5. In Prim’s algorithm, a minimum spanning tree is 
built by expanding outward from an  in a 
sequence of .

6. In Dijkstra’s algorithm, a vertex is in the fringe if 
it is  vertex in the tree that is being built up.

7. At each stage of Dijkstra’s algorithm, the vertex 
that is added to the tree is a vertex in the fringe 
whose label is a .

TEST YOuRSELF 

Find all possible spanning trees for each of the graphs in 
1 and 2.

1. 
a b

d c

2.
1. �0 �1

�3 �2

2. 
a b

d c

2.
1. �0 �1

�3 �2

Find a spanning tree for each of the graphs in 3 and 4.

3. 
a

g

b d

c e

f

4. 

z

r s t

u

y

x

�

Use Kruskal’s algorithm to find a minimum spanning tree 
for each of the graphs in 5 and 6. Indicate the order in 
which edges are added to form each tree.

5. 

a

b c

e

g

d

f

1

8 10

9

7

3
4

2

6
5

6. �1�0

�7�6

�5 �4
�3 �2

12

13

10 2
4 7

8 15

5

18

20

19

Use prim’s algorithm starting with vertex a or v0 to find a 
minimum spanning tree for each of the graphs in 7 and 8. In-
dicate the order in which edges are added to form each tree.

7. The graph of exercise 5. 8. The graph of exercise 6. 
For each of the graphs in 9 and 10, find all minimum span-
ning trees that can be obtained using (a) Kruskal’s algorithm 
and (b) prim’s algorithm starting with vertex a or t. Indicate 
the order in which edges are added to form each tree.

9. 

4

4

4

1

5

3

3
7

7
11

12

10

a

g
f

b

c

d
e

10. t

w x y z

u �

3 15 1 8
10

7

7

5 2 5

2

11. A pipeline is to be built that will link six cit-
ies. The cost (in hundreds of millions of dollars) 

ExERCiSE SET 10.6 

The algorithm terminates as soon as z is in T, and, since we have proved that the 
label of every vertex in the tree gives the length of the shortest path to it from a, then, 
in particular, L(z) is the length of a shortest path from a to z.

94193_ch10_ptg01.indd   757 12/11/18   6:08 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



758  CHAPTER 10 THEORY OF GRAPHS AND TREES

of constructing each potential link depends on 
distance and terrain and is shown in the weighted 
graph below. Find a system of pipelines to connect 
all the cities and yet minimize the total cost.

Albuquerque
Phoenix

Salt Lake City Cheyenne

Denver

Amarillo

1.8

2.2

1.6

1.2

1.9
2.5

2.9

0.8

1.5

1.1

1.7

12. Use Dijkstra’s algorithm for the airline route system 
of Figure 10.6.3 to find the shortest distance from 
Nashville to Minneapolis. Make a table similar to 
Table 10.6.1 to show the action of the algorithm. 

Use Dijkstra’s algorithm to find the shortest path from 
a to z for each of the graphs in 13–16. In each case make 
tables similar to table 10.6.1 to show the action of the 
algorithm.

13. 

a

b

d

c

e

z

2

8

10

3

15

2

1

14. 

a

b

e

d

g

z

1

20

f

c

87
1

1 1

4
1 1

15. The graph of exercise 9 with a 5 a and z 5 f

16. The graph of exercise 10 with a 5 u and z 5 w

17. Prove part (2) of Proposition 10.6.1: Any two 
spanning trees for a graph have the same number 
of edges.

18. Given any two distinct vertices of a tree, there ex-
ists a unique path from one to the other.
a. Give an informal justification for the above 

statement.
b. Write a formal proof of the above statement.

19. Prove that if G is a graph with spanning tree T and 
e is an edge of G that is not in T, then the graph 
obtained by adding e to T contains one and only 
one set of edges that forms a circuit.

20. Suppose G is a connected graph and T is a circuit-
free subgraph of G. Suppose also that if any edge 
e of G not in T is added to T, the resulting graph 
contains a circuit. Prove that T is a spanning tree 
for G.

21. a.  Suppose T1 and T2 are two different spanning 
trees for a graph G. Must T1 and T2 have an 
edge in common? Prove or give a counterex-
ample.

b. Suppose that the graph G in part (a) is simple. 
Must T1 and T2 have an edge in common? 
Prove or give a counterexample.

22. Prove that an edge e is contained in every span-
ning tree for a connected graph G if, and only if, 
removal of e disconnects G.

23. Consider the spanning trees T1 and T2 in the proof 
of Theorem 10.6.3. Prove that w(T2) # w(T1).

24. Suppose that T is a minimum spanning tree for a 
connected, weighted graph G and that G contains 
an edge e (not a loop) that is not in T. Let v and 
w be the endpoints of e. By exercise 18 there is a 
unique path in T from v to w. Let e9 be any edge of 
this path. Prove that w(e9) # w(e).

25. Prove that if G is a connected, weighted graph 
and e is an edge of G (not a loop) that has smaller 
weight than any other edge of G, then e is in every 
minimum spanning tree for G.

26. If G is a connected, weighted graph and no two 
edges of G have the same weight, does there 
exist a unique minimum spanning tree for G? 
Use the result of exercise 19 to help justify your 
answer.

27. Prove that if G is a connected, weighted graph and 
e is an edge of G that (1) has greater weight than 
any other edge of G and (2) is in a circuit of G, then 
there is no minimum spanning tree T for G such 
that e is in T.

28. Suppose a disconnected graph is input to Kruskal’s 
algorithm. What will be the output?

29. Suppose a disconnected graph is input to Prim’s 
algorithm. What will be the output?

30. Modify Algorithm 10.6.3 so that the output 
consists of the sequence of edges in the shortest 
path from a to z.

*

H

H

*

*
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1. a subgraph of G that contains every vertex of G and 
is a tree. 2. each edge has an associated positive real 
number weight; the sum of the weights of all the edges of 
the graph 3. a spanning tree that has the least possible 

total weight compared to all other spanning trees for the 
graph 4. weight; an edge of least weight 5. initial vertex; 
adjacent vertices and edges 6. adjacent to a 7. minimum 
among all those in the fringe

ANSWERS FOR TEST YOuRSELF 

31. Prove that if a connected, weighted graph G is input 
to Algorithm 10.6.4 (shown below), the output is a 
minimum spanning tree for G.

Algorithm 10.6.4

Input: G [a connected graph]

Algorithm Body:

1. T :5 G.

2.  E :5 the set of all edges of G, m :5 the number of 
edges of G.

3. while (m . 0)

3a. Find an edge e in E that has maximal weight.
3b. Remove e from E and set m :5 m21.
3c.   if the subgraph obtained when e is removed from 

the edge set of T is connected then remove e from 
the edge set of T

end while

Output: T [a minimum spanning tree for G]
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CHAPTER 11 ANALYSIS OF ALGORITHM 
EFFICIENCY

In 1637 the French mathematician and philosopher René Descartes published his great 
philosophical work Discourse on Method. An appendix to this work, called “Geometry,” 
laid the foundation for the subject of analytic geometry, in which geometric methods are 
applied to the study of algebraic objects, such as functions, equations, and inequalities, 
and algebraic methods are used to study geometric objects, such as straight lines, circles, 
and half-planes.

The analytic geometry of Descartes provides the foundation for the main topic of this 
chapter: analyzing algorithm efficiency using the big-O, big-Omega, and big-Theta notations. 
In Section 11.1 we briefly discuss certain properties of graphs of real-valued functions of a 
real variable that are needed to understand these notations. In Section 11.2 we define the nota-
tions, discuss why they are useful in the analysis of algorithms, and apply them to power and 
polynomial functions. Then in Section 11.3 we show how to use the notations to compare the 
efficiencies of various algorithms designed to do the same job. Because the analysis of algo-
rithms often involves logarithmic and exponential functions, we develop the needed properties 
of these functions in Section 11.4 and use them to analyze several algorithms in Section 11.5.

Real-Valued Functions of a Real Variable 
and Their Graphs
The first precept was never to accept a thing as true until I knew it as such without a 
single doubt. —René Descartes, 1637

A Cartesian plane or two-dimensional Cartesian coordinate system is a pictorial represen-
tation of R 3 R, obtained by setting up a one-to-one correspondence between ordered pairs 
of real numbers and points in a Euclidean plane. To obtain it, two perpendicular lines, called 
the horizontal and vertical axes, are drawn in the plane. Their point of intersection is called 
the origin, and a unit of distance is chosen for each axis. An ordered pair (x, y) of real numbers 
corresponds to the point P that lies ux u  units to the right or left of the vertical axis and uy u  units 
above or below the horizontal axis. On each axis the positive direction is marked with an arrow.

Definition

A real-valued function of a real variable is a function from one set of real numbers 
to another. If f is a real-valued function of a real variable, then for each real number 
x in the domain of f there is a unique corresponding real number f(x). The graph of f 
is the set of all points (x, y) in the Cartesian coordinate plane with the property that 
x is in the domain of f and y 5 f(x).

11.1

René Descartes 
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11.1 Real-Valued Functions oF a Real VaRiable and theiR GRaphs  761

The definition of graph (see Figure 11.1.1) means that for each x in the domain of f:

y 5 f (x) 3 the point (x, y) lies on the graph of f.

Graph of f

(x, f(x))

x

f(x) = the height of
the graph of f at x

FIGuRE 11.1.1 Graph of a Function f

Note that if f(x) can be written as an algebraic expression in x, the graph of the function 
f is the same as the graph of the equation y 5 f (x) where x is restricted to lie in the domain 
of f.

Power Functions
A function that sends a real number x to a particular power, xa, is called a power function. 
For applications in computer science, we are almost invariably concerned with situations 
where x and a are nonnegative, and so we restrict our definition to these cases.

Definition

Let a be any nonnegative real number. Define pa, the power function with exponent 
a, as follows:

pa (x) 5 xa for each nonnegative real number x.

Graphs of Power Functions

Sketch the graphs of the power functions p0, p1y2, p1, and p2 on the same coordinate axes.

Solution Because the power function with exponent zero satisfies p0(x) 5 x0 5 1 for 
every nonnegative number x,* all points of the form (x, 1) lie on the graph of p0 for every 
x $ 0. So the graph is just a horizontal half-line of height 1 lying above the horizontal 
axis. Similarly, p1(x) 5 x for every nonnegative number x, and so the graph of p1 consists 
of all points of the form (x, x) where x is nonnegative. The graph is therefore the half-line 
of slope 1 that emanates from (0, 0).

Since for each nonnegative number x, p1y2(x) 5 x1y2 5 Ïx, any point with coordinates 
(x,Ïx), where x is nonnegative, is on the graph of p1y2. For instance, the graph of p1y2 con-
tains the points (0, 0), (1, 1), (4, 2), and (9, 3). Similarly, since p2(x) 5 x2, any point with 

Example 11.1.1

*As in Section 5.2 (see page 282), for simplicity we define 00 5 1.
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762  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

coordinates (x, x2) lies on the graph of p2. Thus, for instance, the graph of p2 contains the 
points (0, 0), (1, 1), (2, 4), and (3, 9).

The graphs of all four functions are shown in Figure 11.1.2.

x

y
y = x2

y = x

y = x1/2

y = 1

  FIGuRE 11.1.2 Graphs of Some Power Functions ■

The Floor Function
The floor and ceiling functions arise in many computer science contexts. Example 11.1.2 
illustrates the graph of the floor function. In exercise 6 at the end of this section you are 
asked to draw the graph of the ceiling function.

Graph of the Floor Function

Recall that each real number either is an integer itself or sits between two consecutive inte-
gers: For each real number x, there exists a unique integer n such that n # x , n11. The 
floor of a number is the integer immediately to its left on the number line. More formally, 
the floor function F is defined by the rule

For each real number x,

F (x) 5 :x;

5 the greatest integer that is less than or equal to x

5 the unique integer n such that n # x , n11.

Sketch a graph of the floor function.

Solution If n is any integer, then for each real number x in the interval n # x , n11, 
the floor of x, :x;, equals n. Thus on each such interval, the graph of the floor function is 
horizontal; for each x in the interval, the height of the graph is n.

It follows that the graph of the floor function consists of horizontal line segments, like 
a staircase, as shown in Figure 11.1.3. The open circles at the right-hand edge of each step 
are used to show that those points are not on the graph.

Example 11.1.2
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x

y

y =   x

1–1–2–3–4–5 2 3 54

–1

1

2

3

–2

–3

  FIGuRE 11.1.3 Graph of the Floor Function ■

Graphing Functions Defined on Sets of Integers
Many real-valued functions used in computer science are defined on sets of integers rather 
than on intervals of real numbers. But if you know what the graph of a function looks like 
when it is given by a formula on an interval of real numbers, you can obtain the graph of 
the function that is defined on the integers in the interval using the same formula by select-
ing only the points on the known graph whose first coordinates are integers. For instance, 
if f is the function defined by the same formula as the power function p1 but having as its 
domain the set of nonnegative integers, then f (n) 5 n for each nonnegative integer n. The 
graphs of p1, reproduced from Example 11.1.2, and f are shown side-by-side below.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Graph of p1 where p1(x) = x
for each nonnegative real number x

Graph of f where f (n) = n
for each nonnegative integer n

Graph of a Function Defined on a Set of Integers

Consider an integer version of the power function p1y2. In other words, define a function g 
by the formula g(n)=n1y2 for each nonnegative integer n. Sketch the graph of g.

Solution Look back at the graph of p1y2 in Figure 11.1.2. Draw the graph of g by repro-
ducing only those points on the graph of p1y2 with integer first coordinates. Thus for each 
nonnegative integer n, the point (n, n1y2) is on the graph of g.

 

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Graph of g where g(n) = n1/2 for each nonnegative integer n  ■

Example 11.1.3

94193_ch11_ptg01.indd   763 12/11/18   6:10 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



764  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

Graph of a Multiple of a Function
A multiple of a function is obtained by multiplying every value of the function by a fixed 
number. To understand the concept of O-notation, it is helpful to understand the relation 
between the graph of a function and the graph of a multiple of the function.

Definition

Let f be a real-valued function of a real variable and let M be any real number. The 
function M f, called the multiple of f by M or M times f, is the real-valued function 
with the same domain as f that is defined by the rule

(M f  ) (x) 5 M?( f (x)) for each x [ domain of f.

If the graph of a function is known, the graph of any multiple can easily be deduced. Spe-
cifically, if f is a function and M is a real number, the height of the graph of M f at any real 
number x is M times the quantity f (x). To sketch the graph of M f from the graph of f, you plot 
the heights M?( f  (x)) on the basis of knowledge of M and visual inspection of the heights f (x).

Graph of a Multiple of a Function

Let f be the function whose graph is shown below. Sketch the graph of 2 f.

Graph of f

y

1–1–2–3–4–5–6 2 3 4 5 6

1

–1

–2

2

Solution At each real number x, you obtain the height of the graph of 2 f by measuring 
the height of the graph of f at x and multiplying that number by 2. The result is the follow-
ing graph. Note that the general shapes of f and 2 f are very similar, but the graph of 2 f is 
“stretched out”: the “highs” are twice as high and the “lows” are twice as low.

 

Graph of 2 f

y

1–1–2–3–4–5–6 2 3 4 5 6

1

–1

–2

–3

–4

2

3

4

 ■

Example 11.1.4
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Increasing and Decreasing Functions
Consider the absolute value function, A, which is defined as follows:

A(x) 5 ux u 5 5 x if x $ 0

2x if x , 0
  for each real number x.

When x $ 0, the graph of A is the same as the graph of y 5 x, the straight line with slope 1 
that passes through the origin (0, 0). For x , 0, the graph of A is the same as the graph of 
y 5 2x, which is the straight line with slope 21 that passes through (0, 0). (See Figure 11.1.4.)

x

y

1 2 3 4–1–2–3–4

1

–1

2

3

4

y =  x

  FIGuRE 11.1.4 Graph of the Absolute Value Function

Note that as you trace from left to right along the graph to the left of the origin, the 
height of the graph continually decreases. For this reason, the absolute value function is 
said to be decreasing on the set of real numbers less than 0. On the other hand, as you trace 
from left to right along the graph to the right of the origin, the height of the graph continu-
ally increases. Consequently, the absolute value function is said to be increasing on the set 
of real numbers greater than 0.

Since the height of the graph of a function f at a point x is f (x), these geometric concepts 
translate to the following analytic definition.

Definition

Let f be a real-valued function defined on a set of real numbers, and suppose the 
domain of f contains a set S. We say that f is increasing on the set S if, and only if,

for all real numbers x1 and x2 in S, if x1 , x2 then f (x1) , f (x2).

We say that f is decreasing on the set S if, and only if,

for all real numbers x1 and x2 in S, if x1 , x2 then f (x1) . f (x2).

We say that f is an increasing (or decreasing) function if, and only if, f is increasing 
(or decreasing) on its entire domain.

Figure 11.1.5 illustrates the analytic definitions of increasing and decreasing.
It follows almost immediately from the definitions that both increasing functions and 

decreasing functions are one-to-one. You are asked to show this in exercise 10 at the end 
of this section.

A Positive Multiple of an Increasing Function Is Increasing

Suppose that f is a real-valued function of a real variable that is increasing on a set S of real 
numbers, and suppose M is any positive real number. Show that M f is also increasing on S.

Example 11.1.5
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Solution Suppose x1 and x2 are particular but arbitrarily chosen elements of S such that

x1 , x2.

[We must show that (M f)(x1) , (M f) (x2).] From the facts that x1 , x2 and f is increasing, it 
follows that

f (x1) , f (x2).

Then

M f (x1) , M f (x2),

since multiplying both sides of the inequality by a positive number does not change the 
direction of the inequality. Hence, by definition of M f,

 (M f) (x1) , (M f)(x2),

and, consequently, M f is increasing on S. ■

It is also true that a positive multiple of a decreasing function is decreasing, that a 
negative multiple of an increasing function is decreasing, and that a negative multiple of a 
decreasing function is increasing. You are asked to prove these facts in exercises 24–26 at 
the end of this section.

f (x1) = the height
of graph at x1

f (x1) = the height
of graph at x1

f (x2) = the height
of graph at x2

f (x2) = the height
of graph at x2

x1

(x1,  f (x1))

(x2,  f (x2))

x2

 f (x1) ,  f (x2)  f (x1) .  f (x2)

x x

(x1,  f (x1))

x1 x2

(x2,  f (x2))

An Increasing Function A Decreasing Function

(a) (b)

FIGuRE 11.1.5

1. If f is a real-valued function of a real variable, then 
the domain and co-domain of f are both .

2. A point (x, y) lies on the graph of a real-valued 
function of a real variable f if, and only if, 

.

3. If a is any nonnegative real number, then the 
power function with exponent a, pa, is defined by 

.

4. Given a function f: R S R and a real number M, 
the function M f is defined by .

5. Given a function f: R S R, to prove that f is 
increasing, you suppose that  and then you 
show that .

6. Given a function f: R S R, to prove that f is 
decreasing, you suppose that  and then you 
show that .

TEST YOuRSELF 
Answers to Test Yourself questions are located at the end of each section.
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1. The graph of a function f is shown below.
a. Is f (0) positive or negative?
b. For what values of x does f (x) 5 0?
c. Find approximate values for x1 and x2 so that 

f (x) 5 f (x2) 5 1 but x1 Þ x2.
d. Find an approximate value for x such that 

f (x) 5 1.5.
e. As x increases from 23 to 21, do the values of 

f increase or decrease?
f. As x increases from 0 to 4, do the values of f 

increase or decrease? 

1–1–2–3–4 2 3 4

1

–1

–2

2

Graph of f

2. The graph of a function g is shown below.
a. Is g(0) positive or negative?
b. Find an approximate value of x so that 

g(x) 5 0.
c. Find approximate values for x1 and x2 so that 

g(x1) 5 g(x2) 5 1 but x1 Þ x2.
d. Find an approximate value for x such that 

g(x) 5 22.
e. As x increases from 22 to 1, do the values of g 

increase or decrease?
f. As x increases from 1 to 3, do the values of g 

increase or decrease? 

1–1–2–3–4 2 3 4

1

–1

–2

2

3

Graph of g

3. Sketch the graphs of the power functions p1y3 and 
p1y4 on the same set of axes. When 0 , x , 1, 
which is greater: x1y3 or x1y4? When x . 1, which 
is greater: x1y3 or x1y4?

4. Sketch the graphs of the power functions p3 and p4 
on the same set of axes. When 0 , x , 1, which 
is greater: x3 or x4? When x . 1, which is greater: 
x3 or x4?

5. Sketch the graphs of y 5 2:x; and y 5 :2x; for each 
real number x. What can you conclude from these 
graphs?

Sketch a graph for each of the functions defined in 6–9 
below.

6. g(x) 5 <x= for each real number x (Recall that the 
ceiling of x, <x=, is the least integer that is greater 
than or equal to x. That is, <x= 5 the unique integer 
n such that n21 , x # n.)

7. h(x) 5 <x=2 :x; for each real number x

8. F (x) 5 :x1y2; for each real number x

9. G(x) 5 x2 :x; for each real number x

In each of 10–13 a function is defined on a set of integers. 
Sketch a graph for each function.

10. f (n) 5 un u  for each integer n

11. g(n) 5 (ny2)11 for each integer n

12. h(n) 5 :ny2; for each integer n $ 0

13. k(n) 5 :n1y2; for each integer n $ 0

14. The graph of a function f is shown below. Find the 
intervals on which f is increasing and the intervals 
on which f is decreasing.

1–1–2–3 2 3

1

–1

–2

2

Graph of f

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.

ExERCISE SET 11.1* 
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15. Show that the function f: R S R defined by the 
formula f (x) 5 2x23 is increasing on the set of 
real numbers.

16. Show that the function g: R S R defined by the 
formula g(x) 5 2(xy3)11 is decreasing on the 
set of real numbers.

17. Let h be the function from R to R defined by the 
formula h(x) 5 x2 for each real number x
a. Show that h is decreasing on the set of real 

numbers less than zero.
b. Show that h is increasing on the set of real 

numbers greater than zero. 

18. Let k: R S R be the function defined by the 
formula k(x) 5 (x21)yx for each real number 
x Þ 0.
a. Show that k is increasing for every real number 

x . 0.
b. Is k increasing or decreasing for x , 0? Prove 

your answer. 

19. Show that if a function f: R S R is increasing, 
then f is one-to-one.

20. Given real-valued functions f and g with the same 
domain D, the sum of f and g, denoted f1g, is 
defined as follows:

For each real number x, ( f1g)(x) 5 f (x)1g(x).

Show that if f and g are both increasing on a set S, 
then f1g is also increasing on S.

21. a.  Let m be any positive integer, and define 
f (x) 5 xm for each nonnegative real number x. 
Use the binomial theorem to show that f is an 
increasing function.

b. Let m and n be any positive integers, and let 
g(x) 5 xmyn for each nonnegative real number 
x. Prove that g is an increasing function. 

Note: The results of exercise 21 are used in the 
exercises for Sections 11.2 and 11.4.

22. Let f be the function whose graph follows. Sketch 
the graph of 3 f.

Graph of f

1–2–3–4–5 2 3 4 5

1

–1

–2

2

23. Let h be the function whose graph is shown below. 
Sketch the graph of 2 h.

Graph of h

1–2–3–4–5 2 3 4 5

1

–1

–2

2

3

24. Let f be a real-valued function of a real variable. 
Show that if f is decreasing on a set S and if M is any 
positive real number, then M f is decreasing on S.

25. Let f be a real-valued function of a real variable. 
Show that if f is increasing on a set S and if M is 
any negative real number, then M f is decreasing 
on S.

26. Let f be a real-valued function of a real variable. 
Show that if f is decreasing on a set S and if M is 
any negative real number, then M f is increasing 
on S.

In 27 and 28, functions f and g are defined. In each case 
sketch the graphs of f and 2g on the same set of axes and 
find a number x0 so that f(x) # 2g(x) for all x . x0. You 
can find an exact value for x0 by solving a quadratic equa-
tion, or you can find an approximate value for x0 by using 
a graphing calculator or computer.

27. f (x) 5 x2 110x111 and g(x) 5 x2 for each real 
number x $ 0

28. f (x) 5 x2 1125x1254 and g(x) 5 x2 for each real 
number x $ 0

1. sets of real numbers 2. y 5 f (x) 3. pa(x) 5 xa 
for each real number x 4. (M f)(x) 5 M?f(x) for each 
x [ R 5. x1 and x2 are any real numbers such that x1 , x2; 

f (x1) , f (x2) 6. x1 and x2 are any real numbers such that 
x1 , x2; f (x1) . f (x2)

ANSwERS FOR TEST YOuRSELF 
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Big-O, Big-Omega, and Big-Theta Notations
As soon as an Analytical Engine exists, it will necessarily guide the future course of 
the science. Whenever any result is sought by its aid, the question will then arise—
by what course of calculation can these results be arrived at by the machine in the 
shortest time? —Charles Babbage, 1864

Understanding the relative efficiencies of computer algorithms is of much more than aca-
demic interest. In industrial and scientific settings, the choice of an efficient over an ineffi-
cient algorithm can save a great deal of money or even make the difference between being 
able or not being able to do a project at all.

The cost and feasibility of implementing a computer algorithm are most affected by 
the length of computer time and the amount of computer memory the algorithm requires. 
While both are important, this chapter concentrates on basic techniques for calculating 
time efficiency, which is usually the more significant of the two. Occasionally, however, 
one algorithm may make more efficient use of time but less efficient use of memory than 
another, forcing a trade-off based on the resources available to the user.

Charles Babbage’s Analytical Engine was similar in many respects to a modern com-
puter. The quotation at the beginning of this section shows that he anticipated the impor-
tance of analyzing the time efficiencies of computer algorithms almost a hundred years 
before the first computer was actually built.

The main objects of analysis in this chapter will be algorithms that take a data array and 
either search it to find a particular element or sort it into ascending or descending order. As 
a simple example, imagine running an algorithm to search an array of data for a particular 
element. In the best case the algorithm might happen to find the element in its very first 
step; in the worst case it might have to check every element before ending.

The best and worst cases cannot be predicted in advance because they depend on the 
nature of the data being processed, so, when comparing two algorithms, it is reasonable to 
want control over worst-case situations. Although the results involve approximation, analy-
sis can reveal dramatic differences among algorithms designed to do the same job, at least 
for large data sets and in the worst cases. For example, the graph in Figure 11.2.1 gives a 
range of worst-case execution times for two algorithms used to sort sets of data: insertion 
sort and merge sort. As the length of the data set becomes larger and larger, the difference 

11.2

Charles Babbage 
(1729–1871)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es

Length of the input array

Range for
insertion sort

Range for merge sort

Worst-case
time to
process
the array

FIGuRE 11.2.1
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between the ranges becomes dramatically greater. For example, sorting a data set with 10 
million items could take just a fraction of a second with merge sort but approximately 30 
minutes with insertion sort.

The symbols Q and V are the uppercase Greek letters theta and omega. The Q-notation 
introduced in this section is determined by ranges such as those shown in Figure 11.2.1. It 
is related to two other notations: V-notation and O-notation. The oldest of the notations, 
O-notation (read “big-O notation”), was introduced by the German mathematician Paul 
Bachmann in 1894 in a book on analytic number theory, and it was the first to be used to 
compare efficiencies of algorithms. As you will see, however, using O-notation alone can 
produce ambiguous or even misleading results. As a response, in 1976 Donald Knuth, a 
pioneer in the analysis of algorithms, introduced the V- and Q-notations so that the growth 
of functions could be compared with greater precision.

The idea of the notations is this: Suppose f and g are real-valued functions of an integer 
variable n and suppose g(n) $ 0 for every integer n greater than some positive real number.

1. If, for sufficiently large values of n, the values of f are greater than those of a positive 
multiple of g, then f is of order at least g, written “f(n) is V(g(n)).”

2. If, for sufficiently large values of n, the values of f are positive and less than those of a 
positive multiple of g, then f is of order at most g, written “f (n) is O(g(n)).”

3. If, for sufficiently large values of n, the values of f are bounded both above and below by 
those of positive multiples of g, then f is of order g, written “f (n) is Q (g(n)).” 

These relationships are illustrated in Figure 11.2.2.

a n

f(n) is (g(n))

Graph of f

Graph of Ag

b n

f(n) is O(g(n))

Graph of f

Graph of Bg

k n

f(n) is (g(n))

Graph of f

Graph of Bg

Graph of Ag

(n, f (n))

(n, f (n))

(n, f (n))

(n, Ag(n))

(n, Ag(n))

(n, Bg(n))

(n, Bg(n))

FIGuRE 11.2.2
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When they were originally defined, the order notations referred to functions defined on 
continuous intervals of real numbers rather than to functions defined on sets of integers. 
However, the important variable in the analysis of algorithm efficiency is the size of the 
problem the algorithm is designed to solve, which is an integer. For example, it might be 
the number of items in a data array to be sorted or the number of nodes in a graph where a 
minimum spanning tree is to be found.

Now when a function satisfies a property for all the real numbers in an interval, then it 
satisfies the property for all the integers in the interval, and the proofs in this chapter are 
valid if the phrase “for every real number x” is substituted in place of “for every integer 
n.” Thus, although we restrict the discussion to functions defined on sets of integers, func-
tions defined on intervals of real numbers are in the background. This is reflected in the 
fact that we show graphs as continuous curves rather than as sets of discrete points. As 
in Example 11.1.5, you can imagine how the graphs would look if they were defined for 
integer values only.

Definition

Let f and g be real-valued functions defined on the same set of nonnegative integers, 
with g(n) $ 0 for every integer n $ r, where r is a positive real number. Then

1.  f is of order at least g, written f(n) is V(g(n)) ( f of n is big-Omega of g of n), if, 
and only if, there exist positive real numbers A and a $ r such that

A g(n) # f (n) for every integer n $ a.

2.  f is of order at most g, written f (n) is O(g(n)) ( f of n is big-O of g of n), if, and only 
if, there exist positive real numbers B and b $ r such that

0 # f (n) # Bg(n) for every integer n $ b.

3.  f is of order g, written f(n) is Q(g(n)) ( f of n is big-Theta of g of n), if, and only 
if, there exist positive real numbers A, B, and k $ r such that

A g(n) # f(n) # B g(n) for every integer n $ k. 

Remark on Notation: In Section 7.1 we stated that we would carefully distinguish between 
a function f and a value f (n) of the function. The traditional use of the order notation vio-
lates this principle. For instance, in the statement “f (n) is Q(g(n)),” the symbols f(n) and 
g(n) are understood to refer to the functions f and g defined by the expressions f(n) and g(n), 
respectively. For example, the statement

3n2 14n15 is Q(n2)

means that f is of order g where f and g are defined by the formulas f (n) 5 3n2 14n15 
and g(n) 5 n2 for every integer n $ 1.

Translating to Q-Notation

Use Q-notation to express the statement

4n6  #  17n6 245n3 12n18 #  30n6 for every integer n $ 3.

Solution Let A 5 4, B 5 30, and k 5 3. Then the statement translates to

An6  #  17n6 245n3 12n18 #  Bn6 for every integer n $ k.

Example 11.2.1

11.2 biG-O, biG-oMeGa, and biG-theta notations  771

94193_ch11_ptg01.indd   771 12/11/18   6:10 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



772  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

So, by definition of Q-notation,

 17n6 245n3 12n18 is Q(n6). ■

Translating to V- and O-Notations and Deducing Q-Notation

a. Use V-notation to express the statement

11

4
 n2  #  31jn4k2

2

15n2 for every integer n $ 2.

b. Use O-notation to express the statement

0 #  31jn4k2
2

15n2 # 6n2 for every integer n $ 1.

c. Justify the statement: 31jn4k2
2

15n2  is  Q(n2).

Solution

a. Let A 5 11
4  and a 5 2. The statement in (a) translates to

An2  #  31jn4k2
2

15n2 for every integer n $ a.

So, by definition of V-notation,

31jn4k2
2

15n2  is  V(n2).

b. Let B 5 6 and b 5 1. The statement in (b) translates to

0 #  31jn4k2
2

15n2  #  Bn2 for every integer n $ b.

So, by definition of O-notation,

31jn4k2
2

15n2  is  O(n2).

c. Let A 5 11
4 , a 5 2, B 5 6, and b 5 1, and let k be the larger of a and b. Then when 

n $ k, both inequalities in parts (a) and (b) are satisfied, and so

An2
 #  31jn4k2

2

15n2
 #  Bn2 for every integer n $ k.

Hence by definition of Q-notation,

 31jn4k2
2

15n2 is Q(n2). ■

Example 11.2.2
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Part (c) of Example 11.2.2 illustrates the fact that if you know both that f is of order at 
most g and that f is of order at least g, then you may take k to be the larger of the numbers 
a and b promised in the definitions for big-Omega and big-O and conclude that f is of 
order g. Conversely, if f is of order g, then both a and b may be taken to be the number k 
promised in the definition for big-Theta to show that f is of order at most g and f is of order 
at least g. You are asked to summarize this discussion in a formal proof in exercise 19 at 
the end of this section. 

Theorem 11.2.1 Relation among O-, V-, and Q-Notations

If f and g are real-valued functions defined on the same set of nonnegative integers, 
and if f(n) $ 0 and g(n) $ 0 for every integer n $ r, where r is a positive real number, 

then f(n) is Q(g(n)) if, and only if, f (n) is V(g(n)) and f (n) is O(g(n)).

Orders of Power Functions
The functions that are most commonly used for comparing algorithm efficiencies are 
power functions, such as n1y2, n, n2, and n3, and combinations involving a power func-
tion and an exponential or logarithmic function, such as 2n, log(n), n log(n), and n2 log(n). 
These functions arise naturally in the analysis of algorithms, but, for large values of n, 
their sizes are dramatically different. In this section we focus on power functions, while in 
Section 11.4 we discuss functions that involve logarithms.

Observe that if

1 # n,

then

n # n2 by multiplying both sides
  by n (which is positive)

and so

n2 # n3
 by multiplying again by n.

Thus if n $ 1, then

1 # n # n2 # n3 by transitivity of order.

The following theorem generalizes this result. Exercises 46 and 47 at the end of this 
section provide an outline for the proof.

Theorem 11.2.2 For any positive rational numbers r and s and any integer  
n $ 1,

if r # s, then nr # ns.

The relation among the graphs of various positive power functions of n for n $ 1 is 
shown graphically in Figure 11.2.3.

Orders of Polynomial Functions
The following two examples show how to use Theorem 11.2.2 to find a big-V and a big-O 
for some polynomial functions.
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774  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

Finding a Big-Omega and a Big-O for a Polynomial Function with Nonnegative 
Coefficients

a. Show that 15n3 111n2 19 is V(n3).

b. Without using part (a), show that 15n3 111n2 19 is O(n3).

Solution

a. To show that 15n3 111n2 19 is V(n3), you need to show that 15n3 111n2 19 is greater 
than or equal to a positive multiple of n3 for all values of n that are sufficiently large. Now

15n3  #  15n3 111n2 19 for every integer n $ 1

because when n $ 1, 11n2 19 is positive. Thus you can let A 5 15 and a 5 1 to obtain

An3  #  15n3 111n2 19 for every integer n $ a,

and conclude, by definition of V-notation, that 15n3 111n2 19 is V(n3).

b. To show that 15n3 111n2 19 is O(n3), you need to show that 15n3 111n2 19 is greater 
than or equal to 0 and less than or equal to some positive multiple of n3 for all values of n 
that are sufficiently large. First note that because all terms of 15n3 111n2 19 are positive,

0 #  15n3 111n2 19 for every integer n $ 1.

Next observe that for every integer n $ 1,

 15n3 111n2 19 #  15n3 111n3 19n3  because, by Theorem 11.2.2, 
since n $ 1, then n # n3 and 
1 # n3, and so 11n # 11n3 

and 9 # 9n3

 5 35n3  because 1511119 5 35.

Thus, by transitivity of order and equality,

0 #  15n3 111n17 #  35n3 for every integer n $ 1.

Let B 5 35 and b 5 1. Then

0 #  15n3 111n2 19 #  Bn3 for every integer n $ b,

Example 11.2.3

n

y
y = n3

y = n2

y = ny = n3/2

y = n1/2

y = n2/3

y = n1/3

1 2 3 4

1

2

3

4

If r , s, the graph of
y = nr lies underneath the
graph of y = ns  for n . 1.

FIGuRE 11.2.3 Graphs of Powers of n for n $ 1
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and so, by definition of O-notation,

 15n3 111n2 19 is O(n3).  ■

Finding a Big-Omega and a Big-O for a Polynomial Function  
with Some Negative Coefficients

a. Show that n4 25n28 is V(n4).

b. Show that n4 25n28 is O(n4).

Solution

a. To show that n4 25n28 is V(n4), you need to find positive real numbers A and a such that

An4  #  n4 25n28 for every integer n $ a.

Because n4 25n28 contains negative terms, you need to use a different technique 
from the one illustrated in Example 11.2.3(a). Two methods are shown below. The first 
relies on ad hoc calculations and the second describes a general procedure.

Method 1 (Using ad hoc calculations): Let 3 stand for the words “if, and only if,” 
and observe that

(*)  
1

2
 n4  #  n4 25n28

3  5n18 #  

1

2
 n4  because adding or subtracting 5n182 1

2n4 

to both sides of an inequality preserves 

the direction of the inequality 

(**) 3  
10

n2 1
16

n3  #  n  because dividing or multiplying both sides 

of an inequality by 2n3, which is positive, 

preserves the direction of the inequality.

Because all the inequalities are equivalent (that is, each inequality is true if, and only 
if, all the others are true), any value of n that makes inequality (**) true makes in-
equality (*) true also. A little trial and error shows that inequality (**) is true for every 
integer n $ 3:

If n $ 3,  then  
1
n

 #  

1

3
, and so 10

n2 1
16

n3  #  

10

32 1
16

33  5  

46

27
 ,  2 ,  n.

Hence, by transitivity of order and equality,

10

n2 1
16

n3  #  n for every integer n $ 3,

which is inequality (**). Therefore, inequality (*) is also true for n $ 3:

1

2
 n4  #  n4 25n28 for every integer n $ 3.

Let A 5 1
2 and a 5 3. Then

An4  #  n4 25n28 for every integer n $ a,

and so, by definition of V-notation, n4 25n28 is V(n4).

Example 11.2.4
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Method 2 (Using a general procedure):

Let m be a nonnegative integer, let P (n) be a polynomial of degree m, and suppose 
the coefficient am of nm is positive.

To find big-Omega for P (n): Let A 5 1
2 

am, and let a be the number obtained as 
follows:

1. Find the sum of the absolute values of all the coefficients of P (n) except  
for am.

2. Multiply the result of step 1 by 
2

am
.

3. Let a be the larger of the number 1 and the result of step 2.

Show that Anm # P (n) for every integer n $ a.

To use the general procedure to show that n4 25n28 is V(n4), observe that the coef-
ficient of its highest power is 1 and the sum of the absolute values of its other coeffi-
cients is u25 u 1 u28 u . Thus you would take 

A 5
1

2
 and a 5

2

1
 ( u25 u 1 u28 u )

and note that

a 5  

2

1
 ( u25 u 1 u28 u ) 5  26, which is greater than 1.

Requiring n $ a means that

n $  

2

1
 ( u25 u 1 u28 u ),

and multiplying both sides by 12 n3 gives

  
1

2
 n4  $  ( u25 u 1 u28 u )n3

  5  5n3 18n3

 $  5n18 because n $ 1 and so 5n3 $ 5n and 8n3 $ 8.

Hence, by transitivity of order and equality,

1

2
 n4  $  5n18 for every integer n $ a.

Subtracting the right-hand side from the left-hand side and adding 12 n4 to both sides 
gives

n4 25n28 $  

1

2
 n4 for every integer n $ a.

Thus since A 5 1
2,

n4 25n28 $  An4 for every integer n $ a,

and so, by definition of V-notation, n4 25n28 is V(n4).
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b. To show that n4 25n28 is O(n4), observe that for every integer n $ 1,

 n4 25n28 #  n4 15n18  because when n $ 1, 5n18 is positive

 #  n4 15n4 18n4  by Theorem 11.2.2, since n $ 1, then n # n4 

and 1 # n4, and so 5n # 5n4 and 8 # 8n4

 5  14n4     because 11518 5 14.

Thus, by transitivity of order and equality,

n4 25n28 #  14n4 for every integer n $ 1.

In addition, by part (a)

1

2
 n4  #  n4 25n28 for every integer n $ 3,

so since 0 # 1
2 

n4, transitivity of order gives that

0 #  n4 25n28 #  14n4 for every integer n $ 3.

Let B 5 14 and b 5 3. Then

0 #  n4 25n28 #  Bn4 for every integer n $ b,

and hence, by definition of O-notation, n4 25n28 is O(n4). ■

The results of Examples 11.2.3 and 11.2.4 can be used to find big-Thetas for 
15n3 111n2 19 and n4 25n28.

Finding a Big-Theta for a Polynomial Function

a. Show that 15n3 111n2 19 is Q(n3).

b. Show that n4 25n28 is Q(n4).

Solution

a. By Example 11.2.3, 15n3 111n2 19 is O(n3) and by Example 11.2.4, 15n3 111n2 19 
is V(n3). Thus by Theorem 11.2.1, 15n3 111n2 19 is Q(n3).

b. By Example 11.2.4, n4 25n28 is both V(n4) and O(n4). Thus, by Theorem 11.2.1, 

n4 25n28 is Q(n4). ■

Theorem 11.2.3 A Limit on what Can Be Inferred from Big-O

For any function f and positive real numbers r and s with r , s,

if f (n) is O(n r ) then f (n) is O(n s ).

Proof: Suppose r and s are real numbers with r , s and f is a function such that 
f (n) is O(nr  ). By definition of O-notation, there exist positive real numbers B and b 
such that

0 #  f (n) #  Bnr for every integer n $ b.

(continued on page 778)

Example 11.2.5
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Now by Theorem 11.2.2,

Bnr  #  Bns    for every integer n $ 1.

Let b1 be the larger of b and 1. Then

0 #  f (n) #  Bns for every integer n $ b1,

and thus f (n) is O(ns).

It follows from Theorem 11.2.3 that knowing a function is big-O of another function 
gives only partial information about how the function behaves.

A Caution about O-notation

Suppose a person finds that f (n) is O(n5) and that g(n) is O(n4). Because 4 , 5, this person 
might conclude that the graph of g lies below the graph of f for large values of n. Show that this 
is not necessarily the case by showing that there exist functions f and g such that f (n) is O(n5) 
and g(n) is O(n4), yet for large values of n the graph of f lies below, not above, the graph of g.

Solution Let f (n) 5 15n3 111n2 19 and g(n) 5 n4 25n28. Since f (n) is O(n3), it fol-
lows from Theorem 11.2.3 that f (n) is O(n5). Also by Example 11.2.3, g(n) is O(n4). How-
ever, Figure 11.2.4, which shows both f and g, suggests that for values of n $ 16, the graph 
of g lies above the graph of f.

5 7.5 10 12.5 15 17.5 20

Graph of f

Graph of g

FIGuRE 11.2.4

This result can be confirmed analytically by noting that

(*)  g(n) $  f(n)

3  n4 25n28 $  15n3 111n2 19

3  n4  $  15n3 111n2 15n117

(**) 3  n $  151
11
n

1
5

n2 1
17

n3

Example 11.2.6
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So any value of n that satisfies inequality (**) also satisfies the inequality (*). Now when 
n $ 16, then 1n # 1

16, and so inequality (**) is satisfied because

151
11
n

1
5

n2 1
1

n3  #  151
11

16
1

5

162 1
1

163  #  16 for every integer n $ 16.

Therefore 

n4 25n28 $  15n3 111n2 19 for every integer n $ 16.

Thus it is possible to find bands around each graph so that the band around the graph of 
g(n) lies entirely above the band around the graph of f (n) for every integer n $ 16. In fact, 
the second derivative test from calculus shows that g(n) is growing at a faster rate than f (n), 
which explains why the graph of g(n) bends upward more steeply than the graph of f (n). 
Readers who have studied calculus can check this result themselves. ■

A related feature of O-notation is illustrated by Example 11.2.7.

Showing That One Function Is Not Big-O of Some Other Function

Let g(n) 5 n4 25n28. By Example 11.2.4, g(n) is V(n4). Show that g(n) is not O(nr) for 
any positive real number r , 4.

Solution
Suppose by way of contradiction that there exists a positive real number r such that r , 4 
and g(n) is O(nr). Then there exist positive real numbers B and b such that

0 # g(n) # Bnr for every integer n $ b.

Since it is also the case that g(n) is V(n4), there exist positive real numbers A and a such that  

An4 # g(n) for every integer n $ a.

Let t be the larger of a and b. Then

An4 # g(n) # Bnr for every integer n $ t.

Let 1 stand for the words “which implies that.” It follows from the inequalities above that 
for every integer n $ t, 

 An4 #  Bnr by transitivity of order 

1  
n4

nr  #  
B

A
 by dividing both sides by Anr

1  n42r #  
B

A
 by algebra

1  n #  
42r
ÏByA by taking the (42 r)th root of both sides. (*)

Since r , 4, then 42 r . 0, which implies that 
42r
ÏByA is a fixed positive real number. But 

n can be greater than any fixed number, which implies that condition (*) is contradictory. 
In other words, the supposition results in a contradiction, and hence it is false. Therefore, 
for each positive real number r with r , 4, g(n) is not O(nr). ■

The next theorem generalizes the result of Example 11.2.7. The proof can be modeled on 
the solution to Example 11.2.7 and is left as exercise 21 at the end of this section.

Example 11.2.7
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Theorem 11.2.4 Showing That a Big-O Relationship Does Not Hold

If f is a real-valued function defined on a set of nonnegative integers and f (n) is 
V(nm   ), where m is a positive integer, then f (n) is not O(np    ) for any positive real num-
ber p , m.

Because Q-notation, unlike O-notation, gives “tight bounds” on function values, you 
can count on it to give precise results for comparing function growths. In Example 11.2.5 
Q-notations were found for 15n3 111n2 19 and n4 25n28. In both cases the order of the 
polynomial function was the power function corresponding to the highest power in the 
polynomial. The theorem on polynomial orders shows that this result is not an accident. 
The simplest proof uses the idea of limit from calculus and is included below. Exercise 25 
at the end of the section asks for a proof based on the techniques from Example 11.2.4, 
which does not rely on calculus.

Theorem 11.2.5 On Polynomial Orders

If m is any integer with m $ 0 and a0, a1, a2, . . . , am are real numbers with am . 0, 
then amnm 1am21n

m21 1 Á 1a1n1a0 is Q(nm).

Proof (using limits): Suppose m is an integer with m $ 0 and suppose a0, a1, a2, . . . , 
am are real numbers with am . 0. Because limn S `_1

ni+ 5 0 for every integer i $ 1,

lim
n S `1am nm 1am21n

m21 1am22n
m22 1 Á 1a1n1a0

nm 2
   5 lim

n S `1am 1
am21

n
1

am22

n2 1 Á 1
a1

nm21 1
a0

nm2 

   5 am.

By definition of limit, this implies that for any real number � . 0, there exists an 
integer K such that

am 2� ,  am 1
am21

n
1

am22

n2 1 Á 1
a1

nm21 1
a0

nm  ,  am 1� for every integer n . K.

In particular, when � 5
am

2 , there is an integer k such that

am 2
am

2
 ,  am 1

am21

n
1

am22

n2 1 Á 1
a1

nm21 1
a0

nm  ,  am 1
am

2
 for every integer n . k.

Combining like terms and multiplying all parts of the inequality by nm gives that

1am

2 2nm ,  amnm 1am21n
m21 1 Á 1a1n1a0  

,
 13am

2 2nm for every integer n . k.

Let A 5
am

2  and B 5
3am

2 . Then

Anm ,  amnm 1am21n
m21 1 Á 1a1, n1a0  

,
 

Bnm for every integer n . k.

Therefore, by definition of Q-notation,

amnm 1am21n
m21 1 Á 1a1n1a0 is Q(nm).
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Calculating Polynomial Orders using the Theorem on Polynomial Orders

Use the theorem on polynomial orders to find orders for the functions given by the follow-
ing formulas.

a. f(n) 5 7n5 15n3 2n14 for each positive integer n.

b. g(n) 5
(n21)(n11)

4
 for each positive integer n.

Solution

a. By direct application of the theorem on polynomial orders, 7n5 15n3 2n14 is Q(n5).

b.  g(n) 5
(n21)(n11)

4

 5
1

4
 (n2 21)

 5
1

4
 n2 2

1

4
 by algebra.

Thus g(n) is Q(n2) ■

An Order for the Sum of the First n Integers

Sums of the form 112131 Á 1n arise in the analysis of computer algorithms such as 
selection sort. Show that for a positive integer variable n,

112131 Á 1n is Q(n2).

Solution According to the formula for the sum of the first n integers (see Theorem 5.2.1), 
for each positive integer n,

112131 Á 1n 5
n(n11)

2
.

Now

n(n11)

2
5

1

2
 n2 1

1

2
 n by basic algebra.

And, by the theorem on polynomial orders,

1

2
 n2 1

1

2
 n is Q(n2).

Hence

 112131 Á 1n is Q(n2). ■

We end this section by stating some theorems that give useful properties of order nota-
tions. These will be applied in Section 11.4. Two sample proofs are given, with the rest 
being left to the exercises at the end of the section.

Example 11.2.8

Example 11.2.9
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782  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

Theorem 11.2.6 Reciprocal Relationship between V- and O-notations

Let f and g be real-valued functions defined on the same set of nonnegative integers, 
and suppose there is a positive real number r such that f (n) $ 0 and g(n) $ 0 for 
every integer n $ r. Then:

a. If f (n) is V(g(n)), then g(n) is O( f (n)).

b. If g(n) is O( f (n)), then f (n) is V(g(n)). 

Theorem 11.2.7 Reflexive, Symmetric, and Transitive Properties  
of Q-notation

Let f, g, and h be real-valued functions defined on the same set of nonnegative inte-
gers, and suppose there is a positive real number r such that f (n) $ 0, g(n) $ 0 and 
h(n) $ 0, for every integer n $ r. Then:

a. f(n) is Q( f(n)).

b. If f(n) is Q(g(n)), then g(n) is Q( f(n)).

c. If f(n) is Q(g(n)) and g(n) is Q(h(n)), then f(n) is Q(h(n)).

Theorem 11.2.8 Effect of Constants on Order Notations

Let f and g be real-valued functions defined on the same set of nonnegative integers, 
and suppose there is a positive real number r such that f (n) $ 0 and g(n) $ 0 for 
every integer n $ r.
 Then for every positive real number c:

a. If f(n) is V(g(n)), then cf(n) is V(g(n));

b. If f(n) is O(g(n)), then cf(n) is O(g(n));

c. If f(n) is Q(g(n)), then cf(n) is Q(g(n)). 

Theorem 11.2.9 Orders of Sums and Products of Functions

Let f1, f2, g1, and g2 be real-valued functions defined on the same set of nonnegative 
integers, and suppose there is a positive real number r such that f1(n) $ 0, f2(n) $ 0, 
g1(n) $ 0, and g2(n) $ 0 for every integer n $ r. Then:

a. If f1(n) is Q(g(n)) and f2(n) is Q(g(n)), then (f1(n)1 f2(n)) is Q(g(n)).

b. If f1(n) is Q(g1(n)) and f2(n) is Q(g2(n)), then ( f1(n)f2(n)) is Q(g1(n)g2(n)).

c.   If f1(n) is Q(g1(n)) and f2(n) is Q(g2(n)) and if there is a real number s so that 
g1(n) # g2(n) for every integer n $ s, then (f1(n)1 f2(n)) is Q(g2(n)).

Proof of Theorem 11.2.6(a)

Let f and g be real-valued functions defined on the same set of nonnegative integers 
and suppose there is a positive real number r such that g(n) $ 0 for every integer 
n $ r. Suppose also that f (n) is V(g(n)). We will show that g(n) is O( f (n)). By defini-
tion of V-notation, there are positive real numbers A and a such that a $ r, and

Ag(n) # f(n) for every integer n $ a.
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Divide both sides by A to obtain

g(n) #
1

A
 f (n) for every integer n $ a.

In addition, since a $ r,

0 # g(n) for every integer n $ a.

Let B 5 1yA and b 5 a. Then B and b are positive real numbers and

0 # g(n) # Bf (n) for every integer n $ b,

and so g(n) is O( f (n)) by definition of O-notation [as was to be shown].

Proof of Theorem 11.2.7(c)

Suppose f, g, and h are real-valued functions defined on the same set of nonnegative 
integers, and suppose there is a positive real number r such that f(n) $ 0, g(n) $ 0, 
and h(n) $ 0, for every integer n $ r. Suppose also that f (n) is Q(g(n)) and g(n) is 
Q(h(n)). We will show that f(n) is Q(h(n)). By definition of Q-notation, there exist 
positive real numbers A1, B1, k1, A2, B2, and k2 with k1 $ r and k2 $ r, and

A1g(n) #  f(n) #  B1g(n) for every integer n $ k1

and

A2h(n) #  g(n) #  B2h(n) for every integer n $ k2.

Let A 5 A1A2, B 5 B1B2, and k 5 max(k1, k2). Then, by transitivity of order and 
equality, for every integer n $ k,

Ah(n) 5  A1(A2h(n)) #  A1g(n) #  f (n) #  B1g(n) #  B1(B2h(n)) 5  Bh(n),

and so, by definition of Q-notation, f (n) is Q(h(n)) [as was to be shown].

1. A sentence of the form “Ag(n) # f (n) for every 
n $ a” translates into V-notation as .

2. A sentence of the form “0 # f (n) # Bg(n) for 
every n $ b” translates into O-notation as .

3. A sentence of the form “Ag(n) # f (n) # Bg(n) for 
every n $ k” translates into Q-notation as .

4. When n $ 1, n  n2 and n2  n5.

5. According to the theorem on polynomial orders, if 
p (n) is a polynomial in n, then p (n) is Q(nm), where 
m is .

6. If n is a positive integer, then 112131 Á 1n 
has order .

TEST YOuRSELF 
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1. The following is a formal definition for V-
notation, written using quantifiers and variables: 
f (n) is V(g(n)) if, and only if, E positive real 
numbers a and A such that 5 n $ a,

Ag(n) # f (n).

a. Write the formal negation for the definition 
using the symbols 5 and E.

b. Restate the negation less formally without us-
ing the symbols 5 and E or the words “for any,” 
“for every,” or “there exists.” 

2. The following is a formal definition for O-notation, 
written using quantifiers and variables: f(n) is 
O(g(n)) if, and only if, E positive real numbers b 
and B such that 5 n $ b,

0 # f (n) # Bg(n).

a. Write the formal negation for the definition 
using the symbols 5 and E.

b. Restate the negation less formally without us-
ing the symbols 5 and E or the words “for any,” 
“for every,” or “there exists.” 

3. The following is a formal definition for Q-notation, 
written using quantifiers and variables: f (n) is 
Q(g(n)) if, and only if, E positive real numbers k, A, 
and B such that 5 n $ k,

Ag(n) # f (n) # Bg(n).

a. Write the formal negation for the definition 
using the symbols 5 and E.

b. Restate the negation less formally without us-
ing the symbols 5 and E or the words “for any,” 
“for every,” or “there exists.” 

In 4–9, express each statement using V-, O-, or  
Q-notation.

4. 
1

2
 n #  n2  jn

2
k11 for every integer n $ 1. 

(Use V-notation.)

5. 0 #  n2 jn
2
k11 #  n for every integer n $ 3. 

(Use O-notation.)

6. n2  #  3n(n22) #  4n2 for every integer n $ 3. 
(Use Q-notation.)

7. 
1

2
 n2  #  

n(3n22)

2
 for every integer n $ 3. 

(Use V-notation.)

8. 0 #  

n(3n22)

2
 #  n2 for every integer n $ 1. 

(Use O-notation.)

9. 
n3

6
 #  n21ln3m212 #  n3 for every integer n $ 2. 

(Use Q-notation.)

10. a.  Show that for any integer n $ 1, 
0 #  2n2 115n14 #  21n2.

b. Show that for any integer n $ 1, 
2n2  #  2n2 115n14. 

c. Sketch a graph to illustrate the results of parts 
(a) and (b).

d. Use the O- and V-notations to express the 
results of parts (a) and (b).

e. What can you deduce about the order of 
2n2 115n14?

11. a.  Show that for any integer n $ 1, 
0 #  23n4 18n2 14n #  35n4.

b. Show that for any integer n $ 1, 
23n4  #  23n4 18n2 14n. 

c. Sketch a graph to illustrate the result of parts 
(a) and (b). 

d. Use the O- and V-notations to express the 
results of parts (a) and (b).

e. What can you deduce about the order of 

23n4 18n2 14n?

12. a.  Show that for any integer n $ 1, 
0 #  7n3 110n2 13 #  20n3.

b. Show that for any integer n $ 1, 
7n3  #  7n3 110n2 13.

c. Sketch a graph to illustrate the result of parts 
(a) and (b). 

d. Use the O- and V-notations to express the 
results of parts (a) and (b).

e. What can you deduce about the order of 

7n3 110n2 13?

13. Use the definition of Q-notation to show that 
5n3 165n130 is Q(n3).

14. Use the definition of Q-notation to show that 
n2 1100n188 is Q(n2).

ExERCISE SET 11.2 
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15. Use the definition of Q-notation to show that 

jn1
1

2
k is Q(n).

16. Use the definition of Q-notation to show that 

ln1
1

2
m is Q(n).

17. Use the definition of Q-notation to show that 

jn
2
k is Q(n). _Hint: Show that if n $ 4, then 

n

2
21 $ 1

4 
n.+

18. Prove Theorem 11.2.7(b): If f and g are real-valued 
functions defined on the same set of nonnegative 
integers and if f (n) $ 0 and g(n) $ 0 for every 
integer n $ r, where r is a positive real number, 
then if f (n) is Q(g(n)), then g(n) is Q( f (n)).

19. Prove Theorem 11.2.1: If f and g are real-valued 
functions defined on the same set of nonnegative 
integers and if f (n) $ 0 and g(n) $ 0 for every 
integer n $ r, where r is a positive real number, 
then f (n) is Q(g(n)) if, and only if, f (n) is V(g(n)) 
and f(n) is O(g(n)).

20. Without using Theorem 11.2.4 prove that n5 is not 
O(n2).

21. Prove Theorem 11.2.4: If f is a real-valued func-
tion defined on a set of nonnegative integers and 
f (n) is V(nm), where m is a positive integer, then 
f (n) is not O(np) for any positive real number 
p , m.

22. a.  Use one of the methods of Example 11.2.4 to 
show that 2n4 290n3 13 is V(n4).

b. Show that 2n4 290n3 13 is O(n4).
c. Justify the conclusion that 2n4 290n3 13 is 

Q(n4).

23. a.  Use one of the methods of Example 11.2.4 to 
show that 15 n2 242n28 is V(n2).

b. Show that 15 n2 242n28 is O(n2).

c. Justify the conclusion that 15 n2 242n28 is 
Q(n2).

24. a.  Use one of the methods of Example 11.2.4 to 
show that 14 n5 250n3 13n112 is V(n5).

b. Show that 14 n5 250n3 13n112 is O(n5).

c. Justify the conclusion that 14 n5 250n3 13n112 
is Q(n5).

25. Suppose 
P (n) 5 amnm 1am21n

m−1 1 Á 1a2n
2 1a1n1a0, 

where all the coefficients a0, a1, . . . , am are real 
numbers and am . 0.
a. Prove that P (n) is V(nm) by using the general 

procedure described in Example 11.2.4.
b. Prove that P (n) is O(nm).
c. Justify the conclusion that P (n) is Q(nm).

Use the theorem on polynomial orders to prove each of 
the statements in 26–31.

26. 
(n11)(n22)

4
 is Q(n2)

27. 
n

3
 (4n2 21) is Q(n3)

28. 
n(n21)

2
13n is Q(n2)   

29. 
n(n21)(2n11)

6
 is Q(n3)

30. 3n(n11)

2 4
2

 is Q(n4)

31. 2(n21)1
n(n11)

2
141n(n21)

2 2 is Q(n2)

Prove each of the statements in 32–39. Use the theorem 
on polynomial orders and results from the theorems and 
exercises in Section 5.2 as appropriate.

32. 12 122 132 1 Á 1n2 is Q(n3)

33. 13 123 133 1 Á 1n3 is Q(n4)

34. 214161 Á 12n is Q(n2)

35. 51101151201251 Á 15n is Q(n2)

36. o
n

i51

(4i29) is Q(n2)

37. o
n

k51

(k13) is Q(n2)

38. o
n

i51

i(i11) is Q(n3)

39. o
n

k53

(k2 22k) is Q(n3)

40. a.  Prove: If c is a positive real number and if f 
is a real-valued function defined on a set of 
nonnegative integers with f(n) $ 0 for every 
integer n greater than or equal to some positive 
real number, then cf (n) is Q( f (n)).

b. Use part (a) to show that 3n is Q(n). 

H
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41. Prove: If c is a positive real number and f (n) 5 c 
for every integer n $ 1, then f(n) is Q(1).

42. What can you say about a function f with the prop-
erty that f(n) is Q(1)?

Use Theorems 11.2.5–11.2.9 and the results of exercises 
15–17, 40, and 41 to justify the statements in 43–45.

43. jn11

2
k13n is Q(n)

44. 
n(n21)

2
1 jn

2
k11 is Q(n2)

45. jn
2
k14n13 is Q(n)

46. a.  Use mathematical induction to prove that if n 
is any integer with n $ 1, then for every inte-
ger m $ 1, nm $ 1.

b. Prove that if n is any integer with n $ 1, then 
nr # ns for all integers r and s with r # s.

47. a.  Let x be any positive real number. Use math-
ematical induction to prove that for every 
integer m $ 1, if x # 1 then xm # 1.

b. Explain how it follows from part (a) that if x is 
any positive real number, then for every integer 
m $ 1, if xm . 1 then x . 1.

c. Explain how it follows from part (b) that if x is 
any positive real number, then for every integer 
m $ 1, if x . 1 then x1/m . 1.

d. Let p, q, r, and s be positive integers, and sup-
pose pyq . rys. Use part (c) and the result of 
exercise 40 to prove Theorem 11.2.2. In other 
words, show that for any integer n, if n . 1 
then np/q . nr/s.

48. Prove Theorem 11.2.6(b): If f and g are real-
valued functions defined on the same set of 
nonnegative integers, and if there is a positive 
real number r such that f (n) $ 0 and g(n) $ 0 for 
every integer n $ r, and if g(n) is O( f(n)), then 
f(n) is V(g(n)).

49. Prove Theorem 11.2.7(a): If f is a real-valued 
function defined on a set of nonnegative integers 

and there is a real number r such that f (n) $ 0 for 
every integer n $ r, then f (n) is Q( f (n)).

50. Prove Theorem 11.2.8:
a. Let f and g be real-valued functions defined 

on the same set of nonnegative integers, 
and suppose there is a positive real number 
r such that f (n) $ 0 and g(n) . 0 for every 
integer n $ r. If f(n) is V(g(n)) and c is any 
positive real number, then cf (n) is V(g(n)).

b. Let f and g be real-valued functions defined 
on the same set of nonnegative integers, and 
suppose there is a positive real number r such 
that f (n) $ 0 and g(n) $ 0 for every integer 
n $ r. If f (n) is O(g(n)) and c is any positive 
real number, then cf(n) is O(g(n)).

c. Let f and g be real-valued functions defined 
on the same set of nonnegative integers, and 
suppose there is a positive real number r such 
that f (n) $ 0 and g(n) $ 0 for every integer 
n $ r. If f (n) is Q(g(n)) and c is any positive 
real number, then cf (n) is Q(g(n)).

51. Prove Theorem 11.2.9:
a. Let f1, f2, and g be real-valued functions defined 

on the same set of nonnegative integers, and 
suppose there is a positive real number r such 
that f1(n) $ 0, f2(n) $ 0, and g(n) $ 0 for 
every integer n $ r. If f1(n) is Q(g(n)) and f2(n) is 
Q(g(n)), then (f1(n)1 f2(n)) is Q(g(n)).

b. Let f1, f2, g1, and g2 be real-valued functions 
defined on the same set of nonnegative inte-
gers, and suppose there is a positive real num-
ber r such that f1(n) $ 0, f2(n) $ 0, g1(n) $ 0, 
and g2(n) $ 0 for every integer n $ r. If f1(n) is 
Q(g1(n)) and f2(n) is Q(g2(n)), then ( f1(n)f2(n)) is 
Q(g1(n)g2(n)).

c. Let f1, f2, g1, and g2 be real-valued func-
tions defined on the same set of nonnega-
tive integers, and suppose there is a positive 
real number r such that f1(n) $ 0, f2(n) $ 0, 
g1(n) $ 0, and g2(n) $ 0 for every integer 
n $ r. If f1(n) is Q(g1(n)) and f2(n) is Q(g2(n)) 
and if there is a real number s so that 
g1(n) # g2(n) for every integer n $ s, then 
(f1(n)1 f2(n)) is Q(g2(n)).

H

H

1. f (n) is V(g(n)) 2. f (n) is O(g(n)) 3. f (n) is Q(g(n)) 4. #; # 5. the degree of p (n) 6. n2

AnswERs foR TEsT YouRsElf 

94193_ch11_ptg01.indd   786 12/11/18   6:18 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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Application: Analysis of Algorithm Efficiency I
It is convenient to have a measure of the amount of work involved in a computing 
process, even though it be a very crude one. Á We might, for instance, count the 
number of additions, subtractions, multiplications, divisions, recording of numbers Á * 
—Alan Turing, 1948

Starting in the late 1940s a number of mathematicians and computer scientists contributed 
to developing formal techniques for analyzing computer algorithms. As indicated by the 
quotation at the beginning of this section, Alan Turing may have been the first to suggest 
a concrete way for doing this. In the early 1960s, Donald Knuth began the process of ex-
panding upon his own work and the work of others into a series of volumes titled The Art 
of Computer Programming.† The first three volumes are in their third edition, a fourth vol-
ume is being published in parts, and the fifth through seventh volumes are in preparation. 
The books are providing a solid and extensive foundation for computer science that is both 
elegant and mathematically rigorous.

The Sequential Search Algorithm
The object of a search algorithm is to hunt through an array of data in an attempt to find 
a particular item x. In a sequential search, x is compared to the first item in the array, 
then to the second, then to the third, and so on. The search is stopped if a match is found 
at any stage. On the other hand, if the entire array is processed without finding a match, 
then x is not in the array. An example of a sequential search is shown diagrammatically in 
Figure 11.3.1.

11.3

Alan Turing 
(1912–1954)
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Note For more about the 
work of Alan Turing, see 
Sections 6.4 and 12.3.

Donald Knuth 
(born 1938)
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ot
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*Quarterly Journal of Mechanics and Applied Mathematics, vol. 1 (1948), pp. 287–308.
†Donald E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd ed. (1997); vol. 2: 
Seminumerical Algorithms, 3rd ed. (1997); vol. 3: Searching and Sorting, 2nd ed. (1998); vol. 4a: Combinato-
rial Algorithms Part 1, 1st ed. (2011); vol. 4: Fascicle 6: Satisfiability, 1st ed. (2015) (Addison-Wesley).

FIGuRE 11.3.1 Sequential Search of a[1], a[2], Á , a[7] for x where x 5 a[5]

a[1]

a[1] = x ? a[2] = x ? a[3] = x ? a[4] = x ? a[5] = x ?

a[2] a[3] a[4] a[5] a[6] a[7]
no no no no

yes

Done

Best-, worst-, and Average-Case Orders for Sequential Search

Find best, worst-, and average-case orders for the sequential search algorithm from among 
the set of power functions.

Solution Suppose the sequential search algorithm is applied to an input array a[1],  
a[2], Á , a[n] to find an item x. In the best case, the algorithm requires only one comparison 
between x and the items in a[1], a[2], Á , a[n]. This occurs when x is the first item in the array.  

Example 11.3.1
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  Thus in the best case, the sequential search algorithm is Q(1). (Note that Q(1) 5 Q(n0).)  

In the worst case, however, the algorithm requires n comparisons. This occurs when x 5 a[n] or 
when x does not appear in the array at all. Thus in the worst case, the sequential search algorithm 
is Q(n). Finally, because x is as likely to be in the first half of the array as in the second half, the 
algorithm requires an average of n2 comparisons. Since n2 is Q(n), the algorithm’s average-case 
performance is also Q(n). ■

Measuring the Efficiency of an Algorithm
Two aspects of algorithm efficiency are important: the amount of time required to execute 
the algorithm and the amount of memory space needed when it is run. In this chapter we 
introduce basic techniques for calculating time efficiency. Similar techniques exist for 
calculating space efficiency. Occasionally, one algorithm may make more efficient use of 
time but less efficient use of memory space than another, forcing a trade-off based on the 
resources available to the user.

How can the time efficiency of an algorithm be calculated? The answer depends on 
several factors. One is the size of the set of data that is input to the algorithm; for ex-
ample, it takes longer for a sort algorithm to process 1,000,000 items than 100 items. 
Consequently, the execution time of an algorithm is generally expressed as a function of 
its input size.

Roughly speaking, the analysis of an algorithm for time efficiency begins by trying 
to count the number of elementary operations that must be performed when the algo-
rithm is executed with an input of size n (in the best case, worst case, or average case). 
What is classified as an “elementary operation” may vary depending on the nature 
of the problem the algorithms being compared are designed to solve. For instance, to 
compare two algorithms for evaluating a polynomial, the crucial issue is the number 
of additions and multiplications that are needed, whereas to compare two algorithms 
for searching a list to find a particular element, the important distinction is the num-
ber of comparisons that are required. As is common, we will classify the following as 
elementary operations: addition, subtraction, multiplication, division, and compari-
sons that are indicated explicitly in an if-then statement using one of the relational sym-
bols ,, #, ., $, 5, or Þ.

When algorithms are implemented in a particular programming language and run on 
a particular computer, some operations are executed faster than others, and, of course, 
there are differences in execution times from one machine to another. In certain practical 
situations these factors are taken into account when deciding which algorithm or which 
machine to use to solve a particular problem. In other cases, however, the machine is fixed, 
and rough estimates are all that are needed to determine the clear superiority of one algo-
rithm over another. Since each elementary operation is executed in time no longer than the 
slowest, the time efficiency of an algorithm is approximately proportional to the number 
of elementary operations required to execute the algorithm.

Consider the example of two algorithms, A and B, designed to do a certain job. Sup-
pose that for an input of size n, the number of elementary operations needed to perform 
algorithm A is between 10n and 20n (at least for large n), and the number of elementary 
operations needed to perform algorithm B is between 2n2 and 4n2. We say that in the worst 
case, algorithm A is Q(n) (or has worst-case order n) and that in the worst case, algorithm 
B is Q(n2) (or has worst-case order n2).

To compare the efficiencies of A and B, let Max A be the maximum number of opera-
tions needed to execute algorithm A, and let Min B be the minimum number of operations 
needed to execute algorithm B. Then Max A is 20n and Max B is 2n2. Table 11.3.1 shows 
the differences between algorithms A and B for larger and larger values of n.
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For example, to accomplish a job with an input size of 1,000,000, algorithm B requires 
almost 2 trillion more elementary operations than algorithm A. One way to look at this is 
that algorithm B has to perform 100,000 operations for each single operation performed by 
algorithm A.

TABLE 11.3.1 Number of Elementary Operations for Algorithms A and B

Max A Min B Max B2Max A

n 20n 2n2 2n2 220n

1,000 20,000 2,000,000 1,980,000

10,000 200,000 200,000,000 199,800,000

1,000,000 20,000,000 2,000,000,000,000 1,999,980,000,000

Definition

Let A be an algorithm.

1. Suppose the number of elementary operations performed when A is executed for 
an input of size n depends on n alone and not on the nature of the input data; say 
it equals f (n). If f (n) is Q(g(n)), we say that A is Q(g(n)) or A is of order g(n).

2. Suppose the number of elementary operations performed when A is executed for 
an input of size n depends on the nature of the input data as well as on n.

a. Let b(n) be the minimum number of elementary operations required to execute 
A for all possible input sets of size n. If b(n) is Q(g(n)), we say that in the best 
case, A is Q(g(n)) or A has a best-case order of g(n).

b. Let w(n) be the maximum number of elementary operations required to ex-
ecute A for all possible input sets of size n. If w(n) is Q(g(n)), we say that in the 
worst case, A is Q(g(n)) or A has a worst-case order of g(n).

Some of the orders most commonly used to describe algorithm efficiencies are shown 
in Table 11.3.2. As you see from the table, differences between the orders of various types 
of algorithms can be more than astronomical. For instance, the time required for an algo-
rithm of order 2n to operate on a data set of size 100,000 is approximately 1030,076 times the 
estimated 13.8 billion years since the universe began (according to one theory of cosmol-
ogy). On the other hand, an algorithm of order log2 n needs at most a fraction of a second 
to process the same data set.

TABLE 11.3.2 Time Comparisons of Some Algorithm Orders

Approximate Time to Execute f(n) Operations Assuming One Operation per Nanosecond*

f(n) n 5 10 n 5 1,000 n 5 100,000 n 5 10,000,000

log2 n 3.3 3 1029 sec 1028 sec 1.7 3 1028 sec 2.3 3 1028 sec

n 1028 sec 1026 sec 0.0001 sec 0.01 sec

n log2 n 3.3 3 1028 sec 1025 sec 0.0017 sec 0.23 sec

n2 1027 sec 0.001 sec 10 sec 27.8 hr

n3 1026 sec 1 sec 11.6 days 31,688 yr

2n 1026 sec 3.4 3 10284 yr 3.1 3 1030086 yr 2.9 3 103010283 yr

*one nanosecond 5 1029 second, one year > 365.25 days

94193_ch11_ptg01.indd   789 12/11/18   6:10 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



790  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

Computing an Order of an Algorithm Segment

Assume n is a positive integer and consider the following algorithm segment:

p :5 0, x :5 2

for i :5 2 to n

p :5 (p1 i)?x

next i

a. Compute the actual number of elementary operations that are performed when this 
algorithm segment is executed.

b. Use the theorem on polynomial orders to find an order for this algorithm segment. 

Solution
a. This algorithm segment has just one loop, which goes from 2 to n, and so there are as 

many iterations of the loop as there are integers from 2 to n, namely n2211 5 n21.*  
During each iteration, one multiplication and one addition are performed. Thus twice 
as many elementary operations are performed as there are iterations of the loop, and 
hence 2(n21) 5 2n22 elementary operations are performed when the algorithm 
segment is executed.

b. By the theorem on polynomial orders,

2n22 is Q(n),

and so this algorithm segment is Q(n). ■

The next example looks at an algorithm segment that contains a nested loop.

An Order for an Algorithm with a Nested Loop

Assume n is a positive integer and consider the following algorithm segment:

s :5 0

for i :5 1 to n

for j :5 1 to i

if j 

i

j
k?j 5 i then s :5 s11

next j

next i

a. Compute the actual number of elementary operations that are performed when this 
algorithm segment is executed.

b. Use the theorem on polynomial orders to find an order for this algorithm segment. 
Solution
a. Each iteration of the inner loop requires one division and one multiplication, so the 

total number of elementary operations is twice the number of iterations of the inner 
loop. Now the inner loop is iterated

one time when i 5 1

two times when i 5 2

Example 11.3.2

Example 11.3.3

*See “Counting the Elements of a List” in Section 9.1 to review this fact.
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Hence the total number of iterations of the inner loop is

112131 Á 1n 5
n(n11)

2
  by Theorem 5.2.1,

and so the number of elementary operations performed is 

2?
n(n11)

2
5 n(n11).

An alternative method for computing the number of columns of the table uses an ap-
proach discussed in Example 9.6.3. Observe that the number of columns in the table is the 
same as the number of ways to place two 3’s in n categories, 1, 2, Á , n, where the loca-
tion of the 3’s indicates the values of i and j with j # i. By Theorem 9.6.1, this number is

Sn2112

2 D 5 Sn11

2 D 5
(n11)!

2!((n11)22)!
 5

(n11)n(n21)!

2(n21)!
5

n(n11)

2
.

Although, for this example, the alternative method is more complicated than the one pre-
ceding it, it is simpler when the number of loop nestings exceeds two. (See exercise 19.)

b. By the theorem on polynomial orders, n(n11) 5 n2 1n is Q(n2), and so this algo-
rithm segment is Q(n2). ■

when the Number of Iterations Depends on the Floor Function

Assume n is a positive integer and consider the following algorithm segment:

for i :5 :ny2; to n

a :5 n2  i

next i

a. Compute the actual number of elementary operations that are performed when this 
algorithm segment is executed.

b. Use the theorem on polynomial orders to find an order for this algorithm segment. 
Solution
a. Each iteration of the loop requires one subtraction, and the loop is iterated as many 

times as there are integers from :ny2; to n, namely, n2 :n2;11 times. If n is even, then 
:n2; 5

n
2, and so the number of elementary operations performed is

n2 jn
2
k11 5 n2

n

2
11 5

n12

2
.

Example 11.3.4

three times when i 5 3

o
n times when i 5 n.

You can see this easily if you construct a table that shows the values of i and j for 
which the statements in the inner loop are executed. Each column in the table repre-
sents one iteration.

i 1 2 3 4 n

j 1 1 2 1 2 3 1 2 3 4 1 2 3 n

1 2 3 4 n
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The following is a formal algorithm for insertion sort.

If n is odd, then :n2; 5
n 2 1

2 , and so the number of elementary operations performed is

n2 jn
2
k11 5 n2

n21

2
11 5

2n2 (n21)12

2
5

n13

2
.

b. By the theorem on polynomial orders,

n12

2
 is Q(n) and n13

2
 is Q(n)

also. Hence, regardless of whether n is even or odd, this algorithm segment is Q(n). ■

The Insertion Sort Algorithm
Insertion sort is an algorithm for arranging the items in an array into ascending order. Ini-
tially, the second item is compared to the first. If the second item is less than the first, their 
values are interchanged, and as a result the first two array items are in ascending order. 
The idea of the algorithm is gradually to lengthen the section of the array that is known 
to be in ascending order by inserting each subsequent array item into its correct position 
relative to the preceding ones. When the last item has been placed, the entire array is in 
ascending order.

Figure 11.3.2 illustrates the action of step k of insertion on an array a[1], a[2], a[3], Á , 
a[n].

FIGuRE 11.3.2 Step k of Insertion Sort

sorted subarray

a[1], a[2], a[3], . . . , a[k – 1], a[k], a[k + 1], . . . , a[n]

Step k: Insert the value of a[k] into its proper position relative to
a[1], a[2], . . . , a[k – 1].  At the end of this step a[1], a[2], . . . , a[k] is sorted.

Algorithm 11.3.1 Insertion Sort

[The aim of this algorithm is to take an array a[1], a[2], a[3], Á , a[n], where n $ 1,  
and reorder it. The output array is also denoted a[1], a[2], a[3], Á , a[n]. It has the 
same values as the input array, but they are in ascending order. In the kth step, a[1],  
a[2], a[3], Á , a[k21] is in ascending order, and a[k] is inserted into the correct posi-
tion with respect to it.]

Input: n  [a positive integer], a[1], a[2], a[3], Á , a[n] [an array of data items capable 
of being ordered]
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Example 11.3.5 develops a trace table for the action of insertion sort on a particular array.

A Trace Table for Insertion Sort

Construct a trace table showing the action of insertion sort on the array

a[1] 5 6, a[2] 5 3, a[3] 5 5, a[4] 5 7, a[5] 5 2.

Solution
The first column shows the state of the variables before the first iteration of the for-next 
loop. When the for-next loop is first iterated, k is assigned the value 2; x the value of a[2], 
which is 3; and j the value of k21, which is 1. Because j Þ 0, the while loop is entered 
and the condition for the if-then-else statement is tested. Because a[1] . x, then a[2] is 
assigned the value of a[1], which is 6, j is assigned the value of j21, which is 0, and a[1] is 

Example 11.3.5

Figure 11.3.3 shows the result of each step when insertion sort is applied to the particu-
lar array

a[1] 5 6, a[2] 5 3, a[3] 5 5, a[4] 5 7, a[5] 5 2.

Algorithm Body: 
for k :5 2 to n

[Compare a[k] to previous items in the array a[1], a[2], a[3], Á , a[k21], starting from 
the largest and moving downward. Whenever a[k] is less than a preceding array item, 
the indexes of a[k] and the preceding item are switched. As soon as a[k] is greater than 
or equal to an array item, the value of a[k] is left unchanged.]
  x :5 a[k]
  j :5 k21
  while (j Þ 0)
   if x , a[ j] then
      a[ j11] :5 a[j]
      a[  j] :5 x
      j :5 j21
     else j :5 0
   end if
  end while
next k

Output: a[1], a[2], a[3], Á , a[n] [in ascending order]

FIGuRE 11.3.3 Action of Insertion Sort on an Array

6 3 5 7 2

a[1] a[2] a[3] a[4] a[5]

3 6 5 7 2

3 5 6 7 2

3 5 6 7 2

2 3 5 6 7

Initial

Result of step 1

Result of step 2

Result of step 3

Result of step 4

The top row of the table shows the initial values of the
array, and the bottom row shows the �nal values. The result
of each step is shown in a separate row. For each step,
the sorted section of the array is shaded.
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assigned the value of x, which is 3. The condition governing the while loop is tested again, 
but since j 5 0, it is not satisfied, and so the while loop is not entered. Then the value of 
k is incremented by 1 (so that it equals 3), and the for-next loop is entered a second time. 
This process continues until the value of k has been incremented to 6. Because 6 is greater 
than the top value in the for-next loop, execution of the algorithm ceases, and the array 
items are in ascending order.

n 5

a[1] 6 3 2

a[2] 3 6 5 2 3

a[3] 5 6 2 5

a[4] 7 2 6

a[5] 2 7

k 2 3 4 5

x 3 5 7 2

j 1 0 2 1 0 3 0 4 3 2 1 0
 ■

Finding a worst-Case Order for Insertion Sort

a. When insertion sort is applied to the array a[1], a[2], a[3], Á , a[n], what is the maxi-
mum number of comparisons if those that control the while and for-next loops are 
included in the count?

b. Use the theorem on polynomial orders to find a worst-case order for insertion sort. 

Solution
a. In each iteration of the while loop, one explicit comparison is made to test whether  

a[j] . x. During the time that a[k] is put into position relative to a[1], a[2], Á , 
a[k21], the maximum number of attempted iterations of the while loop is k. This 
happens when a[k] is less than every a[1], a[2], Á , a[k21] and results in k21 
comparisons. Then when the kth iteration is attempted, a comparison results in set-
ting j 5 0 and so the condition of the while loop is not satisfied. Thus the maximum 
number of comparisons for a given value of k is k21. Now because k goes from 2 to 
n, the maximum total number of comparisons occurs when the items in the array are 
in reverse order, and it equals

2131 Á 1n 5 (112131 Á 1n)21 by adding and subtracting 1

5 
n(n11)

2
21 by Theorem 5.2.1

5  
n(n11)

2
21

5 
1

2
 n2 1

1

2
 n21 by algebra.

b. By the theorem on polynomial orders, 12 n2 1 1
2 

n21 is Q(n2), and so the insertion sort 
algorithm has worst-case order Q(n2). ■

Example 11.3.6
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The definition of expected value that was introduced in Section 9.8 can be used to find 
an average-case order for insertion sort.

Finding an Average-Case Order for Insertion Sort

a. What is the average number of comparisons that are performed when insertion sort is 
applied to the array a[1], a[2], a[3], Á , a[n]?

b. Use the theorem on polynomial orders to find an average-case order for insertion sort. 

Solution
a. For any positive integer n, let En be the average, or expected, number of comparisons  

used to sort a[1], a[2], Á , a[n] with insertion sort. Then for each integer k 5 2, 3, Á , n,

3the expected number of
comparisons used to
sort a[1], a[2], Á , a[k]4

5 3the expected number of

comparisons used to

sort a[1], a[2], Á , a[k21]
413the expected number of comparisons

used to place a[k] into position
relative to a[1], a[2], Á , a[k21] 4.

Thus

Ek 5 Ek21 13the expected number of comparisons
used to place a[k] into position
relative to a[1], a[2], Á , a[k21] 4.

Also, E1 5 0 because when there is just one item in the array, n 5 1 and no iterations 
of the outer loop are performed.

Now at the time the while loop is used to place a[k] relative to a[1], a[2], Á , 
a[k21], on average the value of a[k] is equally likely to belong in any one of the first 
k positions. Thus the probability of its belonging in any particular position is 1yk. If 
it actually belongs in position j, then k2 j11 comparisons will be used to move it, 
because there will be k2 j11 attempted iterations of the while loop and, as noted in 
Example 11.3.6, there is one comparison per attempted iteration.

According to the definition of expected value given in Section 9.8, the expected 
number of comparisons used to place a[k] relative to a[1], a[2], Á , a[k21] is therefore

o
k

j51

1

k
 (k2 j11) 5

1

k
 o

k

j51

(k2 j11) by Theorem 5.1.1

5
1

k
 <k1 (k21)1 Á 131211= by writing the summation in 

expanded form

5 
1

kSk(k11)

2 D by Theorem 5.2.1

5 
k11

2
 by algebra.

Hence

Ek 5 Ek21 1
k11

2
 for every integer k $ 2, and

E1 5 0.

Example 11.3.7
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In exercise 27 at the end of the section you are asked to solve this recurrence relation 
to show that

En 5
n2 13n24

4
 for each integer n $ 1.

b. By the theorem on polynomial orders, n
2 1 3n 2 4

4 5 1
4 

n2 1
3
4 

n21 is Q(n2), and so the 

average-case order of insertion sort is also Q(n2).  ■

1. When an algorithm segment contains a nested  
for-next loop, you can find the number of times 
the loop will iterate by constructing a table in 
which each column represents .

2. In the worst case for an input array of length 
n, the sequential search algorithm has to look 

through  elements of the array before it 
terminates.

3. The worst-case order of the insertion sort algo-
rithm is , and its average-case order is 

.

TEST YOuRSELF 

1. Suppose a computer takes 1 nanosecond (51029 
second) to execute each operation. Approximately 
how long will it take the computer to execute 
the following numbers of operations? Convert 
your answers into seconds, minutes, hours, days, 
weeks, or years, as appropriate. For example, 
instead of 250 nanoseconds, write 13 days.
a. log2 200  b.  200  c.  200 log2 200
d. 2002 e.  2008   f.  2200

2. Suppose an algorithm requires cn2 operations 
when performed with an input of size n (where c is 
a constant).
a. How many operations will be required when 

the input size is increased from m to 2m (where 
m is a positive integer)?

b. By what factor will the number of operations 
increase when the input size is doubled?

c. By what factor will the number of operations 
increase when the input size is increased by a 
factor of ten? 

3. Suppose an algorithm requires cn3 operations 
when performed with an input of size n (where c is 
a constant).
a. How many operations will be required when 

the input size is increased from m to 2m (where 
m is a positive integer)?

b. By what factor will the number of operations 
increase when the input size is doubled?

c. By what factor will the number of operations 
increase when the input size is increased by a 
factor of ten? 

Exercises 4–5 explore the fact that for relatively small 
values of n, algorithms with larger orders can be more ef-
ficient than algorithms with smaller orders.

4. Suppose that when run with an input of size n, 
algorithm A requires 2n2 operations and algorithm 

B requires 80n3y2 operations.
a. What are orders for algorithms A and B from 

among the set of power functions?
b. For what values of n is algorithm A more 

efficient than algorithm B?
c. For what values of n is algorithm B at least 

100 times more efficient than algorithm A? 
5. Suppose that when run with an input of size n, al-

gorithm A requires 106n2 operations and algorithm 
B requires n3 operations.
a. What are orders for algorithms A and B from 

among the set of power functions?
b. For what values of n is algorithm A more 

efficient than algorithm B?
c. For what values of n is algorithm B at least 100 

times more efficient than algorithm A? 

For each of the algorithm segments in 6–19, assume that 
n is a positive integer. (a) Compute the actual number of 
elementary operations (additions, subtractions, multipli-
cations, divisions, and comparisons) that are performed 

ExERCISE SET 11.3 
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when the algorithm segment is executed. For simplicity, 
however, count only comparisons that occur within if-
then statements; ignore those implied by for-next loops. 
(b) Use the theorem on polynomial orders to find an order 
for the algorithm segment.

6. for i :5 3 to n21
a :5 3?n12?i21

next i

7. max :5 a[1]
for i :5 2 to n
  if max , a[i] then max :5 a[i]
next i

8. a :5 0
for i :5 1 to :n/2;
   a :5 a13
next i

9. s :5 0
for i :5 1 to n
 for j :5 1 to 2n
   s :5 s1 i?j
 next j
next i

10. for k :5 2 to n
 for j :5 1 to 3n
   x :5 a[k]2b[ j]
 next j
next k

11. for k :5 1 to n21
 for j :5 1 to k11
  x :5 a[k]1b[j]
 next j
next k

12. for k :5 1 to n21
 max :5 a[k]
 for i :5 k11 to n
  if max , a[i] then max :5 a[i]
 next i
a[k] :5 max
next k

13. for i :5 1 to n21
 for j :5 i to n
  if a[ j ] . a[i] then do
   temp :5 a[i]
   a[i] :5 a[j]
   a[j] :5 temp
   end do
 next j
next i

14. t :5 0
for i :5 1 to n
  s :5 0
  for j :5 1 to i
    s :5 s1a[ j]
  next j
  t :5 t1 s2

next i

15. for i :5 1 to n21
  p :5 1
  q :5 1
  for j :5 i11 to n
    p :5 p?c[ j]
    q :5 q?(c[ j])2

  next j
  r :5 p1q
next i

16. for i: 5 1 to n
  s :5 0
  for j :5 1 to i21
    s :5 s1 j?(i2 j11)
  next j
   r :5 s2

next i

17. for i :5 1 to n
  for j :5 1 to :(i+1)y2;
    a :5 (n2 i)?(n2 j)
   next j
next i

18. for i :5 1 to n
  for j :5 :(i11)y2; to n
    x :5 i?j
  next j
next i

19. for i :5 1 to n
  for j :5 1 to i
   for k :5 1 to j
       x :5 i?j?k
   next k
  next j
next i

20. Construct a table showing the result of each step 
when insertion sort is applied to the array a[1] 5 6, 
a[2] 5 2, a[3] 5 1, a[4] 5 8, and a[5] 5 4.

21. Construct a table showing the result of each step 
when insertion sort is applied to the array a[1] 5 7, 
a[2] 5 3, a[3] 5 6, a[4] 5 9, and a[5] 5 5.

H*
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22. Construct a trace table showing the action of 
insertion sort on the array of exercise 20.

23. Construct a trace table showing the action of 
insertion sort on the array of exercise 21.

24. How many comparisons between values of a[ j] 
and x actually occur when insertion sort is applied 
to the array of exercise 20?

25. How many comparisons between values of a[ j] 
and x actually occur when insertion sort is applied 
to the array of exercise 21?

26. According to Example 11.3.6, the maximum num-
ber of comparisons needed to perform insertion 
sort on an array of length five is 52 1522 5 28. 
Find an array of length five that requires the 
maximum number of comparisons when insertion 
sort is applied to it.

27. Consider the recurrence relation that arose in 
Example 11.3.7: E1 5 0 and Ek 5 Ek21 1

k 1 1
2 , for 

each integer k $ 2.
a. Use iteration to find an explicit formula for the 

sequence.
b. Use mathematical induction to verify the cor-

rectness of the formula. 

Exercises 28–35 refer to selection sort, which is another 
algorithm to arrange the items in an array in ascending 
order.

Algorithm 11.3.2 Selection Sort
[Given an array a[1], a[2], a[3], …, a[n], this algorithm 
selects the smallest element and places it in the first 
position, then selects the second smallest element and 
places it in the second position, and so forth, until the 
entire array is sorted. In general, for each k 5 1 to n21, 
the kth step of the algorithm selects the index of the array 
item with minimum value from among a[k11], a[k12],  
a[k13], Á , a[n]. Once this index is found, the value of 
the corresponding array item is interchanged with the 
value of a[k] unless the index already equals k. At the end 
of execution the array elements are in order.]

Input: n [a positive integer], a[1], a[2], a[3], Á , a[n] [an 
array of data items capable of being ordered]

Algorithm Body:
for k :5 1 to n21
  IndexOfMin :5 k
  for i :5 k11 to n
   if (a[i] , a[IndexOfMin])
   then IndexOfMin :5 i

 next i
  if IndexOfMin Þ k then
   Temp :5 a[k]
   a[k] :5 a[IndexOfMin]
   a[IndexOfMin] :5 Temp
next k
Output: a[1], a[2], a[3], Á , a[n] [in ascending order]

The action of selection sort can be represented pictori-
ally as follows:

a[1] a[2] Á a[k]  a[k11] Á a[n]

c
kth step: Find the index of the array element with 
minimum value from among a[k11], Á , a[n]. 
If the value of this array element is less than the 
value of a[k], then its value and the value of a[k] 
are interchanged.

28. Construct a table showing the interchanges that 
occur when selection sort is applied to the ar-
ray a[1] 5 7, a[2] 5 3, a[3] 5 8, a[4] 5 4, and 
a[5] 5 2.

29. Construct a table showing the interchanges that 
occur when selection sort is applied to the ar-
ray a[1] 5 6, a[2] 5 4, a[3] 5 5, a[4] 5 8, and 
a[5] 5 1.

30. Construct a trace table showing the action of 
selection sort on the array of exercise 28.

31. Construct a trace table showing the action of 
selection sort on the array of exercise 29.

32. When selection sort is applied to the array of exer-
cise 28, how many times is the comparison in the 
if-then statement performed?

33. When selection sort is applied to the array of exer-
cise 29, how many times is the comparison in the 
if-then statement performed?

34. When selection sort is applied to an array a[1], 
a[2], a[3], a[4], how many times is the comparison 
in the if-then statement performed?

35. Consider applying selection sort to an array a[1], 
a[2], a[3], Á , a[n].
a. How many times is the comparison in the 

if-then statement performed when a[1] is com-
pared to each of a[2], a[3], Á , a[n]?

b. How many times is the comparison in the 
if-then statement performed when a[2] is 
compared to each of a[3], a[4], Á , a[n]?

H
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c. How many times is the comparison in the 
if-then statement performed when a[k] is 
compared to each of a[k21], a[k12], Á , 
a[n]? 

d. Using the number of times the comparison  
in the if-then statement is performed as a 
measure of the time efficiency of selection 
sort, find a worst-case order for selection 
sort. Use the theorem on polynomial  
orders. 

Exercises 36–39 refer to the following algorithm to com-
pute the value of a real polynomial.

Algorithm 11.3.3 Term-by-Term Polynomial Evaluation
[This algorithm computes the value of a polynomial  
a[n]xn 1a[n21]xn21 1 Á 1a[2]x2 1a[1]x1a[0] by 
computing each term separately, starting with a[0], and 
adding it to an accumulating sum.]

Input: n [a nonnegative integer], a[0], a[1], a[2], Á , a[n] 
[an array of real numbers], x [a real number]
Algorithm Body:
 polyval :5 a[0]
 for i :5 1 to n
  term :5 a[i]
  for j :5 1 to i
   term :5 term?x
  next j
  polyval :5 polyval1 term
 next i
 [At this point
 polyval 5 a[n]xn 1a[n21]xn21

1 Á 1a[2]x2 1a[1]x1a[0].]
Output: polyval [a real number]

36. Trace Algorithm 11.3.3 for the input n 5 3, 
a[0] 5 2, a[1] 5 1, a[2] 5 21, a[3] 5 3, and 
x 5 2.

37. Trace Algorithm 11.3.3 for the input n 5 2, 
a[0] 5 5, a[1] 5 21, a[2] 5 2, and x 5 3.

38. Let sn 5 the number of additions and multiplica-
tions that are performed when Algorithm 11.3.3 is 
executed for a polynomial of degree n. Express sn 
as a function of n.

39. Use the theorem on polynomial orders to find an 
order for Algorithm 11.3.3. 

Exercises 40–43 refer to another algorithm, 
known as Horner’s rule, for finding the value of a 
polynomial.

Algorithm 11.3.4 Horner’s Rule
[This algorithm computes the value of a polynomial 
a[n]xn 1a[n21]xn21 1 Á 1a[2]x2 1a[1]x1a[0] by nest-
ing successive additions and multiplications as indicated 
in the following parenthesization:

(( Á ((a[n]x1a[n21])x1a[n22])x
1 Á 1a[2])x1a[1])x1a[0].

At each stage, starting with a[n], the current value of 
polyval is multiplied by x and the next lower coefficient of 
the polynomial is added to it.]

Input: n [a nonnegative integer], a[0], a[1], a[2], Á , 
a[n] [an array of real numbers], x [a real number]

Algorithm Body:
 polyval :5 a[n]
 for i :5 1 to n
   polyval :5 polyval?x1a[n2 i]
 next i
 [At this point
 polyval 5 a[n]xn 1a[n21]xn−1

 1 Á 1a[2]x2 1a[1]x1a[0].]

Output: polyval [a real number]

40. Trace Algorithm 11.3.4 for the input n 5 3, a[0] 5 2, 
a[1] 5 1, a[2] 5 21, a[3] 5 3, and x 5 2.

41. Trace Algorithm 11.3.4 for the input n 5 2, 
a[0] 5 5, a[1] 5 21, a[2] 5 2, and x 5 3.

42. Let tn 5 the number of additions and multiplica-
tions that are performed when Algorithm 11.3.4 is 
executed for a polynomial of degree n. Express tn 
as a function of n.

43. Use the theorem on polynomial orders to find an 
order for Algorithm 11.3.4. How does this order 
compare with that of Algorithm 11.3.3? 

H

H

1. one iteration of the innermost loop 2. n 3. n2; n2

ANSwERS FOR TEST YOuRSELF 
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800  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

Exponential and Logarithmic Functions:  
Graphs and Orders
Although this may seem a paradox, all exact science is dominated by the idea of 
approximation. —Bertrand Russell, 1872–1970

Exponential and logarithmic functions are of great importance in mathematics in gen-
eral and in computer science in particular. Several important computer algorithms 
have execution times that involve logarithmic functions of the size of the input data 
(which means they are relatively efficient for large data sets), and some have execution 
times that are exponential functions of the size of the input data (which means they are 
extremely inefficient for large data sets). In addition, since exponential and logarith-
mic functions arise naturally in the descriptions of many growth and decay processes 
and in the computation of many kinds of probabilities, these functions are used in 
the analysis of computer operating systems, in queuing theory, and in the theory of 
information.

Graphs of Exponential Functions
As defined in Section 7.2, the exponential function with base b . 0 is the function that 
sends each real number x to bx. The graph of the exponential function with base 2 (together 
with a partial table of its values) is shown in Figure 11.4.1. Note that the values of this func-
tion increase with extraordinary rapidity. If we tried to continue drawing the graph using 
the scale shown in Figure 11.4.1, we would have to plot the point (10, 210) more than 21 
feet above the horizontal axis. And the point (30, 230) would be located more than 610,080 
miles higher—well beyond the moon!

x

y

1–1–2–3 2 3

1

2

3

4

5

6

7
y 5 2x

x 2x

0

1

2

3

–1

–2

–3

0.5

–0.5

20 5 1

21 5 2

22 5 4

23 5 8

2–1 5 0.5

2–2 5 0.25

2–3 5 0.125

20.5       1.414

2–0.5       0.707

FIGuRE 11.4.1 The Exponential Function with Base 2

The graph of any exponential function with base b . 1 has a shape that is simi-
lar to the graph of the exponential function with base 2. If 0 , b , 1, then 1/b . 0  
and the graph of the exponential function with base b is the reflection across the 
vertical axis of the exponential function with base 1/b. These facts are illustrated in 
Figure 11.4.2.

11.4
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1–1–2 2

y

x

(1, b)b

1(–1,   )1
b

y = bx, b . 1

Graph of the exponential function
with base b . 1

(a)

1–1–2 2

y

x

(1, b)
b
1

(–1,   )1
b

y = bx,
0 , b ,1

Graph of the exponential function
with base b where 0 , b , 1

(b)

FIGuRE 11.4.2 Graphs of Exponential Functions

Graphs of Logarithmic Functions
Logarithms were first introduced by the Scotsman John Napier. Astronomers and naviga-
tors found them so useful for reducing the time needed to do multiplication and division 
that they quickly gained wide acceptance and played a crucial role in the remarkable devel-
opment of those areas in the seventeenth century. Nowadays, however, electronic calcula-
tors and computers are available to handle most computations quickly and conveniently, 
and logarithms and logarithmic functions are used primarily as conceptual tools.

Recall the definition of the logarithmic function with base b from Section 7.1. We state 
it formally below.

Definition

If b is a positive real number not equal to 1, then the logarithmic function with 
base b, logb: R

1 S R, is the function that sends each positive real number x to the 
number logb x, which is the exponent to which b must be raised to obtain x.

The logarithmic function with base b is, in fact, the inverse of the exponential function 
with base b. (See exercise 10 at the end of this section.) It follows that the graphs of the 
two functions are symmetric with respect to the line y 5 x. The graph of the logarithmic 
function with base b . 1 is shown in Figure 11.4.3 on the next page.

If its base b is greater than 1, the logarithmic function is increasing. Analytically, this 
means that

if b . 1, then for all positive numbers x1 and x2,

 if x1 , x2, then logb(x1) , logb(x2). 11.4.1

Corresponding to the rapid growth of the exponential function, however, is the very 
slow growth of the logarithmic function. Thus you must go very far out on the horizontal 
axis to find points whose logarithms are large numbers.

The following example shows how to make use of the increasing nature of the logarith-
mic function with base 2 to derive a remarkably useful property.

John Napier  
(1550–1617)

Be
tt

m
an

n/
Ge

tt
y 

Im
ag

es

Note As examples, 
log2(1,024) is only 10 and 
log2(1,048,576) is just 20.
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Base 2 Logarithms of Numbers between Two Consecutive Powers of 2

Prove the following property:

a.
If k is an integer and x is a real number with

 2k # x , 2k11, then :log2 x; 5 k. 11.4.2

b. Describe property (11.4.2) in words and give a graphical interpretation of the property 
for x . 1.

Solution

a. Suppose that k is an integer and x is a real number with

2k # x , 2k11.

Because the logarithmic function with base 2 is increasing, this implies that

log2(2
k) # log2 x , log2(2

k11).

But log2(2
k) 5 k [the exponent to which you must raise 2 to get 2k is k] and 

log2(2
k11) 5 k11 [for a similar reason]. Hence

k # log2 x , k11.

By definition of the floor function, then

:log2 x; 5 k.

b. Recall that the floor of a positive number is its integer part. For instance, :2.82; 5 2. 
Hence property (11.4.2) can be described in words as follows: 

If x is a positive number that lies between two consecutive integer powers of 2, the 
floor of the logarithm with base 2 of x is the exponent of the smaller power of 2.

Example 11.4.1

x

y

1

1

–1

y = logb x

logb x1

logb x2

x1 x2

FIGuRE 11.4.3 The Graph of the Logarithmic Function with Base b . 1    
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A graphical interpretation follows:

y = log2 x

0

1

2

3

k

k + 1

1 2 22 = 4 23 = 8 2k 2k+1

If x lies in here

 then log2 x lies in here:

One consequence of property (11.4.2) does not appear particularly interesting in its own 
right but is frequently needed as a step in the analysis of algorithm efficiency.

when log2(n 2 1)  5 log2 n  
Prove the following property:

 For any odd integer n . 1, :log2(n21); 5 :log2 n;. 11.4.3

Solution If n is an odd integer that is greater than 1, then n lies strictly between two suc-
cessive powers of 2:

 2k , n , 2k11 for some integer k . 0. 11.4.4

It follows that 2k # n21 because 2k , n and both 2k and n are integers. Consequently,

 2k # n21 , 2k1l. 11.4.5

Applying property (11.4.2) to both inequalities (11.4.4) and (11.4.5) gives

:log2 n; 5 k  and also  :log2(n21); 5 k.

Hence :log2 
n; 5 :log2(n21);. ■

Application: Number of Bits Needed to Represent  
an Integer in Binary Notation
Given a positive integer n, how many binary digits are needed to represent n? To answer 
this question, recall from Section 5.4 that any positive integer n can be written in a unique 
way as

n 5 2k 1ck21?2k21 1 Á 1c2?22 1c1?21c0,

where k is a nonnegative integer and each c0, c1, c2, . . . ck21 is either 0 or 1. Then the binary 
representation of n is

1ck21ck22
Á c2c1c0,

and so the number of binary digits needed to represent n is k11.
What is k11 as a function of n? Observe that since each ci # 1,

n 5  2k 1ck21?2k21 1 Á 1c2?22 1c1?21c0  

#
 

2k 12k21 1 Á 122 1211.

■

Example 11.4.2
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Now, by the formula for the sum of a geometric sequence (Theorem 5.2.2),

2k 12k21 1 Á 122 1211 5
2k11 21

221
5 2k11 21.

Hence, by transitivity of order,

 n # 2k11 21 , 2k11. 11.4.6

In addition, because each ci $ 0,

 2k  #  2k 1ck21?2k21 1 Á 1c2?22 1c1?21c0  

5
 

n. 11.4.7

Putting inequalities (11.4.6) and (11.4.7) together gives the double inequality

2k # n , 2k11.

Then, by property (11.4.2),

k 5 :log2 n;,

and so the number of binary digits needed to represent n is :log2 
n;11.

Number of Bits in a Binary Representation

How many binary digits are needed to represent 52,837 in binary notation?

Solution If you compute the logarithm with base 2 using the formula in part (a) of Theo-
rem 7.2.1 and a calculator or computer that gives you approximate values of logarithms 
with base 10, you find that

 log2(52,837) >
log10(52,837)

log10(2)
>

4.722938151

0.3010299957
> 15.7.

Thus the binary representation of 52,837 has :15.7;11 5 1511 5 16 binary digits. ■

Application: Using Logarithms to Solve Recurrence Relations
In Chapter 5 we discussed methods for solving recurrence relations. A class of recur-
rence relations that is very important in computer science has solutions that can be 
expressed in terms of logarithms. One such recurrence relation is discussed in the next 
example.

A Recurrence Relation with a Logarithmic Solution

Define a sequence a1, a2, a3, . . . recursively as follows:

 a1 5 1

 ak 5 2a:ky2; for each integer k $ 2.

a. Use iteration to guess an explicit formula for this sequence.

b. Use strong mathematical induction to confirm the correctness of the formula obtained 
in part (a).

Example 11.4.3

Example 11.4.4
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Solution

a. Begin by iterating to find the values of the first few terms of the sequence.

 a1 5 1

 a2 5 2a:2y2; 5 2a1 5 2?1 5 2

 a3 5 2a:3y2; 5 2a1 5 2?1 5 2

 a4 5 2a:4y2; 5 2a2 5 2?2 5 4

 a5 5 2a:5y2; 5 2a2 5 2?2 5 4

 a6 5 2a:6y2; 5 2a3 5 2?2 5 4

 a7 5 2a:7y2; 5 2a3 5 2?2 5 4

 a8 5 2a:8y2; 5 2a4 5 2?4 5 8

 a9 5 2a:9y2; 5 2a4 5 2?4 5 8

 o  o
 a15 5 2a:15y2; 5 2a7 5 2?4 5 8

 a16 5 2a:16y2; 5 2a8 5 2?8 5 16

 o  o
Note that in each case when the subscript n is between two powers of 2, an equals the 
smaller power of 2. More precisely:

 If 2i # n , 2i11, then an 5 2i. 11.4.8

Now since n satisfies the inequality

2i # n , 2i11,

then (by property 11.4.2)

i 5 :log2 n;.

Substituting into statement (11.4.8) suggests that

an 5 2:log2 n;.

b. The following proof shows that the recursively defined sequence defined in this  
example does in fact satisfy the formula obtained in part (a). In other words, if a1, a2, 
a3, . . . is a sequence of numbers that satisfies

a1 5 1, and ak 5 2a:ky2; for each integer k $ 2,

then the sequence satisfies the formula

an 5 2:log2 n; for every integer n $ 1.

Proof:
Let a1, a2, a3, . . . be the sequence defined by specifying that a1 5 1 and ak 5 2a:k/2; for 
each integer k $ 2, and let the property P (n) be the equation

an 5 2:log2 n;. d  P (n)

We will use strong mathematical induction to prove that for every integer n $ 1, P (n) 
is true.

Show that P (1) is true: By definition of a1, a2, a3, . . . , we have that a1 5 1. Now it is 
also the case that 2:log2 1; 5 20 5 1. Thus a1 5 2:log2 1; and P (1) is true.

r

u

u

r

1 5 20

2 5 21

4 5 22

8 5 23

16 5 24

¡
¡

¡

¡

¡
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Show that for every integer k $ 1, if P (i) is true for each integer i from 1 through k, 
then P (k11) is also true: Let k be any integer with k $ 1, and suppose that

 ai 5 2:log2 i; for each integer i with 1 # i # k. d inductive hypothesis

We must show that

 ak11 5 2:log2(k11);. d P (k11)

Consider the two cases: k is even and k is odd.
Case 1 (k is even): In this case, k11 is odd, and

 ak11 5 2a:(k11)y2;

 5 2aky2

 5 2?2:log2 (ky2);

 5 2:log2(ky2);11

 5 2:log2 k2 log2 2);11

 5 2:log2 k21;11

 5 2:log2 k;2111

 5 2:log2 k;

 5 2:log2(k11); 

by definition of a1, a2, a3, . . . 

because :(k11)y2; 5 ky2 since k11 is odd

by inductive hypothesis because, since k is even, k $ 2, and  
so k/2 $ 1

by the laws of exponents from algebra (7.2.1)

by the identity logb 
(xyy) 5 logb 

x2 logb 
y from Theorem 7.2.1

since log2 
2 5 1

by substituting x 5 log2 k into the identity

:x21; 5 :x;21 derived in exercise 15 of Section 4.6

by property (11.4.3).

Case 2 (k is odd): The analysis of this case is very similar to that of case 1 and is left 
as exercise 51 at the end of the section.

Thus in either case, an 5 2:log2(k11);, as was to be shown. ■

Exponential and Logarithmic Orders
Now consider the question “How do graphs of logarithmic and exponential functions com-
pare with graphs of power functions?” It turns out that for large enough values of x, the graph 
of the logarithmic function with any base b . 1 lies below the graph of every power function 
with a positive exponent, and the graph of the exponential function with any base b . 1 lies 
above the graph of each of these power functions. In analytic terms, this says the following:

For all real numbers b and r with b . 1 and r . 0, there is a positive real number s 
such that

 logb x # xr for every real number x $ s. 11.4.9

and xr # bx for every real number x $ s. 11.4.10

These statements have the following implications for O-notation.

For all real numbers b and r with b . 1 and r . 0,

 logb n is O(nr ) 11.4.11

and nr is O(bn ) 11.4.12

Another important function in the analysis of algorithms is the function f defined by 
the formula

f (x) 5 x logb x for every real number x . 0.
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For large values of x, the graph of this function fits in between the graph of the identity 
function and the graph of the squaring function. More precisely:

For every real number b with b . 1, there is a positive real number s such that for 
every real number x $ s,

 x # x logb x # x2. 11.4.13

The O-notation versions of these facts are as follows:

For every real number b . 1,

 n is O(n logb n) and n logb n is O(n2). 11.4.14

Although proofs of some of these facts require calculus, some cases can be verified us-
ing the algebra of inequalities. (See the exercises at the end of this section.) Figure 11.4.4 
illustrates the relationships among some power functions, the logarithmic function with 
base 2, the exponential function with base 2, and the function defined by the formula 
x S x log2 x. Note that different scales are used on the horizontal and vertical axes.

x

y

1 2 3 4

5

10

15

20

y = 2x

y = x2

y = x log2x

y = log2x

y = x

FIGuRE 11.4.4 Graphs of Some Logarithmic, Exponential, and Power Functions

Examples 11.4.5 and 11.4.6 use properties of logarithms together with theorems from 
Section 11.2 to derive orders for combinations that involve logarithmic and exponential 
functions.

Orders That Involve Logarithmic Functions

a. Show that if b and c are any real numbers with b . 1 and c . 1, then logb n and logc n 
have the same order.

b. Show that n1n log2 n is Q(n log2 n).

Example 11.4.5
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Solution

a. By part (d) of Theorem 7.2.1,

logb 
n 5

logc 
n

logc 
b

5 1 1

logc 
b2logc 

n.

Since both b . 1 and c . 1, then logc 
b . 0, and so 

1

logc 
b

. 0. Thus, by Theorem 
11.2.8(c),

1 1

logc 
b2logc 

n is Q(logc 
n), and so logb 

n is Q(logc 
n).

Exactly the same reasoning with b and c interchanged gives that

logc 
n is Q(logb 

n).

Thus logb n and logc n have the same order.

b. By Theorem 11.2.7, n is Q(n) and n log2 
n is Q(n log2 

n). In addition, by property 
11.4.13, there is a positive real number r such that for every integer n $ r, n # n log2 n. 
Thus it follows from Theorem 11.2.9(c) that n1n log2 n is Q(n log2 

n). ■

An Exponential Order

Show that n! is O(nn).

Solution
For any positive integer n,

 n! 5 n?(n21)?(n22)?2?1

 # n?n?n?n?n 5 nn

because (n21) # n, (n22) # n, Á , 2 # n, and 1 # n. Let B 5 1 and b 5 1. Then, since 
n! $ 0 when n $ b,

0 # n! # nn for every integer n $ b.

Thus n! is O(nn) by definition of O-notation. ■

Example 11.4.7 shows how a logarithmic order can arise from the computation of a 
certain kind of sum. It requires the following fact from calculus:

 The area underneath the graph of y 5 1/x between x 5 1 and x 5 n equals ln n, where 
ln n 5 loge n. This fact is illustrated in Figure 11.4.5.

x

y

n1

1

Graph of y = 1
x

Area of shaded region = ln n

FIGuRE 11.4.5 Area under graph of y 5
1
x

  between x 5 1 and x 5 n

Example 11.4.6

n factors

n factors
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Order of a Harmonic Sum

Sums of the form 11
1

2
1 Á 1

1
n

 are called harmonic sums. They occur in the analysis of 

various computer algorithms such as quick sort. Show that 11
1

2
1

1

3
1 Á 1

1
n

 is V(ln n) 
by performing the steps shown below:

a. Interpret Figure 11.4.6 to show that

1

2
1

1

3
1 Á 1

1
n

 #  ln n.

and

ln n # 11
1

2
1

1

3
1 Á 1

1
n

.

b. Show that if n is an integer that is at least 3, then 1 # ln n.

c. Deduce from (a) and (b) that if the integer n is greater than or equal to 3, then

ln n #  11
1

2
1

1

3
1 Á 1

1
n

  #  2  ln n.

d. Deduce from (c) that

11
1

2
1

1

3
1 Á 1

1
n

  is  Q(ln n).

Solution

a. Figure 11.4.6(a) shows rectangles whose bases are the intervals between each pair of 
integers from 1 to n and whose heights are the heights of the graph of y 5 1/x above 
the right-hand endpoints of the intervals. Figure 11.4.6(b) shows rectangles with the 
same bases but whose heights are the heights of the graph above the left-hand end-
points of the intervals.

x

y

1 2 3 4 n – 1 n

(1, 1) Total area under graph
from 1 to n = ln n

(2,   )1
2 (3,   )1

3 (4,   )1
4 (n – 1,         )1

n – 1 (n,   )1
n

(n – 1,         )1
n – 1

x

y

1 2 3 4 n – 1 n

(1, 1)

Graph of y = 1
xGraph of y = 1

x

Total area under graph
from 1 to n = ln n

(2,   )1
2 (3,   )1

3 (4,   )1
4 (n,   )1

n

(a) (b)

1 1

FIGuRE 11.4.6

Now the area of each rectangle is its base times its height. Since all the rectangles 
have base 1, the area of each rectangle equals its height. Thus in Figure 11.4.6(a),

Example 11.4.7

94193_ch11_ptg01.indd   809 12/11/18   6:11 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



810  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

the area of the rectangle from 1 to 2 is 
1

2
;

the area of the rectangle from 2 to 3 is 
1

3
;

o
the area of the rectangle from n21 to n is 

1
n

.

So the sum of the areas of all the rectangles is 
1

2
1

1

3
1 Á 1

1
n

. From the picture it is 

clear that this sum is less than the area underneath the graph of f between x 5 1 and 
x 5 n, which is known to equal ln n. Hence

1

2
1

1

3
1 Á 1

1
n

 #  ln n.

A similar analysis of the areas of the combined blue and gray rectangles in Figure 
11.4.6(b) shows that

ln n # 11
1

2
1

1

3
1 Á 1

1
n

.

b. Suppose n is an integer and n $ 3. Since e > 2.718, then n $ e. Now the logarithmic 
function with base e is strictly increasing. Thus since e # n, then 1 5 ln e # ln n.

c. By part (a),

1

2
1

1

3
1 Á 1

1
n

 #  ln n,

and by part (b),

1 # ln n.

Adding these two inequalities together gives

11
1

2
1

1

3
1 Á 1

1
n

 #  2  ln n for each integer n $ 3.

d. Combining the results of parts (a) and (c) leads to the conclusion that for every integer 
n $ 3,

ln n #  11
1

2
1

1

3
1 Á 1

1
n

 #  2  ln n.

Let A 5 1, B 5 2, and k 5 3. Then ln n . 0 for n $ 3 and

A ln n #  11
1

2
1

1

3
1 Á 1

1
n

 #  B  ln n for every integer n . k.

Hence by definition of Q-notation,

 11
1

2
1

1

3
1 Á 1

1
n

   is  Q(ln n). ■

Now by Example 11.4.5(a), all logarithmic functions have the same order, and thus for 
each real number b . 1,

11
1

2
1

1

3
1 Á 1

1
n

   is  Q(logb n).
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1. The domain of any exponential function is  , 
and its range is  .

2. The domain of any logarithmic function is  , 
and its range is  .

3. If k is an integer and 2k # x , 2k11, then 
:log2 x; 5  .

4. If b is a real number with b . 1, then there is a 
positive real number s with the property that for 
any real number x that is greater than s, when the 
quantities x, x2, log x, and x log x are arranged in 
order of increasing size, the result is  .

5. If n is a positive integer, then 11 1
2 1 1

3 1 Á 1 1
n 

has order  .

TEST YOuRSELF 

1. f(x) 5 3x for each real number x

2. g(x) 5 _13+x for each real number x

3. h(x) 5 log10 
 x for each positive real number x

4. k(x) 5 log2 x for each positive real number x

5. F(x) 5 :log2  
x; for each positive real number x

6. G(x) 5 :log2 x; for each positive real number x

7. H(x) 5 x log2 x for each positive real number x

8. K(x) 5 x log10 x for each positive real number x

9. The scale of the graph shown in Figure 11.4.1 
is one-fourth inch to each unit. If the point (2, 
264) is plotted on the graph of y 5 2x, how many 
miles will it lie above the horizontal axis? What 
is the ratio of the height of the point to the dis-
tance of the earth from the sun? (There are 
12 inches per foot and 5,280 feet per mile.  
The earth is approximately 93,000,000 miles 
from the sun on average.) (1

4 inch > 0.635 cm,  
1 mile > 0.62 km)

10. a.  Use the definition of logarithm to show that 
logb b

x 5 x for every real number x.
b. Use the definition of logarithm to show that 

blogbx 5 x for every positive real number x.
c. By the result of exercise 28 in Section 7.3, 

if f : X S Y and g: Y S X are functions and 
g + f 5 IX and f + g 5 IY, then f and g are 
inverse functions. Use this result to show that 
logb and expb (the exponential function with 
base b) are inverse functions.

11. Let b . 1.
a. Use the fact that u 5 logb v 3 v 5 bu to show 

that a point (u, v) lies on the graph of the loga-

rithmic function with base b if, and only if,  
(v, u) lies on the graph of the exponential func-
tion with base b.

b. Plot several pairs of points of the form (u, v) 
and (v, u) on a coordinate system. Describe the 
geometric relationship between the locations of 
the points in each pair.

c. Draw the graphs of y 5 log2 x and y 5 2x. 
Describe the geometric relationship between 
these graphs.

12. Give a graphical interpretation for property 
(11.4.2) in Example 11.4.1(a) for 0 , x , 1.

13. Suppose a positive real number x satisfies the inequal-
ity 10m # x , 10m11 where m is an integer. What 
can be inferred about :log10 x;? Justify your answer.

14. a.  Prove that if x is a positive real number and k is 
a nonnegative integer such that 2k21 , x # 2k, 
then <log2 x= 5 k.

b. Describe in words the statement proved in 
part (a). 

15. If n is an odd integer and n . 1, is 
<log2(n21)= 5 <log2(n)=? Justify your answer.

16. If n is an odd integer and n . 1, is 
<log2(n11)= 5 <log2(n)=? Justify your answer.

17. If n is an odd integer and n . 1, is
:log2(n11); 5 :log2(n);? Justify your answer. 

In 18 and 19, indicate how many binary digits are needed 
to represent the numbers in binary notation. Use the 
method shown in Example 11.4.3.

18. 148,206

19. 5,067,329

H

H

ExERCISE SET 11.4 
Graph each function defined in 1–8.
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20. It was shown in the text that the number of binary 
digits needed to represent a positive integer n is 
:log2 n;11. Can this also be given as <log2 n=? Why 
or why not? 

In each of 21 and 22, a sequence is specified by a recur-
rence relation and initial conditions. In each case, (a) use 
iteration to guess an explicit formula for the sequence; 
(b) use strong mathematical induction to confirm the cor-
rectness of the formula you obtained in part (a).

21. ak 5 a:k/2;12,     for each integer k $ 2
a1 5 1

22. bk 5 b:k/2;11,      for each integer k $ 2
b1 5 1.

23. Define a sequence c1, c2, c3, . . . recursively as 
follows:

 c1 5 0

 ck 5 c:k/2;1k, for each integer k $ 2.

Use strong mathematical induction to show that 
cn # n2 for every integer n $ 1.

24. Use strong mathematical induction to show that 
for the sequence of exercise 23, cn # n log2 n, for 
every integer n $ 4.

Exercises 25 and 26 refer to properties 11.4.9 and 
11.4.10. To solve them, think big!

25. Find a real number x . 3 such that log2 x , x1/10.

26. Find a real number x . 1 such that x50 , 2x.

Use Theorems 11.2.7–11.2.9 and properties 11.4.11, 
11.4.12, and 11.4.13 to derive each statement in 27–30.

27. 2n1 log2 n is Q(n)

28. n2 15n log2 n is Q(n2)

29. n2 12n is Q(2n)

30. 2n11 is Q(2n)

31. Show that 4n is not O(2n). 

Prove each of the statements in 32–37, assuming n is an 
integer variable that takes positive integer values. Use 
identities from Section 5.2 as needed.

32. 112122 123 1 Á 12n is Q(2n).

33. 4142 143 1 Á 14n is Q(4n).

34. 212?32 12?34 1 Á 12?32n is Q(32n).

35. 
1

5
1

4

52 1
42

53 1 Á 1
4n

5n11 is Q(1).

36. n1
n

2
1

n

4
1 Á 1

n

2n is Q(n).

37. 
2n

3
1

2n

32 1
2n

33 1 Á 1
2n

3n  is Q(n).

38. Quantities of the form

k1n1k2n log n for positive integers k1, k2, and n

arise in the analysis of the merge sort algorithm 
in computer science. Show that for any positive 
integer k,

k1n1k2n log2 n is Q(n log2 n).

39. Calculate the values of the harmonic sums

11
1

2
1

1

3
1 Á 1

1
n

    for n 5 2, 3, 4, and 5.

40. Use part (d) of Example 11.4.7 to show that

n1
n

2
1

n

3
1 Á 1

n
n

  is Q(n ln n).

41. Show that :log2 n; is Q(log2 n).

42. Show that <log2 n= is Q(log2 n).

43. Prove by mathematical induction that n # 10n for 
every integer n $ 1.

44. Prove by mathematical induction that log2 n # n 
for every integer n $ 1.

45. Show that if n is a variable that takes positive 
integer values, then 2n is O(n!).

46. Let n be a variable that takes positive integer 
values.
a. Use Example 11.4.6 to show that log2(n!) is  

O(n log2 n).
b. Show that nn # (n!)2 for every integer n $ 1.
c. Use part (b) to show that log2 (n!) is V(n log2 n).
d. Use parts (a) and (c) to find an order for log2 (n!). 

47. For each positive real number u, log2 u , u. Use 
this fact and the result of exercise 21 in Section 
11.1 to prove the following: For every integer 
n $ 1, if x is any real number with x . (2n)2n, 
then log2 x , x1yn.

48. Use the result of exercise 47 above to prove the 
following: For every integer n $ 1, if x is any real 
number with x . (2n)2n, then xn , 2x. 

H

*H

H

H

H

H

H

H
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1. the set of all real numbers; the set of all positive real 
numbers 2. the set of all positive real numbers; the set  

of all real numbers 3. k 4. logb x , x , x logb x , x2  
5. ln x (or, equivalently, log2 x)

ANSwERS FOR TEST YOuRSELF 

Exercises 49 and 50 use L’Hôpital’s rule from calculus.

49. a.  Let b be any real number greater than 1. Use 
L’Hôpital’s rule and mathematical induction to 
prove that for every integer n $ 1,

lim
x S `

 

xa

bx 5 0.

b. Use the result of part (a) and the definitions of 
limit and of O-notation to prove that xn is O(bx) 
for any integer n $ 1. 

50. a.  Let b be any real number greater than 1. Use 
L’Hôpital’s rule to prove that for every integer 
n $ 1,

lim
x S `

 

logb x

x1yn
5 0.

b. Use the result of part (a) and the definitions of 
limit and of O-notation to prove that logb x is 
O(x1yn) for any integer n $ 1. 

51. Complete the proof in Example 11.4.4. 

Application: Analysis of Algorithm Efficiency II
In almost every computation a great variety of arrangements for the succession of 
the processes is possible, and various considerations must influence the selections 
amongst them for the purposes of a calculating engine. One essential object is to 
choose that arrangement which shall tend to reduce to a minimum the time necessary 
for completing the calculation. —Ada Augusta, Countess of Lovelace, 1843

Have you ever played the “guess my number” game? A person thinks of a number between 
two other numbers—say, 1 and 10 or 1 and 100 for example—and you try to figure out 
what it is, using the least possible number of guesses. Each time you guess a number, the 
person tells you whether you are correct, too low, or too high.

If you have played this game, you have probably already hit upon the most efficient 
strategy: Begin by guessing a number as close to the middle of the two given numbers as 
possible. If your guess is too high, then the number is between the lower of the two given 
numbers and the one you first chose. If your guess is too low, then the number is between 
the number you first chose and the higher of the two given numbers. In either case, you 
take as your next guess a number as close as possible to the middle of the new range in 
which you now know the number lies. You repeat this process as many times as necessary 
until you have found the person’s number.

The technique described previously is an example of a general strategy called divide 
and conquer, which works as follows: To solve a problem, reduce it to a fixed number of 
smaller problems of the same kind, which can themselves be reduced to the same fixed 
number of smaller problems of the same kind, and so forth until easily resolved problems 
are obtained. In this case, the problem of finding a particular number in a given range of 
numbers is reduced at each stage to finding a particular number in a range of numbers 
approximately half as long.

It turns out that algorithms using a divide-and-conquer strategy are generally quite 
efficient and nearly always have orders involving logarithmic functions. In this section we 
define the binary search algorithm, which is the formalization of the “guess my number” 

11.5

Lady Lovelace 
(1815–1852)
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814  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

game described previously, and we compare the efficiency of binary search to the sequen-
tial search discussed in Section 11.3. Then we develop a divide-and-conquer algorithm for 
sorting, merge sort, and compare its efficiency with that of insertion sort and selection sort, 
which were also discussed in Section 11.3. 

Almost a hundred years before the first computer was built and working only from a 
description of how such a machine might function, Ada Augusta, Countess of Lovelace, 
foresaw both the general nature of the problems it could address and the importance of 
designing an efficient arrangement of computations to solve them.

Binary Search
Whereas a sequential search can be performed on an array whose elements are in any 
order, a binary search can be performed only on an array whose elements are arranged in 
ascending (or descending) order. Given an array a[1], a[2], . . . , a[n] of distinct elements 
arranged in ascending order, consider the problem of trying to find a particular element x 
in the array.

To use binary search, first compare x to the “middle element” of the array. If the two 
are equal, the search is successful. If the two are not equal, then because the array ele-
ments are in ascending order, comparing the values of x and the middle array element 
narrows the search either to the lower subarray (consisting of all the array elements below 
the middle element) or to the upper subarray (consisting of all array elements above the 
middle element).

The search continues by repeating this basic process over and over on successively 
smaller subarrays. It terminates either when a match occurs or when the subarray to 
which the search has been narrowed contains no elements. The efficiency of the algo-
rithm is a result of the fact that at each step, the length of the subarray to be searched 
is roughly half the length of the array of the previous step. This process is illustrated in 
Figure 11.5.1.

left subarray middle element right subarray

a[r] a[s]a[mid – 1] a[mid + 1]a[mid ]

x . a[mid ]x , a[mid]

Compare x to a[mid ].  If the two
are equal, the search ends.

Search the left subarray
a[r], . . . , a[mid – 1] for x.

Search the right subarray
a[mid + 1], . . . , a[s] for x.

FIGuRE 11.5.1  One Iteration of the Binary Search Process

To write down a formal algorithm for binary search, we introduce a variable index 
whose final value will tell us whether or not x is in the array and, if so, will indicate the 
location of x. Since the array goes from a[1] to a[n], we initialize index to be 0. If and 
when x is found, the value of index is changed to the subscript of the array element equal-
ing x. If index still has the value 0 when the algorithm is complete, then x is not one of 
the elements in the array. Figure 11.5.2 shows the action of a particular binary search.

Formalizing a binary search algorithm also requires that we be more precise about 
the meaning of the “middle element” of an array. (This issue was side-stepped by careful 
choice of n in Figure 11.5.2.) If the array consists of an even number of elements, there are 
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two elements in the middle. For instance, both a[6] and a[7] are equally in the middle of 
the following array.

af3g af4g af5g af6g af7g af8g af9g af10g

In a case such as this, the algorithm must choose which of the two middle elements to 
take, the smaller or the larger. The choice is arbitrary—either would do. We will write the 
algorithm to choose the smaller. The index of the smaller of the two middle elements is the 
floor of the average of the top and bottom indexes of the array. That is, if

 bot 5 the bottom index of the array,

 top 5 the top index of the array, and

 mid 5 the lower of the two middle indexes of the array,

then

mid 5 j
bot1 top

2
k.

In this case, bot 5 3 and top 5 10, so the index of the “middle element” is

mid 5 j3110

2
k 5 j13

2
k 5 :6.5; 5 6.

The following is a formal algorithm for a binary search.

Algorithm 11.5.1 Binary Search

[The aim of this algorithm is to search for an element x in an ascending array of ele-
ments a[1], a[2], Á , a[n]. If x is found, the variable index is set equal to the index of the 
array element where x is located. If x is not found, index is not changed from its initial 
value, which is 0. The variables bot and top denote the bottom and top indexes of the 
array currently being examined.]

Input: n [a positive integer], a[1], a[2], Á , a[n] [an array of data items given in as-
cending order], x [a data item of the same data type as the elements of the array]

(continued on page 816)

  
three elements two middle three elements 
  elements

a[5] = x ?

index = 5

a[6] = x ?

a[4] = x ? no: x . a[4]

no: x , a[6]

yes

a[1] a[2] a[3] a[4] a[5] a[6] a[7]

FIGuRE 11.5.2  Binary Search of a[1], a[2], . . . , a[7] for x (for x 5 a[5])
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Algorithm Body:
index :5 0, bot :5 1, top :5 n
[Compute the middle index of the array, mid. Compare x to a[mid]. If the two are 
equal, the search is successful. If not, repeat the process either for the lower or for 
the upper subarray, either giving top the new value mid 21 or giving bot the new 
value mid 11. Each iteration of the loop either decreases the value of top or in-
creases the value of bot. Thus, if the looping is not stopped by success in the search 
process, the value of top eventually becomes less than the value of bot, which stops 
the looping process and shows that x is not an element of the array.]

while (top $ bot and index 5 0)

mid:5 j
bot1 top

2
k

if a[mid] 5 x then index :5 mid
if a[mid] . x

then top :5 mid21
else bot :5 mid11

end while
[If index has the value 0 at this point, then the while loop was not entered because 
top , bot, and so x is not in the array. Otherwise, index gives the index of the array 
where x is located.]

Output: index [a nonnegative integer]

Tracing the Binary Search Algorithm

Trace the action of Algorithm 11.5.1 on the variables index, bot, top, mid, and the values of 
x given in (a) and (b) below for the input array

a[1] 5 Ann, a[2] 5 Dawn, a[3] 5 Erik, a[4] 5 Gail, a[5] 5 Juan,

a[6] 5 Matt, a[7] 5 Max, a[8] 5 Rita, a[9] 5 Tsuji, a[10] 5 Yuen,

where alphabetical ordering is used to compare elements of the array.

a. x 5 Erik    b. x 5 Sara

Solution

a. index 0 3

bot 1 3

top 10 4

mid 5 2 3

x Erik

  b. index 0

bot 1 6 9

top 10 8

mid 5 8 9

x Sara

 ■

The Efficiency of the Binary Search Algorithm
Here briefly is the idea for how to derive the efficiency of the binary search algorithm. At 
each stage of the binary search process, the length of the new subarray to be searched is 

Example 11.5.1

94193_ch11_ptg01.indd   816 12/11/18   6:11 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



11.5 application: analYsis oF alGoRithM eFFiciencY ii  817

approximately half that of the previous one, and in the worst case, every subarray down 
to a subarray with a single element must be searched. Consequently, in the worst case, the 
maximum number of iterations of the algorithm’s while loop is 1 more than the number 
of times the original input array can be cut approximately in half. Now if the length n 
of  this array is a power of 2 (n 5 2k for some integer k), then n can be halved exactly 
k 5 log2 n 5 :log2 n; times before an array of length 1 is reached. If n is not a power of 2, 
then n 5 2k 1m for some integer k (where m , 2k), and thus n can be split approximately 
in half k times also, and so in this case, k 5 :log2 n; also. Thus in the worst case, the 
maximum number of iterations of the while loop in the binary search algorithm (which 
is proportional to the number of comparisons required to execute it) is :log2 n;11. The 
derivation is concluded by noting that :log2 n;11 is O(log2 n).

The details of the derivation are developed in Examples 11.5.2–11.5.6. Throughout the 
derivation, for each integer n $ 1, let

wn 5  the number of iterations of the while loop 
in a worst-case execution of the binary search 
algorithm for an input array of length n.

The first issue to consider is this. If the length of the input array for one iteration of 
the while loop is known, what is the greatest possible length of the array input to the next 
iteration?

The Length of the Input Array to the Next Iteration of the Loop

Prove that if an array of length k is input to the while loop of the binary search algorithm, 
then after one unsuccessful iteration of the loop, the input to the next iteration is an array 
of length at most :ky2;.

Solution Consider what occurs when an array of length k is input to the while loop in 
the case where x Þ a[mid]:

afbotg, afbot11g, . . . , afmid21g, afmidg, afmid11g, . . . , aftop21g, aftopg.

Since the input array has length k, the value of mid depends on whether k is odd or even. 
In both cases we match up the array elements with the integers from 1 to k and analyze the 
lengths of the left and right subarrays. In case k is odd, both the left and the right subar-
rays have length :ky2;. In case k is even, the left subarray has length :ky2;21 and the right 
subarray has length :ky2;. The reasoning behind these results is shown in Figure 11.5.3.

Because the maximum of the numbers :ky2; and :ky2;21 is :ky2;, in the worst case this 
will be the length of the array input to the next iteration of the loop. ■

To find the order of the algorithm, an explicit formula for w1, w2, w3, . . . is needed. The 
next example derives a recurrence relation for the sequence.

A Recurrence Relation for w1, w2, w3, . . . 

Prove that the sequence w1, w2, w3, . . . satisfies the recurrence relation and initial condition

 w1 5 1,

 wk 5 11w:ky2; for every integer k . 1.

Example 11.5.2

 c 
 new input to the while “middle new input to the while 
 loop if x , afmidg element” loop if x . afmidg

Example 11.5.3
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818  CHAPTER 11 analYsis oF alGoRithM eFFiciencY

Solution In Example 11.5.2 it was shown that given an input array of length k to the while 
loop, the worst that can happen is that the next iteration of the loop will have to search an 
array of length :ky2;. Hence the maximum number of iterations of the loop is 1 more than 
the maximum number necessary to execute it for an input array of length :ky2;. In symbols,

wk 5 11w:k/2;.

Also w1 5 1

because for an input array of length 1 (bot 5 top), the while loop iterates only one time. ■

Now that a recurrence relation for w1, w2, w3, . . . has been found, iteration can be used 
to come up with a good guess for an explicit formula.

An Explicit Formula for w1, w2, w3, . . . 

Apply iteration to the recurrence relation found in Example 11.5.3 to conjecture an explicit 
formula for w1, w2, w3, . . . 

Solution Begin by iterating to find the values of the first few terms of the sequence.

 w1 5 1

 w2 5 11w:2y2; 5 11w1 5 111 5  2

 w3 5 11w:3y2; 5 11w1 5 111 5  2

 w4 5 11w:4y2; 5 11w2 5 112 5  3

 w5 5 11w:5y2; 5 11w2 5 112 5  3

 w6 5 11w:6y2; 5 11w3 5 112 5  3

 w7 5 11w:7y2; 5 11w3 5 112 5  3

 w8 5 11w:8y2; 5 11w4 5 113 5  4

 w9 5 11w:9y2; 5 11w4 5 113 5  4
   o                 o
 w15 5 11w:15y2; 5 11w7 5 113 5 4

 w16 5 11w:16y2; 5 11w8 5 114 5 5
   o                 o

Example 11.5.4

r

u

s

r

k odd: a[bot] a[top]a[mid – 1] a[mid + 1]a[mid ]

k even: a[bot] a[top]a[mid – 1] a[mid + 1]a[mid ]

1

1

k

k

k + 1
2

k + 1
2

– 1 k + 1
2

+ 1

k – 1
2

k + 1
2

– 1length = = = k
2

k
2

k
2

k
2

k + 1
2

+ 1length = k – + 1 = k – 1
2

= k
2(       )

k
2

+ 1length = k – + 1 = = k
2

k
2(    )

– 1 + 1

length = k
2

– 1 – 1= k
2

FIGuRE 11.5.3  Lengths of the Left and Right Subarrays

1 5 20: 1 5 011

2 5 21: 2 5 111

4 5 22: 3 5 211

8 5 23: 4 5 311

16 5 24: 5 5 411

¡

¡

¡

¡

¡
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Note that in each case when the subscript n is between two powers of 2, wn is 1 more than 
the exponent of the lower power of 2. In other words:

 If 2i # n , 2i11,  then wn 5 i11. 11.5.1

Now if 2i # n , 2i11,

then [by property (11.4.2) of Example 11.4.1]

i 5 :log2 n;.
Substituting into statement (11.5.1) gives the conjecture that

 wn 5 :log2 n;11 ■

Mathematical induction can then be used to verify the correctness of the formula found 
in Example 11.5.4.

Verifying the Correctness of the Formula

Use strong mathematical induction to show that if w1, w2, w3, . . . is a sequence of numbers 
that satisfies the recurrence relation and initial condition

w1 5 1  and  wk 5 11w:ky2; for  each integer k . 1,

then w1, w2, w3, . . . satisfies the formula

wn 5 :log2 n;11 for every integer n $ 1.

Solution Let w1, w2, w3, . . . be the sequence defined by specifying that w1 5 1 and 
wk 5 11w:ky2; for each integer k $ 2, and let the property P (n) be the equation

wn 5 :log2 n;11. d P (n)

We will use strong mathematical induction to prove that for every integer n $ 1, P (n) is 
true.

Show that P (1) is true: By definition of w1, w2, w3, . . . , we have that w1 5 1. But 
:log2 1;11 5 011 5 1 also. Thus w1 5 :log2 1;11 and P (1) is true.

Show that for every integer k . 1, if P (i) is true for each integer i from 1 through k, then 
P (k11) is also true: Let k be any integer with k $ 1, and suppose that

wi 5 :log2 i;11 for each integer i with 1 # i # k. d inductive hypothesis

We must show that

wk11 5 :log2(k11);11. d P (k11)

Consider the two cases: k is even and k is odd.
Case 1 (k is even): In this case, k11 is odd, and

 wk11 5 11w:(k11)y2;

 5 11w:ky2;

 5 11 ( :log2(ky2);11)

 5 :log2(k)2 log2 2;12

 5 :log2(k)21;12

Example 11.5.5

by definition of w1, w2, w3, . . . 

because :(k11)/2; 5 k/2 since k11 is odd

by inductive hypothesis because, since k is  
even, k $ 2, and so 1 # :k/2; # k/2 , k

by substituting into the identity logb(x/y) 5 logb x2 logb y 

from Theorem 7.2.1

since log2 2 5 1
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 5 ( :log2 (k);21)12

 5 :log2 (k11);11

Case 2 (k is odd): In this case, it can also be shown that wk 5 :log2 k;11. The analysis is 
very similar to that of case 1 and is left as exercise 16 at the end of the section. 

Hence regardless of whether k is even or k is odd,

wk11 5 :log2(k11);11,

as was to be shown. [Since both the basis and the inductive steps have been demonstrated, the 
proof by strong mathematical induction is complete.] ■

The final example shows how to use the formula for w1, w2, w3, . . . to find a worst-case 
order for the algorithm.

The Binary Search Algorithm Is Logarithmic

By Example 11.5.5,

wn 5 :log2 n;11 for every integer n $ 1.

Use this result to show that in the worst case, the binary search algorithm is Q(log2 n).

Solution Let 1 stand for the words “which implies that.” Then for each integer n $ 2,

   wn 5 :log2 n;11

1  log2 n # wn # log2 n11

1  log2 n # wn # log2 n1 log2 n

1  log2 n # wn # 2log2 n.  

by Example 11.5.5

because x , :x;11 and :x; # x for  
every real number x

since the logarithm with base 2 is increasing, 
when 2 # n, then 1 5 log2 2 # log2 n.

Let A 5 1, B 5 2, and k 5 2. Then 

A log2 n # wn # B log2 n for every integer n $ k.

Hence by definition of Q-notation, 

wn is Q(log2 n).

Finally, because wn, the number of iterations of the while loop, is proportional to the num-
ber of comparisons performed when the binary search algorithm is executed, the binary 
search algorithm is Q(log2 n). ■

Examples 11.5.2–11.5.6 show that in the worst case, the binary search algorithm has 
order log2 n. As noted in Section 11.3, in the worst case the sequential search algorithm 
has order n. This difference in efficiency becomes increasingly more important as n gets 
larger and larger. If one loop iteration is performed each nanosecond, then performing n 
iterations for n 5 100,000,000 requires 0.1 second, whereas performing log2 n iterations 
requires 0.000000027 second. For n 5 100,000,000,000 the times are 1.67 minutes and 
0.000000037 second, respectively. And for n 5 100,000,000,000,000 the respective times 
are 27.78 hours and 0.000000047 second.

Merge Sort
Note that it is much easier to write a detailed algorithm for sequential search than for binary 
search. Yet binary search is much more efficient than sequential search. Such trade-offs 

Example 11.5.6

by substituting x 5 log2(k) into the identity
:x21; 5 :x;21 derived in exercise 15 of Section 4.6
by property (11.4.3) in Example 11.4.2.
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often occur in computer science. Frequently, the straightforward “obvious” solution to a 
problem is less efficient than a clever solution that is more complicated to describe.

In the text and exercises for Section 11.3, we gave two methods for sorting, insertion sort 
and selection sort, both of which are formalizations of methods human beings often use in 
ordinary situations. Can a divide-and-conquer approach be used to find a sorting method 
more efficient than these? It turns out that the answer is an emphatic “yes.” In fact, over the 
past few decades, computer scientists have developed several divide-and-conquer sorting 
methods all of which are somewhat more complex to describe but are significantly more 
efficient than either insertion sort or selection sort.

One of these methods, merge sort, is obtained by thinking recursively. Imagine that 
an efficient way for sorting arrays of length less than k is already known. How can such 
knowledge be used to sort an array of length k? One way is to suppose the array of length 
k is split into two roughly equal parts and each part is sorted using the known method. Is 
there an efficient way to combine the parts into a sorted array? Sure. Just “merge” them.

Figure 11.5.4 illustrates how a merge works. Imagine that the elements of two ordered 
subarrays—2, 5, 6, 8 and 3, 6, 7, 9—are written on slips of paper (to make them easy to 
move around). Place the slips for each subarray in two columns on a tabletop, one at the 
left and one at the right. Along the bottom of the tabletop, set up eight positions into which 
the slips will be moved. Then, one-by-one, bring down the slips from the bottoms of the 
columns. At each stage compare the numbers on the slips currently at the column bottoms, 
and move the slip containing the smaller number down into the next position in the array 
as a whole. If at any stage the two numbers are equal, take, say, the slip on the left to move 
into the next position. And if one of the columns is empty at any stage, just move all the 
slips from the other column into the correct positions one-by-one in order.

1 2 3 4 5 6 7 8

2 3 5 6 6 7 8 9

2

5

6

8

3

6

7

9

Tabletop

FIGuRE 11.5.4 Merging Two Sorted Subarrays to Obtain a Sorted Array

The process of merging is efficient because the total number of comparisons needed to 
merge two subarrays into an array of length k is just k21. You can see why by analyzing 
Figure 11.5.4. Observe that at each stage, the decision about which slip to move is made by 
comparing the numbers on the slips currently at the bottoms of the two columns—except 
when one of the columns is empty, in which case no comparisons are made at all. Thus in 
the worst case there will be one comparison for each of the k positions in the final array 
except the very last one (because when the last slip is placed into position, the other column 
is sure to be empty), or a total of k21 comparisons in all.

The merge sort algorithm is recursive because its defining statements include references 
to itself. The algorithm is well defined, however, because at each stage the length of the 
array that is input to the algorithm is shorter than at the previous stage, so that, ultimately, 
the algorithm has to deal only with arrays of length 1, which are already sorted. Specifi-
cally, merge sort works as follows.
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Given an array of elements that can be put into order, if the array consists of a single 
element, leave it as it is. It is already sorted. Otherwise:

1. Divide the array into two subarrays of as nearly equal length as possible.

2. Use merge sort to sort each subarray.

3. Merge the two subarrays together.

Figure 11.5.5 illustrates a merge sort in a particular case.

5 2

5

5

5

5

2

2

2

2

4 6

4

4

4

4

6

6

6

6

5 2 4 6

1 3 2 6

1 2 2 3 4 5 6 6

1

1

3

3

3

3

1

1

2

2

2

2

6

6

6

6

1 3 2 6

Initial array:

Sorted array:

split

split split

split

merge

merge merge

merge

split split

split

merge merge

merge

FiguRE 11.5.5  Applying Merge Sort to the Array 5, 2, 4, 6, 1, 3, 2, 6

As in the case of the binary search algorithm, in order to formalize merge sort 
we must decide at exactly what point to split each array. Given an array denoted 
by a[bot], a[bot11], . . . , a[top], let mid 5 :(bot1 top)y2;. Take the left subarray to  
be a[bot], a[bot11], . . . , a[mid] and the right subarray to be a[mid11], a[mid12], . . . ,  
a[top]. The following is a formal version of merge sort.

Algorithm 11.5.2 Merge Sort

[The aim of this algorithm is to take an array of elements a[r], a[r11], . . . , a[s] (where 
r # s) and to order it. The output array is denoted a[r], a[r11], . . . , a[s] also. It has 
the same values as the input array, but they are in ascending order. The input array is 
split into two nearly equal-length subarrays, each of which is ordered using merge sort. 
Then the two subarrays are merged together.]

Input: r and s [positive integers with r # s], a[r], a[r11], . . . , a[s] [an array of data 
items that can be ordered]
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Algorithm Body: 
bot :5 r, top :5 s
while (bot , top)

mid :5 j
bot1 top

2
k

call merge sort with input bot, mid, and

a[bot], a[bot11], . . . , a[mid]

call merge sort with input mid11, top and

a[mid11], a[mid12], . . . , a[top]

[After these steps are completed, both arrays a[bot], a[bot11], . . . , a[mid] 
and a[mid11], a[mid12], . . . , a[top] are in order.]

merge a[bot], a[bot11], . . . , a[mid] and a[mid11], a[mid12], . . . , a[top]

[This step can be done with a call to a merge algorithm. To put the final ar-
ray in ascending order, the merge algorithm must be written so as to take two 
arrays in ascending order and merge them into an array in ascending order.]

end while

Output: a[r], a[r11], . . . , a[s] [an array with the same elements as the input array 
but in ascending order]

To derive the efficiency of merge sort, let

mn 5  the maximum number of comparisons used 
when merge sort is applied to an array of length n. 

Then m1 5 0 because no comparisons are used when merge sort is applied to an array of 
length 1. Also for any integer k . 1, consider an array a[bot], a[bot11], . . . , a[top] of 
length k that is split into two subarrays, a[bot], a[bot11], . . . , a[mid] and a[mid11], 
a[mid12], . . . , a[top], where mid 5 :(bot1 top)y2;. In exercise 24 you are asked to show 
that the right subarray has length :ky2; and the left subarray has length <ky2=. From the 
previous discussion of the merge process, it is known that to merge two subarrays into an 
array of length k, at most k21 comparisons are needed.

Consequently,

3
the number of comparisons

when merge sort is applied

to an array of length k
45 3

the number of comparisons

when merge sort is applied

to an array of length :ky2; 4
13the number of comparisons

when merge sort is applied
to an array of length <ky2= 413the number of comparisons

used to merge two subarrays
into an array of length k. 4

In other words,

mk 5 m:ky2;1m<ky2=1 (k21) for every integer k . 1.
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In exercise 25 you are asked to use this recurrence relation to show that

1

2
 n log2 n # mn # 2n log2 n for every integer n $ 1.

It follows that merge sort is Q(n log2 n).
In the text and exercises for Section 11.3, we showed that insertion sort and selection 

sort are both Q(n2). How much difference can it make that merge sort is Q(n log2 n)? If 
n 5 100,000,000 and a computer is used that performs one operation each nanosecond, the 
time needed to perform n log2 n operations is about 2.7 seconds, whereas the time needed 
to perform n2 operations is over 115 days.

Tractable and Intractable Problems
At an opposite extreme from an algorithm such as binary search, which has logarithmic 
order, is an algorithm with exponential order. For example, consider an algorithm to direct 
the movement of each of the 64 disks in the Tower of Hanoi puzzle as they are transferred 
one by one from one pole to another. In Section 5.7 we showed that such a transfer requires 
264 21 steps. If a computer took a nanosecond to calculate each transfer step, the total time 
to calculate all the steps would be

X 264 1C 1

109

1

60

1

60

1

24

1

365 25
584.5 years.

number of
moves

moves
per
second

seconds
per
minute

minutes
per
hour

hours
per
day

days
per
year

2

Problems whose solutions can be found with algorithms whose worst-case order with 
respect to time is a polynomial are said to belong to class P. They are called polyno-
mial-time algorithms and are said to be tractable. Problems that cannot be solved in 
polynomial time are called intractable. For certain problems, it is possible to check the 
correctness of a proposed solution with a polynomial-time algorithm, but it may not be 
possible to find a solution in polynomial time. Such problems are said to belong to class 
NP.* The biggest open question in theoretical computer science is whether every problem 
in class NP belongs to class P. This is known as the P vs. NP problem. The Clay Institute, 
in Cambridge, Massachusetts, has offered a prize of $1,000,000 to anyone who can either 
prove or disprove that P 5 NP.

In recent years, computer scientists have identified a fairly large set of problems, called 
NP-complete, that all belong to class NP but are widely believed not to belong to class P. 
What is known for sure is that if any one of these problems is solvable in polynomial time, 
then so are all the others. One of the NP-complete problems, commonly known as the 
traveling salesman problem, was discussed in Section 10.1.

A Final Remark on Algorithm Efficiency
This section and the previous one on algorithm efficiency have offered only a partial 
view of what is involved in analyzing a computer algorithm. For one thing, it is assumed 
that searches and sorts take place in the memory of the computer. Searches and sorts on 

*Technically speaking, a problem whose solution can be verified on an ordinary computer (or determinis-
tic sequential machine) with a polynomial-time algorithm can be solved on a nondeterministic sequential 
machine with a polynomial-time algorithm. Such problems are called NP, which stands for nondeterministic 
polynomial-time algorithm.
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disk-based files require different algorithms, though the methods for their analysis are 
similar. For another thing, as mentioned at the beginning of Section 11.3, time efficiency is 
not the only factor that matters in the decision about which algorithm to choose. Although 
computer memory is now very inexpensive, the amount of memory space required may 
also be a factor. There are mathematical techniques to estimate space efficiency, which are 
very similar to those used to estimate time efficiency. Furthermore, as parallel processing 
of data becomes increasingly prevalent, current methods of algorithm analysis are being 
modified and extended to apply to algorithms designed for this new technology.

1. To solve a problem using a divide-and-conquer 
algorithm, you reduce it to a fixed number of 
smaller problems of the same kind, which can 
themselves be , and so forth until .

2. To search an array using the binary search algo-
rithm in each step, you compare a middle element 
of the array to . If the middle element is less 
than , you , and if the middle element 
is greater than , you .

3. The worst-case order of the binary search algo-
rithm is .

4. To sort an array using the merge sort algorithm, 
in each step until the last one you split the array 
into approximately two equal sections and sort 
each section using . Then you  the two 
sorted sections.

5. The worst-case order of the merge sort algorithm 
is .

TEST YOuRSELF 

1. Use the facts that log2 10 > 3.32 and that 
for each real number a, log2(10a) 5 a log2 10  
to find log2(1,000), log2(1,000,000), and  
log2(1,000,000,000,000).

2. Suppose an algorithm requires c :log2 n; operations 
when performed with an input of size n (where c is 
a constant).
a. By what factor will the number of operations 

increase when the input size is increased from 
m to m2 (where m is a positive integer power 
of 2)?

b. By what factor will the number of operations 
increase when the input size is increased from 
m to m10 (where m is a positive integer power 
of 2)?

c. When n increases from 128 (5 27) to 
268,435,456 (5 228), by what factor is c :log2 n; 
increased? 

Exercises 3 and 4 illustrate that for relatively small 
values of n, algorithms with larger orders can be more 
efficient than algorithms with smaller orders. Use a 
graphing calculator or computer to answer these  
questions.

3. For what values of n is an algorithm that requires 
n operations more efficient than an algorithm that 
requires :50log2 n; operations?

4. For what values of n is an algorithm that requires 
:n2/10; operations more efficient than an algorithm 
that requires :n log2 n; operations? 

In 5 and 6, trace the action of the binary search algorithm 
(Algorithm 11.5.1) on the variables index, bot, top, mid, 
and the given values of x for the input array a[1] 5 Chia, 
a[2] 5 Doug, a[3] 5 Jan, a[4] 5 Jim, a[5] 5 Jose, a[6] 5
Mary, a[7] 5 Rob, a[8] 5 Roy, a[9] 5 Sue, a[10] 5 Usha, 
where alphabetical ordering is used to compare elements 
of the array.

5. a. x 5 Chia  b. x 5 Max

6. a. x 5 Amanda b. x 5 Roy

7. Suppose bot and top are positive integers with 
bot # top. Consider the array

a[bot], a[bot11], . . . , a[top].

a. How many elements are in this array?
b. Show that if the number of elements in the ar-

ray is odd, then the quantity bot1 top is even.

ExERCISE SET 11.5 
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c. Show that if the number of elements in the ar-
ray is even, then the quantity bot1 top is odd.

Exercises 8–11 refer to the following algorithm segment. 
For each positive integer n, let an be the number of itera-
tions of the while loop.

while (n . 0)

  n :5 n div 2

end while

8. Trace the action of this algorithm segment on n 
when the initial value of n is 27.

9. Find a recurrence relation for an.

10. Find an explicit formula for an.

11. Find an order for this algorithm segment.

Exercises 12–15 refer to the following algorithm segment. 
For each positive integer n, let bn be the number of itera-
tions of the while loop.

while (n . 0)

  n :5 n div 3

end while

12. Trace the action of this algorithm segment on n 
when the initial value of n is 424.

13. Find a recurrence relation for bn.

14. a.  Use iteration to guess an explicit formula 
for bn.

b. Prove that if k is an integer and x is a real num-
ber with 3k # x , 3k, then :log3 x; 5 k.

c. Prove that for every integer m $ 1,

:log3(3m); 5  :log3(3m11); 5  :log3(3m12);.

d. Prove the correctness of the formula you found 
in part (a). 

15. Find an order for the algorithm segment.

16. Complete the proof of case 2 of the strong 
induction argument in Example 11.5.5. In other 
words, show that if k is an odd integer and 
wi 5 :log2 i;11 for every integer i with 1 # i # k, 
then wk11 5 :log2 k11;11.

For 17–19, modify the binary search algorithm (Algo-
rithm 11.5.1) to take the upper of the two middle array 
elements in case the input array has even length. In other 
words, in Algorithm 11.5.1 replace

mid :5 j
bot1 top

2
k with  mid :5 l

bot1 top

2
m.

17. Trace the modified binary search algorithm for the 
same input as was used in Example 11.5.1.

18. Suppose an array of length k is input to the 
while loop of the modified binary search algo-
rithm. Show that after one iteration of the loop, 
if a[mid] Þ x, the input to the next iteration is an 
array of length at most :ky2;.

19. Let wn be the number of iterations of the while 
loop in a worst-case execution of the modified bi-
nary search algorithm for an input array of length 
n. Show that wk 5 11w:ky2; for k $ 2.

In 20 and 21, draw a diagram like Figure 11.5.4 to show 
how to merge the given subarrays into a single array in 
ascending order.

20. 3, 5, 6, 9, 12 and 2, 4, 7, 9, 11

21. F, K, L, R, U and C, E, L, P, W (alphabetical 
order)

In 22 and 23, draw a diagram like Figure 11.5.5 to show 
how merge sort works for the given input arrays.

22. R, G, B, U, C, F, H, G (alphabetical order)

23. 5, 2, 3, 9, 7, 4, 3, 2

24. Show that given an array a[bot], a[bot11], . . . , 
a[top] of length k, if mid 5 :(bot1 top)/2; then
a. the subarray a[mid11], a[mid12], . . . , 

a[top] has length :ky2;.
b. the subarray a[bot], a[bot11], . . . , a[mid] has 

length <ky2=.

25. The recurrence relation for m1, m2, m3, . . . , which 
arises in the calculation of the efficiency of merge 
sort, is

 m1 5 0

 mk 5 m:ky2;1m<ky2=1k21.

Show that for every integer n $ 1,
a. 1

2 n log2 n # mn

b. mn # 2n log2 n

26. It might seem that n21 multiplications are 
needed to compute xn, since

xn 5 x?x? Á x.

n21 multiplications

But observe that, for instance, since 6 5 412,

x6 5 x4x2 5 (x2)2x2.

Thus x6 can be computed using three multiplica-
tions: one to compute x2, one to compute (x2)2, 

H

H
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and one to multiply (x2)2 times x2. Similarly, since 
11 5 81211,

x11 5 x8x2x1 5 ((x2)2)2x2x

and so x11 can be computed using five multiplica-
tions: one to compute x2, one to compute (x2)2, one 
to compute ((x2)2)2, one to multiply ((x2)2)2 times 
x2, and one to multiply that product by x.
a. Write an algorithm to take a real number x and 

a positive integer n and compute xn by
(i)  calling Algorithm 5.1.1 to find the binary 

representation of n:

(r[k] r[k21] Á r[0])2,

where each r[i] is 0 or 1;
(ii)  computing  x2, x22

, x23

, Á , x2k

 by squaring, 
then squaring again, and so forth;

(iii)  computing xn using the fact that

 xn 5 xrfkg2k1Á 1 rf2g22 1 rf1g21 1 rf0g20

 5 xrfkg2k Á xrf2g22

?xrf1g21

?xrf0g20

b. Show that the number of multiplications per-
formed by the algorithm of part (a) is less than 
or equal to 2:log2 n;.

1. reduced to the same finite number of smaller problems of 
the same kind; easily resolved problems are obtained  
2. the element you are looking for; the element you are 
looking for; apply the binary search algorithm to the lower 

half of the array; the element you are looking for; apply the 
binary search algorithm to the upper half of the array  
3. log2 n, where n is the length of the array 4. merge sort; 
merge 5. n log2 n

ANSwERS FOR TEST YOuRSELF 
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CHAPTER 12 REGULAR EXPRESSIONS 
AND FINITE-STATE 
AUTOMATA

The theoretical foundations of computer science are derived from several disciplines: logic 
(the foundations of mathematics), electrical engineering (the design of switching circuits), 
brain research (models of neurons), and linguistics (the formal specification of languages).

As discussed briefly in Sections 6.4 and 7.4, the 1930s saw the development of math-
ematical treatments of basic questions concerning what can be proved in mathematics and 
what can be computed by means of a finite sequence of mechanized operations. Although 
the first digital computers were not built until the early 1940s, ten years earlier Alan Turing 
developed a simple abstract model of a machine, now called a Turing machine, by means of 
which he defined what it would mean for a function to be computable.

Around the same time, somewhat similar models of computation were developed by 
the American logicians Alonzo Church, Stephen C. Kleene, and Emil Post (who was 
born in Poland but came to the United States as a child), but Church and others showed 
these all to be equivalent. As a result, Church formulated a conjecture, now known as 
the Church-Turing thesis, asserting that the Turing machine is universal in the sense 
that anything that can ever be computed on a machine can be computed with a Turing 
machine. If this thesis is correct—which is widely believed—then all computers that 
have been or will ever be constructed are theoretically equivalent in what they can do, 
although they may differ widely in speed and storage capacity. For instance, quantum 
computers may have the capability to compute certain quantities enormously faster than 
classical computers. But Church’s thesis implies that the theory of computation is likely 
to remain fundamentally the same, even though the enabling technology is subject to 
constant change.

In the early 1940s, Warren S. McCulloch and Walter Pitts, working at the Massachusetts 
Institute of Technology (M.I.T.), developed a model of how the neurons in the brain might 
work and how models of neurons could be combined to make “circuits” or “automata” ca-
pable of more complicated computations. To a certain extent, they were influenced by the 
results of Claude Shannon, who also worked at M.I.T. and had in the 1930s developed the 
foundations of a theory that implemented Boolean functions as switching circuits. In the 
1950s, Kleene analyzed the work of McCulloch and Pitts and connected it with versions of 
the machine models introduced by Turing and others.

Another development of the 1950s was the introduction of high-level computer languag-
es. During the same years, linguist Noam Chomsky’s attempts to understand the underly-
ing principles by means of which human beings generate speech led him to develop a theo-
ry of formal languages, which he defined using sets of abstract rules, called grammars, of 
varying levels of complexity. It soon became apparent that Chomsky’s theory was of great 
utility in the analysis and construction of computer languages. For computer science, the 
most useful of Chomsky’s language classifications are also the two simplest: the regular 
languages and the context-free languages.

94193_ch12_ptg01.indd   828 12/11/18   6:14 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



12.1 FORMAL LAnguAgeS AnD ReguLAR eXPReSSIOnS  829

Regular languages, which are defined by regular expressions, are used extensively 
for matching patterns within text (as in word processing or Internet searches) and for 
lexical analysis in computer language compilers. They are part of sophisticated text 
editors and a number of UNIX* utilities, and they are also used in transforming XML† 
documents.

Using the Backus-Naur notation (introduced in Section 10.4), context-free languages 
can describe many of the more complex aspects of modern high-level computer languages, 
and they form the basis for a key part of compilers, which translate programs written in a 
high-level language into machine code suitable for execution.

A remarkable fact is that all of the subjects referred to previously are related. Each 
context-free grammar turns out to be equivalent to a type of automaton called a pushdown 
automaton, and each regular expression turns out to be equivalent to a type of automaton 
called a finite-state automaton. In this chapter, we focus on the study of regular languages 
and finite-state automata, leaving the subject of context-free grammars and their equiva-
lent automata to a later course in compiler construction or automata theory.

Formal Languages and Regular Expressions
The mind has finite means but it makes unbounded use of them and in very specific 
and organized ways. That’s the core problem of language that it became possible to 
face [by the mid-twentieth century]. —Noam Chomsky, circa 1998

An English sentence can be regarded as a string of words, and an English word can be 
regarded as a string of letters. Not every string of letters is a legitimate word, and not every 
string of words is a grammatical sentence. We could say that a word is legitimate if it can 
be found in an unabridged English dictionary and that a sentence is grammatical if it satis-
fies the rules in a standard English grammar book.

Computer languages are similar to English in that certain strings of characters are le-
gitimate words of the language and certain strings of words can be put together according 
to certain rules to form syntactically correct programs. A compiler for a computer lan-
guage analyzes the stream of characters in a program—first to recognize individual word 
and sentence units (this part of the compiler is called a lexical scanner), then to analyze the 
syntax, or grammar, of the sentences (this part is called a syntactic analyzer), and finally to 
translate the sentences into machine code (this part is called a code generator).

In computer science it has proved useful to look at languages from a very abstract point 
of view as strings of certain fundamental units and allow any finite set of symbols to be 
used as an alphabet. It is common to denote an alphabet by a capital Greek sigma: o. (This 
just happens to be the same symbol as the one used for summation, but the two concepts 
have no other connection.)

In Section 5.9 we used recursion to give a formal definition for strings over an alpha-
bet, and we used structural induction to give rigorous proofs for their properties. The 
formal definition provides a solid foundation for picturing strings as juxtapositions of 
characters.

12.1

Note Automaton is 
pronounced aw-TAHM-
uh-than. The plural of 
automaton is automata.

Noam Chomsky  
(born 1928)
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*UNIX is an operating system that was developed in 1969 by Kenneth Thompson at Bell Laboratories. 
Originally written in assembly language, it was later rewritten in Dennis Ritchie’s C language, which was also 
developed at Bell Laboratories.
†XML is a standard for defining markup languages used for Internet applications.
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Note that the empty set satisfies the criteria for being a formal language. Allowing the 
empty set to be a formal language turns out to be convenient in certain technical situations.

Examples of Formal Languages

Let the alphabet o 5 {a, b}.

a. Define a language L1 over o to be the set of all strings that begin with the character a 
and have length at most three characters. Find L1.

b. A palindrome is a string that looks the same if the order of its characters is reversed. 
For instance, aba and baab are palindromes. Define a language L2 over o to be the set 
of all palindromes obtained using the characters of o. Write ten elements of L2. 

Solution
a. L1 5 {a, aa, ab, aaa, aab, aba, abb}

b. L2 contains the following ten strings (among infinitely many others): 

 �, a, b, aa, bb, aaa, bab, abba, babaabab, abaabbbbbaaba ■

Example 12.1.1

Alphabet o: a finite set of characters

String over o:  (1) a finite juxtaposition of elements (called charac-
ters) of o or (2) the null string �

Length of a string over o:  the number of characters that made up the string, 
with the null string having length 0

Formal language over o: a set of strings over the alphabet

Stephen C. Kleene 
(1909–1994)
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Let o be an alphabet. For each nonnegative integer n, let

on 5 the set of all strings over o that have length n,

o1 5 the set of all strings over o that have length at least 1, and

o*  5 the set of all strings over o.

Note that on is essentially the Cartesian product of n copies of o. The language o* is 
called the Kleene closure of o, in honor of Stephen C. Kleene (pronounced CLAY-nee). 
o1 is the set of all strings over o except for � and is called the positive closure of o.

The Languages on, o1, and o*

Let o 5 {a, b}.

a. Find o0, o1, o2, and o3.

b. Let A 5 o0 ø o1 and B 5 o2 ø o3. Use words to describe A, B, and A ø B.

c. Describe a systematic way of writing the elements of o1. What change needs to be 
made to obtain the elements of o*?

Example 12.1.2

Note A Greek sigma is 
the traditional symbol 
used to denote an alpha-
bet in a formal language. 
It is smaller than the 
Greek sigma used for a 
summation.
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Solution
a. o0 5 {l}, o1 5 {a, b}, o2 5 {aa, ab, ba, bb}, and o3 5 {aaa, aab, aba, abb, baa, bab, 

bba, bbb}

b. A is the set of all strings over o of length at most 1.
B is the set of all strings over o of length 2 or 3.
A ø B is the set of all strings over o of length at most 3.

c. Elements of o1 can be written systematically by writing all the strings of length 1, 
then all the strings of length 2, and so forth.

o1: a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, Á .

Of course, the process of writing the strings in o1 would continue forever, because o1 
is an infinite set. The only change that needs to be made to obtain o* is to place the 
null string at the beginning of the list. ■

Polish Notation: A Language Consisting of Postfix Expressions

An expression such as a1b, in which a binary operator such as 1 sits between the two 
quantities on which it acts, is said to be written in infix notation. Alternative nota-
tions are called prefix notation (in which the binary operator precedes the quantities on 
which it acts) and postfix notation (in which the binary operator follows the quantities 
on which it acts). In prefix notation, a1b is written 1 ab. In postfix notation, a1b is 
written ab 1.

Prefix and postfix notations were introduced in 1920 by the Polish mathematician Jan 
Łukasiewicz (pronounced Wu-ca-SHAY-vich). In his honor—and because some people 
have difficulty pronouncing his name—they are often referred to as Polish notation and 
reverse Polish notation, respectively. A great advantage of these notations is that they 
eliminate the need for parentheses in writing arithmetic expressions. For instance, in post-
fix (or reverse Polish) notation, the expression 8 416 / is evaluated from left to right as 
follows: Add 8 and 4 to obtain 12, and then divide 12 by 6 to obtain 2. As another example, 
if the expression (a1b)?c in infix notation is converted to postfix notation, the result is 
ab1c?.

a. If the expression ab?cd ?1 in postfix notation is converted to infix notation, what is 
the result?

b. Let o 5 {4, 1, 1 , 2}, and let L 5 the set of all strings over o obtained by writing 
either a 4 or a 1 first, then either a 4 or a 1, and finally either a1or a 2. List all ele-
ments of L between braces, and evaluate the resulting expressions. 

Solution
a. a?b1c?d

b. L 5 {4 1 1, 4 1 2, 1 4 1, 1 4 2, 4 4 1, 4 4 2, 1 1 1, 1 1 2}

4 11 5 411 5 5,     4 1 2 5 4 21 5 3,  1 41 5 114 5 5,

1 425 1 24 523,    4 4 1 5 414 5 8,  4 42 5 4 24 5 0,

1 11 5 111 5 2,     1 1 2 5 121 5 0 ■

The following definition describes ways in which languages can be combined to form 
new languages.

Example 12.1.3
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New Languages from Old

Let L1 be the set of all strings consisting of an even number of a’s (namely, l, aa, aaaa, 
aaaaaa, Á ), and let L2 5 {b, bb, bbb}. Find L1L2, L1 ø L2, and (L1 ø L2)*. Note that the 
null string l is in L1 because 0 is an even number.

Solution
L1 L2 5 the set of all strings that consist of an even number of a’s followed by b or by bb 
or by bbb.

L1 ø L2 5 the set that includes the strings b, bb, bbb and any strings consisting of an even 
number of a’s.

(L1 ø L2)* 5 the set of all strings of a’s and b’s in which every occurrence of a is in a block 
consisting of an even number of a’s. ■

The Language Defined by a Regular Expression
One of the most useful ways to define a language is by means of a regular expression, a 
concept first introduced by Kleene. We give a recursive definition for generating the set of 
all regular expressions over an alphabet.

Example 12.1.4

Definition

Let o be an alphabet. Given any strings x and y over o, the concatenation of x and y 
is the string obtained by writing all the characters of x followed by all the characters of 
y. For any languages L and L9 over o, three new languages can be defined as follows:

The concatenation of L and L9, denoted LL9, is

LL9 5 {xy u  x [ L and y [ L9}.

The union of L and L9, denoted L : L9, is

L ø L9 5 {x u  x [ L or x [ L9}.

The Kleene closure of L, denoted L*, is

L* 5 {x u  x is a concatenation of any finite number of strings in L}.

Note that l is in L* because it is regarded as a concatenation of zero strings in L.

Definition

Given an alphabet o, the following are regular expressions over o:

I.  Base: [, l, and each individual symbol in o are regular expressions over o.

II.  Recursion: If r and s are regular expressions over o, then the following are also 
regular expressions over o:

(i) (rs)  (ii) (r u  s)  (iii) (r*),

  where rs denotes the concatenation of r and s, r* denotes the concatenation of r 
with itself any finite number (including zero) of times, and r u  s denotes either one 
of the strings r or s. The regular expression r* is called the Kleene closure of r.

III.  Restriction: Nothing is a regular expression over o except for objects defined in 
(I) and (II) above. 
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As an example, one regular expression over o 5 {a, b, c} is

a u  (b u  c)*  u  (ab)*.

If the alphabet o happens to include symbols—such as (, or u, or), or *—special provi-
sions have to be made to avoid ambiguity. An escape character, usually a backslash, is 
added before the potentially ambiguous symbol. For instance, a left parenthesis would be 
written as \( and the backslash itself would be written as \\.

To eliminate parentheses, an order of precedence for the operations used to define 
regular expressions has been introduced. The highest is *, concatenation is next, and u  is the 
lowest. It is also customary to eliminate the outer set of parentheses in a regular expression 
when the order of precedence rules are sufficient for avoiding ambiguity. Thus

(a((bc)*)) 5 a(bc)* and (a u  (bc)) 5 a u  bc.

Order of Precedence for the Operations in a Regular Expression

a. Add parentheses to emphasize the order of precedence in the following expression: 
ab*

 u  b*a.

b. Use the rules about order of precedence to eliminate the parentheses in the following 
expression: ((a u  ((b*)c))(a*)).

Solution
a. ((a(b*)) u  ((b*)a))  b.  (a u  b*c)a* ■

Given a finite alphabet, every regular expression over the alphabet defines a for-
mal language. The function from regular expressions to formal languages is defined 
recursively.

Example 12.1.5

Definition

For any finite alphabet o, the function L that associates a language to each regular 
expression over o is defined by (I)–(III) below. For each such regular expression r, 
L(r) is called the language defined by r.

I.  Base: L([) 5 [, L(l) 5 {l}, L(a) 5 {a} for every a in o.

II.  Recursion: If L(r) and L(r9) are the languages defined by the regular expressions 
r and r9 over o, then

(i) L(rr9) 5 L(r)L(r9) (ii) L(r u  r9) 5 L(r) ø L(r9) (iii) L(r*) 5 (L(r))*. 

III. Restriction: The function L is completely determined by I and II above.

Note that any finite language can be defined by a regular expression. For instance, the 
language {cat, dog, bird} is defined by the regular expression (cat u  dog u  bird). An important 
example is the following.

Using Set Notation to Describe the Language Defined by a Regular Expression

Let o 5 {a, b}, and consider the language defined by the regular expression (a u  b)*. Use set 
notation to find this language, and describe it in words.

Example 12.1.6
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Solution The language defined by (a u  b)* is

L((a u  b)*) 5 (L(a u  b))*

5 (L(a) ø L(b))*

5 ({a} ø {b})*

5{a, b}* by definition of operations on languages

5 the set of all strings of a’s and b’s

5 o*. ■

In Section 5.9 we proved that concatenation of strings is associative. Taking unions of 
sets is also an associative operation. Thus for any regular expressions r, s, and t,

L((rs)t) 5 L(r(st)),

and

L((r u  s) u  t) 5 (L(r u  s)) ø L(t) by definition of u

5 (L(r) ø L(s)) ø L(t) by definition of u

5 L(r) ø (L(s) ø L(t)) by the associativity of union for sets

5 L(r) ø (L(s u t)) by definition of u

5 L(r u  (s u  t))  by definition of u.

Because of these relationships, it is customary to drop the parentheses in “associative” 
situations and write

rst 5 (rs)t 5 r(st)

and

r u  s u  t 5 (r u  s) u  t 5 r u  (s u  t).

As you become accustomed to working with regular expressions, you will find that you 
do not need to go through a formal derivation in order to determine the language defined 
by an expression.

The Language Defined by a Regular Expression

Let o 5 {0, 1}. Use words to describe the languages defined by the following regular ex-
pressions over o.

a. 0*1*
 u  1*0* b. 0(0 u  1)* 

Solution
a. The strings in this language consist either of a string of 0’s followed by a string of 

1’s or of a string of 1’s followed by a string of 0’s. However, in either case the strings 
could be empty, which means that l is also in the language.

b. The strings in this language have to start with a 0. The 0 may be followed by any 
finite number (including zero) of 0’s and 1’s in any order. Thus the language is the set 
of all strings of 0’s and 1’s that start with a 0.  ■

Individual Strings in the Language Defined by a Regular Expression

In each of (a) and (b), let o 5 {a, b} and consider the language L over o defined by the 
given regular expression.

a. The regular expression is a*b(a u  b)*. Write five strings that belong to L.

Example 12.1.7

Example 12.1.8
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b. The regular expression is a*
 u   (ab)*. Indicate which of the following strings belong to L: 

a b aaaa abba ababab

Solution
a. The strings b, ab, abbb, abaaa, and ababba are five strings from the infinitely many 

in L.

b. The following strings are the only ones listed that belong to L: a, aaaa, and ababab. 
The string b does not belong to L because it is neither a string of a’s nor a string of 
possibly repeated ab’s. The string abba does not belong to L because any two b’s that 
might occur in a string of L are separated by an a.  ■

A Regular Expression That Defines a Language

Let o 5 {0, 1}. Find regular expressions over o that define the following languages:

a. The language consisting of all strings of 0’s and 1’s that have even length and in which 
the 0’s and 1’s alternate.

b. The language consisting of all strings of 0’s and 1’s with an even number of 1’s. Such 
strings are said to have even parity.

c. The language consisting of all strings of 0’s and 1’s that do not contain two consecu-
tive 1’s. 

Solution
a. If a string in the language starts with a 1, the pattern 10 must continue for the length 

of the string. If it starts with 0, the pattern 01 must continue for the length of the 
string. Also, the null string satisfies the condition by default. Thus an answer is

(10)*
 u  (01)*.

b. Some basic strings with even parity are l, 0, and 10*1. Concatenation of strings with 
even parity also have even parity. Because such a string may start or end with a string 
of 0’s, one answer is

(0  u  10*1)*.

c. Note that a string may end in a 1, but any other 1 must be followed immediately by a 0. 
Thus, it is enough to enforce the rule that a 1 must be followed by a 0, unless the 1 is at 
the end of the string. A regular expression satisfying these conditions is

 (0  u  10)*(l u  1). ■

Note that a given language may be defined by more than one regular expression. For 
example, both

(a*
 u  b*)*    and    (a u  b)*

define the language consisting of the set of all strings of a’s and b’s.

Deciding Whether Regular Expressions Define the Same Language

In (a) and (b), determine whether the given regular expressions define the same language. 
If they do, describe the language. If they do not, give an example of a string that is in one 
of the languages but not the other.

a. (a u  l)* and a* b. 0*
 u  1* and (01)* 

Example 12.1.9

Example 12.1.10
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Solution

a. Note that because the null string l has no characters, when it is concatenated with any 
other string x, the result is just x: for every string x, xl 5 lx 5 x. Now L((a u  l)*) is the 
set of strings formed using a and l in any order, and so, because al 5 la 5 a, this is 
the same as the set of strings consisting of zero or more a’s. Thus L((a u  l)*) 5 L(a*).

b. The two languages defined by the given regular expressions are not the same: 0101 is 
in the second language but not the first. ■

Practical Uses of Regular Expressions
Many applications of computers involve performing operations on pieces of text. For 
instance, word and text processing programs allow us to find certain words or phrases 
in a document and possibly replace them with others. A compiler for a computer 
language analyzes an incoming stream of characters to find groupings that represent 
aspects of the computer language such as keywords, constants, identifiers, and opera-
tors. And in bioinformatics, pattern matching and flexible searching techniques are 
used extensively to analyze the long sequences of the base pairs A, C, G, and T that 
occur in DNA.

Through their connection with finite-state automata, which we discuss in the next sec-
tion, regular expressions provide an extremely useful way to describe a pattern in order to 
identify a string or a collection of strings within a piece of text. Regular expressions make 
it possible to replace a long, complicated set of if-then-else statements with code that is 
easy both to produce and to understand. Because of their convenience, regular expressions 
were introduced into a number of UNIX utilities, such as grep (short for globally search 
for regular expression and print) and egrep (extended grep), in text editors, such as QED 
(short for Quick EDitor, the first text editor to use regular expressions), vi (short for visual 
interface), sed (short for stream editor and originally developed for UNIX but now used by 
many systems), and Emacs (short for Editor macros), and in the lexical scanner component 
of a compiler. The computer language Perl has a particularly powerful implementation for 
regular expressions, which has become a de facto standard. The implementations used in 
Java, Python, and .NET are similar.

A number of shorthand notations have been developed to facilitate working with regu-
lar expressions in text processing. When characters in an alphabet or in a part of an alpha-
bet are understood to occur in a standard order, the notation [beginning character – ending 
character] is commonly used to represent the regular expression that consists of a single 
character in the range from the beginning to the ending character. It is called a character 
class. Thus

[A2C] stands for (A uB uC)

and

[029] stands for (0  u   1  u   2  u   3  u   4  u   5  u   6  u   7  u   8  u   9).

Character classes are also allowed to include more than one range of characters. For 
instance,

[A2C x2 z] stands for (A u  B u  C u  x u  y u  z)
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12.1 Formal languages and regular expressions  837

As an example, consider the language defined by the regular expression

[A2Z a2 z]([A2Z a2 z] u  [029])*.

The following are some strings in the language:

Account Number, z23, jsmith109, Draft2rev.

In general, the language is the set of all strings that start with a letter sequence of digits or 
letters. This set is the same as the set of allowable number of computer languages.

Other commonly used shorthands are

[ABC] to stand for (A u  B u  C)

and a single dot

. to stand for an arbitrary character.

Thus, for instance, if o 5 {A, B, C}, then

A.C stands for    (AAC u  ABC u  ACC).

When the symbol ̂  is placed at the beginning of a character class, it indicates that a charac-
ter of the same type as those in the range of the class is to occur at that point in the string, 
except for one of the specific characters indicated after the ^ sign. For instance,

[^ D2Z][029][029]*

stands for any string starting with a letter of the alphabet different from D to Z, followed by 
any positive number of digits from 0 to 9. Examples are B3097, C0046, and so forth. If r is 
a regular expression, the notation r1denotes the concatenation of r with itself any positive 
finite number of times. In symbols,

r1 5 rr*.

For example,

[A2Z]1

represents any nonempty string of capital letters. If r is a regular expression, then

r? 5 (l ur).

That is, r? denotes either zero occurrences or exactly one occurrence of r. Finally, if m and 
n are positive integers with m # n,

r{n} denotes the concatenation of r with itself exactly n times,

and

r{m, n} denotes the concatenation of r with itself anywhere from m through n times.

Thus a check to help determine whether a given string could represent a local telephone 
number in the United States is to see whether it has the form

[029][029][029]{[029][029][029][029],
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838  CHAPTER 12 regular expressions and FiniTe-sTaTe auTomaTa

or, equivalently, whether it has the form

[029]{3}{[029]{4}.

A Regular Expression for a Date

People often write dates in a variety of formats. For instance, in the United States the fol-
lowing all represent the fifth of February of 2050:

2y5y2050 2-5-2050 02y05y2050 02-05-2050

Write a regular expression that would help check whether a given string might be a valid 
date written in one of these forms.

Solution The language defined by the following regular expression consists of all strings 
that begin with one or two digits followed by either a hyphen or a slash, followed by either 
one or two digits, followed by either a hyphen or a slash, followed by four digits.

[029]{1, 2}[{y][029]{1, 2}[029]{4}

All valid dates of the given format are elements of the language defined by this expression, 
but the language also includes strings that are not valid dates. For instance, 09/54/1978 
is in the language, but it is not a valid date because September does not have 54 days, 
and 38/12/2184 is not valid because there is no 38th month. It is possible to write a more 
complicated regular expression that could be used to check all aspects of the validity of 
a date (see exercise 40 at the end of the section), but the kind of simpler expression given 
above is nonetheless useful. For instance, it provides an easy way to notify a user of an 
interactive program that a certain kind of mistake was made and that information should 
be reentered. ■

Example 12.1.11

1. If x and y are strings, the concatenation of x and y 
is .

2. If L and L9 are languages, the concatenation of L 
and L9 is .

3. If L and L9 are languages, the union of L and L9  
is  .

4. If L is a language, the Kleene closure of L is .

5. The set of regular expressions over an alphabet o 
is defined recursively. The base for the definition 
is the statement that . The recursion for the 
definition specifies that if r and s are any regular 
expressions over o, then the following are also 
regular expressions in the set: , , 
and .

6. The function that associates a language to each 
regular expression over an alphabet o is defined 
recursively. The base for the definition is the state-
ment that L([) 5  , L(l) 5 , and 
L(a) 5   for every a in o. The recursion 
for the definition specifies that if L(r) and L(r9) are 
the languages defined by the regular expressions 
r and r9 over o, then L(rr9) 5 , L(r u  r9) 5

, and L (r*) 5 .

7. The notation [A 2 C] is an example of a  
and denotes the regular expression .

8. Use of a single dot in a regular expression stands 
for .

9. The symbol ^, placed at the beginning of a charac-
ter class, indicates .

TEST YOURSELF 
Answers to Test Yourself questions are located at the end of each section.

Note In most of the rest 
of the world these expres-
sions represent the second 
of May of 2050.
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12.1 Formal languages and regular expressions  839

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is 
given. The symbol * signals that an exercise is more challenging than usual.

1. a.  Let L1 be the language consisting of all strings 
over o that are palindromes and have length  
# 4. List the elements of L1 between braces.

b. Let L2 be the language consisting of all strings 
over o that begin with an x and have length  
# 3. List the elements of L2. 

2. a.  Let L3 be the language consisting of all strings 
over o of length # 3 in which all the x’s ap-
pear to the left of all the y’s. List the elements 
of L3 between braces.

b. List between braces the elements of o4, the set 
of all strings of length 4 over o.

c. Let A 5 o1 ø o1 and B 5 o3 ø o4. Describe 
A, B, and A ø B in words. 

3. a.  If the expression ab1cd 1· in postfix nota-
tion is converted to infix notation, what is the 
result?

b. Let o 5 {1, 2, *, /} and let L be the set of 
all strings over o obtained by writing first a 
number (1 or 2), then a second number (1 or 2), 
which can be the same as the first one, and 
finally an operation (denoted * or / , where * in-
dicates multiplication and / indicates division). 
Then L is a set of postfix, or reverse Polish, 
expressions. List all the elements of L between 
braces, and evaluate the resulting expressions.

In 4–6, describe L1L2, L1 ø L2, and (L1 ø L2)* for the given 
languages L1 and L2.

4. L1 is the set of all strings of a’s and b’s that start 
with an a and contain only that one a; L2 is the set 
of all strings of a’s and b’s that contain an even 
number of a’s.

5. L1 is the set of all strings of a’s, b’s, and c’s that 
contain no c’s and have the same number of a’s as 
b’s; L2 is the set of all strings of a’s, b’s, and c’s 
that contain no a’s or b’s.

6. L1 is the set of all strings of 0’s and 1’s that start 
with a 0; L2 is the set of all strings of 0’s and 1’s 
that end with a 0. 

In 7–9, add parentheses to emphasize the order of prece-
dence in the given expressions.

7. (a u  b*b)(a* u  ab) 8. 0*1 u  0(0*1)*

9. (x u  yz*)*(yx u  (yz)*z) 

In 10–12, use the rules about order of precedence to 
eliminate the parentheses in the given regular expression.

10. ((a(b*)) u  (c(b*))) ((ac) u  (bc))

11. (1(1*)) u  ((1(0*)) u   ((1*)1))

12. (xy)(((x*)y)*) u  (((yx) u  y)(y*))

In 13–15, use set notation to derive the language defined 
by the given regular expression. Assume o 5 {a, b, c}.

13. l u  ab 14. [  u  l 15. (a u  b)c

In 16–18, write five strings that belong to the language 
defined by the given regular expression.

16. 0*1(0*1*)* 17. b*
 u  b*ab* 18. x*(yxxy u  x)* 

In 19–21, use words to describe the language defined by 
the given regular expression.

19. b*ab*ab*a 20. 1(0 u  1)*00 21. (x u  y)y(x u  y)* 
In 22–24, indicate whether the given strings belong to the 
language defined by the given regular expression. Briefly 
justify your answers.

22. Expression: (b u  l)a(a u  b)*a(b u  l), strings: aaaba, 
baabb

23. Expression: (x*y u  zy*)*, strings: zyyxz, zyyzy

24. Expression: (01*2)*, strings: 120, 01202

H

EXERCISE SET 12.1*

In 1 and 2, let o 5 {x, y} be an alphabet.

10. If r is a regular expression, the notation r1
denotes .

11. If r is a regular expression, the notation r? denotes 
.

12. If r is a regular expression, the notation r{n} 
denotes  and the notation r{m, n} denotes 

.
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In 25–27, find a regular expression that defines the given 
language.

25. The language consisting of all strings of 0’s and 
1’s with an odd number of 1’s. (Such a string is 
said to have odd parity.)

26. The language consisting of all strings of a’s and b’s 
in which the third character from the end is a b.

27. The language consisting of strings of x’s and y’s in 
which the elements in every pair of x’s are sepa-
rated by at least one y. 

Let r, s, and t be regular expressions over o 5 {a, b}. In 
28–30, determine whether the two regular expressions 
define the same language. If they do, describe the lan-
guage. If they do not, give an example of a string that is in 
one of the languages but not the other.

28. (r u  s)t and rt u  st

29. (rs)* and r*s*

30. (rs)* and ((rs)*)* 

In 31–39, write a regular expression to define the given 
set of strings. Use the shorthand notations given in 
the section whenever convenient. In most cases, your 
expression will describe other strings in addition to the 
given ones, but try to make your answer fit the given 
strings as closely as possible within reasonable space 
limitations.

31. All words that are written in lowercase letters and 
start with the letters pre but do not consist of pre all 
by itself.

32. All words that are written in uppercase letters, and 
contain the letters BIO (as a unit) or INFO (as a unit).

33. All words that are written in lowercase letters, end 
in ly, and contain at least five letters.

34. All words that are written in lowercase letters and 
contain at least one of the vowels a, e, i, o, or u.

35. All words that are written in lowercase letters 
and contain exactly one of the vowels a, e, i, o, 
or u.

36. All words that are written in uppercase letters and 
do not start with one of the vowels A, E, I, O, or 
U but contain exactly two of these vowels next to 
each other.

37. All United States social security numbers (which 
consist of three digits, a hyphen, two digits, 
another hyphen, and finally four more digits), 
where the final four digits start with a 3 and end 
with a 6.

38. All telephone numbers that have three digits, then 
a hyphen, then three more digits, then a hyphen, 
and then four digits, where the first three digits 
are either 800 or 888 and the last four digits start 
and end with a 2.

39. All signed or unsigned numbers with or without 
a decimal point. A signed number has one of the 
prefixes1or 2, and an unsigned number does not 
have a prefix. Represent the decimal point as \. 
to distinguish it from the single dot symbol for an 
arbitrary character.

40. Write a regular expression to perform a com-
plete check to determine whether a given string 
represents a valid date from 1980 to 2079 written 
in one of the formats of Example 12.1.11. (Dur-
ing this period, leap years occur every four years 
starting in 1980.)

41. Write a regular expression to define the set of 
strings of 0’s and 1’s with an even number of 0’s 
and even number of 1’s. 

H

*

1. the string obtained by writing all the characters of x 
followed by all the characters of y 2. {xy u  x [ L and 
y [ L9} 3. {s u  s [ L or s [ L9} 4. {t u  t is a concatenation 
of any finite number of strings in L} 5. [, l, and each 
individual symbol in o are regular expressions over o; (rs); 
(r u  s); (r*) 6. [; {l}; {a}; L(r)L(r9); L(r) ø L(r9); (L(r))*  
7. character class; (A u  B u  C  ) 8. an arbitrary character  

9. a character of the same type as those in the range of the 
class is to occur at that point in the string except for one 
of the specific characters indicated after the ^ sign. 10. the 
concatenation of r with itself any positive finite number of 
times 11. (l u  r) 12. the concatenation of r with itself 
exactly n times; the concatenation of r with itself anywhere 
from m through n times

ANSWERS FOR TEST YOURSELF 
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12.2 FiniTe-sTaTe auTomaTa  841

Finite-State Automata
The world of the future will be an ever more demanding struggle against the 
limitations of our intelligence, not a comfortable hammock in which we can lie down 
to be waited upon by our robot slaves. —Norbert Wiener, 1964

The kind of circuit discussed in Section 2.4 is called a combinational circuit. Such a circuit is 
characterized by the fact that its output is completely determined by its input/output table, or, in 
other words, by a Boolean function. Its output does not depend in any way on the history of pre-
vious inputs to the circuit. For this reason, a combinational circuit is said to have no memory.

Combinational circuits are very important in computer design, but they are not the only 
type of circuits used. Equally important are sequential circuits. For sequential circuits 
one cannot predict the output corresponding to a particular input unless one also knows 
something about the prior history of the circuit, or, more technically, unless one knows the 
state the circuit was in before receiving the input. The behavior of a sequential circuit is a 
function not only of the input to the circuit but also of the state the circuit is in when the 
input is received. A computer memory circuit is a type of sequential circuit.

A finite-state automaton is an idealized machine that embodies the essential idea of a 
sequential circuit. Each piece of input to a finite-state automaton leads to a change in the 
state of the automaton, which in turn affects how subsequent input is processed. Imagine, 
for example, the act of dialing a telephone number. Dialing 1-800 puts the telephone circuit 
in a state of readiness to receive the final seven digits of a toll-free call, whereas dialing 
328 leads to a state of expectation for the four digits of a local call. Vending machines op-
erate similarly. Just knowing that you put a quarter into a vending machine is not enough 
for you to be able to predict what the behavior of the machine will be. You also have to 
know the state the machine was in when the quarter was inserted. If 75¢ had already been 
deposited, you might get a beverage or some candy, but if the quarter was the first coin 
deposited, you would probably get nothing at all.

A Simple Vending Machine

A simple vending machine dispenses bottles of juice that cost $1 each. The machine accepts 
quarters and half-dollars only and does not give change. As soon as the amount deposited 
equals or exceeds $1 the machine releases a bottle of juice. The next coin deposited starts the 
process over again. The operation of the machine is represented by the diagram of Figure 12.2.1.

half-dollar

half-dollar
half-dollar

half-dollar

quarter

quart
er

quarter half-dollar

quarter qu
ar

ter

25¢
deposited

0¢
deposited

50¢
deposited

75¢
deposited

$1 or
more

deposited

FIGURE 12.2.1 A Simple Vending Machine

12.2

Example 12.2.1
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Each circle represents a state of the machine: the state in which 0¢ has been deposited, 
25¢, 50¢, 75¢, and $1 or more. The unlabeled arrow pointing to “0¢ deposited” indicates 
that this is the initial state of the machine. The double circle around “$1 or more deposited” 
indicates that a bottle of juice is released when the machine has reached this state. (It is 
called an accepting state of the machine because when the machine is in this state, it has 
accepted the input sequence of coins as payment for juice.) The arrows that link the states 
indicate what happens when a particular input is made to the machine in each of its vari-
ous states. For instance, the arrow labeled “quarter” that goes from “0¢ deposited” to “25¢ 
deposited” indicates that when the machine is in the state “0¢ deposited” and a quarter is 
inserted, the machine goes to the state “25¢ deposited.” The arrow labeled “half-dollar” 
that goes from “75¢ deposited” to “$1 or more deposited” indicates that when the machine 
is in the state “75¢ deposited” and a half-dollar is inserted, the machine goes to the state 
“$1 or more deposited” and juice is dispensed. (In this case the purchaser would pay $1.25 
for the juice because the machine does not return change.) The arrow labeled “quarter” that 
goes from “$1 or more deposited” to “25¢ deposited” indicates that when the machine is 
in the state “$1 or more deposited” and a quarter is inserted, the machine goes back to the 
state “25¢ deposited.” (This corresponds to the fact that after the machine has dispensed a 
bottle of juice, it starts operation all over again.)

Equivalently, the operation of the vending machine can be represented by a next-state 
table as shown in Table 12.2.1. 

TAbLE 12.2.1 Next-State Table

Input

Quarter Half-Dollar

State

S

~°

0¢ deposited
25¢ deposited
50¢ deposited
75¢ deposited

$1 or more deposited

25¢ deposited
50¢ deposited
75¢ deposited 

$1 or more deposited 
25¢ deposited

50¢ deposited
75¢ deposited

$1 or more deposited
$1 or more deposited

50¢ deposited

The entries in the left-most column are all the possible states of the machine, with 
the arrow pointing to “0¢ deposited” indicating that the machine begins operation in this 
state and the double circle next to “$1 or more deposited” showing that a bottle of juice is 
released when the machine has reached this state. The inputs to the machine are shown 
in at the tops of the columns labeled “Quarter” and “Half-Dollar.” Entries in the body of 
the table show the states to which the machine goes when it has been in one state and a 
given input is applied to it. For instance, the entry in the third row of the column labeled 
“Half-Dollar” shows that when the machine is in state “50¢ deposited” and a half-dollar is 
deposited, it goes to state “$1 or more deposited.”

Note that Table 12.2.1 conveys exactly the same information as the diagram of Fig-
ure 12.2.1. If the diagram is given, the table can be constructed, and if the table is given, 
the diagram can be drawn. ■

Observe that the vending machine described in Example 12.2.1 can be thought of as 
having a primitive memory: It “remembers” how much money has been deposited (within 
limits) by referring to the state it is in. This capability for storing information and acting 
upon it is what gives finite-state automata their tremendous power.

The most important finite-state automata are digital computers. Each computer consists 
of several subsystems: input devices, a processor, and output devices. A processor typically 
consists of a central processing unit and a finite number of memory locations. At any given 
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time, the state of the processor is determined by the locations and values of all the bits 
stored within its memory. A computer that has n different locations for storing a single bit 
can therefore exist in 2n different states. For a modern computer, n is many billions or even 
trillions, so the total number of states is enormous. But it is finite. Therefore, despite the 
complexity of a computer, just as for a vending machine, it is possible to predict the next 
state given knowledge of the current state and the input. Indeed, this is essentially what 
programmers try to do every time they write a program. Fortunately, modern, high-level 
computer languages provide a lot of help.

The basic theory of automata was developed to answer very theoretical questions about 
the foundations of mathematics posed by the great German mathematician David Hillbert 
in 1900. The ground-breaking work on automata was done in the mid-1930s by the English 
mathematician and logician Alan Turing. In the 1940s and 1950s, Turing’s work played an 
important role in the development of real-world automatic computers.

Definition of a Finite-State Automaton
A general finite-state automaton is completely described by giving a set of states, together 
with an indication about which is the initial state and which are the accepting states (when 
something special happens), a list of all input elements, and specification for a next-state 
function that defines which state is produced by each input in each state. This is formalized 
in the following definition:

Definition

A finite-state automaton A consists of five objects:
1. A finite set I, called the input alphabet, of input symbols.
2. A finite set S of states the automaton can assume.
3. A designated state s0 called the initial state.
4. A designated set of states called the set of accepting states.
5. A next-state function N : S 3 I S S that associates a “next-state” to each or-

dered pair consisting of a “current state” and a “current input.” For each state s 
in S and input symbol m in I, N(s, m) is the state to which A goes if m is input to 
A when A is in state s.

The operation of a finite-state automaton is commonly described by a diagram called 
a (state-) transition diagram, similar to that of Figure 12.2.1. It is called a transition 
diagram because it shows the transitions the machine makes from one state to another in 
response to various inputs. In a transition diagram, states are represented by circles and ac-
cepting states by double circles. There is one arrow that points to the initial state and there 
are other arrows that are labeled with input symbols and point from each state to other 
states to indicate the action of the next-state function. Specifically, an arrow from state s to 
state t labeled m means that N(s, m) 5 t.

The next-state table for an automaton shows the values of the next-state function N for 
all possible states s and input symbols i. In the annotated next-state table, the initial state 
is indicated by an arrow and the accepting states are marked by double circles.

A Finite-State Automaton Given by a Transition Diagram

Consider the finite-state automaton A defined by the transition diagram shown in  
Figure 12.2.2.

Example 12.2.2
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a. What are the states of A?

b. What are the input symbols of A?

c. What is the initial state of A?

d. What are the accepting states of A?

e. Determine N(s1, 1).

f. Construct the annotated next-state table for A.

Solution

a. The states of A are s0, s1, and s2 [since these are the labels of the circles].

b. The input symbols of A are 0 and 1 [since these are the labels of the arrows].

c. The initial state of A is s0 [since the unlabeled arrow points to s0].

d. The only accepting state of A is s2 [since this is the only state marked by a double 
circle].

e. N (s1, 1) 5 s2 [since there is an arrow from s1 to s2 labeled 1]

f. Input

0 1

s0 s1 s0

State s1 s1 s2

s2 s1 s0 ■

A Finite-State Automaton Given by an Annotated  
Next-State Table

Consider the finite-state automaton A defined by the following annotated next-state table:

a. What are the states of A?

b. What are the input symbols of A?

c. What is the initial state of A?

d. What are the accepting states of A?

e. Find N(U, c). 

f. Draw the transition diagram for A. 

Solution

a. The states of A are U, V, Y, and Z.

b. The input symbols of A are a, b, and c.

c. The initial state of A is U [since the arrow points to U].

d. The accepting states of A are V and Z [since these are marked with double circles].

e. N(U, c) 5 Y [since the entry in the row labeled U and the column labeled c of the next-
state table is Y].

f. The transition diagram for A is shown in Figure 12.2.3. It can be drawn more com-
pactly by labeling arrows with multiple-input symbols where appropriate. This is 
illustrated in Figure 12.2.4. 

1 0 0

1

1

0s0 s1 s2

FIGURE 12.2.2

Example 12.2.3

Input

a b c

U Z Y Y
V V V V

State Y Z V Y
Z Z Z Z
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c
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a

a

b

c
a, b, c

a, b, c

b, c

U V

YZ

 

  FIGURE 12.2.3 FIGURE 12.2.4 ■

The Language Accepted by an Automaton
Now suppose a string of input symbols is fed into a finite-state automaton in sequence. 
At the end of the process, after each successive input symbol has changed the state of the 
automaton, the automaton ends up in a certain state, which may be either an accepting state 
or a nonaccepting state. In this way, the action of a finite-state automaton separates the set 
of all strings of input symbols into two subsets: those that send the automaton to an accept-
ing state and those that do not. Those strings that send the automaton to an accepting state 
are said to be accepted by the automaton.

Definition

Let A be a finite-state automaton with set of input symbols I. Let I* be the set of all 
strings over I, and let w be a string in I*. Then w is accepted by A if, and only if, A 
goes to an accepting state when the symbols of w are input to A in sequence from left 
to right, starting when A is in its initial state. The language accepted by A, denoted 
L(A), is the set of all strings that are accepted by A.

Finding the Language Accepted by an Automaton

Consider the finite-state automaton A defined in Example 12.2.2 and shown again below.

1 0 0

1

1

0s0 s1 s2

a. To what states does A go if the symbols of the following strings are input to A in se-
quence, starting from the initial state?

(i) 01    (ii) 0011    (iii) 0101100    (iv) 10101

b. Which of the strings in part (a) send A to an accepting state?

c. What is the language accepted by A?

d. Is there a regular expression that defines the same language?

Example 12.2.4
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Solution

a. (i) s2    (ii) s0    (iii) s1    (iv) s2

b. The strings 01 and 10101 send A to an accepting state.

c. Observe that if w is any string that ends in 01, then w is accepted by A. For if w is any 
string of length n $ 2, then after the first n22 symbols of w have been input, A is 
in one of its three states: s0, s1, or s2. But from any of these three states, input of the 
symbols 01 in sequence sends A first to s1 and then to the accepting state s2. Hence 
any string that ends in 01 is accepted by A. 

Also note that the only strings accepted by A are those that end in 01. (That is, 
no other strings besides those ending in 01 are accepted by A.) The reason is that the 
only accepting state of A is s2, and the only arrow pointing to s2 comes from s1 and 
is labeled 1. Thus in order for an input string w of length n to send A to an accepting 
state, the last symbol of w must be a 1 and the first n21 symbols of w must send A 
to state s1. Now three arrows point to s1, one from each of the three states of A, and 
all are labeled 0. Thus the last of the first n21 symbols of w must be 0, or, in other 
words, the next-to-the-last symbol of w must be 0. Hence the last two symbols of w 
must be 01, and thus

L(A) 5 the set of all strings of 0’s and 1’s that end in 01.

d. Yes. One regular expression that defines L(A) is (0 u  1)*01. ■

A finite-state automaton with multiple accepting states can have output devices at-
tached to each one so that the automaton can classify input strings into a variety of differ-
ent categories, one for each accepting state. This is how finite-state automata are used in 
the lexical scanner component of a computer compiler to group the symbols from a stream 
of input characters into identifiers, keywords, and so forth.

The Eventual-State Function
Now suppose a finite-state automaton is in one of its states (not necessarily the initial state) 
and a string of input symbols is fed into it in sequence. To what state will the automaton 
eventually go? The function that gives the answer to this question for every possible com-
bination of input strings and states of the automaton is called the eventual-state function.

Definition

Let A be a finite-state automaton with set of input symbols I, set of states S, and 
next-state function N : S 3 I S S. Let I* be the set of all strings over I, and define 
the eventual-state function N*: S 3 I* S S as follows:

For any state s and for any input string w,

N*(s, w) 5 3
the state to which A goes if the

symbols of w are input to A in sequence,

starting when A is in state s
4.

Computing Values of the Eventual-State Function

Consider again the finite-state automaton of Example 12.2.2 shown below for convenience. 
Find N*(s1, 10110).

Example 12.2.5
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1 0 0

1

1

0s0 s1 s2

Solution By definition of the eventual-state function,

N*(s1, 10110) 5 3
the state to which A goes if the

symbols of 10110 are input to A in 

sequence, starting when A is in state s1
4.

By referring to the transition diagram for A, you can see that starting from s1, when a 1 is 
input, A goes to s2; then when a 0 is input, A goes back to s1; after that, when a 1 is input, A 
goes to s2; from there, when a 1 is input, A goes to s0; and finally, when a 0 is input, A goes 
back to s1. This sequence of state transitions can be written as follows:

s1 ¡
1  s2 ¡

0  s1 ¡
1  s2 ¡

1  s0 ¡
0  s1.

Thus, after all the symbols of 10110 have been input in sequence, the eventual state of A 
is s1, so

 N*(s1, 10110) 5 s1. ■

The definitions of string and language accepted by an automaton can be restated sym-
bolically using the eventual-state function. Suppose A is a finite-state automaton with set 
of input symbols I and next-state function N, and suppose that I* is the set of all strings over 
I and that w is a string in I*.

w is accepted by A  3  N*(s0, w)  is an accepting state of A

L(A) 5 {w [ I* u  N*(s0, w) is an accepting state of A}

Designing a Finite-State Automaton
Now consider the problem of starting with a description of a language and designing an 
automaton to accept exactly that language.

A Finite-State Automaton That Accepts the Set of Strings of 0’s and 1’s  
for Which the Number of 1’s Is Divisible by 3

a. Design a finite-state automaton A that accepts the set of all strings of 0’s and 1’s such 
that the number of 1’s in the string is divisible by 3.

b. Is there a regular expression that defines this set? 

Solution

a. Let s0 be the initial state of A, s1 its state after one 1 has been input, and s2 its state  
after two 1’s have been input. Note that s0 is the state of A after zero 1’s have been 
input, and since zero is divisible by 3 (0 5 0?3), s0 must be an accepting state.  

Example 12.2.6
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The states s0, s1, and s2 must be different from one another because from state s0 
three 1’s are needed to reach a new total divisible by 3, whereas from state s1 two 
additional 1’s are necessary, and from state s2 just one more 1 is required.

Now the state of A after three 1’s have been input can also be taken to be s0 because 
after three 1’s have been input, three more are needed to reach a new total divisible by 3. 
More generally, if 3k 1’s have been input to A, where k is any nonnegative integer, then 
three more are needed for the total again to be divisible by 3 (since 3k13 5 3(k11)). 
Thus the state in which 3k 1’s have been input, for any nonnegative integer k, can be 
taken to be the initial state s0.

By similar reasoning, the states in which (3k11) 1’s and (3k12) 1’s have been in-
put, where k is a nonnegative integer, can be taken to be s1 and s2, respectively.

Now every nonnegative integer can be written in one of the three forms 3k, 3k11, or 
3k12 (see Section 4.5), so the three states s0, s1, and s2 are all that is needed to create 
A. Thus the states of A can be drawn and labeled as shown below.

s2

s1s0

Next consider the possible inputs to A in each of its states. No matter what state A 
is in, if a 0 is input the total number of 1’s in the input string remains unchanged. Thus 
there is a loop at each state labeled 0.

Now suppose a 1 is input to A when it is in state s0. Then A goes to state s1 (since the 
total number of 1’s in the input string has changed from 3k to 3k11). Similarly, if a 1 
is input to A when it is in state s1, then A goes to state s2 (since the total number of 1’s 
in the input string has changed from 3k11 to 3k12). Finally, if a 1 is input to A when 
it is in state s2, then it goes to state s0 (since the total number of 1’s in the input string 
becomes (3k12)11 5 3k13 5 3(k11), which is a multiple of 3).

It follows that the transition diagram for A has the appearance shown below.

0

1

0

11

0

This automaton accepts the set
of strings of 0’s and 1’s for which
the number of 1’s is divisible by 3.

s2

s1s0

b. A regular expression that defines the given set is 0* u (0*10* 10*10*)*. ■

A Finite-State Automaton That Accepts the Set of All Strings of 0’s and 1’s  
Containing Exactly One 1

a. Design a finite-state automaton A to accept the set of all strings of 0’s and 1’s that 
contain exactly one 1.

b. Is there a regular expression that defines this set? 

Example 12.2.7
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Solution

a. The automaton A must have at least two distinct states:

s0: initial state;
s1: state to which A goes when the input string contains exactly one 1.

If A is in state s0 and a 0 is input, A may as well stay in state s0 (since it still needs to 
wait for a 1 to move to state s1), but as soon as a 1 is input, A moves to state s1. Thus a 
partial drawing of the transition diagram is as shown below.

0

1s0 s1

Now consider what happens when A is in state s1. If a 0 is input, the input string still 
has a single 1, so A stays in state s1. But if a 1 is input, then the input string contains 
more than one 1, so A must leave s1 (since no string with more than one 1 is to be ac-
cepted by A). It cannot go back to state s0 because there is a way to get from s0 to s1, and 
after input of the second 1, A can never return to state s1. Hence A must go to a third 
state, s2, from which there is no return to s1. Thus from s2 every input may as well leave 
A in state s2. It follows that the completed transition diagram for A has the appearance 
shown below.

0 0, 10

1 1 This automaton accepts the set of
strings 0’s and 1’s, with exactly one 1.

s0 s2s1

b. A regular expression that defines the given set is 0*10*. ■

Simulating a Finite-State Automaton Using Software
Suppose items have been coded with strings of 0’s and 1’s. A program is to be written to 
govern the processing of items coded with strings that end in 011; items coded any other 
way are to be ignored. This situation can be modeled by the finite-state automaton shown 
in Figure 12.2.5.

0 1

1

1 This automaton recognizes
strings that end in 011.

1 0
0

0

s0 s2s1 s3

FIGURE 12.2.5

The symbols of the code for the item are fed into this automaton in sequence, and every 
string of symbols in a given code sends the automaton to one of the four states s0, s1, s2, or 
s3. If state s3 is reached, the item is processed; if not, the item is ignored.

The action of this finite-state automaton can be simulated by a computer algorithm as 
given in Algorithm 12.2.1.
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Algorithm 12.2.1 A Finite-State Automaton

[This algorithm simulates the action of the finite-state automaton of Figure 12.2.5 by mimick-
ing the functioning of the transition diagram. The states are denoted 0, 1, 2, and 3.]

Input: string [a string of 0’s and 1’s plus an end marker e]

Algorithm Body:

state :5 0

symbol :5 first symbol in the input string

while (symbol Þ e)

if state 5 0 then if symbol 5 0

  then state :5 1

  else state 5 0

else if state 5 1 then if symbol 5 0

  then state :5 1

  else state :5 2

else if state 5 2 then if symbol 5 0

  then state :5 1

  else state :5 3

else if state 5 3 then if symbol 5 0

  then state :5 1

  else state :5 0

symbol :5 next symbol in the input string

end while

[After execution of the while loop, the value of state is 3 if, and only if, the input 
string ends in 011e.]

Output: state

Note how use of the finite-state automaton allows the creator of the algorithm to focus 
on each step of the analysis of the input string independently of the other steps.

An alternative way to program this automaton is to enter the values of the next-state 
function directly as a two-dimensional array. This is done in Algorithm 12.2.2.

Algorithm 12.2.2 A Finite-State Automaton

[This algorithm simulates the action of the finite-state automaton of Figure 12.2.5 by 
repeated application of the next-state function. The states are denoted 0, 1, 2, and 3.]

Input: string [a string of 0’s and 1’s plus an end marker e]

Algorithm Body: 
N(0, 0) :5 1, N(0, 1) :5 0, N(1, 0) :5 1, N(1, 1) :5 2,
N(2, 0) :5 1, N(2, 1) :5 3, N(3, 0) :5 1, N(3, 1) :5 0
state :5 0
symbol :5 first symbol in the input string
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while (symbol Þ e)
state :5 N (state, symbol)
symbol :5 next symbol in the input string

end while

[After execution of the while loop, the value of state is 3 if, and only if, the input 
string ends in 011e.]

Output: state

Finite-State Automata and Regular Expressions
In the previous sections, each time we considered a language accepted by a finite-state 
automaton, we found a regular expression that defined the same language. Stephen 
Kleene showed that our ability to do this is not sheer coincidence. He proved that any 
language accepted by a finite-state automaton can be defined by a regular expression 
and that, conversely, any language defined by a regular expression is accepted by a 
finite-state automaton. Thus for the many applications of regular expressions discussed 
in Section 12.1, it is theoretically possible to find a corresponding finite-state automaton, 
which can then be simulated using the kinds of computer algorithms described in the 
previous subsection.

In practice, it is often of interest to retain only pieces of the patterns sought. For instance, 
to obtain a reference in an HTML document, one would specify a regular expression de-
fining the full HTML tag, <ahref5 “the desired URL”>, but one would be interested in 
retrieving only the string between the quotation marks. Because of these kinds of consid-
erations, actual implementations of finite-state automata include additional features.*

We break the statement of Kleene’s theorem into two parts.

Kleene’s Theorem, Part 1

Given any language that is accepted by a finite-state automaton, there is a regular 
expression that defines the same language.

Proof: Suppose A is a finite-state automaton with a set I of input symbols, a set S of 
n states, and a next-state function N : S 3 I S S. Let I * denote the set of all strings 
over I. Number the states s1, s2, s3, . . . , sn, using s1 to denote the initial state, and for 
each integer k 5 1, 2, 3, . . . , n, let

Lk
i, j 5 5x [ I* *

 when the symbols of x are input to A in sequence, 

 A goes from state si to state sj without traveling

 through an intermediate state sh for which h . k
6. 

Note that either index i or index j in Lk
i, j could be greater than k; the only restric-

tion is that the symbols of a string in Lk
i, j cannot make A both enter and exit an inter-

mediate state with index greater than k.

(continued on page 852)

*For more information, see Mastering Regular Expressions, 3rd ed., by Jeffrey E. F. Friedl (Sebastopol, CA: 
O’Reilly & Associates, 2006). Tutorials are also available on the Internet.
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If sj is an accepting state and if k 5 n and i 5 1, then Ln
1, j is the set of all strings 

that send A to sj when the symbols of the string are input to A in sequence starting 
from s1. Thus

Ln
1, j # L(A).

Moreover, because the sequence of symbols in every string in L(A) sends A to some 
accepting state sj,

L(A) is the union of all the sets Ln
1, j, where sj is an accepting state.

We use a version of mathematical induction to build up a set of regular expres-
sions over I. Let the property P (m) be the sentence

For any pair of integers i and j with 1 # i, j # n,
there is a regular expression rm

i, j that defines Lm
i, j. d P (m)

Show that P (0) is true: For each pair of integers i and j with 1 # i, j # n, L0
i, j is the 

set of all strings that send A from si to sj without sending it through any intermedi-
ate state sh for which h . 0. Because the subscript of every state in A is greater than 
zero, the strings in L0

i, j do not send A through any intermediate states at all, and so 
each is a single input symbol from I. In other words, for all integers i and j with 
1 # i, j # n,

L0
i, j 5 ha [ I u  N(si, a) 5 sjj.

Hence L0
i, j is a subset of I, and so (because I is finite), there is an integer M so that we 

may denote the elements of L0
i, j as follows:

L0
i, j 5 ha1, a2, a3, . . . , aMj # I.

Now, by definition of regular expression, each single input symbol of I is a regular ex-
pression over I; thus every element of L0

i, j is a regular expression over I. The result is that 
for all integers i and j with 1 # i, j # n, the following regular expression defines L0

i, j:

a1  
u

  
a2  

u
  
a3  

u  · · · u  aM

Show that for every integer k with 0 # k # n, if P (k) is true then P (k11) is true:
Let k be any integer with 1 # k # n, and suppose that

For each pair of integers p and q with 1 # p, q # n, d P (k)

there is a regular expression rk
p, q that defines Lk

p, q. inductive hypothesis

We will show that

For each pair of integers i and j with 1 # i, j # n,
there is a regular expression rk11

i, j  that defines Lk11
i, j .  d P (k11)

So suppose that i and j are any pair of integers with 1 # i, j # n, and observe that 
any string in Lk11

i, j  sends A from si to sj, either by a route that makes A pass through 
sk11 or by a route that does not make A pass through sk11. Now each string that 
sends A from si to sj and makes A pass through sk11 one or more times can be bro-
ken into segments. The symbols in the first segment send A from si to sk11 without 
making A pass through sk+1; those in each of the intermediate segments send sk11 
to itself without making A pass through sk11; and those in the final segment send 
A from sk11 to sj without making A pass through sk11. (The intermediate segment 
could be the null string.) A typical path showing two intermediate segments is il-
lustrated on the next page.
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si sjsk+1

Note that each intermediate segment of the string is in Lk
k11, k11, and by assumption 

the regular expression rk
k11, k11 defines this set. By the same reasoning, rk

i, k11 defines 
the set of all possible first segments of the string, and rk

k11, j defines the set of all pos-
sible final segments of the string. In addition, rk

i, j defines the set of all strings that 
send A from si to sj without making it pass through a state sm with m . k. Thus we 
may define the regular expression rk11

i, j  as follows:

rk11
i, j 5 rk

i, j ur
k
i, k11(r

k
k11, k11)

*rk
k11, j.

Then rk11
i, j  defines the set of all strings that send A from si to sj without making it pass 

through any states sm with m . k11, and so rk11
1, j  defines Lk11

1, j  [as was to be shown].
To complete the proof, let sj1, sj2, . . . , sjk be the accepting state of A. Because L(A) 

is the union of all the Ln
1, j where sj is an accepting state, we have

 L(A) 5 L _rn
1, j1 ø L _rn

1, j2+ ø Á ø L _rn
1, jn+

 5 L_rn
1, j1 ur

n
1, j2 u

Á urn
1, jn+

Thus if we let r 5 rn
1, j1 urn

1, j2 u
Á urn

1, jn, we have that L(A) 5 L(r). In other words, we 
have constructed a regular expression r that defines the language accepted by A.

by the recursive definition  
for the language defined  
by a regular expression

Kleene’s Theorem, Part 2

Given any language defined by a regular expression, there is a finite-state automaton 
that accepts the same language.

The most common way to prove part 2 of Kleene’s theorem is to introduce a new cat-
egory of automata called nondeterministic finite-state automata. These are similar to the 
(deterministic) finite-state automata we have been discussing, except that for any given 
state and input symbol, the next state is a subset of the set of states of the automaton, pos-
sibly even the empty set. Thus the next state of the automaton is not uniquely determined 
by the combination of a current state and an input symbol. A string is accepted by a nonde-
terministic finite-state automaton if, and only if, when the symbols in the string are input 
to the automaton in sequence, starting from an initial state, there is some sequence of next 
states through which the automaton could travel that would send it to an accepting state. 
For instance, the transition diagram at the left is an example of a very simple nondetermin-
istic finite-state automaton that accepts the set of all strings beginning with a 1. Observe 
that N(s0, 1) 5 {s1, s2} and N(s0, 0) 5 [.

Given a language defined by any regular expression, there is a straightforward re-
cursive algorithm for finding a nondeterministic finite-state automaton that defines 
the same language. The proof of Kleene’s theorem is completed by showing that for 
any such non-deterministic finite-state automaton, there is a (deterministic) finite-state 
automaton that defines the same language. We leave the details of the proof to a course 
in automata theory.

1

0

1

1

s1

s2

s0
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Regular Languages
According to Kleene’s theorem, the set of languages defined by regular expressions is 
identical to the set of languages accepted by finite-state automata. Any such language is 
called a regular language. The brief allusions we made earlier to context-free languages 
and Chomsky’s classification of languages suggest that not every language is regular. We 
will prove this by giving an example of a nonregular language.

To construct the example, note that because a finite-state automaton can assume only 
a finite number of states and because there are infinitely many input sequences, by the 
pigeonhole principle there must be at least one state to which the automaton returns over 
and over again. This is the essential feature of an automaton that makes it possible to find 
a nonregular language.

Showing That a Language Is Not Regular

Let the language L consist of all strings of the form akbk, where k is a positive integer. 
Symbolically, L is the language over the alphabet o 5 {a, b} defined by

L 5 {w [ o* uw 5 akbk, where k is a positive integer}.

Use the pigeonhole principle to show that L is not regular. In other words, show that there 
is no finite-state automaton that accepts L.

Solution [Use a proof by contradiction.] Suppose not. That is, suppose there is a finite- 
state automaton A that accepts L. [A contradiction will be derived.] Since A has only a finite 
number of states, these states can be denoted s1, s2, s3, . . . , sn, where n is a positive integer. 
Consider all input strings that consist entirely of a’s: a, a2, a3, a4, . . . . Now there are infi-
nitely many such strings and only finitely many states. Thus, by the pigeonhole principle, 
there must be a state sm and two input strings ap and aq with p Þ q such that when either ap 
or aq is input to A, A goes to state sm. (See Figure 12.2.6.) [The pigeons are the strings of a’s, 
the pigeonholes are the states, and the correspondence associates each string with the state to 
which A goes when the string is input.]

a2

a3

ap

aq

a F

s2

s3

sm

sn

s1

Strings of a’s States of A

There are an
in�nite number
of these strings.

There are only
n states.

F(ai) = the state to which A 

= N*(s1, ai)

goes when ai is input

Since F is not one-to-one, ' strings
ap and aq

 with  p Þ q such that both
ap and aq send A to the same state sm.

FIGURE 12.2.6

Now, by supposition, A accepts L. Hence A accepts the string

apbp.

Example 12.2.8
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12.2 FiniTe-sTaTe auTomaTa  855

This means that after p a’s have been input, at which point A is in state sm, inputting p ad-
ditional b’s sends A into an accepting state, say sa. But that implies that

aqbp

also sends A to the accepting state sa, and so aqbp is accepted by A. The reason is that after 
q a’s have been input, A is also in state sm, and from that point, inputting p additional b’s 
sends A to state sa, which is an accepting state. Pictorially, if p , q, then

a a
a

a

a a

a

a

b b

p a’s are input p b’s are input

q – p additional
a’s are input

sm sas0

Now, by supposition, L is the language accepted by A. Thus since aqbp is accepted by 
A, aqbp [ L. But by definition of L, L consists only of strings with equal numbers of a’s 
and b’s. So since p Þ q, aqbp Ó L. Hence aqbp [ L and aqbp Ó L, which is a contradiction.

It follows that the supposition is false, and so there is no finite-state automaton that  
accepts L. ■

1. The five objects that make up a finite-state au-
tomaton are , , , , 
and .

2. The next-state table for an automaton shows the 
values of .

3. In the annotated next-state table, the initial state is 
indicated with an  and the accepting states 
are marked by .

4. A string w consisting of input symbols is ac-
cepted by a finite-state automaton A if, and only 
if, .

5. The language accepted by a finite-state automaton 
A is .

6. If N is the next-state function for a finite-state 
automaton A, the eventual-state function N* is 

defined as follows: For each state s of A and for 
each string w that consists of input symbols of A, 
N*(s, w) 5 .

7. One part of Kleene’s theorem says that given any 
language that is accepted by a finite-state automa-
ton, there is .

8. The second part of Kleene’s theorem says that 
given any language defined by a regular expres-
sion, there is .

9. A regular language is .

10. Given the language consisting of all strings of 
the form akbk, where k is a positive integer, the 
pigeonhole principle can be used to show that the 
language is . 

TEST YOURSELF 

1. Find the state of the vending machine in Example 
12.2.1 after each of the following sequences of 
coins have been input.
a. Quarter, half-dollar, quarter
b. Quarter, half-dollar, half-dollar

c. Half-dollar, quarter, quarter, quarter, half-
dollar

In 2–7, a finite-state automaton is given by a transition 
diagram. For each automaton:
a. Find its states.

EXERCISE SET 12.2 
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856  CHAPTER 12 regular expressions and FiniTe-sTaTe auTomaTa

b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Write its annotated next-state table. 

2. 1 0

0 1

1

0
s0 s1 s2

3. 
b b

b

a

b

a

aa

U0 U1

U2

U3

4. 

1

1

0

1

0

0

s0 s1 s2

5. 

y

x

y

x

y

x

x
x

y

x

y

y

B

C

A F

D

E

6. 0 0

00

1

1

1
1

s0 s1

s3 s2

7. 0 0

00

1

1

1
1

s0

s2

s1

s3

In 8 and 9, a finite-state automaton is given by an anno-
tated next-state table. For each automaton:
a. Find its states.
b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Draw its transition diagram. 

8. Next-State Table

Input

0 1
s0 s1 s2

State s1 s1 s2

s2 s1 s2

9. Next-State Table

Input

0 1
s0 s0 s1

s1 s1 s2

State s2 s2 s3

s3 s3 s0

10. A finite-state automaton A, given by the transi-
tion diagram below, has next-state function N and 
eventual-state function N *.

0

1

1

1

0 100

s0

s2

s3

s1

a. Find N(s1, 1) and N(s0, 1).
b. Find N(s2, 0) and N(s1, 0).
c. Find N*(s0, 10011) and N*(s1, 01001).
d. Find N*(s2, 11010) and N*(s0, 01000). 

11. A finite-state automaton A, given by the transition 
diagram on the next page, has next-state function 
N and eventual-state function N*.
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1

0

0

0 1 0

1

1

0

1

s1s0

s4

s2s3

a. Find N(s3, 0) and N(s2, 1).
b. Find N(s0, 0) and N(s4, 1).
c. Find N*(s0, 010011) and N*(s3, 01101).
d. Find N*(s0, 1111) and N*(s2, 00111). 

12. Consider again the finite-state automaton of  
exercise 2.
a. To what state does the automaton go when the 

symbols of the following strings are input to it 
in sequence, starting from the initial state?
(i) 1110001  (ii) 0001000  (iii) 11110000

b. Which of the strings in part (a) send the autom-
aton to an accepting state?

c. What is the language accepted by the  
automaton?

d. Find a regular expression that defines the 
language.

13. Consider again the finite-state automaton of 
exercise 3.
a. To what state does the automaton go when the 

symbols of the following strings are input to it 
in sequence, starting from the initial state?
(i) bb (ii) aabbbaba (iii) babbbbbabaa 
(iv) bbaaaabaa

b. Which of the strings in part (a) send the autom-
aton to an accepting state?

c. What is the language accepted by the  
automaton?

d. Find a regular expression that defines the 
language. 

In each of 14–19, (a) find the language accepted by the au-
tomaton in the referenced exercise, and (b) find a regular 
expression that defines the same language.

14. Exercise 4  15. Exercise 5  16. Exercise 6

17. Exercise 7  18. Exercise 8  19. Exercise 9

In each of 20–28, (a) design an automaton with the given 
input alphabet that accepts the given set of strings, and 

(b) find a regular expression that defines the language 
accepted by the automaton.

20. Input alphabet 5 {0, 1}; Accepts the set of all 
strings for which the final three input symbols are 1.

21. Input alphabet 5 {0, 1}; Accepts the set of all 
strings that start with 01.

22. Input alphabet 5 {a, b}; Accepts the set of all 
strings of length at least 2 for which the final two 
input symbols are the same.

23. Input alphabet 5 {0, 1}; Accepts the set of all 
strings that start with 01 or 10.

24. Input alphabet 5 {0, 1}; Accepts the set of all 
strings that start with 101.

25. Input alphabet 5 {0, 1}; Accepts the set of all 
strings that end in 10.

26. Input alphabet 5 {a, b}; Accepts the set of all 
strings that contain exactly two b’s.

27. Input alphabet 5 {0, 1}; Accepts the set of all 
strings that start with 0 and contain exactly one 1.

28. Input alphabet 5 {0, 1}; Accepts the set of all 
strings that contain the pattern 010. 

In 29–47, design a finite-state automaton to accept the 
language defined by the regular expression in the refer-
enced exercise from Section 12.1.

29. Exercise 16  30. Exercise 17 31. Exercise 18

 32. Exercise 19  33. Exercise 20 34. Exercise 21

 35. Exercise 24   36. Exercise 25 37. Exercise 26

 38. Exercise 27   39. Exercise 31 40. Exercise 32

 41. Exercise 33  42. Exercise 34 43. Exercise 35

 44. Exercise 36  45. Exercise 37 46. Exercise 38

47. Exercise 39

48. A simplified telephone switching system allows 
the following strings as legal telephone numbers:
a. A string of seven digits in which neither of the 

first two digits is a 0 or 1 (a local call string).
b. A 1 followed by a three-digit area code string 

(any digit except 0 or 1 followed by a 0 or 1 
followed by any digit) followed by a seven-
digit local call string.

c. A 0 alone or followed by a three-digit area 
code string plus a seven-digit local call string.

H
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Design a finite-state automaton to recognize 
all the legal telephone numbers in (a), (b), and 
(c). Include an “error state” for invalid tele-
phone numbers.

49. Write a computer algorithm that simulates the ac-
tion of the finite-state automaton of exercise 2 by 
mimicking the action of the transition diagram.

50. Write a computer algorithm that simulates the ac-
tion of the finite-state automaton of exercise 8 by 
repeated application of the next-state function.

51. Let L be the language consisting of all strings of 
the form 

ambn, where m and n are positive integers and m $ n.

Show that there is no finite-state automaton that 
accepts L.

52. Let L be the language consisting of all strings of 
the form 

ambn, where m and n are positive integers and m # n.

Show that there is no finite-state automaton that 
accepts L.

53. Let L be the language consisting of all strings of 
the form 

an, where n 5 m2, for some positive integer m.

Show that there is no finite-state automaton that 
accepts L.

54. a.  Let A be a finite-state automaton with input al-
phabet o, and suppose L(A) is the language ac-
cepted by A. The complement of L(A) is the set 
of all strings over o that are not in L(A). Show 
that the complement of a regular language is 
regular by proving the following: If L(A) is the 
language accepted by a finite-state automaton 
A, then there is a finite-state automaton A9 that 
accepts the complement of L(A).

b. Show that the intersection of any two regular 
languages is regular as follows: First prove that 
if L(A1) and L(A2) are languages accepted by au-
tomata A1 and A2, respectively, then there is an 
automaton A that accepts (L(A1))

c ø (L(A2))
c. 

Then use one of De Morgan’s laws for sets, the 
double complement law for sets, and the result 
of part (a) to prove that there is an automaton 
that accepts L(A1) ù L(A2). 

H

H

1. a finite set of input symbols; a finite set of states; a 
designated initial state; a designated set of accepting 
states; a next-state function that associates a “next-state” 
with each state and input symbol of the automaton 2. the 
next-state function for each state and input symbol of the 
automaton 3. arrow; double circles 4. when the symbols 
in the string are input to the automaton in sequence from left 
to right, starting from the initial state, the automaton ends up 

in an accepting state 5. the set of strings that are accepted 
by A 6. the state to which A goes if it is in state s and the 
characters of w are input to it in sequence 7. a regular 
expression that defines the same language 8. a finite-state 
automaton that accepts the same language 9. a language 
defined by a regular expression (Or: a language accepted by 
a finite-state automaton) 10. not regular

ANSWERS FOR TEST YOURSELF 

Simplifying Finite-State Automata
Our life is frittered away by detail. . . . Simplify, simplify. 
—Henry David Thoreau, Walden, 1854

Any string input to a finite-state automaton either sends the automaton to an accepting 
state or not, and the set of all strings accepted by an automaton is the language accepted 
by the automaton. It often happens that when an automaton is created to do a certain job 
(as in compiler construction, for example), the automaton that emerges “naturally” from 
the development process is unnecessarily complicated; that is, there may be an automa-
ton with fewer states that accepts exactly the same language. It is desirable to find such 

12.3

94193_ch12_ptg01.indd   858 12/11/18   6:15 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



12.3 simpliFying FiniTe-sTaTe auTomaTa  859

an automaton because the memory space required to store an automaton with n states is 
approximately proportional to n2. Thus approximately 10,000 memory locations are re-
quired to store an automaton with 100 states, whereas only about 100 memory locations 
are needed to store an automaton with 10 states. In addition, the fewer states an automaton 
has, the easier it is to write a computer algorithm based on it; and to see that two automata 
both accept the same language, it is easiest to simplify each to a minimal number of states 
and compare the simplified automata. In this section we show how to take a given automa-
ton and simplify it in the sense of finding an automaton with fewer states that accepts the 
same language.

An Overview

Consider the finite-state automata A and A9 in Figure 12.3.1. A moment’s thought should 
convince you that A9 accepts all those strings, and only those strings, that contain an even 
number of 1’s. But A, although it appears more complicated, accepts exactly those strings 
also. Thus the two automata are “equivalent” in the sense that they accept the same lan-
guage, even though A9 has fewer states than A.

s1

00

00

1

1

1
1

A

0 0

1

1

A'

s0

s3 s2

s'0 s'1

FIGURE 12.3.1  Two Equivalent Automata

Roughly speaking, the reason for the equivalence of these automata is that some of the 
states of A can be combined without affecting the acceptance or nonacceptance of any 
input string. It turns out that s2 can be combined with state s0 and that s3 can be combined 
with state s1. (How to figure out which states can be combined is explained later in this 
section.) The automaton with the two combined states {s0, s2} and {s1, s3} is called the quo-
tient automaton of A and is denoted A. Its transition diagram is obtained by combining the 
circles for s0 and s2 and for s1 and s3 and by replacing any arrow from a state s to a state t by 
an arrow from the combined state containing s to the combined state containing t. For in-
stance, since there is an arrow labeled 1 from s1 to s2 in A, there is an arrow labeled 1 from 
{s1, s3} to {s0, s2} in A. The complete transition diagram for A is shown in Figure 12.3.2. As 
you can see, except for labeling the names of the states, it is identical to the diagram for A9.

0 0
1

1

{s0, s2} {s1, s3}

  FIGURE 12.3.2  Transition Diagram for A ■

In general, simplification of a finite-state automaton involves identifying “equivalent 
states” that can be combined without affecting the action of the automaton on input strings. 
Mathematically speaking, this means defining an equivalence relation on the set of states 

Example 12.3.1
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860  CHAPTER 12 regular expressions and FiniTe-sTaTe auTomaTa

of the automaton and forming a new automaton whose states are the equivalence classes of 
the relation. The rest of this section is devoted to developing an algorithm to carry out this 
process in a practical way.

*-Equivalence of States
Two states of a finite-state automaton are said to be *-equivalent (this is read “star equiv-
alent”) if, and only if, any string accepted by the automaton when it starts from one of 
the states is accepted by the automaton when it starts from the other state. Recall that 
the value of the eventual-state function, N*, for a state s and input string w is the state to 
which the automaton goes if the characters of w are input in sequence when the automa-
ton is in state s.

Definition

Let A be a finite-state automaton with next-state function N and eventual-state func-
tion N*. Define a binary relation on the set of states of A as follows: Given any states 
s and t of A, we say that s and t are *-equivalent and write s R* t if, and only if, for 
each input string w,

either both N*(s, w) and N*(t, w) are accepting states or both 
are nonaccepting states.

In other words, states s and t are *-equivalent if, and only if, for each input string w,

N*(s, w) is an accepting state 3 N*(t,  w) is an accepting state.

Or, more simply, for each input string w,

3A goes to an accepting state if

w is input when A is in state s4 3 3A goes to an accepting state if

w is input when A is in state t 4.

It follows immediately, by substitution into the definition, that

 R* is an equivalence relation on S, the set of states of A. 12.3.1

You are asked to prove this formally in the exercises at the end of this section.

k-Equivalence of States
From a procedural point of view, it is difficult to determine the *-equivalence of two states 
using the definition directly. According to the definition, you must know the action of the 
automaton starting in states s and t on all input strings in order to tell whether s and t are 
equivalent. But since most languages have infinitely many input strings, you cannot check 
individually the effect of every string that is input to an automaton. As a practical matter, 
you can tell whether or not two states s and t are *-equivalent by using an iterative proce-
dure based on a simpler kind of equivalence of states called k-equivalence. Two states are 
k-equivalent if, and only if, any string of length less than or equal to k that is accepted by 
the automaton when it starts from one of the states is accepted by the automaton when it 
starts from the other state.
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Definition

Let A be a finite-state automaton with next-state function N and eventual-state func-
tion N*. Define a relation on the set of states of A as follows: Given any states s and 
t of A and an integer k $ 0, we say that s is k-equivalent to t and write s Rk t if, and 
only if, for every input string w of length less than or equal to k, either N*(s, w) and 
N*(t, w) are both accepting states or they are both nonaccepting states.

Certain useful facts follow quickly from the definition of k-equivalence:

For each integer k $ 0, k-equivalence is an equivalence relation. 12.3.2

For each integer k $ 0, the k-equivalence classes partition the set of all 
states of the automaton into a union of mutually disjoint subsets. 12.3.3

For each integer k $ 1, if two states are k-equivalent, then they are 
also (k21) equivalent. 12.3.4

For each integer k $ 1, each k-equivalence class is a subset of a 
(k21)-equivalence class. 12.3.5

Any two states that are k-equivalent for every integer k $ 0 are *-equivalent. 12.3.6

Proofs of these facts are left for the exercises.
The following theorem gives a recursive description of k-equivalence of states. It says, 

first, that any two states are 0-equivalent if, and only if, either both are accepting states or 
both are nonaccepting states and, second, that any two states are k-equivalent (for k $ 1) 
if, and only if, (1) they are (k21)-equivalent and (2) for any input symbols their next-states 
are also (k21)-equivalent.

Theorem 12.3.1

Let A be a finite-state automaton with next-state function N. Given any states s and 
t in A,

1. s is 0{equivalent to t 3 3either s and t are both accepting states
or they are both nonaccepting states 4

2. for every integer k $ 1,
s is k{equivalent to t

 3 3s and t are (k21){equivalent, and
for any input symbol m, N(s, m) and
N(t, m) are also (k21){equivalent 4.

The truth of Theorem 12.3.1 follows from the fact that inputting a string w of length k 
has the same effect as inputting the first symbol of w and then the remaining k21 symbols 
of w. A detailed proof is somewhat technical.

Theorem 12.3.1 implies that if you know which states are (k21)-equivalent (where k is 
a positive integer) and if you know the action of the next-state function, then you can figure 
out which states are k-equivalent. Specifically, if s and t are (k21)-equivalent states whose 
next-states are (k21)-equivalent for every input symbol m, then s and t are k-equivalent. 
Thus the k-equivalence classes are obtained by subdividing the (k21)-equivalence classes 
according to the action of the next-state function on the members of the classes. An ex-
ample should make this procedure clear.
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Finding k-Equivalence Classes

Find the 0-equivalence classes, the 1-equivalence classes, and the 2-equivalence classes for 
the states of the automaton shown below.

0

11 1

1

0
0 0

0

1

s2

s3

s1s0

s4

Solution

 1. 0-equivalence classes: By Theorem 12.3.1 two states are 0-equivalent if, and only if, 
both are accepting states or both are nonaccepting states. Thus there are two sets of 
0-equivalent states:

{s0, s1, s4} (the nonaccepting states) and {s2, s3} (the accepting states),

and so

the 0-equivalence classes are {s0, s1, s4} and {s2, s3}.

 2. 1-equivalence classes: By Theorem 12.3.1, two states are 1-equivalent if, and only 
if, they are 0-equivalent and, after input of any input symbol, their next-states are 
0-equivalent. Thus s1 is not 1-equivalent to s0 because when a 0 is input to the au-
tomaton in state s1 it goes to state s2, whereas when a 0 is input to the automaton 
in state s0 it goes to state s0, and s2 and s0 are not 0-equivalent. On the other hand, 
s1 is 1-equivalent to s4 because when a 0 is input to the automaton in state s1 or s4 
the next-states are s2 and s3, which are 0-equivalent; and when a 1 is input to the 
automaton in state s1 or s4 the next-states are s4 and s1, which are 0-equivalent. 
By a similar argument, s2 is 1-equivalent to s3. Since 1-equivalent states must also 
be 0-equivalent [by property (12.3.4)], no other pairs of states can be 1-equivalent. 
Hence

the 1-equivalence classes are {s0}, {s1, s4}, and {s2, s3}.

 3. 2-equivalence classes: By Theorem 12.3.1, two states are 2-equivalent if, and only 
if, they are 1-equivalent and, after input of any input symbol, their next-states are 
1-equivalent. Now s1 is 2-equivalent to s4 because they are 1-equivalent; and when 
a 1 is input to the automaton in state s1 or s4 the next-states are s4 and s1, which are 
1-equivalent; and when a 0 is input to the automaton in state s1 or s4 the next-states are 
s2 and s3, which are 1-equivalent. Similarly, s2 is 2-equivalent to s3. Since 2-equivalent 
states must also be 1-equivalent [by property (12.3.4)], no other pairs of states can be 
2-equivalent. Hence

the 2-equivalence classes are {s0}, {s1, s4}, and {s2, s3}.

Note that the set of 2-equivalence classes equals the set of 1-equivalence classes.  ■

Example 12.3.2
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Finding the *-Equivalence Classes
Example 12.3.2 illustrates the relative ease with which the sets of k-equivalence classes  
of states can be found. But to simplify a finite-state automaton, you need to find the set of  

*-equivalence classes of states. The next theorem says that for some integer K, the set  
of *-equivalence classes equals the set of K-equivalence classes.

Theorem 12.3.2

If A is a finite-state automaton, then for some integer, K $ 0, the set of K-equivalence 
classes of states of A equals the set of (K11)-equivalence classes of states of A, and 
for all such K these are both equal to the set of *-equivalence classes of states of A.

The detailed proof of Theorem 12.3.2 is somewhat technical, but the idea of the proof 
is not hard to understand. Theorem 12.3.2 follows from the fact that for each positive 
integer k, the k-equivalence classes are obtained by subdividing the (k21)-equivalence 
classes according to a certain rule that is the same for each k. Since the number of states 
of the automaton is finite, this subdivision process cannot continue forever, and so for 
some integer K $ 0, the set of K-equivalence classes equals the set of (K11)-equivalence 
classes. Moreover, the set of m-equivalence classes equals the set of K-equivalence classes 
for every integer m $ K, which implies that the set of *-equivalence classes equals the set 
of K-equivalence classes.

Finding *-Equivalence Classes of R

Let A be the finite-state automaton defined in Example 12.3.2. Find the *-equivalence 
classes of states of A.

Solution According to Example 12.3.2, the set of 1-equivalence classes for A equals the 
set of 2-equivalence classes. By Theorem 12.3.2, then, the set of *-equivalence classes also 
equals the set of 1-equivalence classes. Hence

the *-equivalence classes are {s0}, {s1, s4}, and {s2, s3}.

In the notation of Section 8.3, the equivalence classes are denoted

 [s0] 5 {s0} [s1] 5 {s1, s4} 5 [s4] [s2] 5 {s2, s3} 5 [s3]. ■

The Quotient Automaton
We next define the quotient automaton A of an automaton A. However, in order for all 
parts of the definition to make sense, we must make two observations.

No *-equivalence class of states of A can contain both accepting  
and nonaccepting states. 12.3.7

The reason this is true is that the 0-equivalence classes divide the set of states of A 
into accepting and nonaccepting states, and the *-equivalence classes are subsets of 
0-equivalence classes.

If two states are *-equivalent, then their next-states are also  

*-equivalent for each input symbol m. 12.3.8

Example 12.3.3
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864  CHAPTER 12 regular expressions and FiniTe-sTaTe auTomaTa

This is true for the following reason. Suppose states s and t are *-equivalent. Then any 
input string that sends A to an accepting state when A is in state s sends A to an accepting 
state when A is in state t. Now suppose m is any input symbol, and consider the next-states 
N(s, m) and N(t, m). Inputting a string of length k to A when A is in state N(s, m) or N(t, m) 
produces the same effect as inputting a certain string of length k11 to A when A is in state 
s or t (namely, the concatenation of m with the string of length k). Hence any string that 
sends A to an accepting state when A is in state N(s, m) also sends A to an accepting state 
when A is in state N(t, m). It follows that N(s, m) and N(t, m) are *-equivalent. Complete 
proofs of properties (12.3.7) and (12.3.8) are left to the exercises.

Now we can define the quotient automaton A of A. It is the finite-state automaton whose 
states are the *-equivalence classes of states of A, whose initial state is the *-equivalence 
class containing the initial state of A, whose accepting states are of the form [s] where s is 
an accepting state of A, whose input symbols are the same as the input symbols of A, and 
whose next-state function is derived from the next-state function for A in the following 
way: To find the next-state of A for a state s and an input symbol m, pick any state t in [s] 
and look to see what next-state A goes to if m is input when A is in state t; the equivalence 
class of this state is the next-state of A.

Definition

Let A be a finite-state automaton with set of states S, set of input symbols I, and next-
state function N. The quotient automaton A is defined as follows:
1. The set of states, S, of A is the set of *-equivalence classes of states of A.
2. The set of input symbols, I , of A equals I.
3. The initial state of A is [s0], where s0 is the initial state of A.
4. The accepting states of A are the states of the form [s], where s is an accepting 

state of A.
5. The next-state function N: S 3 I S S is defined as follows:

For all states [s] in S and input symbols m in I, N(fsg, m) 5 fN(s, m)g.

(That is, if m is input to A when A is in state [s], then A goes to the state that is the 

*-equivalence class of N(s, m).)

Note that since the states of A are sets of states of A, A generally has fewer states than A. 
(A and A have the same number of states only in the case where each *-equivalence class 
of states contains just one element.) Also, by property (12.3.7), each accepting state of A 
consists entirely of accepting states of A. Furthermore, property (12.3.8) guarantees that 
the next-state function N is well defined.

By construction, a quotient automaton A accepts exactly the same strings as A. We state 
this formally as Theorem 12.3.3 and leave the details of a proof to a more advanced course 
in automata theory.

Theorem 12.3.3

If A is a finite-state automaton, then the quotient automaton A accepts exactly the 
same languages as A. In other words, if L(A) denotes the language accepted by A and 
L(A) denotes the language accepted by A, then

L(A) 5 L(A).
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Constructing the Quotient Automaton
Let A be a finite-state automaton with set of states S, next-state function N, relation R* of 

*-equivalence of states, and relation Rk of k-equivalence of states. It follows from Theo-
rems 12.3.2 and 12.3.3 and from the definition of quotient automaton that to find the quo-
tient automaton A of A, you can proceed as follows:

1. Find the set of 0-equivalence classes of S.

2. For each integer k $ 1, subdivide the (k21)-equivalence classes of S (as described 
earlier) to find the k-equivalence classes of S. Stop subdividing when you observe that 
for some integer K the set of (K11)-equivalence classes equals the set of K-equivalence 
classes. At this point, conclude that the set of K-equivalence classes equals the set of 

*-equivalence classes.

3. Construct the quotient automaton A whose states are the *-equivalence classes of states 
of A and whose next-state function N is given by

N([s], m) 5 [N(s, m)]  for each state s of A and each input symbol m.

[That is, to see where A goes if m is input to A when it is in state [s], look to see where A goes 
if m is input to A when it is in state s. The *-equivalence class of that state is the answer.] 

Constructing a Quotient Automaton

Consider the automaton A of Examples 12.3.2 and 12.3.3. This automaton is shown again 
below for reference. Find the quotient automaton of A.

0

11 1

1

0
0 0

0

1

s2

s3

s1s0

s4

Solution According to Example 12.3.3, the *-equivalence classes of the states of A are

{s0}, {s1, s4}, and {s2, s3}.

Hence the states of the quotient automaton A are

[s0] 5 {s0}, [s1] 5 {s1, s4} 5 [s4], [s2] 5 {s2, s3} 5 [s3].

The accepting states of A are s2 and s3, so the accepting state of A is [s2] 5 [s3]. The next- 
state function N of A is defined as follows: for all states [s] and input symbols m of A,

N([s], m) 5 [N(s, m)] 5 the *-equivalence class of N(s, m).

Thus

N([s0], 0) 5 [N(s0, 0)] 5 the *-equivalence class of N(s0, 0).

Now N(s0, 0) 5 s0, and so

N([s0], 0) 5 the *-equivalence class of s0 5 [s0].

Example 12.3.4
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866  CHAPTER 12 regular expressions and FiniTe-sTaTe auTomaTa

Similarly,

 N([s0], 1) 5 [N (s0, 1)] 5 [s1]

 N([s1], 0) 5 [N(s1, 0)] 5 [s2]

 N([s1], 1) 5 [N (s1, 1)] 5 [s4] 5 [s1]

 N([s2], 0) 5 [N(s2, 0)] 5 [s3] 5 [s2]

 N([s2], 1) 5 [N (s2, 1)] 5 [s4] 5 [s1].

The transition diagram for A is, therefore, as shown below.

0 1 0

1
0

1

[s0] [s1] [s2]

By Theorem 12.3.3, this automaton accepts the same language as the original automaton.
 ■

Equivalent Automata
When a finite-state automaton is implemented by a circuit, output indicators may be at-
tached to its states to indicate whether they are accepting or nonaccepting. For example, 
accepting states might produce an output of 1 and nonaccepting states an output of 0. Then 
a finite-state automaton can be thought of as an input/output device whose input consists 
of strings and whose output consists of 0’s and 1’s. Recall that a circuit can be thought of 
as a black box that transforms combinations of input signals into output signals. Two cir-
cuits that produce identical output signals for each combination of input signals are called 
equivalent. Similarly, a finite-state automaton can be regarded as a black box that pro-
cesses input strings and produces output signals (indicating whether or not the strings are 
accepted). Two finite-state automata are called equivalent if they produce identical output 
signals for each input string. This implies that two finite-state automata are equivalent if, 
and only if, they accept the same language.

Definition

Let A and A9 be finite-state automata with the same set of input symbols I. Let L(A) 
denote the language accepted by A and L(A9) the language accepted by A9. Then A is 
said to be equivalent to A9 if, and only if, L(A) 5 L(A9).

Showing That Two Automata Are Equivalent

Show that the automata A and A9 that follow are equivalent.

1

1

0
1

1

0

0

0

1

1

0

10

A

A'

0

0, 1

s0 s1

s3

s2

s'0 s'2

s'3

s'1

The label 0, 1 on an arrow of a transition

diagram means that for either input 0 or

1, the next-state of the automaton is the

state to which the arrow points.

Example 12.3.5
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Solution
For the automaton A: The 0-equivalence classes are

{s0, s1} and {s2, s3}

The 1-equivalence classes are

{s0}, {s1}, and {s2, s3}

The 2-equivalence classes are

{s0}, {s1}, and {s2, s3}

This discussion shows that the set of 1-equivalence classes equals the set of 2-equiva-
lence classes, so by Theorem 12.3.2 this is equal to the set of *-equivalence classes. Hence 
the *-equivalence classes are

{s0}, {s1}, and {s2, s3}.

For the automaton A9: By reasoning similar to that done previously, the 0-equivalence 
classes are

{s90, s92, s93}, and {s91}.

The 1-equivalence classes are

hs90, s93j, hs92j, and hs91j.

The 2-equivalence classes are the same as the 1-equivalence classes, which are therefore 
equal to the *-equivalence classes. Thus the *-equivalence classes are

hs90, s93j, hs92j, and hs91j.

To calculate the next-state functions for A and A9, you repeatedly use the fact that in 
the quotient automaton, the next-state of [s] and m is the class of the next-state of s and m. 
For instance,

  N([s1], 1) 5 [N(s1, 1)] 5 [s3] 5 [s2]

and   N9(fs90g, 0) 5 fN9(s90, 0)g 5 fs93g 5 fs90g,

where N is the next-state function for A and N9 is the next-state function for A9.
The complete transition diagrams for the quotient automata A and A9 are shown below.

0

1

1 0

0, 1 0

1

1 0

0, 1

A A'

[s0] [s1]

[s2]

[s'0 ] [s'2]

[s'1]

As you can see, except for the labeling of the names of the states, A and A9 are identical 
and hence accept the same language. Now by Theorem 12.3.3, each original automaton 
accepts the same language as its quotient automaton. Thus A and A9 accept the same lan-
guage, and so they are equivalent. ■

In mathematics an object such as a finite-state automaton is called a structure. In gen-
eral, when two mathematical structures are the same in all respects except for the labeling 
given to their elements, they are called isomorphic, which comes from the Greek words 

since s0 and s1 are accepting states and 
s2 and s3 are nonaccepting states.

since s0 and s1 are not 1-equivalent (be-
cause N(s0, 1) 5 s1, and N(s1, 1) 5 s3, and 
s1 is not 0-equivalent to s3) but s2 and s3 
are 1-equivalent.

since s2 and s3 are 1-equivalent.
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isos, meaning “same” or “equal,” and morphe, meaning “from.” It can be shown that two 
automata are equivalent if, and only if, their quotient automata are isomorphic, provided 
that “inaccessible states” have first been removed. (Inaccessible states are those that cannot 
be reached by inputting any string of symbols to the automaton when it is in its initial state.)

1. Given a finite-state automaton A with eventual-
state function N* and given any states s and t in A, 
we say that s and t are *-equivalent if, and only if, 

.

2. Given a finite-state automaton A with eventual-
state function N* and given any states s and t in A, 
we say that s and t are k-equivalent if, and only if, 

.

3. Given states s and t in a finite-state automaton A, s 
is 0-equivalent to t if, and only if, either both s and t 

are  or both are . Moreover, for ev-
ery integer k $ 1, s is k-equivalent to t if, and only 
if, (1) s and t are (k21)-equivalent and (2) .

4. If A is a finite-state automaton, then for some 
integer K $ 0, the set of K-equivalence classes of 
states of A equals the set of -equivalence 
classes of A, and for all such K these are both 
equal to the set of .

5. Given a finite-state automaton A, the set of states 
of the quotient automaton A is .

TEST YOURSELF 

1. Consider the finite-state automaton A given by the 
following transition diagram:

0 0 0 01 1

1 0

1 0

1

1

s0 s2s1

s3 s5s4

a. Find the 0-, 1-, and 2-equivalence classes of 
states of A.

b. Draw the transition diagram for A, the quotient 
automaton of A. 

2. Consider the finite-state automaton A given by the 
following transition diagram:

1

1

1

0

0

0

0 0 0

0

1

1

1

1

s0 s3 s4

s5

s2

s6

s1

a. Find the 0-, 1-, and 2-equivalence classes of 
states of A.

b. Draw the transition diagram for A, the quotient 
automaton of A. 

3. Consider the finite-state automaton A discussed in 
Example 12.3.1:

0 0

00

1

1

1
1

s0

s2

s1

s3

a. Find the 0- and 1-equivalence classes of states 
of A.

b. Draw the transition diagram of A, the quotient 
automaton of A.  
 
 
 
 
 
 
 
 

EXERCISE SET 12.3 
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4. Consider the finite-state automaton given by the 
following transition diagram:

11 0

1

1

1

0

1 0

0
0

0s0 s2

s1

s5 s3

s4

a. Find the 0-, 1-, 2-, and 3-equivalence classes of 
states of A.

b. Draw the transition diagram for A, the quotient 
automaton of A.

5. Consider the finite-state automaton given by the 
following transition diagram:

0

0

10

0

0

1

1

01

1

1

s1 s2

s5s4

s3

s0

a. Find the 0-, 1-, 2-, and 3-equivalence classes of 
states of A.

b. Draw the transition diagram for A, the quotient 
automaton of A. 

6. Consider the finite-state automaton given by the following transition diagram:

0

1 1

0

0
1

0

0 1
1

0

0

1

1

s0 s1 s3 s5

s6s4s2

a. Find the 0-, 1-, 2-, and 3-equivalence classes of states of A.
b. Draw the transition diagram for A, the quotient automaton of A.

7. Are the automata A and A9 shown below equivalent?

1

A
A'

0

1

1 0

0

0 1

s'1

0

1

1

0

0 0 1 1
s0 s1

s3

s2
s'0

s'3 s'2

H
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8. Are the automata A and A9 shown below equivalent?

1

1

0

11

1

0 0

0

0

A

A'

0

0

1

1 0

0

1

1

0

1

s0 s'0 s'2

s'3

s'1

s1

s2

s4

s'4

s3

9. Are the automata A and A9 shown below equivalent?

0

0 1

1

1
1

1 1

11

0

0

1 0 0

A
A'

0

0

0
0

1

1

1

0

0

s4

s2

s1

s0 s'0

s'1s'4

s'2

s'5 s'3

s3

s5

10. Are the automata A and A9 shown below equivalent?

0

0

1

1

11

1 0

1

1 010

0

1

A

A'

0

0

0

0, 1

s0

s4

s1

s3

s2

s'4

s'2s '0
s'1

s'3

11. Prove property (12.3.1).

12. How should the proof of property (12.3.1) be 
modified to prove property (12.3.2)?

13. Prove property (12.3.3).

14. Prove property (12.3.4).

15. Prove property (12.3.5).

16. Prove property (12.3.6).

17. Prove that if two states of a finite-state automaton 
are k-equivalent for some integer k, then those 
states are m-equivalent for every nonnegative 
integer m , k.

18. Write a complete proof of property (12.3.7).

19. Write a complete proof of property (12.3.8). 

H

H

H

H
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1. for all input strings w, either N*(s, w) and N*(t, w) are both 
accepting states or both are nonaccepting states  
2. for all input strings w of length less than or equal to k, 
either N*(s, w) and N*(t, w) are both accepting states or both 

are nonaccepting states 3. accepting states; nonaccepting 
states; for any input symbol m, N(s, m) and N(t, m) are also 
(k21)-equivalent 4. (K11); *-equivalence classes of 
states of A 5. the set of *-equivalence classes of states of A

ANSWERS FOR TEST YOURSELF 
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A-1

In this text we take the real numbers and their basic properties as our starting point. We 
give a core set of properties, called axioms, which the real numbers are assumed to satisfy, 
and we state some useful properties that can be deduced from these axioms.

We assume that there are two binary operations defined on the set of real numbers, 
called addition and multiplication, such that if a and b are any two real numbers, the sum 
of a and b, denoted a1b, and the product of a and b, denoted a ? b or ab, are also real 
numbers. These operations satisfy properties F1–F 6, which are called the field axioms.

F1. Commutative Laws For all real numbers a and b,

a1b 5 b1a and ab 5 ba.

F2. Associative Laws For all real numbers a, b, and c,

(a1b)1c 5 a1 (b1c) and (ab)c 5 a(bc).

F3. Distributive Laws For all real numbers a, b, and c,

a(b1c) 5 ab1ac and (b1c)a 5 ba1ca.

F4.  Existence of Identity Elements There exist two distinct real numbers, denoted 0 and 1, 
such that for every real number a,

01a 5 a10 5 a and 1?a 5 a?1 5 a.

F5.  Existence of Additive Inverses For every real number a, there is a real number, 
denoted 2a and called the additive inverse of a, such that

a1 (2a) 5 (2a)1a 5 0.

F6.  Existence of Reciprocals For every real number a Þ 0, there is a real number, 
denoted 1ya or a21, called the reciprocal of a, such that

a?S1
aD 5 S1

aD?a 5 1.

All the usual algebraic properties of the real numbers that do not involve order can be 
derived from the field axioms. The most important are collected as theorems T1–T16 as 
follows. In all these theorems the symbols a, b, c, and d represent arbitrary real numbers.

T1.  Cancellation Law for Addition If a1b 5 a1c, then b 5 c. (In particular, this 
shows that the number 0 of Axiom F4 is unique.)

T2.  Possibility of Subtraction Given a and b, there is exactly one x such that a1x 5 b. 
This x is denoted by b2a. In particular, 02a is the additive inverse of a, 2a.

PROPERTIES OF THE 
REAL NUMBERSp

APPENDIX A

*Adapted from Tom M. Apostol, Calculus, Volume I (New York: Blaisdell, 1961), pp. 13–19.
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APPENdIx A PROPERTIES OF THE REAL NUMBERS  A-2

T3. b2a 5 b1 (2a).

T4. 2(2a) 5 a .

T5. a(b2c) 5 ab2ac.

T6. 0?a 5 a?0 5 0.

T7.  Cancellation Law for Multiplication If ab 5 ac and a Þ 0, then b 5 c. (In particu-
lar, this shows that the number 1 of Axiom F  4 is unique.)

T8.  Possibility of Division Given a and b with a Þ 0, there is exactly one x such that 
ax 5 b. This x is denoted by bya and is called the quotient of b and a. In particular, 
1ya is the reciprocal of a.

T9. If a Þ 0, then bya 5 b?a21.

T10. If a Þ 0, then (a21)21 5 a.

T11.  Zero Product Property If ab 5 0, then a 5 0 or b 5 0.

T12. Rule for Multiplication with Negative Signs

(2a)b 5 a(2b) 5 2(ab),  (2a)(2b) 5 ab,

and

2
a

b
5

2a

b
5

a

2b
.

T13. Equivalent Fractions Property

a

b
5

ac

bc
  , if b Þ 0 and c Þ 0.

T14. Rule for Addition of Fractions

a

b
1

c

d
5

ad1bc

bd
  , if b Þ 0 and d Þ 0.

T15. Rule for Multiplication of Fractions

a

b
?
c

d
5

ac

bd
   , if b Þ 0 and d Þ 0.

T16. Rule for Division of Fractions

a

b
c

d

5
ad

bc
 ,  if b Þ 0, c Þ 0, and d Þ 0.

The real numbers also satisfy the following axioms, called the order axioms. It is assumed 
that among all real numbers there are certain ones, called the positive real numbers, that 
satisfy properties Ord1–Ord3.

Ordl. For any real numbers a and b, if a and b are positive, so are a1b and ab.

Ord2. For every real number a Þ 0, either a is positive or 2a is positive but not both. 

Ord3. The number 0 is not positive.
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definition

Given real numbers a and b,

a , b means b1 (2a) is positive. b . a means a , b.
a # b means a , b or a 5 b. b $ a means a # b.
If a , 0, we say that a is negative. If a $ 0, we say that a is nonnegative.

From the order axioms Ord1–Ord3 and the above definition, all the usual rules for cal-
culating with inequalities can be derived. The most important are collected as theorems 
T17–T27 as follows. In all these theorems the symbols a, b, c, and d represent arbitrary 
real numbers.

T17.  Trichotomy Law For arbitrary real numbers a and b, exactly one of the three rela-
tions a , b, b , a, or a 5 b holds.

T18. Transitive Law If a , b and b , c, then a , c.

T19. If a , b, then a1c , b1c.

T20. If a , b and c . 0, then ac , bc.

T21. If a Þ 0, then a2 . 0.

T22. 1 . 0.

T23. If a , b and c , 0, then ac . bc.

T24. If a , b, then 2a . 2b. In particular, if a , 0, then 2a . 0.

T25. If ab . 0, then both a and b are positive or both are negative. 

T26. If a , c and b , d, then a1b , c1d. 

T27. If 0 , a , c and 0 , b , d, then 0 , ab , cd.

One final axiom distinguishes the set of real numbers from the set of rational numbers. It 
is called the least upper bound axiom.

LUB.  Any nonempty set S of real numbers that is bounded above has a least upper bound. 
That is, if B is the set of all real numbers x such that x $ s for every s in S and if B 
has at least one element, then B has a smallest element. This element is called the 
least upper bound of S.

The least upper bound axiom holds for the set of real numbers but not for the set of ratio-
nal numbers. For example, the set of all rational numbers that are less than Ï2 has upper 
bounds but not a least upper bound within the set of rational numbers.

The symbols ,, ., #, and $, and negative numbers are defined in terms of positive numbers.
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Section 1.1
1. a. x2 5 21 (Or: the square of x is 21)

b. a real number x

3. a. between a and b
b. distinct real numbers a and b; there is a real number c

5. a. r is positive
b. positive; the reciprocal of r is positive (Or: positive; 

1/r is positive)
c. is positive; 1/r is positive (Or: is positive; the recip-

rocal of r is positive)

7. a.  There are real numbers whose sum is less than their 
difference.

True. For example, 11 (21) 5 0, 12 (21) 5
111 5 2, and 0 , 2.

c. The square of each positive integer is greater than 
or equal to the integer.

True. If n is any positive integer, then n $ 1. Mul-
tiplying both sides by the positive number n does 
not change the direction of the inequality (see 
Appendix A, T20), and so n2 $ n.

8. a. have four sides
b. has four sides
c. has four sides
d. is a square; has four sides
e. J has four sides

10. a. have reciprocals
b. a reciprocal
c. s is a reciprocal for r

12. a.  real number; product with every number leaves the 
number unchanged

b. with every number leaves the number unchanged
c. rs 5 s

Section 1.2
1. A 5 C and B 5 D

2. a.  The set of all positive real numbers x such that 0 is 
less than x and x is less than 1

c. The set of all integers n such that n is a factor of 6

3. a.  No, {4} is a set with one element, namely 4, where-
as 4 is just a symbol that represents the number 4

b. Three: the elements of the set are 3, 4, and 5.
c. Three: the elements are the symbol 1, the set {1}, 

and the set {1, {1}}

5. Hint: R is the set of all real numbers, Z is the set of all 
integers, and Z1 is the set of all positive integers.

6. Hint: T0 and T1 do not have the same number of elements 
as T2 and T23.

7. a. {1, 21}
c. the set has no elements
d. Z (every integer is in the set)

8. a. No, B Ü A because j [ B and j Ó A
d. Yes, C is a proper subset of A. Both elements of C 

are in A, but A contains elements (namely c and f ) 
that are not in C.

9. a. Yes
b. No, the number 1 is not a set and so it cannot be 

a subset.
f. No, the only element in {2} is the number 2 and 

the number 2 is not one of the three elements in  
{1, {2}, {3}}.

i. Yes, the only element in {1} is the number 1, which 
is an element in {1, {2}}.

10. a.  No. Observe that (22)2 5 (22)(22) 5 4, 
whereas 222 5 2(22) 5 24. So ((22)2, 222) 5 
(4, 24), whereas (222, (22)2) 5 (24, 4). And 
(4, 24) Þ (24, 4) because 24 Þ 4.

c. Yes. Note that 829 5 21 and Ï3 21 5 21, and so 
(829, Ï3 21) 5 (21, 21).

11. a.  {(w, a), (w, b), (x, a), (x, b), (y, a), (y, b), (z, a), (z, b)} 
A 3 B has 4?2 5 8 elements.

b. {(a, w), (b, w), (a, x ), (b, x ), (a, y), (b, y), (a, z), (b, z)} 
B 3 A has 4?2 5 8 elements.

c. {(w, w), (w, x), (w, y), (w, z), (x, w), (x, x), (x, y), (x, z),  
(y, w), (y, x), (y, y), (y, z), (z, w), (z, x), (z, y), (z, z)} 
A 3 A has 4?4 5 16 elements.

d. {(a, a), (a, b), (b, a), (b, b)} B 3 B has 2?2 5 4  
elements.

SoLUtionS AnD HintS 
to SeLecteD eXeRciSeS

appendix B
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A-5  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

13. a.  A 3 (B 3 C) 5 {(1, (u, m)), (1, (u, n)),  
(2, (u, m)), (2, (u, n)), (3, (u, m)), (3, (u, n))}

b. (A 3 B) 3 C 5 {((1, u), m), ((1, u), n),  
((2, u), m), ((2, u), n), ((3, u), m), ((3, u), n)}

c. A 3 B 3 C 5 {(1, u, m), (1, u, n), (2, u, m),  
(2, u, n), (3, u, m), (3, u, n)}

15. 0000, 0001, 0010, 0100, 1000

Section 1.3
1. a. No. Yes. No. Yes.

b. R 5 {(2, 6), (2, 8), (2, 10), (3, 6), (4, 8)}
c. Domain of R 5 A 5 {2, 3, 4}, co-domain of  

R 5 B 5 {6, 8, 10}
d. R

6

8

10

2

3

4

3. a.  3 T 0 because 3 2 0
3 5

3
3 5 1, which is an integer.

1 T (21) because 
1 2 (21)

3 5 2
3, which is not an 

integer.

(2, 21) [ T because 
2 2 (21)

3 5
3
3 5 1, which is an 

integer.

(3, 22) Ó T because 
3 2 (22)

3 5
5
3, which is not an 

integer.
b. T 5 {(1, 22), (2, 21), (3, 0)}
c. Domain of T 5 E 5 {1, 2, 3}, co-domain of  

T 5 F 5 {22, 21, 0}
d. T

–2

–1

0

1

2

3

5. a.  (2, 1) [ S because 2 $ 1. (2, 2) [ S because 2 $ 2.

   2 S 3 because 2 à 3. (21) S (22) because 21 $ 22.
b. 

x
1

x $ y in shaded region graph of S

7. a. R

5

6

7

4

5

6

A B

4
5
6

5
6
7

S TA B

4
5
6

5
6
7

b. R is not a function because it satisfies neither 
property (1) nor property (2) of the definition. It 
fails property (1) because (4, y) Ó R, for any y in 
B. It fails property (2) because (6, 5) [ R and  
(6, 6) [ R and 5 ? 6.

S is not a function because (5, 5) [ S and (5, 7) 
[ S and 5 ? 7. So S does not satisfy property (2) of 
the definition of function.

T is not a function both because (5, x) Ó T for 
any x in B and because (6, 5) [ T and (6, 7) [ T and 
5 ? 7. So T does not satisfy either property (1) or 
property (2) of the definition of function.

9. a. There is only one: {(0, 1), (1, 1)}
b. {(0, 1)}, {(1, 1)}

11. L(0201) 5 4,  L(12) 5 2

13. a.  Domain 5 A 5 {21, 0, 1},  
co-domain 5 B 5 {t, u, v, w}

b. F(21) 5 u, F(0) 5 w,  F(1) 5 u

15. a.  This diagram does not determine a function be-
cause 2 is related to both 2 and 6.

b. This diagram does not determine a function be-
cause 5 is in the domain but it is not related to any 
element in the co-domain.

16.  f (21) 5 (21)2 5 1, f (0) 5 02 5 0, f _12+ 5 _12+
2

5 1
4.

19.  For each x [ R, g (x) 5
2x3 1 2x
x2 1 1

5
2x  (x2 1 1)

x2 1 1
5

 2x 5 f  (x). Therefore, by definition of equality of func-
tions, f 5 g.

Section 1.4
1. V(G) 5 {y1, y2, y3, y4}, E(G) 5 {e1, e2, e3} 

Edge-endpoint function:

Edge Endpoints

e1 {y1, y2}

e2 {y1, y3}

e3 {y3}

3. 

�1

e1

e2
�2 �4 �5

�3

e3

e4
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1.4 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-6

5. Imagine that the edges are strings and the vertices are 
knots. You can pick up the left-hand figure and lay it 
down again to form the right-hand figure as shown below.

�5

�2

�6

�1 �3

�4

e6

e5e7

e4

e3

e2e1

8.  (i) e1, e2, and e3 are incident on y1.
 (ii) y1, y2, and y3 are adjacent to y3.
 (iii) e2, e8, e9, and e3 are adjacent to e1.
 (iv) Loops are e6 and e7.
 (v) e8 and e9 are parallel; e4 and e5 are parallel.
 (vi) y6 is an isolated vertex.
 (vii) degree of y3 5 5

10. a.  Yes. According to the graph, Sports Illustrated is an 
instance of a sports magazine, a sports magazine is a 
periodical, and a periodical contains printed writing.

12.  To solve this puzzle using a graph, introduce a notation 
in which, for example, wc / fg means that the wolf and 
the cabbage are on the left bank of the river and the 
ferryman and the goat are on the right bank. Then draw 
those arrangements of wolf, cabbage, goat, and ferry-
man that can be reached from the initial arrangement 
(wgcf /) and that are not arrangements to be avoided 
(such as (wg / fc)). At each stage ask yourself, “Where 
can I go from here?” and draw lines or arrows pointing 
to those arrangements. This method gives the graph 
shown below.

Examining the diagram reveals the solutions

(wgcf /) S (wc / gf) S (wcf / g) S (w / gcf) S  
(wgf / c) S (g / wcf) S (gf / wc) S (/ wgcf) 

and

(wgcf /) S (wc / gf) S (wcf / g) S (c / wgf) S  
(gcf / w) S (g / wcf) S (gf / wc) S (/ wgcf)

14.  Hint: The answer is yes. Represent possible amounts 
of water in jugs A and B by ordered pairs. For 
instance, the ordered pair (1, 3) would indicate that 
there is one quart of water in jug A and three quarts 
in jug B. Starting with (0, 0), draw arrows from one 
ordered pair to another if it is possible to go from 
the situation represented by one pair to that repre-
sented by the other by either filling a jug, emptying 
a jug, or transferring water from one jug to another. 
You need only draw arrows from states that have 
arrows pointing to them; the other states cannot 
be reached. Then find a directed path (sequence of 
directed edges) from the initial state (0, 0) to a final 
state (1, 0) or (0, 1).

15. 

b c

e

d

g

f

a
1

3

2

3

2

3
1

Vertex e has maximal degree, so color it with color #1. 
Vertex a does not share an edge with e, and so color #1 
may also be used for it. From the remaining uncolored 
vertices, all of d, g, and f have maximal degree. Choose 
any one of them—say, d—and use color #2 for it. Ob-
serve that vertices c and f do not share an edge with d, 
but they do share an edge with each other, which means 
that color #2 may be used for one but not the other. 
Choose to color f with color #2 because the degree of f 
is greater than the degree of c. The remaining uncolored 
vertices, b, c, and g, are unconnected, and so color #3 
may be used for all three.

16. Hint: There are two solutions:

(1)  Time 1: hiring, library
Time 2: personnel, undergraduate education,  
colloquium
Time 3: graduate education

(2) Time 1: hiring, library
Time 2: graduate education, colloquium
Time 3: personnel, undergraduate education
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A-7  Appendix B SOLUTIONS AND HINTS TO SELECTED EXERCISES

16. p q p ` q p ~ (p ` q) p 

T T T T T

T F F T T

F T F F F

F F F F F

p ~ (p ` q) and p always have the  
same truth values, so they are  
logically equivalent. (This proves  
one of the absorption laws.) 

18. p t p ~ t

T T T

F T T

p ~ t and t always have the same truth  
values, so they are logically equivalent.  
(This proves one of the universal bound laws.)  

21. p q r p ` q q ` r (p ` q) ` r p ` (q ` r) 

T T T T T T T 

T T F T F F F

T F T F F F F

T F F F F F F

F T T F T F F

F T F F F F F

F F T F F F F

F F F F F F F

(p ` q) ` r and p ` (q ` r) always have the same truth values, 
so they are logically equivalent. (This proves the associative law 
for `.) 

23. p q r p ` q q ~ r (p ` q) ~ r p ` (q ~ r) 

T T T T T T T 

T T F T T T T

T F T F T T T

T F F F F F F

F T T F T T F

F T F F T F F

F F T F T T F

F F F F F F F

(p ` q) ~ r and p ` (q ~ r) have different truth values in the fifth 
and seventh rows, so they are not logically equivalent. (This 
proves that parentheses are needed with ` and ~.) 

cc

cc

cc

cc

Section 2.1
1. Common form: If p then q.

p.
Therefore, q.

(a12b)(a2 2b) can be written in prefix notation. All 
algebraic expressions can be written in prefix notation.

3. Common form: p ~ q.

,p.

Therefore, q.
My mind is shot. Logic is confusing.

5. a.  It is a statement because it is a true sentence. 1,024 
is a perfect square because 1,024 5 322, and the 
next smaller perfect square is 312 5 961, which has 
fewer than four digits.

6. a. s ` i b.  ,s ` ,i 

8. a. (h ` w) ` ,s d.  (,w ` ,s) ` h

9. a. p ~ q

10. a. p ` q ` r c.  p ` (,q ~ ,r)

11.  Inclusive or. For instance, a team could win the playoff 
by winning games 1, 3, and 4 and losing game 2. Such 
an outcome would satisfy both conditions.

12. p q ,p ,p ` q 

T T F F

T F F F

F T T T

F F T F

14. p q r q ` r p ` (q ` r)

T T T T T

T T F F F

T F T F F

T F F F F

F T T T F

F T F F F

F F T F F

F F F F F
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 2.1 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-8

25. Hal is not a math major or Hal’s sister is not a computer 
science major.

27.  The connector is not loose and the machine is not un-
plugged.

31. a. 01, 02, 11, 12

32. 22 $ x or x $ 7

34. 2 # x # 5

36. 1 # x or x , 23

38.  This statement’s logical form is (p ` q) ~ r, 
so its negation has the form ,((p ` q) ~ r) ;
,(p ` q) ` ,r ; (,p ~ ,q) ` ,r. Thus a negation for 
the statement is (num_orders # 100  
or num_instock . 500) and num_instock $ 200.

44. a. No real numbers satisfy this inequality

46. a.  Solution 1: Construct a truth table for p % p using 
the truth values for exclusive or.

p p % p 

because an exclusive or statement 
is false when both components are 
true and when both components 
are false.

T F

F F

Since all its truth values are false, p % p ; c, a con-
tradiction.

Solution 2: Replace q by p in the logical equiva-
lence p % q ; (p ~ q) ` ,(p ` q), and simplify the 
result.
p % p ; (p ~ p) ` ,(p ` p) 

; p ` ,p
; c

by definition of %

by the identity laws
by the negation law  
for `

47.  There is a famous story about a philosopher who once gave 
a talk in which he observed that whereas in English and 
many other languages a double negative is equivalent to a 
positive, there is no language in which a double positive is 
equivalent to a negative. To this, another philosopher, Sid-
ney Morgenbesser, responded sarcastically, “Yeah, yeah.”

[Strictly speaking, sarcasm functions like negation. 
When spoken sarcastically, the words “Yeah, yeah” are 
not a true double positive; they just mean “no.”]

48. a. The distributive law
b. The commutative law for ~

c. The negation law for ~

d. The identity law for `

50. (p ` ,q) ~ p ; p ~ ( p ` ,q) 

; p

by the commutative  
law for ~

by the absorption law  
(with ,q in place of q)

40.
p q ,p ,q p ` q p ` ,q ,p ~ (p ` ,q) (p ` q) ~ (,p ~ (p ` ,q)) 

T T F F T F F T 

T F F T F T T T

F T T F F F T T

F F T T F F T T

Its truth values are all T’s, so  
(p ` q) ~ (,p ~ (p ` ,q))  
is a tautology. 

41. p q ,p ,q p ` ,q ,p ~ q (p ` ,q) (p ~ q) 

T T F F F T F

T F F T T F F

F T T F F T F

F F T T F T F

Its truth values are all F’s, so (p ` ,q) ` (,p ~ q) is a contradiction. 

c

c
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A-9  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

53. ,((,p ` q) ~ (,p ` ,q)) ~ (p ` q)

; ,[,p ` (q ~ ,q)] ~ (p ` q)

; ,(,p ` t) ~ ( p ` q)

; ,(,p) ~ ( p ` q)

; p ~ ( p ` q)

; p

Section 2.2
1. If this loop does not contain a stop or a go to, then it 

will repeat exactly N times.

3. If you do not freeze, then I’ll shoot.

5.

p q ,p ,q ,p ~ q ,p ~ q S ,q 

T T F F T F

T F F T F T

F T T F T F

F F T T T T

7.

p q r ,q p ` ,q p ` ,q S r 

T T T F F T

T T F F F T

T F T T T T

T F F T T F

F T T F F T

F T F F F T

F F T T F T

F F F T F T

9. p q r ,r p ` ,r q ~ r p ` ,r 4 q ~ r 

T T T F F T F

T T F T T T T

T F T F F T F

T F F T T F F

F T T F F T F

F T F T F T F

F F T F F T F

F F F T F F T

12. If x . 2 then x2 . 4, and if x , 22 then x2 . 4.

by the distributive law

by the negation law for ~

by the identity law for `

by the double negative law

by the absorption law

conclusion$'%'& hypothesis$'%'&

conclusion$%& hypothesis$'%'&

13.   a. p q ,p p S q ,p ~ q 

T T F T T

T F F F F

F T T T T

F F T T T

p S q and ,p ~ q always have the same  
truth values, so they are logically equivalent. 

14. a.  Hint: p S q ~ r is true in all cases except when p is 
true and both q and r are false.

16.  Let p represent “You paid full price” and q represent 
“You didn’t buy it at Crown Books.” Thus, “If you paid 
full price, you didn’t buy it at Crown Books” has the 
form p S q. And “You didn’t buy it at Crown Books or 
you paid full price” has the form q ~ p.

p q p S q q ~ p 

These two statements 
are not logically 
equivalent because their 
forms have different 
truth values in rows 2 
and 4.

T T T T

T F F T

F T T T

F F T F

(An alternative representation for the forms of the two 
statements is p S ,q and ,q ~ p. In this case, the truth 
values differ in rows 1 and 3.)

19.  False. The negation of an if-then statement is not an if-
then statement. It is an and statement.

20. a. P is a square and P is not a rectangle.
d. n is prime and both n is not odd and n is not 2.

Or: n is prime and n is neither odd nor 2.
f. Tom is Ann’s father and either Jim is not her uncle 

or Sue is not her aunt.

21. a.  Because p S q is false, p is true and q is false. 
Hence ,p is false, and so ,p S q is true.

22. a. If P is not a rectangle, then P is not a square.
d. If n is not odd and n is not 2, then n is not prime.
f. If either Jim is not Ann’s uncle or Sue is not her 

aunt, then Tom is not her father.

23. a.  Converse:  If P is a rectangle, then P is a square.

Inverse:  If P is not a square, then P is not a  
rectangle.

d. Converse:  If n is odd or n is 2, then n is prime.

Inverse:  If n is not prime, then n is not odd and  
n is not 2.

cc
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2.2 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-10

f. Converse:  If Jim is Ann’s uncle and Sue is her 
aunt, then Tom is her father.

Inverse:  If Tom is not Ann’s father, then Jim is not 
her uncle or Sue is not her aunt.

24. p q p S q q S p 

T T T T

T F F T

F T T F

F F T T 

p S q and q S p have different truth values  
in the second and third rows, so they are not  
logically equivalent. 

cc

26. p q ,q ,p ,q S ,p p S q

T T F F T T

T F T F F F

F T F T T T

F F T T T T

,q S ,p and p S q always have the same 
truth values, so they are logically equivalent. 

28.  Hint: A person who says “I mean what I say” claims to 
speak sincerely. A person who says “I say what I mean” 
claims to speak with precision.

cc

29. (p S (q ~ r)) 4 ((p ` ,q) S r)

p q r ,q q ~ r p ` ,q p S (q ~ r) p ` ,q S r (p S (q ~ r)) 4 ((p ` ,q) S r)

T T T F T F T T T

T T F F T F T T T

T F T T T T T T T

T F F T F T F F T

F T T F T F T T T

F T F F T F T T T

F F T T T F T T T

F F F T F F T T T

(p S (q ~ r)) 4 ((p ` ,q) S r) is a tautology because  
all of its truth values are T. 

c

32.  If this quadratic equation has two distinct real roots, 
then its discriminant is greater than zero, and if the 
discriminant of this quadratic equation is greater than 
zero, then the equation has two real roots.

34.  If the Cubs do not win tomorrow’s game, then they will 
not win the pennant.
If the Cubs win the pennant, then they will have won 
tomorrow’s game.

37.  If a new hearing is not granted, payment will be made 
on the fifth.

40. If I catch the 8:05 bus, then I am on time for work.

42.  If this number is not divisible by 3, then it is not  
divisible by 9.
If this number is divisible by 9, then it is divisible by 3.

44.  If Jon’s team wins the rest of its games, then it will win 
the championship.

46. a.  This statement is the converse of the given state-
ment, and so it is not necessarily true. For instance, 
if the actual boiling point of compound X were  
2008C, then the given statement would be true but 
this statement would be false.

b. This statement must be true. It is the contrapositive 
of the given statement.
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A-11  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

47. a. p ` ,q S r ; ,(p ` ,q) ~ r
b. Result of (a) ; ,[,(,(p ` ,q)) ` ,r]

an acceptable answer

; ,[(p ` ,q) ` ,r]
by the double negative law 
(another acceptable answer)

49. a. (p S r) 4 (q S r) ; (,p ~ r) 4 (,q ~ r)
; [,(,p ~ r) ~ (,q ~ r)] ` [,(,q ~ r) ~ (,p ~ r)]

an acceptable answer

; [(p ` ,r) ~ (,q ~ r)] ` [(q ` ,r) ~ (,p ~ r)]
by De Morgan’s law (another 

acceptable answer)
b. Result of (a) ; ,[,(p ` ,r) ` ,(,q ~ r)] `  

,[,(q ` ,r) ` ,(,p ~ r)] 
by De Morgan’s law

; ,[,(p ` ,r) ` (q ` ,r)] `  

,[,(q ` ,r) ` (p ` ,r)]
by De Morgan’s law

Section 2.3 
1. Ï2 is not rational. 3.  Logic is not easy.

6.

p q p S q p S q p ~ q 

T T T T T

T F F T

F T T F

F F T T F

This row shows that it is possible for an argument  
of this form to have true premises and a false  
conclusion. Thus this argument form is invalid.

7.

p q r ,q p p S q ,q ~ r r 

T T T F T T T T

T T F F T T F

T F T T T F T

T F F T T F T

F T T F F T T

F T F F F T F

F F T T F T T

F F F T F T T

This row describes the only situation in which all the premises  
are true. Because the conclusion is also true here, the argument 
form is valid.

premises$'''%'''& conclusion$''%''&

d

premises$'''%'''& conclusion$'%'&

d

8.

p q r ,q p ~ q p S ,q p S r r 

T T T F T F T

T T F F T F F

T F T T T T T T

T F F T T T F

F T T F T T T T

F T F F T T T F

F F T T F T T

F F F T F T T

This row shows that it is possible for 
an argument of this form to have true 
premises and a false conclusion. Thus 
this argument form is invalid.

12. a. 

p q p S q q p 

T T T T T

T F F F

F T T T F

F F T F

This row shows that it is possible for an argument 
 of this form to have true premises and a false  
conclusion. Thus this argument form is invalid.

14.

p q p p ~ q 

T T T T

T F T T

F T F

F F F

These two rows show that in all  
situations where the premise is true,  
the conclusion is also true. Thus the  
argument form is valid.

18.

p q p ~ q ,q p 

T T T F

T F T T T

F T T F

F F F T

This row represents the only situation in which  
both premises are true. Because the conclusion  
is also true here the argument form is valid.

premises$''''%''''&conclusion$'%'&

d

premises$''%''& conclusion$'%'&

d

premise$'%'& conclusion$'%'&

d

d

premises$'''%'''& conclusion$'%'&

d
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2.3 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-12

22.  Let p represent “Tom is on team A” and q represent 
“Hua is on team B.” Then the argument has the form

[

,p S q

,q S p

,p ~ ,q

p q ,p ,q ,p S q ,q S p ,p ~ ,q 

T T F F T T F

T F F T T T T

F T T F T T T

F F T T F F

This row shows that it is possible for an argument  
of this form to have true premises and a false conclusion.  
Thus this argument form is invalid.

24. p S q
q

[ p invalid: converse error

25. p ~ q
,p

[ q valid: elimination

26. p S q
q S r

[ p S r valid: transitivity

27. p S q
,p

[ ,q invalid: inverse error

36. The program contains an undeclared variable.
One explanation:
1. There is not a missing semicolon and there is not a 

misspelled variable name. (by (c) and (d) and defini-
tion of ` )

2. It is not the case that there is a missing semicolon  
or a misspelled variable name. (by (1) and De  
Morgan’s laws)

3. There is not a syntax error in the first five lines. (by 
(b) and (2) and modus tollens)

4. There is an undeclared variable. (by (a) and (3) and 
elimination)

37. The treasure is buried under the flagpole.
One explanation:
1. The treasure is not in the kitchen. (by (c) and (a) and 

modus ponens)
2. The tree in the front yard is not an elm. (by (b) and 

(1) and modus tollens)
3. The treasure is buried under the flagpole.  

(by (d) and (2) and elimination)

premises$'''%'''& conclusion$'%'&

d

38. a. A is a knave and B is a knight.
One explanation:

1. Suppose A is a knight.
2. [  What A says is true. (by definition of knight)
3. [ B is a knight also. (That’s what A said.)
4. [  What B says is true. (by definition of knight)
5. [ A is a knave. (That’s what B said.)
6. [  We have a contradiction: A is a knight and a 

knave. (by (1) and (5))
7. [  The supposition that A is a knight is false. (by 

the contradiction rule)
8. [ A is a knave. (negation of supposition)
9. [  What B says is true. (B said A was a knave, 

which we now know to be true.)
10.  [ B is a knight. (by definition of knight)

d. Hint: W and Y are knights; the rest are knaves.

39. The chauffeur killed Lord Hazelton.
One explanation:
1. Suppose the cook was in the kitchen at the time of 

the murder.
2. [  The butler killed Lord Hazelton with strychnine. 

(by (c) and (1) and modus ponens)
3. [  We have a contradiction: Lord Hazelton was 

killed by strychnine and a blow on the head.  
(by (2) and (a))

4. [  The supposition that the cook was in the kitchen 
is false. (by the contradiction rule)

5. [  The cook was not in the kitchen at the time of the 
murder. (negation of supposition)

6. [  Sara was not in the dining room when the murder 
was committed. (by (e) and (5) and modus ponens)

7. [  Lady Hazelton was in the dining room when 
the murder was committed. (by (b) and (6) and 
elimination)

8. [  The chauffeur killed Lord Hazelton. (by (d) and 
(7) and modus ponens)

41.  (1) p S t by premise (d)
,p by premise (c)

[ ,p by modus tollens
(2) ,p by (1)

[ ,p ~ q by generalization
(3) ,p ~ q S r by premise (a)

,p ~ q by (2)
[ r by modus ponens

(4) ,p by (1)
r by (3)

[ ,p ` r by conjunction
(5) ,p ` r S ,s by premise (e)

,p ` r by (4)
[ ,s by modus ponens

(6) s ~ ,q by premise (b)
,s by (5)

[ ,q by elimination
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A-13  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

43.  (1) ,w by premise (d)
u ~ w by premise (e)

[ u by elimination
(2) u S ,p by premise (c)

u by (1)
[ ,p by modus ponens

(3) ,p S r ` ,s by premise (a)
,p by (2)

[ r ` ,s by modus ponens
(4) r ` ,s by (3)

[ ,s by specialization
(5) ,t S s by premise (b)

,s by (4)
[ ,t by modus tollens

Section 2.4 
1. R 5 1 3.  S 5 1

5. Input Output

P Q R

1 1 1

1 0 1

0 1 0

0 0 1

7. Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

9. P ~ ,Q 11. (P ` ,Q) ~ R

13. 

OR
NOTP

Q

16. 

OR

NOT

P

Q

R

AND

18. a. (P ` Q ` ,R) ~ (,P ` Q ` R)
b. P

Q

R NOT

NOT

AND

OR

AND

20. a.  (P ` Q ` R) ~ (P ` ,Q ` R) ~ (,P ` ,Q ` ,R)
b. 

AND

P

Q

R

AND

NOT

NOT

NOT

ANDNOT

OR

22. The input/output table is

Input Output

P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 0
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2.5 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-14

One circuit (among many) having this input/output table 
is shown below.

P

Q

R NOT

NOT

NOT

AND

AND

OR

24.  Let P and Q represent the positions of the switches in 
the classroom, with 0 being “down” and 1 being “up.” 
Let R represent the condition of the light, with 0 being 
“off” and 1 being “on.” Initially, P 5 Q 5 0 and R 5 0. 
If either P or Q (but not both) is changed to 1, the light 
turns on. So when P 5 1 and Q 5 0, then R 5 1, and 
when P 5 0 and Q 5 1, then R 5 1. Thus when one 
switch is up and the other is down the light is on, and 
hence moving the switch that is down to the up position 
turns the light off. So when P 5 1 and Q 5 1, then 
R 5 0. It follows that the input/output table has the fol-
lowing appearance:

Input Output

P Q R

1 1 0

1 0 1

0 1 1

0 0 0

One circuit (among many) having this input/output table 
is the following:

P

Q
AND

OR

NOT

AND
NOT

R

26.  The Boolean expression for (a) is (P ` Q) ~ Q, and for 
(b) it is (P ~ Q) ` Q. We must show that if these expres-
sions are regarded as statement forms, then they are 
logically equivalent. Now

(P ` Q) ~ Q

; Q ~ (P ` Q)

; (Q ~ P) ` (Q ~ Q)

; (Q ~ P) ` Q

; (P ~ Q) ` Q

Alternatively, by the absorption laws, both statement 
forms are logically equivalent to Q.

30. (P ` Q) ~ (,P ` Q) ~ (,P ` ,Q)
; (P ` Q) ~ ((,P ` Q) ~ (,P ` ,Q))

by inserting parentheses  
(which is legal by the  
associative law)

; (P ` Q) ~ (,P ` (Q ~ ,Q))
by the distributive law

; (P ` Q) ~ (,P ` t) by the negation law for ~

; (P ` Q) ~ ,P by the identity law for `

; ,P ~ (P ` Q) by the commutative law for ~

; (,P ~ P) ` (,P ~ Q) by the distributive law

; (P ~ ,P) ` (,P ~ Q)
by the commutative law for ~

; t ` (,P ~ Q) by the negation law for ~

; (,P ~ Q) ` t by the commutative law for `

; ,P ~ Q  by the identity law for `

The following is, therefore, a circuit with at most two 
logic gates that has the same input/output table as the 
circuit corresponding to the given expression.

OR
NOTP

Q

34. b. (P T Q) T (P T Q)
; ,(P T Q) by part (a)

; ,[,(P ~ Q)] by definition of T
; P ~ Q by the double negative law

d. Hint: Use the results of exercise 13 of Section 2.2 and 
part (a) and (c) of this exercise.

Section 2.5
1. 1910 5 161211 5 100112

4. 45810 5 25611281641812 5 1110010102

7. 11102 5 81412 5 1410

10. 11001012 5 641321411 5 10110

13. 
1
1

0
1

1
1

12

1 1 0 12

1 0 0 0 02

by the commutative law for ~

by the distributive law

by the idempotent law

by the commutative law for `
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A-15  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

15. 
1
1

0
1

1
1

1 0
1

1
2

1 1 1 1 0 12

1 0 0 1 0 1 02

17. 

1 0 1 0 02

2 1 1 0 12

1 1 12

19. 0 10
1 0 1 1 0 12

2 1 0 0 1 12

1 1 0 1 02

21. a. S 5 0, T 5 1

23.  u223 u10 5 2310 5 (16141211)10 5 000101112

 11101000 11101001. So the answer is 
11101001.

25.  u24 u10 5 410 5 000001002  11111011 

 11111100. So the answer is 11111100.

27.  Because the leading bit is 1, this is the 8-bit two’s 
complement of a negative integer. 11010011  

 00101100  001011012 5  

(32181411)10 5 u245 u10. So the answer is 245.

29.  Because the leading bit is 1, this is the 8-bit two’s 
complement of a negative integer. 11110010  

 00001101  000011102 5
(81412)10 5 u214 u10. So the answer is 214.

31.  5710 5 (321161811)10 51110012 S 00111001

u2118 u10 5 (641321161412)10 5 011101102 

 10001001  10001010. So the 8-bit 
two’s complements of 57 and 2118 are 00111001 and 
10001010. Adding the 8-bit two’s complements in 
binary notation gives

0 0 1 1 1 0 0 1
1

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 1

Since the leading bit of this number is a 1, the answer is 
negative. Converting back to decimal form gives

11000011  00111100  001111012

5 (32116181411)10 5 u61 u10.

So the answer is 261.

1
1 10 10 1

flip the bits add 1

flip the bits

add 1

flip the bits add 1

flip the bits add 1

flip the bits add 1

flip the bits add 1

32. 6210 5 (32116181412)10

5 1111102 S 00111110
u218 u10 5 (1612)10 5 00010010 

 11101101 

 11101110 

Thus the 8-bit two’s complements of 62 and −18 are 
00111110 and 10110111. Adding the 8-bit two’s comple-
ments in binary notation gives

0 0 1 1 1 1 1 0
1

1 1 1 0 1 1 1 0

1 0 0 1 0 1 1 0 0

Truncating the 1 in the 28th position gives 00101100. 
Since the leading bit of this number is a 0, the answer is 
positive. Converting back to decimal form gives

00101100 S 1011002 5 (321814)10 5 4410.

So the answer is 44.

33. u26 u10 5 (412)10

5 1102  00000110 S

11111001  11111010
u273 u10 5 (641811)10

5 01001001 

10110110  10110111 

Thus the 8-bit two’s complements of −6 and −73 are 
11111010 and 10110111. Adding the 8-bit two’s comple-
ments in binary notation gives

1 1 1 1 1 0 1 0
1

1 0 1 1 0 1 1 1

1 1 0 1 1 0 0 0 1

Truncating the 1 in the 28th position gives 10110001. 
Since the leading bit of this number is a 1, the answer is 
negative. Converting back to decimal form gives

10110001  01001110  010011112

5 (6418141211) 5 7910 5 u279 u10

So the answer is 279.

37. a.  The 8-bit two’s complement of 2128 is computed as 
follows:

u2128 u10 5 12810 5 (27)10

5 100000002  01111111  10000000.

flip the bits

add 1

flip the bits

add 1

flip the bits

add 1

flip the bits add 1

flip the bits add 1
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3.1 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-16

So the 8-bit two’s complement of 2128 is 10000000. 
If the two’s complement procedure is applied to this 
result, the following is obtained

10000000  01111111  10000000.

So the 8-bit two’s complement of the 8-bit two’s 
complement of 2128 is 10000000, which is the 8-bit 
two’s complement of 2128.

38. A2BC16 5 10?163 12?162 111?16112 5 41,66010

41. 0001110000001010101111102

44. 2E16

47. a. 6?84 11?83 15?82 10?812?1 5 25,41010

Section 3.1
1. a. False  b.  True

2. a.  The statement is true. The integers correspond 
to certain of the points on a number line, and the 
real numbers correspond to all the points on the 
number line.

b. The statement is false; 0 is neither positive nor  
negative.

c. The statement is false. For instance, let r 5 22. 
Then 2r 5 2(22) 5 2, which is positive.

d. The statement is false. For instance, the number 12 is 
a real number, but it is not an integer.

3. a.  When m 5 25 and n 5 10, the statement “m is a fac-
tor of n2 ” is true because n2 5 100 and 100 5 4?25. 
But the statement “m is a factor of n” is false because 
10 is not a product of 25 times any integer. Thus the 
hypothesis of R(m, n) is true and the conclusion is 
false, so the statement as a whole is false.

c. When m 5 5 and n 5 10, both statements “m is a 
factor of n2 ” and “m is a factor of n” are true because 
n 5 10 5 5?20 5 m?20. Thus both the hypothesis 
and conclusion of R(m, n) are true, and so the state-
ment as a whole is true.

4. a.  Q(22, 1) is the statement “If 22 , 1 then 
(22)2 , 12.” The hypothesis of this statement 
is 22 , 1, which is true. The conclusion is 
(22)2 , 12, which is false because (22)2 5 4 and 
12 5 1 and 4 ñ 1. Thus Q(22, 1) is a conditional 
statement with a true hypothesis and a false conclu-
sion. So Q(22, 1) is false.

c. Q(3, 8) is the statement “If 3 , 8 then 32 , 82.”  
The hypothesis of this statement is 3 , 8, which is 
true. The conclusion is 32 , 82, which is also true 
because 32 5 9 and 82 5 64 and 9 , 64. Thus  

flip the bits add 1

Q(3, 8) is a conditional statement with a true hy-
pothesis and a true conclusion. So Q(3, 8) is true.

5. a.  The truth set is the set of all integers d such 
that 6/d is an integer, so the truth set is 
{26, 23, 22, 21, 1, 2, 3, 6}.

c. The truth set is the set of all real numbers x with 
the property that 1 # x2 # 4, so the truth set is 
{x [ R u22 # x # 21 or 1 # x # 2}. In other 
words, the truth set is the set of all real numbers 
between 22 and 21 inclusive together with those 
between 1 and 2 inclusive.

6. a.  {29, 28, 27, 26, 25, 24, 23, 22, 21, 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9}

7. baa, bab, bac, bba, bbb, bbc, bca, bcb

9. Counterexample: Let x 5 1/2. Then 1x 5 1
(1y2) 5 2, and 

1/2 ò 2. (This is one counterexample among many.)

11.  Counterexample: Let m 5 1 and n 5 1. Then 
m?n 5 1?1 5 1 and m1n 5 111 5 2. But 1 ò 2,  
and so m?n ò m1n. (This is one counterexample 
among many.)

13. (a), (e), (f)  14.  (b), (c), (e), (f)

15. a.  Partial answer: Every rectangle is a quadrilateral.
b. Partial answer: At least one set has 16 subsets.

16. a. 5 dinosaur x, x is extinct.
c. 5 irrational number x, x is not an integer.
e. 5 integer x, x2 does not equal 2, 147, 581, 953.

17. a. E an exercise x such that x has an answer.

18. a.  E s [ D such that E(s) and M(s). (Or: E s [ D such 

that E(s) ` M(s).)
b. 5s [ D, if C(s) then E(s). (Or: 5s [ D, C(s) S E (s).)

e. (E s [ D such that C(s) ` E(s)) ` (E s [ D such that 

C(s) ` ,E(s))

19. (b), (d), (e)

20.  Partial answer: The square root of a positive real num-
ber is positive.

21. a. The total degree of G is even, for any graph G.
c. p is even, for some prime number p.

22. a.  5x, if x is a Java program, then x has at least 5 lines.

23. a.  5x if x is an equilateral triangle, then x is isosceles.
5 equilateral triangles x, x is isosceles.
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A-17  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

24. a. E  a hatter x such that x is mad.
E x such that x is a hatter and x is mad.

25. a.  5 nonzero fraction x, the reciprocal of x is a fraction. 
5x, if x is a nonzero fraction then the reciprocal of x 
is a fraction.

c. 5 triangle x, the sum of the angles of x is 180°. 5x, if 
x is a triangle then the sum of the angles of x is 180°.

e. 5 even integers x and y, the sum of x and y is even. 
5x and y, if x and y are even integers then the sum of 
x and y is even.

26. b. 5x(Int(x) S Ratl(x)) ` E x(Ratl(x) ` ,Int(x))

27. a. False. Figure b is a circle that is not gray.
b. True. All the gray figures are circles.

28. b.  One answer among many: If a real number is nega-
tive, then when its opposite is computed, the result 
is a positive real number.

This statement is true because for each real 
number x, 2(2 ux u) 5 ux u  (and any negative real 
number can be represented as 2 ux u , for some real 
number x).

d. One answer among many: There is a real number 
that is not an integer. This statement is true. For 
instance, 12 is a real number that is not an integer.

30. b.  One answer among many: If an integer is prime, 
then it is not a perfect square.

This statement is true because a prime number 
is an integer greater than 1 that is not a product of 
two smaller positive integers. So a prime number 
cannot be a perfect square because if it were, it 
would be a product of two smaller positive integers.

31.  Hint: Your answer should have the appearance shown in 
the following made-up example:

Statement: “If a function is differentiable, then it is 
continuous.”

Formal version: 5 function f, if f is differentiable, then f 
is continuous.

Citation: Calculus by D. R. Mathematician, Best Pub-
lishing Company, 2019, page 263.

32. a.  True: Any real number that is greater than 2 is 
greater than 1.

c. False: (23)2 . 4 but 23 ò 2.

33. a.  True. Whenever both a and b are positive, so is their 
product.

b.  False. Let a 5 22 and b 5 23. Then ab 5 6, which 
is not less than zero.

Section 3.2
1. (a) and (e) are negations.

3. a.  E  a string s such that s does not have any characters. 
(Or: E a string s such that s has no characters.)

c. 5 movie m, m is less than or equal to 6 hours long. 
(Or: 5 movie m, m is no more than 6 hours long.)

in 4–6 there are other correct answers in addition to  
those shown.

4. a.  Some dogs are unfriendly. (Or: There is at least one 
unfriendly dog.)

c. All suspicions were unsubstantiated. (Or: No suspi-
cions were substantiated.)

5. a.  There is a valid argument that does not have a true 
conclusion. (Or: There is at least one valid argument 
that does not have a true conclusion.)

6. a.  Sets A and B have at least one point in common.

7. a.  This vertex is connected to at least one other vertex 
in the graph. (Or: There is at least one other vertex 
in the graph to which this vertex is connected.) (Or: 
This vertex is connected to some other vertex in the 
graph.)

9. E a real number x such that x . 3 and x2 # 9.

11.  The proposed negation is not correct. The given state-
ment makes a claim about any two irrational numbers 
and means that no matter what two irrational numbers 
you might choose, the sum of those numbers will be 
irrational. For this to be false means that there is at least 
one pair of irrational numbers whose sum is rational. 
On the other hand, the negation proposed in the exercise 
(“The sum of any two irrational numbers is rational”) 
means that given any two irrational numbers, their sum 
is rational. This is a much stronger statement than the 
actual negation: The truth of this statement implies the 
truth of the negation (assuming that there are at least 
two irrational numbers), but the negation can be true 
without having this statement be true.

Correct negation: There are at least two irrational num-
bers whose sum is rational.

Or: The sum of some two irrational numbers is rational.

13.  The proposed negation is not correct. There are two 
mistakes: The negation of a “for every” statement is not 
a “for every” statement; and the negation of an if-then 
statement is not an if-then statement.

Correct negation: There exists an integer n such that n2 
is even and n is not even.
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3.2 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-18

15. a. True: All the odd numbers in D are positive.
c. False: x 5 16, x 5 26, x 5 32, and x 5 36 are all 

counterexamples.

16.  E a real number x such that x2 $ 1 and x ò 0. In other 
words, E a real number x such that x2 $ 1 and x # 0.

18.  E a real number x such that x(x11) . 0 and both x # 0 
and x $ 21.

20.  E integers a, b, and c such that a2b is even and b2c 
is even and a2c is not even.

22.  There is an integer with the property that the square 
of the integer is odd but the integer itself is not odd. 
(Or: At least one integer has an odd square but is not 
itself odd.)

24. a.  If a person is a child in Tom’s family, then the per-
son is female.

If a person is a female in Tom’s family, then the 
person is a child.

The second statement is the converse of the first.

25. a.  Converse: If n11 is an even integer, then n is a 
prime number that is greater than 2.

Counterexample: Let n 5 15. Then n11 5 16, 
which is even but n is not a prime number that is 
greater than 2.

26. Statement: 5 real number x, if x2 $ 1 then x . 0.

Contrapositive: 5 real number x, if x # 0 then x2 , 1.

Converse: 5 real number x, if x . 0 then x2 $ 1.

Inverse: 5 real number x, if x2 , 1 then x # 0.

The statement and its contrapositive are false. As a 
counterexample, let x 5 22. Then x2 5 (22)2 5 4, and 
so x2 $ 1. However x ò 0.

The converse and the inverse are also false. As a coun-
terexample, let x 5 1/2. Then x2 5 1/4, and so x . 0 but 
x2 à 1.

28.  Statement: 5x [ R, if x(x11) . 0 then x . 0 or 
x , 21.

Contrapositive: 5x [ R, if x # 0 and x $ 21, then 
x(x11) # 0.

Converse: 5x [ R, if x . 0 or x , 21 then x(x11) . 0.

Inverse: 5x [ R, if x(x11) # 0 then x # 0 and x $ 21.

The statement, its contrapositive, its converse, and its 
inverse are all true.

30.  Statement: 5 integers a, b, and c, if a2b is even and 
b2c is even, then a2c is even.

Contrapositive: 5 integers a, b, and c, if a2c is not even, 
then a2b is not even or b2c is not even.

Converse: 5 integers a, b, and c, if a2c is even then 
a2b is even and b2c is even.

Inverse: 5 integers a, b, and c, if a2b is not even or 
b2c is not even, then a2c is not even.

The statement is true, but its converse and inverse 
are false. As a counterexample, let a 5 3, b 5 2, and 
c 5 1. Then a2c 5 2, which is even, but a2b 5 1 and 
b2c 5 1, so it is not the case that both a2b and b2c 
are even.

32.  Statement: If the square of an integer is odd, then the 
integer is odd.

Contrapositive: If an integer is not odd, then the square 
of the integer is not odd.

Converse: If an integer is odd, then the square of the 
integer is odd.

Inverse: If the square of an integer is not odd, then the 
integer is not odd.

The statement, its contrapositive, its converse, and its 
inverse are all true.

34. a.  If n is divisible by some prime number between 1 
and Ïn inclusive, then n is not prime.

36. a.  One possible answer: Let P(x) be “2x Þ 1.” The 
statement “5x [ Z, 2x Þ 1” is true because there is 
no integer which, when doubled, equals 1. But the 
statements “5x [ Q, 2x Þ 1” and “5x [ R, 2x Þ 1” 
are both false because x 5 1/2 satisfies the equation 
2x 5 1 and 1/2 is in both R and Q.

37.  The claim is “5x, if x 5 1 and x is in the sequence 
0204, then x is to the left of all the 0’s in the sequence.”

The negation is “E x such that x 5 1 and x is in the se-
quence 0204, and x is not to the left of all the 0’s in the 
sequence.” The negation is false because the sequence 
does not contain the character 1. So the claim is vacu-
ously true (or true by default).

39.  If a person earns a grade of C2 in this course, then the 
course counts toward graduation.

41.  If a person is not on time each day, then the person will 
not keep this job.

43. If a number is prime, then it is greater than 1.

45.  To say that “Being divisible by 8 is a necessary condition 
for being divisible by 4” means that, “If a number is not 
divisible by 8 then that number is not divisible by 4. The 
negation is, “There is a number that is not divisible by 8 
and is divisible by 4.”
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47.  To say that “having a large income is a sufficient condi-
tion for being happy” means that “If a person has a 
large income then that person is happy.” The negation 
is “There is a person who has a large income and is not 
happy.”

50.  No. Interpreted formally, the statement says, “If carriers 
do not offer the same lowest fare, then you may not 
select among them.”

Section 3.3
1. a. True: Tokyo is the capital of Japan.

b. False: Athens is not the capital of Egypt.

2. a. True: 22 . 3
b. False: 12 ò 1

3. a. y 5 1
2

b. y 5 21

4. a. Let n 5 16. Then n . x because 16 . 15.83.

5. The statement says that no matter what circle anyone 
might give you, you can find a square of the same color. 

Solution 1: The statement is true because the only circles 
in the Tarski world are a, b, and c, and given a or c, which 
are blue, square j is also blue, and given b, which is gray, 
squares g and h are also gray.

Solution 2: The statement is true. The Tarski world has 
exactly three circles: a, b, and c.

Given circle  
x 5

Choose square 
y 5

Is y the same 
color as x?

a j yes ✓

b g or h yes ✓

c j yes ✓

7. Solution 1: The statement is true because the Tarski 
world has exactly four squares: e, g, h, and j and triangle 
d is above all of them.

Solution 2: The statement is true. The Tarski world has 
exactly four squares: e, g, h, and j. 

Choose  
triangle x 5 d

Choose square 
y 5 Is x above y?

e yes ✓

f yes ✓

h yes ✓

j yes ✓

9. a.  There are five elements in D. For each, an element 
in E must be found so that the sum of the two equals 

0. So: for x 5 22, take y 5 2; for x 5 21, take 
y 5 1; for x 5 0, take y 5 0;for x 5 1, take y 5 21; 
and for x 5 2, take y 5 22.

Alternatively, note that for each integer x in 
D, the integer 2x is also in D, including 0 (because 
20 5 0), and for every integer x, x1 (2x) 5 0.

10. a.  True. Every student chose at least one dessert: Uta 
chose pie, Tim chose both pie and cake, and Yuen 
chose pie.

c. This statement says that some particular dessert was 
chosen by every student. This is true: Every student 
chose pie.

11. a. There is a student who has seen Casablanca.
c. Every student has seen at least one movie.
d. There is a movie that has been seen by every stu-

dent. (There are many other acceptable ways to state 
these answers.)

12. a. Negation: E x in D such that 5y in E, x1y Þ 1.

The negation is true. When x 5 22, the only num-
ber y with the property that x1y 5 1 is y 5 3, and 
3 is not in E.

b. Negation: 5x in D, E y in E such that x1y Þ 2y.

The negation is true because the original statement 
is false. To see that the original statement is false, 
take any x in D and choose y to be any number in 
E with y Þ 2

x
2. Then 2y Þ 2x, and adding x and 

subtracting y from both sides gives x1y Þ 2y.

in 13–19 there are other correct answers in addition to 
those shown.

13. a.  Statement: For every color, there is an animal of 
that color.
There are animals of every color.

b. Negation: E a color C such that 5 animal A, A is not 
colored C.
For some color, there is no animal of that color.

14. a.  Statement: There is a book that every person has 
read.

b. Negation: There is no book that every person 
has read.
(Or: 5 book b, E a person p such that p has not 
read b.)

15. a.  Statement: For every odd integer n, there is an inte-
ger k such that n 5 2k11.

Given any odd integer, there is another integer 
for which the given integer equals twice the other 
integer plus 1. Given any odd integer n, we can find 
another integer k so that n 5 2k11.
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An odd integer is equal to twice some other integer 
plus 1.

Every odd integer has the form 2k11 for some 
integer k.

b. Negation: E an odd integer n such that 5 integer k, 
n Þ 2k11.

There is an odd integer that is not equal to 2k11 for 
any integer k.

Some odd integer does not have the form 2k11 for 
any integer k.

18. a.  Statement: For every real number x, there is a real 
number y such that x1y 5 0.

Given any real number x, there exists a real number 
y such that x1y 5 0.

Given any real number, we can find another real 
number (possibly the same) such that the sum of the 
given number plus the other number equals 0.

Every real number can be added to some other real 
number (possibly itself) to obtain 0.

b. Negation: E a real number x such that 5 real number 
y, x1y Þ 0.

There is a real number x for which there is no real 
number y with x1y 5 0.

There is a real number x with the property that 
x1y Þ 0 for any real number y.

Some real number has the property that its sum with 
any other real number is nonzero.

20. a.   Statement (1) says that no matter what square anyone 
might give you, you can find a triangle of a different 
color. This is true because the only squares are e, g, h, 
and j, and given squares g and h, which are gray, you 
could take triangle d, which is black; given square 
e, which is black, you could take either triangle f or 
i, which are gray; and given square j, which is blue, 
you could take either triangle f or h, which are gray, 
or triangle d, which is black. In each case the chosen 
triangle has a different color from the given square.

21. a.  (1)  The statement “5 real number x, E a real number 
y such that 2x1y 5 7” is true. Given any real 
number x, take y to be 722x.

(2)  The statement “E a real number x such that 5 
real number y, 2x1y 5 7” is false. If it were 
true, the single number x would equal 

7 2 y
2  for 

every real number y, and that is impossible.
b. Both statements (1) “5 real number x, E a real 

number y such that x1y 5 y1x” and (2) “E a real 
number x such that 5 real number y, x1y 5 y1x” 
are true.

22. a.  Given any real number, you can find a real number 
so that the sum of the two is zero. In other words, 
every real number has an additive inverse. This 
statement is true.

b. There is a real number with the following prop-
erty: No matter what real number is added to it, 
the sum of the two will be zero. In other words, 
there is one particular real number whose sum 
with any real number is zero. This statement is 
false; no one number will work for all numbers. For 
instance, if x10 5 0, then x 5 0, but in that case 
x11 5 1 Þ 0.

24. a. ,(5x [ D(5y [ E( P(x, y))))

; Ex [ D(,(5y [ E(P(x, y))))

; Ex [ D(Ey [ E(,P(x, y)))

25.  This statement says that all of the circles are above all of 
the squares. This statement is true because the circles are 
a, b, and c, and the squares are e, g, h, and j, and all of a, 
b, and c lie above all of e, g, h, and j.

Negation: There is a circle x and a square y such that x 
is not above y. In other words, at least one of the circles 
is not above at least one of the squares.

27.  The statement says that there are a circle and a square 
with the property that the circle is above the square and 
has a different color from the square. This statement is 
true. For example, circle a lies above square e and is dif-
ferently colored from e. (Several other examples could 
also be given.)

29. a.  Version with interchanged quantifiers: E x [ R such 
that 5y [ R, x , y.

b. The given statement says that for any real number x, 
there is a real number y that is greater than x. This 
is true: For any real number x, let y 5 x11. Then 
x , y. The version with interchanged quantifiers 
says that there is a real number that is less than every 
other real number (including the negative ones). This 
is false.

31. 5 person x, E a person y such that x is older than y.

32. E a person x such that 5 person y, x is older than y.

33. a.  Formal version: 5 person x, E a person y such that x 
loves y.

b. Negation: E a person x such that 5 person y, x does 
not love y. In other words, there is someone who 
does not love anyone.

34. a.  Formal version: E a person x such that 5 person y, x 
loves y.

b. Negation: 5 person x, E a person y such that x does 
not love y. In other words, everyone has someone 
whom they do not love.
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37. a.  Statement: 5 even integer n, E an integer k such that 
n 5 2k.

b. Negation: E an even integer n such that 5 integer k, 
n Þ 2k.

There is some even integer that is not equal to twice 
any other integer.

39. a.  Statement: E a program P such that 5 question Q 
posed to P, P gives the correct answer to Q.

b. Negation: 5 program P, there is a question Q that 
can be posed to P such that P does not give the cor-
rect answer to Q.

40. a.  5 minutes m, E a sucker s such that s was born in 
minute m.

41. a.  This statement says that given any positive integer, 
there is a positive integer such that the first integer is 
1 more than the second integer. This is false. Given 
the positive integer x 5 1, the only integer with the 
property that x 5 y11 is y 5 0, and 0 is not a posi-
tive integer.

b. This statement says that given any integer, there 
is an integer such that the first integer is 1 more 
than the second integer. This is true. Given any 
integer x, take y 5 x21. Then y is an integer, and 
y11 5 (x21)11 5 x.

e. This statement says that given any real number, 
there is a real number such that the product of the 
two is equal to 1. This is false because 0?y 5 0 Þ 1 
for every number y. So when x 5 0, there is no real 
number y with the property that xy 5 1.

f. This statement is true because the real number 0 has 
the property that 5y [ R, 01y 5 y.

42.  E« . 0 such that 5 integer N, E an integer n such that 
n . N and either L2« $ an or an $ L1«. In other 
words, there is a positive number « such that for ev-
ery integer N, it is possible to find an integer n that is 
greater than N and has the property that an does not 
lie between L2« and L1«.

44. a.  This statement is true. The unique real number with 
the given property is 1. Note that

1?y 5 y for all real numbers y,

and if x is any real number such that for instance, 
x?2 5 2, then dividing both sides by 2 gives 
x 5 2/2 5 1.

46. a.  True. Both triangles a and c lie above all the 
squares.

b. Formal version:

E x(Triangle(x) ` (5y(Square(y) S Above(x, y))))

c. Formal negation:

5x(,(Triangle(x) ` (5y(Square(y) S Above(x, y)))))

; 5x(,Triangle(x) ~ ,(5y (Square(y) S Above(x, y))))

; 5x(,Triangle(x) ~ (E y (Square(y) ` ,Above(x, y))))

48. a.  False. There is no square to the right of circle k.
b. Formal version:

5x(Circle(x) S (E y(Square(y) ` RightOf(y, x))))

c. Formal negation: 

E x(Circle(x) ` ,(E y(Square(y) ` RightOf(y, x))))

; E x(Circle(x) ` 5y(,Square(y) ~ ,RightOf(y, x)))

49. a.  False. For example circle d is gray and there is no 
square that is colored gray.

b. Formal version:

5x(Circle(x) S E y(Square(y) ` SameColor(y, x)))

c. Formal negation:

 E x(,(Circle(x) S E y(Square(y) ` SameColor(y, x))))

; E x(Circle(x) ` ,(E y(Square(y) ` SameColor(y, x))))

; E x(Circle(x) ` 5y(,(Square(y) ` SameColor(y, x))))

; E x(Circle(x) ` 5y(,Square(y)) ~ ,(SameColor(y, x)))

51. a.  True. Square e has the property that every triangle 
above it has the same color e because e is colored 
blue and the only triangles above e, namely a and c, 
are also colored blue.

b. Formal version:

E x(Square(x) ` (5y(Triangle (y) ` Above(y, x)) 

S SameColor(y, x)))

c. Formal negation:

5x(,(Square(x) ` (5y((Triangle(y) ` Above(y, x))

 S SameColor(y, x)))))

; 5x(,Square(x) ~ (,(5y((Triangle(y) ` Above(y, x)) 
S SameColor(y, x)))))

; 5x(,Square(x) ~ E y(,((Triangle(y) ` Above(y, x)) 

S SameColor(y, x))))

; 5x(,Square(x) ~ E y((Triangle(y) ` Above(y, x))  

`(,SameColor(y, x))))

53. a.  True. Circle b and squares h and j are all colored 
black.

b.  Formal version:

E x(Circle(x) ` E y(Square(y) ` SameColor(x, y)))
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c. Formal negation:

5x(,Circle(x) ` E y(Square(y) ` SameColor(y, x)))

; 5x(,Circle(x) ~ ,(E y(Square(y) ` SameColor(y, x))))

; 5x(,Circle(x) ~ 5y(,Square(y) ~ ,SameColor(y, x)))

55. a.  No matter what the domain D or the predicates 
P(x) and Q(x) are, the given statements have the 
same truth value. If the statement “5x in D,  
(P(x) ` Q(x))” is true, then P(x) ` Q(x) is true for 
every x in D, which implies that both P(x) and Q(x) 
are true for every x in D. But then P(x) is true for 
every x in D, and also Q(x) is true for every x in 
D. So the statement “(5x in D, P(x)) ` (5x, in D, 
Q(x))” is true. Conversely, if the statement “(5x in 
D, P(x)) ` (5x in D, Q(x))” is true, then P(x) is true 
for every x in D, and also Q(x) is true for every x in 
D. This implies that both P(x) and Q(x) are true for 
every x in D, and so P(x) ` Q(x) is true for every x 
in D. Hence the statement “5x in D, (P(x) ` Q(x))” 
is true.

59. a. Yes  b.  X 5 w1, X 5 w2  c.  X 5 b2, X 5 w2

Section 3.4
1. b. (  fi 1 fj)

2 5 f  
2
i 12 fi  fj 1 f 

2
j

c. (3u15v)2 5 (3u)2 12(3u)(5v)1 (5v)2

d. (g(r)1g(s))2 5 (g(r))2 12g(r)g(s)1 (g(s))2

2. 0 is even.

3. 2
3 1 4

5 5
(2?5 1 3?4)

(3?5)  _5 22
15+

5. 
1

0
 is not an irrational number.

7. Invalid; converse error

8. Valid by universal modus ponens (or universal instantia-
tion)

9. Invalid; inverse error

10. Valid by universal modus tollens

16. Invalid; converse error

19. 5x, if x is a good car, then x is not cheap.
a. Valid, universal modus ponens (or universal  

instantiation)
b. Invalid, converse error

21.  Valid. (A valid argument can have false premises and a 
true conclusion!)

mortals

mice

people

The major premise says the set of people is included in 
the set of mice. The minor premise says the set of mice 
is included in the set of mortals. Assuming both of these 
premises are true, it must follow that the set of people is 
included in the set of mortals. Since it is impossible for 
the conclusion to be false if the premises are true, the 
argument is valid.

23.  Valid. The major and minor premises can be diagrammed 
as follows:

beings who
occasionally

make mistakes

teachers

gods

According to the diagram, the set of teachers and the 
set of gods can have no common elements. Hence, if the 
premises are true, then the conclusion must also be true, 
and so the argument is valid.

25.  Invalid. Let C represent the set of all college cafeteria 
food, G the set of all good food, and W the set of all 
wasted food. Then any one of the following diagrams 
could represent the given premises.

G

G

C W

WC

1

3

G

C W

2

G

WC

4
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Only in drawing (1) is the conclusion true. Hence it is 
possible for the premises to be true while the conclusion 
is false, and so the argument is invalid.

28. (3)  Contrapositive form: If an object is gray, then it is a 
circle.

(2)  If an object is a circle, then it is to the right of all the 
blue objects.

(1)  If an object is to the right of all the blue objects, then 
it is above all the triangles.

[   If an object is gray, then it is above all the triangles.

31. 4. If an animal is in the yard, then it is mine.

1. If an animal belongs to me, then I trust it.

5.  If I trust an animal, then I admit it into my study.

3.  If I admit an animal into my study, then it will beg 
when told to do so.

6.  If an animal begs when told to do so, then that animal 
is a dog.

2.  If an animal is a dog, then that animal gnaws bones.

[  If an animal is in the yard, then that animal gnaws 
bones; that is, all the animals in the yard gnaw bones.

33. 2. If a bird is in this aviary, then it belongs to me.

4.  If a bird belongs to me, then it is at least 9 feet high.

1.  If a bird is at least 9 feet high, then it is an ostrich.

3.  If a bird lives on mince pies, then it is not an ostrich. 

Contrapositive: If a bird is an ostrich, then it does not 
live on mince pies.

[  If a bird is in this aviary, then it does not live on 
mince pies; that is, no bird in this aviary lives on 
mince pies.

Section 4.1
1. a. Yes: 217 5 2(29)11

b. No. 0 is even because 0 5 0?2.
c. Yes: 2k21 5 2(k21)11 and k21 is an integer 

because it is a difference of integers. 

3. a.  Yes: 6m18n 5 2(3m14n) and (3m14n) is an 
integer because 3, 4, m, and n are integers, and 
products and sums of integers are integers.

b. Yes: 10mn17 5 2(5mn13)11 and 5mn13 is an 
integer because 3, 5, m, and n are integers, and prod-
ucts and sums of integers are integers.

c. Not necessarily. For instance, if m 5 3 and n 5 2, 
then m2 2n2 5 924 5 5, which is prime. (However, 
m2 2n2 is composite for many values of m and n 
because of the identity m2 2n2 5 (m2n)(m1n).) 

5. For example, let m 5 n 5 2. Then m and n are integers 

such that m . 1 and n . 1 and 
1
m

1
1
n

5
1

2
1

1

2
5 1, 

which is an integer.

8. For example, let n 5 7. Then n is an integer such that 
n . 5 and 2n 21 5 127, which is prime.

10.  For example, 25, 9, and 16 are all perfect squares, 
because 25 5 52, 9 5 32, and 16 5 42, and 25 5 9116. 
Thus 25 is a perfect square that can be written as a sum 
of two other perfect squares.

12. a.  Negation for the statement: There exist real num-
bers a and b such that a , b and a2 ñ b2.

b. Counterexample for the statement: Let a 5 22 and 
b 5 21. Then a , b because 22 , 21, but a2 ñ b2  
because (22)2 5 4 and (21)2 5 1 and 4 ñ 1. [So the 
hypothesis of the statement is true and its conclusion 
is false.]

14. Counterexample: Let m 5 2 and n 5 1. Then

2m1n 5 2?211 5 5,

which is odd. But m is not odd, and so it is false that 
both m and n are odd. [This is one counterexample among 
many.]

17.  This property is true for some integers and false for 
other integers. For instance, if a 5 0 and b 5 1, the 
property is true because (011)2 5 02 112, but if a 5 1 
and b 5 1, the property is false because (111)2 5 4 
and 12 112 5 2 and 4 Þ 2.

19.  Hint: This property is true for some integers and false 
for other integers. To justify this answer you need to 
find examples of both.

21. 2 5 12 112, 4 5 22, 6 5 22 112 112,

8 5 22 122, 10 5 32 112, 12 5 22 122 122,

14 5 32 122 112, 16 5 42,

18 5 32 132 5 42 112 112, 20 5 42 122,

22 5 32 132 122, 24 5 42 122 122

23. a.  If an integer is greater than 1, then its reciprocal is 
between 0 and 1.

b. Start of proof: Suppose m is any integer such that 
m . 1. Conclusion to be shown: 0 , 1ym , 1. 

25. a.  If the product of two integers is 1, then either both 
are 1 or both are 21.

b. Start of proof: Suppose m and n are any integers 
with mn 5 1. Conclusion to be shown: m 5 n 5 1 
or m 5 n 5 21. 

27. Hint: (b) 2k11
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28. a.  5 integers m and n, if m and n are odd then m1n is 
odd.

5 odd integers m and n, m1n is odd.

If m and n are any odd integers, then m1n is odd.
b. (a) definition of odd, (b) substitution, (c) any sum of 

integers is an integer, (d) definition of even

30. a.  5 integers m and n, if m is even and n is odd, then 
m1n is odd.

5 even integers m and odd integers n, m1n is odd.

If m is any even integer and n is any odd integer, 
then m1n is odd.

b. (a) any odd integer

(b) integer r

(c) 2r1 (2s11)

(d) m1n is odd

Section 4.2
1. Proof: Suppose n is any [particular but arbitrarily chosen] 

odd integer.

[We must show that 3n15 is even. By definition of even, this 
means we must show that 3n15 5 2?(some integer).]

By definition of odd, n 5 2r11 for some integer r.

Then

3n15 5 3(2r11)15 by substitution

5 6r1315

5 6r18

5 2(3r14) by algebra.

[Idea for the rest of the proof: We want to show that 
3n15 5 2?(some integer). At this point we know that 
3n15 5 2(3r14). So is 3r14 an integer? Yes, because 
products and sums of integers are integers.]

Let k 5 3r14.

Then 3n15 5 2(3r14) 5 2k, and k is an integer be-
cause products and sums of integers are integers. Hence 
3n15 is even by definition of even.

3. Hint: To show that an integer is odd, you need to show 
that it equals 2?(some integer)11.

4. Two versions of a correct proof are given below to il-
lustrate some of the variety that is possible.

Proof 1: Suppose a is any even integer and b is any odd 
integer. [We must show that a2b is odd.] By definition 
of even and odd, a 5 2r and b 5 2s11 for some inte-
gers r and s. By substitution and algebra,

a2b 5 2r2 (2s11) 5 2r22s21 5 2(r2 s21)11.

Let t 5 r2 s21. Then t is an integer because differenc-
es of integers are integers. Thus a2b 5 2t11, where 
t is an integer, and so, by definition of odd, a2b is odd 
[as was to be shown].

Proof 2: Suppose a is any even integer and b is any 
odd integer. By definition of even and odd, a 5 2r and 
b 5 2s11 for some integers r and s. Then

a2b 5 2r2 (2s11) 5 2(r2 s21)11.

Now r2 s21 is an integer because differences of inte-
gers are integers, and so a2b equals twice some integer 
plus 1. Thus a2b is odd.

6. Proof: Suppose k is any odd integer and m is any even 
integer. [We must show that k2 1m2 is odd.] By defini-
tion of odd and even, k 5 2a11 and m 5 2b for some 
integers a and b. Then

k2 1m2 5 (2a11)2 1 (2b)2 by substitution

5 4a2 14a1114b2

5 4(a2 1a1b2)11

5 2(2a2 12a12b2)11 by algebra.

But 2a2 12a12b2 is an integer because it is a sum of 
products of integers. Thus k2 1m2 is twice an integer plus 
1, and so k2 1m2 is odd [as was to be shown].

7. Hint: It is convenient to represent two consecutive inte-
gers as n and n11 or as n21 and n for some integer n.

10.  Proof: Suppose n is any even integer. Then n 5 2k for 
some integer k. Hence

(21)n 5 (21)2k 5 ((21)2)k 5 1k 5 1

[by the laws of exponents from algebra]. This is what was 
to be shown.

12.  To prove the given statement is false, we prove that its 
negation is true.

The negation of the statement is “For every integer 
m $ 3, m2 21 is not prime.”

Proof of the negation: Suppose m is any integer with 
m $ 3. By basic algebra, m2 21 5 (m21)(m11). Be-
cause m $ 3, both m21 and m11 are positive integers 
greater than 1, and each is smaller than m2 21. So m2 21 
is a product of two smaller positive integers, each greater 
than 1, and hence m2 21 is not prime.

15.  The incorrect proof just shows the theorem to be true in 
the one case where k 5 2. A real proof must show that it 
is true for every integer k . 0.

16.  The mistake in the “proof” is that the same symbol, 
k, is used to represent two different quantities. By 
setting m 5 2k and n 5 2k11, the proof implies that 
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n 5 m11, and thus it deduces the conclusion only 
for this one situation. When m 5 4 and n 5 17, for 
instance, the computations in the proof indicate that 
n2m 5 1, but actually n2m 5 13. In other words, the 
proof does not deduce the conclusion for an arbitrarily 
chosen even integer m and odd integer n, and hence it is 
invalid.

17.  This incorrect proof assumes what is to be proved. The 
word since in the third sentence is completely unjusti-
fied. The second sentence tells only what happens if 
k2 12k11 is composite. But at that point in the proof, 
it has not been established that k2 12k11 is composite. 
In fact, that is exactly what is to be proved.

20.  True. Proof: Suppose m and n are any odd integers. 
[We must show that mn is odd.] By definition of odd, 
n 5 2r11 and m 5 2s11 for some integers r and s. 
Then

mn 5 (2r11)(2s11) by substitution

5 4rs12r12s11

5 2(2rs1 r1 s)11 by algebra.

Now 2rs1 r1 s is an integer because products and sums 
of integers are integers and 2, r, and s are all integers. 
Hence mn 5 2?(some integer)11, and so, by definition 
of odd, mn is odd.

21.  Hint: You will need to express an integer of the form 
2(2k11) as 2(some integer)11.

22.  False. Counterexample: Let a 5 1 and b 5 0. Then 
4a15b13 5 4?115?013 5 7, which is odd. [This is 
one counterexample among many. Can you find a way to 
characterize all counterexamples?]

24.  False. Counterexample: Let m 5 1 and n 5 3. Then 
m1n 5 4 is even, but neither summand m nor sum-
mand n is even.

28. Hint: The statement is true.

32. Proof: Suppose n is any integer. Then

4(n2 1n11)23n2 5 4n2 14n1423n2

5 n2 14n14 5 (n12)2

(by algebra). Now (n12)2 is a perfect square because 
n12 is an integer (being a sum of n and 2). Hence 
4(n2 1n11)23n2 is a perfect square, as was to be 
shown.

34. Hint: This is true.

37. Hint: The statement is true.

40. Hint: The answer is no. 

Section 4.3
1. 235

6 5
235

6

3. 4
5 1 2

9 5
4?9 1 2?5

45 5
46
45

4. Let x 5 0.3737373737. Á
Then 100x 5 37.37373737. Á , and so

100x2x 5 37.37373737 Á 2 0.3737373737 Á  

Thus 99x 5 37, and hence x 5
37
99.

6. Let x 5 320.5492492492. Á  Then 
10000x 5 3205492.492492492. Á , and

10x 5 3205.492492492 Á , and so

10000x210x 5 320549223205.

Thus 9990x 5 3202287, and hence x 5
3202287

9990 .

8. b.  5 real numbers x and y, if x Þ 0 and y Þ 0 then 
xy Þ 0.

9. Given that a and b are integers, both b2a and ab2  
are integers (since differences and products of inte-
gers are integers). Also, by the zero product prop-
erty, ab2 Þ 0 because neither a nor b is zero. Hence 
(b2a)yab2 is a quotient of two integers with a nonzero 
denominator, and so it  
is rational.

11.  Proof: Suppose n is any [particular but arbitrarily chosen] 
integer. Then n 5 n?1, and so n 5 ny1 by dividing both 
sides by 1. Now n and 1 are both integers, and 1 Þ 0. 
Hence n can be written as a quotient of integers with a 
nonzero denominator, and so n is rational.

12. (a)  any [particular but arbitrarily chosen] rational  
number

(b) integers a and b
(c) (ayb)2

(d) b2

(e) zero product property
(f) r2 is rational

13. a.  5 real number r, if r is rational then 2r is rational.

Or: 5r, if r is a rational number then 2r is rational.

Or: 5 rational number r, 2r is rational.

b. The statement is true. Proof: Suppose r is a [particu-
lar but arbitrarily chosen] rational number. [We must 
show that 2r is rational.] By definition of rational, 
r 5 ayb for some integers a and b with b Þ 0. Then

2r 5 2
a

b
 by substitution

5
2a

b
 by algebra.
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Now since a is an integer, so is 2a (being the prod-
uct of 21 and a). Hence 2r is a quotient of integers 
with a nonzero denominator, and so 2r is rational 
[as was to be shown].

15.  Proof: Suppose r and s are rational numbers. By defini-
tion of rational, r 5 ayb and s 5 cyd for some integers 
a, b, c, and d with b Þ 0 and d Þ 0. Then

rs 5
a

b
?
c

d
 by substitution

5
ac

bd
 by the rules of algebra for multiplying fractions.

Now ac and bd are both integers (being products of 
integers) and bd Þ 0 (by the zero product property). 
Hence rs is a quotient of integers with a nonzero denom-
inator, and so, by definition of rational, rs is rational.

16.  Hint: Counterexample: Let r be any rational number and 
s 5 0. Then r and s are both rational, but the quotient of 
r divided by s is not a real number and therefore is not a 
rational number.

Revised statement to be proved: For all rational num-
bers r and s, if s Þ 0 then rys is rational.

17.  Hint: The conclusion to be shown is that a certain quan-
tity (the difference of two rational numbers) is rational. 
To show this, you need to show that the quantity can 
be expressed as a ratio of two integers with a nonzero 
denominator.

18. Hint: 
ayb 1 cyd

2 5
(ad 1 bc)y(bd)

2 5
ad 1 bc

2bd .

19.  Hint: If a , b then a1a , a1b (by T19 of Appendix 
A), or equivalently, 2a , a1b. Thus a ,

a 1 b
2  (by T20 

of Appendix A).

21.  True. Proof: Suppose m is any even integer and n is 
any odd integer. [We must show that m2 13n is odd.] By 
properties 1 and 3 of Example 4.3.3, m is even (because 
m2 5 m?m) and 3n is odd (because both 3 and n are odd). 
It follows from property 5 [and the commutative law for 
addition] that m2 13n is odd [as was to be shown].

24.  Proof: Suppose r and s are any rational numbers. By 
Theorem 4.3.1, both 2 and 3 are rational, and so, by 
exercise 15, both 2r and 3s are rational. Hence, by 
Theorem 4.3.2, 2r13s is rational.

27. Let

x 5

12
1

2n11

12
1

2

5

12
1

2n11

1

2

5

12
1

2n11

1

2

?
2n11

2n11 5
2n11 21

2n .

Now 2n11 21 and 2n are both integers (since n is a 
nonnegative integer) and 2n Þ 0 by the zero product 
property. Therefore, x is rational.

31. Proof: Suppose c is a real number such that

r3c
3 1 r2c

2 1 r1c1 r0 5 0,

where r0, r1, r2, and r3 are rational numbers. By defini-
tion of rational, r0 5 a0yb0, r1 5 a1yb1, r2 5 a2yb2, and 
r3 5 a3yb3 for some integers, a0, a1, a2, a3, and nonzero 
integers b0, b1, b2, and b3. By substitution,

r3c
3 1 r2c

2 1 r1c1 r0

5
a3

b3
 c3 1

a2

b2
 c2 1

a1

b1
 c1 1

a0

b0

5
b0b1b2a3

b0b1b2b3
 c3 1

b0b1b3a2

b0b1b2b3
 c2 1

b0b2b3a1

b0b1b2b3
 c1

b1b2b3a0

b0b1b2b3

5 0.

Multiplying both sides by b0b1b2b3 gives

b0b1b2a3?c3 1b0b1b3a2?c2 1b0b2b3a1?c1b1b2b3a0 5 0.

Let n3 5 b0b1b2a3, n2 5 b0b1b3a2, n1 5 b0b2b3a1, and 
n0 5 b1b2b3a0. Then n0, n1, n2, and n3 are all integers (be-
ing products of integers). Hence c satisfies the equation

n3c
3 1n2c

2 1n1c1n0 5 0,

where all of n0, n1, n2, and n3 are integers. This is what 
was to be shown.

33. a.  Hint: Note that (x2 r)(x2 s) 5 x2 2 (r1 s)x1 rs. If 
both r and s are odd, then r1 s is even and rs is odd. 
So the coefficient of x2 is 1 (odd), the coefficient of x 
is even, and the constant coefficient, rs, is odd.

35. This “proof” assumes what is to be proved.

37.  By setting both r and s equal to ayb, this incorrect 
proof violates the requirement that r and s be arbitrarily 
chosen rational numbers. If both r and s equal ayb, then 
r 5 s.

Section 4.4
1. Yes, 52 5 13?4

2. Yes, 56 5 7?8

4. Yes, (3k11)(3k12)(3k13) 5 3[(3k11)(3k12)
(k11)], and (3k11)(3k12)(k11) is an integer be-
cause k is an integer and sums and products of integers 
are integers.

6. No, 29/3 > 9.67, which is not an integer.

7. Yes, 66 5 (23)(222).
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8. Yes, 6a(a1b) 5 3a[2(a1b)], and 2(a1b) is an integer 
because a and b are integers and sums and products of 
integers are integers.

10. No, 34y7 > 4.86, which is not an integer.

12.  Yes, n2 21 5 (4k11)2 21 5 (16k2 18k11)21 5 
16k2 18k 5 8(2k2 1k), and 2k2 1k is an integer because 
k is an integer and sums and products of integers are 
integers.

14. (a) a ub
(b) b 5 a?r
(c) 2r
(d) a u(2b) 

15.  Proof: Suppose a, b, and c are any integers such that a ub 
and a uc. [We must show that a u(b1c).] By definition of 
divides, b 5 ar and c 5 as for some integers r and s. 
Then

b1c 5 ar1as 5 a(r1 s)  by algebra.

Let t 5 r1 s. Then t is an integer (being a sum of inte-
gers), and thus b1c 5 at where t is an integer. By defi-
nition of divides, then, a u(b1c) [as was to be shown].

16.  Hint: The conclusion to be shown is that a certain quan-
tity is divisible by a. To show this, you need to show that 
the quantity equals a times some integer.

18. a.  5 integers n if n is a multiple of 3 then 2n is a mul-
tiple of 3.

b. The statement is true. Proof: Suppose n is any inte-
ger that is a multiple of 3. [We must show that 2n is 

a multiple of 3.] By definition of multiple, n 5 3k for 
some integer k. Then

2n 5 2(3k) by substitution

5 3(2k) by algebra.

Now 2k is an integer because k is. Hence, by defini-
tion of multiple, 2n is a multiple of 3 [as was to be 
shown].

19.  Counterexample: Let a 5 2 and b 5 1. Then 
a1b 5 211 5 3, and so 3 u(a1b) because 3 5 3?1. 
On the other hand, a2b 5 221 5 1, and 3 u1 because 
1y3 is not an integer. Thus 3 u(a2b). [So the hypothesis 
of the statement is true and its conclusion is false.]

20.  Hint: The consecutive integers can be conveniently 
represented as n21, n, and n11 or as n, n11, n12, 
where n is an integer.

22.  Hint: The given statement can be rewritten formally as 
“5 integers n, if n is divisible by 6 then n is divisible by 
2.” This statement is true.

24.  The statement is true. Proof: Suppose a, b, and c are 
any integers such that a ub and a uc. [We must show that 

a u(2b23c).] By definition of divisibility, we know that 
b 5 am and c 5 an for some integers m and n. It follows 
that 2b23c 5 2(am)23(an) (by substitution) 5  
a(2m23n) (by basic algebra). Let t 5 2m23n. Then 
t is an integer because it is a difference of products of 
integers. Hence 2b23c 5 at, where t is an integer, and 
so a u(2b23c) by definition of divisibility [as was to be 
shown].

25.  The statement is false. Counterexample: Let 
a 5 2, b 5 8, and c 5 8. Then a is a factor of c because 
8 5 2?4 and b is a factor of c because 8 5 1?8, but 
ab 5 16 and 16 is not a factor of 8 because 8 Þ 16?k for 
any integer k since 8y16 5 1y2.

26. Hint: The statement is true.

27. Hint: The statement is false.

32.  No. Each of these numbers is divisible by 3, and so their 
sum is also divisible by 3. But 100 is not divisible by 3. 
Thus the sum cannot equal $100.

36. a.  The sum of the digits is 54, which is divisible by 
9. Therefore, 637,425,403,705,125 is divisible by 
9 and hence also divisible by 3 (by transitivity of 
divisibility). Because the rightmost digit is 5, then 
637,425,403,705,125 is divisible by 5. And because 
the two rightmost digits are 25, which is not divisible 
by 4, then 637,425,403,705,125 is not divisible by 4.

37. a. 1,176 5 23?3?72

38. a. 8,424 5 23?34?13
c. Hint: The answer is no. Note that each factor of 10 

is comprised of a factor of 2 and a factor of 5.
d. Hint: The answer is 26. Note that in order for 

8,424?m to be a perfect square, each prime factor 
must be raised to an even power. 

40. a.  Because 12a 5 25b, the unique factorization theo-
rem guarantees that the standard factored forms of 
12a and 25b must be the same. Thus 25b contains 
the factors 22?3 (512). But since neither 2 nor 3 
divides 25, the factors 22?3 must all occur in b, 
and hence 12 ub. Similarly, 12a contains the factors 
52 5 25, and since 5 is not a factor of 12, the factors 
52 must occur in a. So 25 ua.

41.  Hint: 458?885 5(32?5)8?(23?11)5 5 316?58?215?115. How 
many factors of 10 does this number contain?

42. a.  6! 5 6?5?4?3?2?1 5 2?3?5?2?2?3?2 5 24?32?5

43.  Hint: There are 108 mathematics students and 120 
computer science students at the university.
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44.  Proof: Suppose n is a nonnegative integer whose decimal 
representation ends in 0. Then n 5 10m10 5 10m for  
some integer m. Factoring out a 5 yields n 5 10m 5 5(2m),  
and 2m is an integer since m is an integer. Hence 10m is 
divisible by 5, which is what was to be shown.

47.  Hint: You may take it as a fact that for any positive 
integer k,

10k 5 99 Á  911; that is,(')'*
k of these

10k 5 9?10k21 19?10k22 1 Á 19?101 19?100 11.

Section 4.5
1. q 5 7, r 5 7 3.  q 5 0, r 5 36

5. q 5 25, r 5 10

7. a.  4 b. 7

11. a.  When today is Saturday, 15 days from today is two 
weeks (which is Saturday) plus one day (which is 
Sunday). Hence DayN should be 0. According to the 
formula, when today is Saturday, DayT 5 6, and so 
when N 5 15,

DayN 5 (DayT1N) mod 7

5 (6115) mod 7

5 21 mod 7 5 0, which agrees.

13.  Solution 1: 30 5 4?712. Hence the answer is two days 
after Monday, which is Wednesday.

Solution 2: By the formula, the answer is (1130) mod 
7 5 31 mod 7 5 3, which is Wednesday.

14.  Hint: There are two ways to solve this problem. One is 
to find that 1,000 5 7?14216 and note that if today is 
Tuesday, then 1,000 days from today is 142 weeks plus 
6 days from today. The other way is to use the formula 
DayN 5 (DayT1N) mod 7, with DayT 5 2 (Tuesday) 
and N 5 1,000.

16.  Because d un, n 5 dq10 for some integer q. Thus the 
remainder is 0.

18.  Proof: Suppose n is any odd integer. By defini-
tion of odd, n 5 2q11 for some integer q. Then 
n2 5 (2q11)2 5 4q2 14q11 5 4(q2 1q)11 5

4q(q11)11. By the result of part (a), the product 
q(q11) is even, so q(q11) 5 2m for some integer m. 
Then, by substitution, n2 5 4?2m11 5 8m11.

20.  Because a mod 7 5 4, the remainder obtained when 
a is divided by 7 is 4, and so a 5 7q14 for some 

integer q. Multiplying this equation through by 5 gives 
that 5a 5 35q120 5 35q11416 5 7(5q12)16. 
Because q is an integer, 5q12 is also an integer, and so 
5a 5 7?(an integer)16. Thus, because 0 # 6 , 7, the 
remainder obtained when 5a is divided by 7 is 6, and so 
5a mod 7 5 6.

23.  Proof: Suppose n is any [particular but arbitrarily chosen] 
integer such that n mod 5 5 3. Then the remainder ob-
tained when n is divided by 5 is 3, and so n 5 5q13 for 
some integer q. By substitution,

n2 5 (5q13)2 5 25q2 130q19

5 25q2 130q1514 5 5(5q2 16q11)14.

Because products and sums of integers are in-
tegers, 5q2 16q11 is an integer, and hence 
n2 5 5?(an integer)14.

Thus, since 0 # 4 , 5, the remainder obtained when n2 
is divided by 5 is 4, and so n2 mod 5 5 4.

26.  Hint: You need to show that (1) for each integer n and 
positive integer d, if n is divisible by d then n mod d 5 0; 
and (2) for each integer n and positive integer d, if  
n mod d 5 0 then n is divisible by d.

27.  Hint: Given any integer n, by the quotient-remainder 
theorem with divisor equal to 2, n 5 2q, or n 5 2q11 
for some integer q.

28. a.   Hint: Start by supposing that n, n11, and n12 are 
any three consecutive integers. Then use the quotient-
remainder theorem to divide into three cases:

Case 1 (n 5 3q for some integer q). In this case you 
will show that n is a multiple of 3.

Case 2 (n 5 3q11 for some integer q). In this case 
you will show that n12 is a multiple of 3.

Case 3 (n 5 3q12 for some integer q). In this case 
you will show that n11 is a multiple of 3. 

Conclude that in all possible cases one of the inte-
gers is a multiple of 3.

29. a.  Hint: Given any integer n, begin by using the 
quotient-remainder theorem to say that n can 
be written in one of the three forms: n 5 3q, or 
n 5 3q11, or n 5 3q12 for some integer q. 
Then divide into three cases according to these 
three possibilities. Show that in each case either 
n2 5 3k for some integer k, or n2 5 3k11 for 
some integer k. For instance, when n 5 3q12, 
then n2 5 (3q12)2 5 9q2 112q14 5
3(3q2 14q11)11, and 3q2 14q11 is an integer 
because it is a sum of products of integers.
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31. b.  If m2 2n2 5 56, then 56 5 (m1n)(m2n). Now 
56 5 23?7, and by the unique factorization theorem, 
this factorization is unique. Hence the only repre-
sentation of 56 as a product of two positive integers 
are 56 5 7?8 5 14?4 5 28?2 5 56?1. By part (a), 
m and n must both be odd or both be even. Thus the 
only solutions are either m1n 5 14 and m2n 5 4 
or m1n 5 28 and m2n 5 2. It follows that the 
only solutions are either m 5 9 and n 5 5 or m 5 15 
and n 5 13.

32. Under the given conditions, 2a2 (b1c) is even.
Proof: Suppose a, b, and c are any integers such that a2b 
is even and b2c is even. [We must show that 2a2 (b1c) 
is even.] Note first that 2a2 (b1c) 5 (a2b)1 (a2c). 
Also note that (a2b)1 (b2c) is a sum of two even 
integers and hence is even by Example 4.3.3 #1. But 
(a2b)1 (b2c) 5 a2c, and so a2c is even. Hence 
2a2 (b1c) is a sum of two even integers, and thus it is 
even [as was to be shown].

34.  Hint: Express n using the quotient-remainder theorem 
with d 5 3.

36.  Hint: Use the quotient-remainder theorem (as in Ex-
ample 4.5.6) to say that n 5 4q, n 5 4q11, n 5 4q12, 
or n 5 4q13 and divide into cases accordingly.

37.  Hint: Given any integer n, consider the two cases where 
n is even and where n is odd.

39.  Hint: Use the quotient-remainder theorem to say 
that p must have one of the forms 6q, 6q11, 6q12, 
6q13, 6q14, or 6q15 for some integer q. Then use 
the fact that p is prime and not equal to either 2 or 3 to 
show that you only need to consider two cases.

41.  Hint: There are four cases: Either x and y are both posi-
tive, or x is positive and y is negative, or x is negative 
and y is positive, or both x and y are negative.

43.  Hint: Apply the triangle inequality with x 5 a2b and 
y 5 b and with x 5 b2a and y 5 a. Then use the result 
of exercise 42.

44. a. 7,60915 5 7,614

46.  Answer to first question: No. Counterexample: Let 
m 5 1, n 5 3, and d 5 2. Then m mod d 5 1 and n mod 
d 5 1 but m Þ n.

Answer to second question: Yes. Proof: Suppose m, n, and 
d are integers such that m mod d 5 n mod d. Let r 5 m 
mod d 5 n mod d. By definition of mod, m 5 dp1 r 
and n 5 dq1 r for some integers p and q. Then 
m2n 5 (dp1 r)2 (dq1 r) 5 d(p2q). But p2q is an 
integer (being a difference of integers), and so m2n is divis-
ible by d by definition of divisible.

Section 4.6
1. :37.999; 5 37, <37.999= 5 38

3. :214.00001; 5 215, <214.00001= 5 214

8. :ny7;. The floor notation is more appropriate. If the ceil-
ing notation is used, two different formulas are needed, 
depending on whether ny7 is an integer or not. (What 
are they?)

10. a. (i) _20501 :2049
4 ;2 :2049

100 ;1 :2049
400 ; + mod 7

5 (2050151222015) mod 7 5 2547 mod 7
5 6, which corresponds to a Saturday.

b. Hint: One day is added every four years, except that 
each century the day is not added unless the century 
is a multiple of 400.

12.  Hint: The mistake is assuming what is to be proved. 
Explain the way in which the mistake occurs in the 
“proof.”

13.  Proof: Suppose n is any even integer. By definition of 
even, n 5 2k for some integer k. Then

jn
2
k 5 j2k

2
k 5 :k; 5 k  because k is an integer and 

k # k , k21.

But k 5
n

2
 because n 5 2k.

Thus, on the one hand, : n2 ;5 k, and on the other hand, 

k 5
n
2. It follows that : n2 ;5

n
2 [as was to be shown].

14.  Counterexample: Let x 5 2 and y 5 1.9. 
Then :x2y; 5 :221.9; 5 :0.1; 5 0, whereas 
:x;2 :y; 5 :2;2 :1.9; 5 221 5 1.

15.  Proof: Suppose x is any real number. Let m 5 :x;. By 
definition of floor, m # x , m11. Subtracting 1 from 
all parts of the inequality gives that

m21 # x21 , m,

and so, by definition of floor, :x21; 5 m21. It follows 
by substitution that :x21; 5 :x;21.

17. Proof for the case where n mod 3 5 2:

In the case where n mod 3 5 2, then n 5 3q12 for 
some integer q by definition of mod. By substitution,

jn
2
k 5 j

3q12

3
k

5 j
3q

3
1

2

3
k

5 jq1
2

3
k 5 q because q is an integer and 

q # q12y3 , q11.
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But

q 5
n22

3
  by solving n 5 3q12 for q.

Thus, on the one hand, :n3;5 q, and on the other hand, 

q 5
n 2 2

3 . It follows that :n3;5
n 2 2

3 .

18. Hint: This is false.

19. Hint: This is true.

23.  Proof: Suppose x is a real number that is not an integer. 
Let :x; 5 n. Then, by definition of floor and because 
x is not an integer, n , x , n11. Multiplying both 
sides by 21 gives 2n . 2x . 2n21, or equivalently, 
2n21 , 2x , 2n. Since 2n21 is an integer, it fol-
lows by definition of floor that :2x; 5 2n21. Hence

:x;1 :2x; 5 n1 (2n21) 5 n2n21 5 21,

as was to be shown.

25.  Hint: Let  n 5 :x2; and consider the two cases: n is even 
and n is odd.

26.  Proof: Suppose x is any real number such that 

x2 :x; , 1
2. Multiplying both sides by 2 gives

2x22:x; , 1, or 2x , 2:x;11.

Now by definition of floor, :x; # x. Hence, 2:x; # 2x. 
Putting the two inequalities involving 2x together gives

2:x; # 2x , 2:x;11.

Thus, by definition of floor (and because 2:x; is an inte-
ger), :2x; 5 2:x;. This is what to be shown.

28.  Hint: After applying the hypothesis that n is odd, evalu-
ate the two sides of the equation separately and show 
that the results are equal.

30.  Hint: Divided into two cases: n is even and n is odd. 
For each case evaluate the two sides of the equation 
separately and show that the results are equal.

31.  Hint: Start by dividing the proof into two cases: n is 
even and n is odd. In case n is odd, use the quotient-
remainder theorem with divisor equal to 6 to divide into 
three cases: n 5 6k11, n 5 6k13, and n 5 6k15 for 
some integer k. You will need to consider a total of four 
cases.

Section 4.7
1. (a) a contradiction

(b) a positive real number
(c) x
(d) both sides by 2
(e) contradiction

3. Proof: Suppose not. That is, suppose there is an integer 
n such that 3n12 is divisible by 3. [We must show that 
this supposition leads to a contradiction.] By definition of 
divisibility, 3n12 5 3k for some integer k. Subtracting 
2 from both sides gives that 3n 5 3k12, and subtract-
ing 3k from both sides gives 3n23k 5 2, which implies 
that 3(n2k) 5 2 by factoring out 3. Dividing both 
sides by 3 gives n2k 5 2y3. Now n2k is an integer 
(because it is a difference of integers) and 2y3 is not an 
integer. Since an integer cannot equal a non-integer, we 
have reached a contradiction. [Hence the supposition is 
false and the given statement is true.]

5. Negation for the statement: There is a greatest even 
integer.

Proof of the statement: Suppose not. That is, suppose 
there is a greatest even integer; call it N. Then N is an 
even integer, and N $ n for every even integer n. [We 
must deduce a contradiction.] Let M 5 N12. Then M is 
an even integer since it is a sum of even integers, and 
M . N since M 5 N12. This contradicts the supposi-
tion that N $ n for every even integer n. [Hence the sup-
position is false and the statement is true.]

8. (a) a rational number
(b) an irrational number
(c) a

b

(d) c
d

(e) a
b 2

c
d

(f) integers
(g) integers
(h) zero product property
(i) rational

9. a.  The mistake in this proof occurs in the second 
sentence where the negation written by the student 
is incorrect: instead of being existential, it is uni-
versal. The problem is that if the student proceeds 
in a logically correct manner, all that is needed to 
reach a contradiction is one example of a rational 
and an irrational number whose difference is ir-
rational. To prove the given statement, however, 
it is necessary to show that there is no rational 
number and no irrational number whose difference 
is rational.

10.  The mistake is that the negation for S that was used in 
the “proof” is incorrect. Thus deducing a contradiction 
from it fails to prove that S is true. (The actual negation 
is “There exist positive real numbers r and s such that 
Ïr1 s 5 Ïr1Ïs.”)

12. a.  Negation for R: There exists an irrational number 
whose square root is rational.

b. Proof of R by contradiction: Suppose not. That is, 
suppose there exists an irrational number x such that 
the square root of x is rational. [We must derive a 
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contradiction.] By definition of rational, Ïx 5
a
b for 

some integers a and b with b Þ 0. By substitution, 

(Ïx)2 5 Sa

bD2

,

and so, by algebra,

x 5
a2

b2.

But a2 and b2 are both products of integers and thus 
are integers, and b2 is nonzero by the zero product 

property. Thus a
2

b2 is rational. It follows that x is both 
irrational and rational, which is a contradiction. 
[This is what was to be shown.]

13. a.  Negation for S: There exist an irrational number 
and a nonzero rational number whose product is 
rational.

14. b.  Hint: Recall that to say a mod 6 5 3 means that 
there exists an integer r such that a 5 6r13.

15.  Hint: You could argue directly from the definition of odd, 
or you could use a result from Example 4.3.2.

16.  Proof by contradiction: Suppose not. That is, suppose that 
there exist odd integers a and b such that b2 2a2 5 4. [We 
must show that this supposition leads logically to a contradic-
tion.] Factoring gives that 

b2 2a2 5 (b1a)(b2a) 5 4.

Now b . a because b2 2a2 5 4 . 0, and the only 
way to factor 4 is either 4 5 2?2 or 4 5 4?1. Hence ei-
ther b1a 5 b2a 5 2, or b1a 5 4 and b2a 5 1 or 
b1a 5 1 and b2a 5 4.

In case b1a 5 b2a 5 2, then 2a 5 a and so a 5 0, 
which is not an odd integer.

In case b1a 5 4 and b2a 5 1, then 2b 5 5 and so 
b 5 5y2, which is not an odd integer.

In case b1a 5 1 and b2a 5 4, then 2b 5 5 and so 
b 5 5y2, which is not an odd integer. 

Thus there are no odd integers a and b such that 
b2 2a2 5 4, which contradicts the supposition. [Hence 
the supposition is false and the given statement is true.]

17.  Hint: Use the fact that a2 5 c2 2b2 5 (c2b)(c1b) and 
apply the unique factorization of integers theorem.

19.  Hint: Suppose n2 22 is divisible by 4, and consider the 
two cases where n is even and n is odd. (An alternative 
solution uses Proposition 4.7.4.)

20. a. 5 un
b. 5 un2

c. 5k
d. (5k)2

e. 5 un2

21. a.  Proof by contradiction: Suppose not. That is, sup-
pose there is an integer n such that n2 is odd and n is 
even. Show that this supposition leads logically to a 
contradiction.

b. Proof by contraposition: Suppose n is any integer such 
that n is not odd. Show that n2 is not odd. 

23.  Formal version of the statement to be proved: For every 
real number x, if x is irrational then 2x is irrational.

Proof by contraposition: Suppose x is any real number 
such that 2x is not irrational. By definition of irrational 
this means that 2x is rational. [We must show that x is not 
irrational, or, equivalently, that x is rational.] By defini-
tion of rational,  2x 5 ayb for some integers a and b with 
b Þ 0. Then, by algebra,

x 52(2x) 52(ayb) 5 (2a)yb.

Now 2a is an integer because a is an integer and because 
2a 5 (21)a. Also b is a nonzero integer. Thus x is a ratio 
of integers with a nonzero denominator, and hence x is 
rational [as was to be shown].
Proof by contradiction:  Suppose there exists a real num-
ber x such that x is irrational and 2x is not irrational. [We 
must show that this supposition leads logically to a con-
tradiction.] By definition of rational, 2x 5 ayb for some 
integers a and b with b Þ 0. Then, by algebra, 

x 5 2(2x) 5 2(ayb) 5 (2a)yb.

Now –a is an integer because a is an integer and because 
2a 5 (21)a. Also b is a nonzero integer. Thus x is a ratio 
of integers with a nonzero denominator, and hence x is 
rational. Hence x is both irrational and rational, which is 
a contradiction [which shows that the negation is false and 
therefore that the statement to be proved is true]. 

25.  Hint: See the answer to exercise 21 and look carefully at 
the two proofs for Proposition 4.7.4.

26.  Proof by contraposition: Suppose a, b, and c are any 
[particular but arbitrarily chosen] integers such that 
a ub. [We must show that a ubc.] By definition of divides, 
b 5 ak for some integer k. Then bc 5 (ak)c 5 a(kc). But 
kc is an integer (because it is a product of the integers k 
and c). Hence a ubc by definition of divisibility [as was to 
be shown].

Proof by contradiction: Suppose not. [We take the nega-
tion and suppose it to be true.] Suppose E integers a, b, 
and c such that a ubc and a ub. Since a ub, there exists an 
integer k such that b 5 ak by definition of divides. Then 
bc 5 (ak)c 5 a(kc) [by the associative law of algebra]. But 
kc is an integer (being a product of integers), and so a ubc 
by definition of divides. Thus a ubc and a ubc, which is a 
contradiction. [This contradiction shows that the supposi-
tion is false, and hence the given statement is true.] 
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28.  Hint: To prove p S q ~ r, it suffices to prove either  
p ` ,q S r or p ` ,r S q. See exercise 14 in Section 2.2.

29.  Hints: (1) The contrapositive is “For all integers m and 
n, if m and n are not both even and m and n are not both 
odd, then m1n is not even.” Equivalently: “For all 
integers m and n, if one of m and n is even and the other 
is odd, then m1n is odd.”

(2) The negation of the given statement is the following: 
E integers m and n such that m1n is even, and either m is 
even and n is odd, or m is odd and n is even. 

31. a.  Proof by contraposition: Suppose n, r, and s are 
positive integers and r . Ïn and s . Ïn. [We 
must show that rs . n.] By Theorem T27 in Ap-
pendix A (with a 5 r, b 5 s, and c 5 d 5 Ïn), 
rs . Ïn?Ïn 5 n. Thus the contrapositive of the 
given statement is true, and so the given statement is 
also true.

32. a.  Ï667 > 25.8, and so the possible prime factors to 
be checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Test-
ing each in turn shows that 667 is not prime because 
667 5 23?29.

b. Ï557 > 23.6, and so the possible prime factors 
to be checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23. 
Testing each in turn shows that none divides 557. 
Therefore, 557 is prime. 

34. a.  Ï9269 > 96.3, and so the possible prime factors 
to be checked are all among those you found for 
exercise 33. Testing each in turn shows that 9,269 is 
not prime because 9,269 5 13 # 713.

b. Ï9103 > 95.4, and so the possible prime factors to 
be checked are all among those you found for exer-
cise 33. Testing each in turn shows that none divides 
9,103. Therefore, 9,103 is prime. 

35.  Hint: Assuming that n is not composite, show that 
n24, n26, and n28 are all prime. Next show that 
n27 is divisible by 3 by considering n26, n27,  
and n28. Finally, write n24 5 (n27)13 and show 
that 3 divides n24.

36.  Hint: Use proof by contradiction. Suppose a, b, and c are 
odd integers, z is a solution to ax2 1bx1c, and z is ratio-
nal. Then z 5 m9yn9, for some integers m9 and n9 with  
n9 Þ 0. Divide out the greatest common factor of m9 and 
n9 (possibly 1) to obtain two integers m and n with no 
common factor that satisfy the equation m9yn9 5 myn. 
Substitute myn into ax2 1bx1c, and multiply through 
by n2. Show that (1) the assumption that m is even leads 
to a contradiction, and (2) the assumption that n is even 
leads to a contradiction.

Section 4.8
1. The value of Ï2 given by a calculator is an approxima-

tion. Calculators can give exact values only for numbers 
that can be represented using at most the number of 
decimal digits in the calculator display. In particular, 
every number in a calculator display is rational, but even 
many rational numbers cannot be represented exactly. 
For instance, consider the number formed by writing 
a decimal point and following it with the first million 
digits of Ï2. By the discussion in Section 4.2, this 
number is rational, but you could not infer this from the 
calculator display.

3. Yes. In fact there are infinitely many rational numbers 
with the same first trillion digits as Ï2. For instance, 
if you end the number after the first trillion digits, the 
result is a finite decimal, which is rational. Repeating 
the first trillion digits of Ï2 forever would create a re-
peating decimal, which is rational. Or you could follow 
the first trillion digits of Ï2 by 012343434Á , where 
the digits 34 repeat forever. This is also rational. Try 
creating other examples.

6. Proof by contradiction: Suppose not. That is, suppose 
627Ï2 is rational. [We must prove a contradiction.] By 
definition of rational, there exist integers a and b with 
b Þ 0 with

627Ï2 5
a

b
.

Then

Ï2 5
1

27Sa

b
26D 

 by subtracting 6 from 
both sides and dividing 
both sides by 27,

and so  Ï2 5
a26b

27b
 by the rules of algebra.

But a26b and 27b are both integers (since a and b are 
integers and products and difference of integers are inte-
gers), and 27b Þ 0 by the zero product property. Hence 
Ï2 is a ratio of the two integers a26b and 27b with 
27b Þ 0, so Ï2 is a rational number (by definition of 
rational). This contradicts the fact that Ï2 is irrational, 
and so the supposition is false and 627Ï2 is irrational.

8. This is false. Ï4 5 2 5 2y1, which is rational.

10.  Counterexample: Let x 5 Ï2 and y 5 2Ï2. Then x and 
y are irrational, but x1y 5 0 5 0y1, which is rational.

12. True.

Formal version of the statement: 5 positive real number 
r, if r is irrational, then Ïr is irrational.
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Proof by contraposition: Suppose r is any positive real 
number such that Ïr is rational. [We must show that r is 

rational.] By definition of rational, Ïr 5
a
b for some inte-

gers a and b with b Þ 0. Then r 5 (Ïr)2 5 _ab+
2 5

a2

b2. But 

both a2 and b2 are integers because they are products of 
integers, and b2 Þ 0 by the zero product property. Thus r 
is rational [as was to be shown].

(The statement may also be proved by contradiction.)

16.  Hint: Can you think of any “nice” integers x and y that 
are greater than 1 and have the property that x2 5 y3?

19. a.  Proof by contradiction: Suppose not. That 
is, suppose there is an integer n such that 
n 5 3q1 1 r1 5 3q2 1 r2, where q1, q2, r1, and 
r2 are integers, 0 # r1 , 3, 0 # r2 , 3, and 
r1 Þ r2. By interchanging the labels for r1 and r2 
if necessary, we may assume that r2 . r1. Then 
3(q1 2q2) 5 r2 2 r1 . 0, and because both r1 and 

r2 are less than 3, either r2 2 r1 5 1 or r2 2 r1 5 2. 
So either 3(q1 2q2) 5 1 or 3(q1 2q2) 5 2. The 
first case implies that 3 u1, and hence, by Theorem 
4.4.1, that 3 # 1, and the second case implies that 
3 u2, and hence, by Theorem 4.4.1, that 3 # 2. 
These results contradict the fact that 3 is greater 
than both 1 and 2. Thus in either case we have 
reached a contradiction, which shows that the sup-
position is false and the given statement is true.

b. Proof by contradiction: Suppose not. That is, sup-
pose there is an integer n such that n2 is divisible 
by 3 and n is not divisible by 3. [We must deduce 
a contradiction.] By definition of divisible, 
n2 5 3q for some integer q, and by the quotient-
remainder theorem and part (a), n 5 3k11 or 
n 5 3k12 for some integer k. 

Case 1 (n 5 3k11 for some integer k): In this case

n2 5 (3k11)2 5 9k2 16k11 5 3(3k2 12k)11.

Let s 5 3k2 12k. Then n2 5 3s11, and s is an inte-
ger because it is a sum of products of integers. Thus 
n2 5 3q 5 3s11 for some integers q and s, which 
contradicts the result of part (a).

Case 2 (n 5 3k12 for some integer k): In this case

n2 5 (3k12) 5 9k2 112k14 5 3(3k2 14k11)11.

Let t 5 3k2 14k11. Then n2 5 3t 1 1, and t is an in-
teger because it is a sum of products of integers. Thus 
there are integers q and t so that n2 5 3q 5 3t11, 
which contradicts the result of part (a).

Thus in either case, a contradiction is reached, 
which shows that the supposition is false and the 
given statement is true.

c. Proof by contradiction: Suppose not. That is, 
suppose Ï3 is rational. By definition of rational, 
Ï3 5

a
b for some integers a and b with b Þ 0. 

Without loss of generality, assume that a and b have 
no common factor. (If not, divide both a and b by 
their greatest common factor to obtain integers a9 
and b9 with the property that a9 and b9 have no com-
mon factor and Ï3 5

a9
b9 . Then redefine a 5 a9 and 

b 5 b.) Squaring both sides of Ï3 5
a
b gives Ï3 5

a2

b2,  and multiplying both sides by b2 gives

3b2 5 a2(*).

Thus a2 is divisible by 3, and so, by part (b), a is 
also divisible by 3. By definition of divisibility, then, 
a 5 3k for some integer k, and so

a2 5 9k2(**).

Substituting equation (**) into equation (*) gives 
3b2 5 9k2, and dividing both sides by 3 yields

b2 5 3k2.

Hence b2 is divisible by 3, and so, by part (b), b is 
also divisible by 3. Consequently, both a and b are 
divisible by 3, which contradicts the assumption that 
a and b have no common factor. Thus the supposi-
tion is false, and so Ï3 is irrational.

21.  Hint: The proof is a generalization of the one given in 
the solution for exercise 19(a).

22.  Hint: First prove that for all integers a, if 5 divides a 
squared then 5 divides a. The rest of the proof is similar 
to the solution for exercise 19(c).

23.  Hint: This statement is true. If a2 23 5 9b, then 
a2 5 9b13 5 3(3b11), and so a2 is divisible by 3. 
Hence, by exercise 19(b), a is divisible by 3. Thus 
a2 5 (3c)2 for some integer c.

24.  Proof by contradiction: Suppose not. That is, suppose 
Ï2 is rational. [We will show that this supposition leads 
to a contradiction.] By definition of rational, we may 
write Ï2 5 ayb for some integers a and b with b Þ 0. 
Then 2 5 a2yb2, and so a2 5 2b2. Consider the prime 
factorizations for a2 and for 2b2. By the unique fac-
torization of integers theorem, these factorizations are 
unique except for the order in which the factors are writ-
ten. Now because every prime factor of a occurs twice 
in the prime factorization of a2, the prime factorization 
of a2 contains an even number of 2’s. (If 2 is a factor of 
a, then this even number is positive, and if 2 is not a fac-
tor of a, then this even number is 0.) On the other hand, 
because every prime factor of b occurs twice in the 
prime factorization of b2, the prime factorization of 2b2 
contains an odd number of 2’s. Therefore, the equation 
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a2 5 2b2 cannot be true. So the supposition is false, and 
hence Ï2 is irrational.

26.  Hint: One solution uses only Theorem 4.8.1. Another 
uses the result of exercise 25 that Ï6 is irrational.

28.  Hint: Divide 2?3?5?711 by each of 2, 3, 5, and 7, using 
the quotient-remainder theorem.

29. Hint: You can deduce that p 5 3.

30. a.  Hint: For example, N4 5 2?3?5?711 5 211.

32.  Hint: By Theorem 4.2.4 (divisibility by a prime) there 
is a prime number p such that p u(n!21). Show that the 
supposition that p # n leads to a contradiction. It will 
then follow that n , p , n!.

33.  Hint: Every odd integer can be written as 
4k11 or as 4k13 for some integer k. (Why?) If 
p1 p2 Á pn 11 5 4k11, then 4 up1 p2 Á pn. Is this 
possible?

34. a.  Hint: Prove the contrapositive: If for some integer 
n . 2 that is not a power of 2, xn 1yn 5 zn has 
a positive integer solution, then for some prime 
number p . 2, x p 1y p 5 z p has a positive integer 
solution. Note that if n 5 kp, then xn 5 xk p 5 (x k) p.

35.  Existence proof: When n 5 2, then n2 21 5 3, which is 
prime. Hence there exists a prime number of the form 
n2 21, where n is an integer and n $ 2.

Uniqueness proof (by contradiction): Suppose to the 
contrary that m is another integer satisfying the given 
conditions. That is, m . 2 and m2 21 is prime. [We 
must derive a contradiction.] Factor m2 21 to obtain 
m2 21 5 (m21)(m11). But m . 2, and so m21 . 1 
and m11 . 1. Hence m2 21 is not prime, which is a 
contradiction. [This contradiction shows that the supposi-
tion is false, and so there is no other integer m . 2 such that 
n2 21 is prime.]

Uniqueness proof (direct): Suppose m is any integer 
such that m $ 2 and m2 21 is prime. [We must show that 
m 5 2.] By factoring, m2 21 5 (m21)(m11). Since 
m2 21 is prime, either m21 5 1 or m11 5 1. But 
m11 $ 211 5 3. Hence, by elimination, m21 5 1, 
and so m 5 2.

37.  Proof (by contradiction): Suppose not. That is, suppose 
there are two distinct real numbers a1 and a2 such that 
for all real numbers r,

(1) a1 1 r 5 r and (2) a2 1 r 5 r.

Then

a1 1a2 5 a2 by (1) with r 5 a2

and

a2 1a1 5 a1 by (2) with r 5 a1.

It follows that

a2 5 a1 1a2 5 a2 1a1 5 a1,

which implies that a2 5 a1. But this contradicts the sup-
position that a1 and a2 are distinct. [Thus the supposition 
is false and there is at most one real number a such that 
a1 r 5 r for all real numbers r.]

Proof (direct): Suppose a1 and a2 are real numbers such 
that for all real numbers r,

(1) a1 1 r 5 r and (2) a2 1 r 5 r.

Then 

a1 1a2 5 a2 by (1) with r 5 a2

and 

a2 1a1 5 a1 by (2) with r 5 a1.

It follows that

a2 5 a1 1a2 5 a2 1a1 5 a1.

Hence a2 5 a1. [Thus there is at most one real number a 
such that a1 r 5 r for all real numbers r.]

Section 4.9
1. vertex v1 v2 v3 v4 v5 v6

degree 3 2 4 2 1 0

Total degree 5 312141211 5 12

# of edges 5 6 5 S1

2D12 5 one{half of the total degree

3. The total degree of the graph is 012121319 5 16,
, so, by the handshake theorem (Theorem 4.9.1), the 
number of edges is 16y2 5 8.

5. One such graph is 

a

b

c

de

6. If there were a graph with four vertices of degree 1, 2, 
3, and 3, then its total degree would be 9, which is odd. 
But by Corollary 4.9.2, the total degree of the graph 
must be even. [This is a contradiction.] Hence there is no 
such graph. (Alternatively, if there were such a graph, 
it would have an odd number of vertices of odd degree. 
But by Proposition 4.9.3 this is impossible.)

9. Suppose there were a simple graph with four vertices 
of degrees 1, 2, 3, and 4. Then the vertex of degree 4 
would have to be connected by edges to four distinct 
vertices other than itself because of the assumption that 
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the graph is simple (and hence has no loops or parallel 
edges). This contradicts the assumption that the graph 
has four vertices in total. Hence there is no simple graph 
with four vertices of degrees 1, 2, 3, and 4.

12. �1 �2

�4 �3

14. a.  Define a graph G by letting each vertex represent a 
person at the party and drawing an edge between each 
pair of people who knew each other before the party. 
Let x be the number of people who knew three other 
people before the party. 

Then the total degree of the graph

5 2?115?21x?3 5 1213x

because 2 people knew 1 other person before the 
party, 5 people knew 2 other people before the party, 
and x people knew 3 other people before the party. 
In addition, since a total of 15 pairs of people knew 
each other before the party, the graph has 15 edges. 
By the handshake theorem (Theorem 4.9.1), the total 
degree is twice the number of edges. Hence the total 
degree of the graph 5 2?15 5 30.

It follows that 1213x 5 30. Thus

3x 5 30212 5 18, and so x 5
18
3 5 6.

In other words, 6 people at the party knew 3 other 
people before the party.

b. Now the total number of people at the party is the 
sum of the number who knew 1 other person before 
the party, plus the number who knew 2 other people 
before the party, plus the number who knew 3 other 
people before the party. Therefore, the number of 
people at the party 5 21516 5 13.

16. a.  Suppose that, in a group of 15 people, each person 
had exactly three friends. Then you could draw a 
graph representing each person by a vertex and con-
necting two vertices by an edge if the corresponding 
people were friends. But such a graph would have 15 
vertices, each of degree 3, for a total degree of 45. 
This would contradict the fact that the total degree 
of any graph is even. Hence the supposition must be 
false, and in a group of 15 people it is not possible 
for each to have exactly three friends.

19.  Hint: Let t be the total degree of the graph, let dmin be 
the minimum degree of any vertex in G, and let dmax be 
the maximum degree of any vertex in G.

21. a.  Yes. Let G be a simple graph with n vertices and let 
v be a vertex of G. Since G has no parallel edges, v 
can be joined by at most a single edge to each of the 
n21 other vertices of G, and since G has no loops, 
v cannot be joined to itself. Therefore, the maximum 
degree of v is n21.

b. No. Suppose there is a simple graph with four 
vertices, all of which have different degrees. By part 
(a), no vertex can have degree greater than three, 
and of course, no vertex can have degree less than 0. 
Therefore, the only possible degrees of the vertices 
are 0, 1, 2, and 3. Since all four vertices have differ-
ent degrees, there is one vertex with each degree. But 
then the vertex of degree 3 is connected to all the 
other vertices, which contradicts the fact that one of 
the vertices has degree 0. Hence the supposition is 
false, and there is no simple graph with four vertices 
each of which has a different degree. 

22. Hint: Use the result of exercise 21, part (c).

23. a. K4,2:

�1

�2

�3

�5

�6

�4

23. d.  If n Þ m, the vertices of Km,n are divided into 
two groups: one of size m and the other of size 
n. Every vertex in the group of size m has degree 
n because each is connected to every vertex in 
the group of size n. So Km,n has m vertices of 
degree n. Similarly, every vertex in the group of 
size n has degree m because each is connected to 
every vertex in the group of size m. So Km,n has 
n vertices of degree m. Note that if n 5 m, then 
all n1m 5 2n vertices have the same degree, 
namely, n.

24. a. This graph is bipartite

�1

�3

�2

�4

b. Suppose this graph is a bipartite. Then the vertex 
set can be partitioned into two mutually disjoint 
subsets such that vertices in each subset are 
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connected by edges only to vertices in the other 
subset and not to vertices in the same subset. 
Now v1 is in one subset of the partition, say, V1. 
Since v1 is connected by edges to v2 and v3 both 
v2 and v3 must be in the other subset, V2. But v2 
and v3 are connected by an edge to each other. 
This contradicts the fact that no vertices in V2 are 
connected by edges to other vertices in V2. Hence 
the supposition is false, and so the graph is not 
bipartite. 

Section 4.10
1. z 5 0

3. a. z 5 18

4. Trace table:

i 0 1 2 3

a 2 7 22 67

After execution: a 5 67

6. Iteration Number

0 1 2 3

a 26

d 7

q 0 1 2 3

r 26 19 12 5

8. a. 

A 69 19 9

q 2

d 1

n 1

p 4

9. gcd(27, 72) 5 9

10. gcd(5, 9) 5 1

13.  Divide the larger number, 1,188, by the smaller, 385, to 
obtain a quotient of 3 and a remainder of 33. Next divide 
385 by 33 to obtain a quotient of 11 and a remainder of 
22. Then divide 33 by 22 to obtain a quotient of 1 and a 
remainder of 11. Finally, divide 22 by 11 to obtain a  
quotient of 2 and a remainder of 0. Thus, by Lemma 
4.10.2, gcd(1188, 385) 5 gcd(385, 33) 5 gcd(33, 22) 5  
gcd(22, 11) 5 gcd(11, 0), and by Lemma 4.10.1,  
gcd(11, 0) 5 11. So gcd(1188, 385) 5 11.

14.  Divide the larger number, 1,177, by the smaller, 509, to 
obtain a quotient of 2 and a remainder of 159. Next di-
vide 509 by 159 to obtain a quotient of 3 and a remainder 
of 32. Next divide 159 by 32 to obtain a quotient of 4 
and a remainder of 31. Then divide 32 by 31 to obtain a 
quotient of 1 and a remainder of 1. Finally, divide 31 by 1 
to obtain a quotient of 31 and a remainder of 0. Thus, by 
Lemma 4.10.2, gcd(1177, 509) 5 gcd(509, 159) 5  
gcd(159, 32) 5 gcd(32, 31) 5 gcd(31, 1) 5 gcd(1, 0), and 
by Lemma 4.10.1, gcd(1, 0) 5 1. So gcd(1177, 509) 5 1.

17. 

A 1,001

B  871

r 130  91 39 13  0

b  871 130  91 39 13  0

a 1,001 871 130 91 39 13

gcd 13

20. 

A 4,617

B 2,563

 a 4,617 2,563 2,054 509 18 5 3 2 1

b 2,563 2,054 509 18  5 3 2 1 0

r 2,563 2,054 509 18  5 3 2 1 0

gcd 1

The table shows that the greatest common divisor of 4,617 and 2,563 is 1, and so these integers are relatively prime.
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22.  Hint: Divide the proof into two parts. In part 1 suppose 
a and b are any positive integers such that a ub, and 
derive the conclusion that gcd(a, b) 5 a. To do this, note 
that because it is also the case that a ua, a is a common 
divisor of a and b. Thus, by definition of greatest com-
mon divisor, a is less than or equal to the greatest com-
mon divisor of a and b. In symbols, a # gcd(a, b). Then 
show that a $ gcd(a, b) by using Theorem 4.4.1. In 
part 2 of the proof, suppose a and b are positive integers 
such that gcd(a, b) 5 a and deduce that a ub.

25. a.  Hint 1: If a 5 dq2 r, then 2a 5 2dq1 r 5
2dq2d1d2 r 5 d(2q21)1 (d2 r).

Hint 2: If 0 # r , d, then 0 $ 2r . 2d. Add d to 
all parts of this inequality and see what results.

26. a.  Proof: Suppose a, d, q, and r are integers such that 
a 5 dq1 r and 0 # r , d. [We must show that  

q 5 :  ad  ; and r 5 a2d :  ad  ;.] Solving a 5 dq1 r for 
r gives r 5 a2dq, and substituting into 0 # r , d 
gives 0 # a2dq , d. Add dq to both sides to obtain 
dq # a , d1dq 5 d(q11). Then divide through by 
d to obtain q #

a
d , q11. Therefore, by definition of 

floor, :  ad  ;5 q. Finally, substitution into a 5 dq1 r 
gives a 5 d :  ad  ;1 r, and subtracting d :  ad  ; from both 
sides yields r 5 a2d :  ad  ; [as was to be shown].

27. b. 

Iteration Number

0 1 2 3 4

a 630 294 294 252 210

b 336 336  42  42  42

gcd

Iteration Number

5 6 7 8 9

a 168 126 84 42  0

b  42  42 42 42 42

gcd 42

28. a. lcm(12, 18) 5 36

29.  Proof: Part 1: Let a and b be positive integers, and sup-
pose d 5 gcd(a, b) 5 lcm(a, b). By definition of greatest 
common divisor and least common multiple, d . 0, 
d ua, d ub, a ud, and b ud. Thus, in particular, a 5 dm 
and d 5 an for some integers m and n. By substitution, 
a 5 dm 5 (an)m 5 anm. Dividing both sides by a gives 
1 5 nm. But the only divisors of 1 are l and 21  
(Theorem 4.4.2), and so m 5 n 5 61. Since both a and 
d are positive, m 5 n 5 1, and hence a 5 d. Similar 
reasoning shows that b 5 d also, and so a 5 b.

Part 2: Given any positive integers a and b such that  
a 5 b, we have gcd(a, b) 5 gcd(a, a) 5 a and lcm(a, b) 5  
lcm(a, a) 5 a, and hence gcd(a, b) 5 lcm(a, b).

32.  Hint: Divide the proof into two parts. In part 1, suppose 
a and b are any positive integers, and deduce that 

gcd(a, b)?lcm(a, b) # ab.

Derive this result by showing that lcm(a, b) #
ab

gcd(a, b). 
To do this, show that ab

gcd (a, b) is a multiple of both a and 
b. For instance, to see that ab

gcd(a, b) is a multiple of b, note 
that because gcd(a, b) divides a, a 5 gcd(a, b)?k for 
some integer k, and thus ab 5 gcd(a, b)?kb. Divide both 
sides by gcd(a, b) to obtain ab

gcd(a, b) 5 kb. But since k is 
an integer, this equation implies that ab

gcd(a, b) is a mul-
tiple of b. The argument that ab

gcd(a, b) is a multiple of a 
is almost identical. In part 2 of the proof, use the defini-
tion of least common multiple to show that ab

lcm(a, b) ua and 
ab

lcm(a, b) ub. Conclude that ab
lcm(a, b) # gcd(a, b) and hence 

that ab # gcd(a, b)?lcm(a, b).

Section 5.1

1. 
1

11
, 

2

12
, 

3

13
, 

4

14
 3. 1, 2

1

3
, 

1

9
, 2

1

27
 5. 0, 0, 2, 2

8. g1 5 :log2 1; 5 0

 g2 5 :log2 2; 5 1, g3 5 :log2 3; 5 1

 g4 5 :log2 4; 5 2, g5 5 :log2 5; 5 2

 g6 5 :log2 6; 5 2, g7 5 :log2 7; 5 2

 g8 5 :log2 8; 5 3, g9 5 :log2 9; 5 3

 g10 5 :log2 10; 5 3, g11 5 :log2 11; 5 3

 g12 5 :log2 12; 5 3, g13 5 :log2 13; 5 3

 g14 5 :log2 14; 5 3, g15 5 :log2 15; 5 3

When n is an integral power of 2, gn is the exponent of that 
power. For instance, 8 5 23 and g8 5 3. More generally, 
if n 5 2k, where k is an integer, then gn 5 k. All terms of 
the sequence from g2k up to, but not including, g2k11 have 
the same value, namely k. For instance, all terms of the 
sequence from g8 through g15 have the value 3. 

exercises 10–16 have more than one correct answer.

10. an 5 s21dn, where n is an integer and n $ 1

11. an 5 sn21ds21dn, where n is an integer and n $ 1

12. an 5
n

(n11)2, where n is an integer and n $ 1

14. an 5
n2

3n, where n is an integer and n $ 1

94193_AppB_ptg01.indd   37 12/11/18   6:38 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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18. a. 2131 (−2)11101 (−1)1 (−2) 5 1

b. a0 5 2

c. a2 1a4 1a6 5 22101 s22) 5 24

d. 2 # 3 # (22) # 1 # 0 # (21) # (22) 5 0

19. 213141516 5 20 20. 22 # 32 # 42 5 576

23. 1s111d 5 2

27. 11

1
2

1

22111

2
2

1

32111

3
2

1

42111

4
2

1

52
111

5
2

1

621
1

6
2

1

7
5 12

1

7
5

6

7

29. s−2d1 1 s−2d2 1 s−2d3 1 Á 1 s−2dn

5 22122 223 1 Á 1 s21dn 2n

31. o
n11

k50

1

k!
5

1

0!
1

1

1!
1

1

2!
1 Á 1

1

(n11)!

33. 
1

12 5 1

35. 1 1

11121 2

21121 3

3112 5 11

2212

3213

42 5
1

4

37. o
k

i51

i3 1 (k11)3 5 o
k11

i51

i3

39. Hint: n12 5 sn11d11.

40. o
k11

i51

i(i!) 5 o
k

i51

i(i!)1 (k11)(k11)!

exercises 43–52 have more than one correct answer.

43. o
7

k51

(21)k11k2 or o
6

k50

(21)k(k11)2

46. o
6

j52

(21) 
j j

( j11)( j12)
or o

7

k53

(21)k11(k21)

k(k11)

47. o
5

i50

(21)iri 49. o
n

k51

k3

51. o
n21

i50

(n2 i)

53.  When k 5 0, then i 5 1. When k 5 5, then i 5 6. Since 
i 5 k11, then k 5 i21. Thus,

k(k21) 5 (i21)((i21)21) 5 (i21)(i22),

and so

o
5

k50

k(k21) 5 o
6

i51

(i21)(i22)

55.  When i 5 1, then j 5 0. When i 5 n11, then j 5 n. 
Since j 5 i21, then i 5 j11. Thus,

(i21)2

i?n
5

((j11)21)2

(j11)?n
5

j2

jn1n
.

(Note that n has the same value in each term of the sum.)

So o
n11

i51

 
(i21)2

i?n
5 o

n

j50 

 
j2

jn1n
.

56.  When i 5 3, then j 5 2. When i 5 n, then j 5 n21. 
Since j 5 i21, then i 5 j11. Thus,

o
n

i53

i

i1n21
5 o

n21

j52

j11

(  j11)1n21

5 o
n21

j52

 

j11

j1n
.

59. o
n

k51

f3(2k23)1 (425k)g

5 o
n

k51

fs6k29d1 s425kdg 5 o
n

k51

sk25d

62. 
4?3?2?1

3?2?1
5 4

65. 
n(n21)(n22) Á 3?2?1

(n21)(n22) Á 3?2?1
5 n

66. 
(n21)(n22) Á 3?2?1

(n11)n(n21)(n22) Á 3?2?1
5

1

n(n11)

68. 
f(n11)n(n21)(n22) Á 3?2?1g2

fn(n21)(n22) Á 3?2?1g2 5 (n11)2

69. 
n(n21)(n22) Á (n2k11)(n2k)(n2k21) Á 2?1

(n2k)(n2k21) Á 2?1

5 n(n21)(n22) Á (n2k11)

71. 15

32 5
5!

(3!)(523)!
5

5?4?3?2?1

(3?2?1)(2?1)
5 10

73. 13

02 5
3!

(0!)(320)!
5

3!

(1)(3!)
5 1

75. 1 n

n212 5
n!

(n21)!(n2 (n21))!
5

n(n21)!

(n21)!(n2n11)!

5
n

1
5 n

77. a.  Proof: Let n be an integer such that n $ 2. By defi-
nition of factorial,

n! 5 5
2?1

3?2?1

n?(n21) # Á 2?1

 if n 5 2

 if n 5 3

 if n . 3.
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 In each case, n! has a factor of 2, and so n! 5 2k for 
some integer k. Then

 n!12 5 2k12 by substitution

5 2(k11) by factoring out the 2.

 Since k11 is an integer, n!12 is divisible by 2 [as 
was to be shown].

c. Hint: Consider the sequence m!12, m!13,  
m!14, . . ., m!1m.

78.  Proof: Suppose n and r are nonnegative integers with 
r11 # n. The right-hand side of the equation to be 
shown is

n2 r

r11
?1n

r2 5
n2 r

r11
?

n!

r!(n2 r)!

5
n2 r

r11
?

n!

r!(n2 r)?(n2 r21)!

5
n!

(r11)!?(n2 r21)!

5
n!

(r11)!?(n2 (r11))!

5 1 n

r112,

  which is the left-hand side of the equation to be shown.

80. a. m21, sum1a[i11]

81. 

  

0 remainder r 6 1
2 1 remainder r 5 0

2 2 remainder r 4 1
2 5 remainder r 3 1

2 11 remainder r 2 0
2 22 remainder r 1 1

2 45 remainder r 0 0
2 90

Hence 9010 10110102.5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

84. 

a 23

i 0 1 2 3 4 5

q 23 11 5 2 1 0

r[0] 1

r[1] 1

r[2] 1

r[3] 0

r[4] 1

88. 

 

0 remainder 1 r 2 116

16 1 remainder 1 r 1 116

16 17 remainder 15 r 0 F16

16 287

Hence 28710 11F16.

5

5

5

5

5

5

5

Section 5.2
1. a.  The statement in part (a) is true because if 

_12 1
2+_12 1

3+ 5 1
3 then

112
1

22112
1

32112
1

42
5

1

3112
1

42 5
1

3
# 3

4
5

1

4
.

2. a. P(1) is the equation 1 5 12, which is true.
b. P(k) is the equation 113151 Á 1 s2k21d 5 k2.
c. Psk11d is the equation 113151 Á 1

s2(k11d21d 5 sk11d2

d. In the inductive step, show that if k is any  
integer for which 113151 Á 1 s2k21d 5 k2 is 
true, then 113151 Á 1 (2(k11)21d 5 sk11d2 
is also true.

3. a.  P(1) is “12 5
1?(1 1 1)?(2?1 1 1)

6 .” P(1) is true because 

the left-hand side equals 12 5 1 and the right-hand 

side equals 
1?(1 1 1)?(2 1 1)

6 5
2?3

6 5 1 also.

5. a. 12

b. k2

c. 113151 Á 1 [(2(k11d21]
d. (k11d2

e. the odd integer just before 2k11 is 2k21
f. inductive hypothesis

6. Proof: For the given statement, the property P(n) is the 
equation

214161 Á 1  2n 5 n2 1n. d P(n)

 Show that P(1) is true:
 To prove P(1), we must show that when 1 is substituted 

into the equation in place of n, the left-hand side equals 
the right-hand side. But when 1 is substituted for n, the 
left-hand side is the sum of all the even integers from 2 
to 2 # 1, which is just 2, and the right-hand side is 12 11, 
which also equals 2. Thus P(1) is true.

94193_AppB_ptg01.indd   39 12/11/18   6:38 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.2 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-40

   Show that for every integer k $ 1, if P(k) is true then 
P(k11) is true:

   Let k be any integer with k $ 1, and suppose P(k) is 
true. That is, suppose

214161 Á 12k 5 k2 1k. 

   We must show that P(k11) is true. That is, we must 
show that

214161 Á 12(k11d 5 (k11)2 1 (k11).

   Because (k11)2 1 (k11) 5 k2 12k111k11 5

k2 13k12, this is equivalent to showing that

214161 Á 12(k11) 5 k2 13k12. d P(k 1 1)

Now the left-hand side of P(k11) is

214161 Á 12(k11)

5 214161 Á 12k12(k11)

 by making the next-to-last  
term explicit 

5 (k2 1k)12(k11)

 by substitution from the  
inductive hypothesis

5 k2 13k12 by algebra,

and this is the right-hand side of P(k11). Hence 
P(k11) is true.

[Since both the basis step and the inductive step have been 
proved, P(n) is true for every integer n $ 1.]

8.  Proof: For the given statement, the property P(n) is the 
equation

112122 1 Á 12n 5 2n11 21. d P(n)

Show that P(0) is true:

The left-hand side of P(0) is 1, and the right-hand side is 
2011 21 5 221 5 1 also. Thus P(0) is true.

Show that for every integer k $ 0, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 0, and suppose P(k) is 
true. That is, suppose

112122 1 Á 12k 5  2k11 21.

We must show that P(k11) is true. That is, we must 
show that

112122 1 Á 12k11 5 2(k11)11 21,

d P(k)  
inductive hypothesis

d P(k)  
inductive hypothesis

or, equivalently,

112122 1 Á 12k11 5 2k12 21. d P(k11)

Now the left-hand side of P(k11) is

112122 1 Á 12k11

5 112122 1 Á 12k 12k11

by making the next-to-last  
term explicit

5 (2k11 21)12k11  by substitution from the 
inductive hypothesis

5 2?2k11 21  by combining like terms

5 2k12 21 by the laws of exponents,

and this is the right-hand side of P(k11). Hence the 
property is true for n 5 k11.

[Since both the basis step and the inductive step have been 
proved, P(n) is true for every integer n $ 0.]

10.  Proof: For the given statement, the property is the 
equation

12 122 132 1 Á 1n2

5
n(n11)(2n11)

6
. d P(n)

Show that P(1) is true:

The left-hand side of P(1) is 12 5 1, and the right-hand 

side is 
1(1 1 1)(2?1 1 1)

6 5
2?3

6 5 1 also. Thus P(1)  
is true.

Show that for every integer k $ 1, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 1, and suppose P(k) is 
true. That is, suppose

12 122 132 1 Á 1k2

5
k(k11)(2k11)

6
.

We must show that P(k11) is true. That is, we must 
show that

12 122 132 1 Á 1 (k11)2

5
(k11)((k11)11)(2(k11)11)

6
,

or, equivalently,

12 122 132 1 Á 1 (k11)2

5
(k11)(k12)(2k13)

6
.

d P(k)  
inductive hypothesis

d P(k11)
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Now the left-hand side of P(k11) is

12 122 132 1 Á 1 (k11)2

5 12 122 132 1 Á 1k2 1 (k11)2

5
k(k11)(2k11)

6
1 (k11)2

5
k(k11)(2k11)

6
1

6(k11)2

6

5
k(k11)(2k11)16(k11)2

6

5
k(k11)fk(2k11)16(k11)g

6

5
(k11)(2k2 17k16)

6

5
(k11)(k12)(2k13)

6

and this is the right-hand side of P(k11). Hence the 
property is true for n 5 k11.

[Since both the basis step and the inductive step have been 
proved, P(n) is true for every integer n $ 1.]

13.  Proof: For the given statement, the property P(n) is the 
equation

o
n21

i51

i(i11) 5
n(n21)(n11)

3
. d P(n)

Show that P(2) is true:

The left-hand side of P(2) is o1
i51 

i(i11) 5 1?(111) 5 2, 

and the right-hand side is 
2(2 2 1)(2 1 1)

3 5
6
3 5 2 also. Thus 

P(2) is true.

Show that for every integer k $ 2, if P(k) is true then 
P (k11) is true:

Let k be any integer with k $ 2, and suppose P(k) is 
true. That is, suppose

o
k21

i51

i(i11) 5
k(k21)(k11)

3

We must show that P(k11) is true. That is, we must 
show that

o
(k11)21

i51

i(i11) 5
(k11)((k11)21)((k11)11)

3
,

by making the next-
to-last term explicit by 
substitution from the 
inductive hypothesis

because 66 5 1

by adding fractions

by factoring out (k11)

by multiplying out and 
combining like terms

because (k12)

(2k13) 5 2k2 17k16,

d P(k)  
inductive hypothesis

or, equivalently,

o
k

i51

i(i11) 5
(k11)k(k12)

3
.  d P(k11)

Now the left-hand side of P(k11) is

o
k

i51

i(i11)

5 o
k21

i51

i(i11)1k(k11)

5
k(k21)(k11)

3
1k(k11)

5
k(k21)(k11)

3
1

3k(k11)

3

5
k(k21)(k11)13k(k11)

3

5
k(k11)f(k21)13g

3

5
k(k11)(k12)

3

and this is the right-hand side of P(k11). Hence 
P(k11) is true.

[Since both the basis step and the inductive step have been 
proved, P(n) is true for every integer n $ 2.]

15.  Hint: To prove the basis step, show that  
o1

i51 
i(i!) 5 (111)!21. To prove the inductive  

step, suppose that k is any integer such  
that k $ 1 and ok

i51 
i(i!) 5 (k11)!21, and 

show that ok11
i51  

i(i!) 5 (k12)!21. Note that 
[(k11)!21]1 (k11)[(k11)!] 5

(k11)![11 (k11)]21.

20.  4181121161 Á 1200 5 4(112131

 Á 150) 5 4_50?51
2 + 5 5,100

22. a.  31415161 Á 11000
5 s11213141 Á 11000)2 (112)

5 11000?1001

2 223 5 500,497

b. 31415161 Á 1m
5 (11213141 Á 1m)2 (112)

5 
m(m11)

2
23 5

m2 1m

2
2

6

2

5 
m2 1m26

2

by writing the last term 
separately

by substitution from the 
inductive hypothesis

because 33 5 1

by adding the fractions

by factoring out k(k11)

by algebra,
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24. 
(k21)((k21)11)

2
5

k(k21)

2

25. a. 
226 21

221
5 226 21 5 67,108,863

b. 2122 123 1 Á 1226

5 2(112122 1 Á 1225)

5 2?(67108863)

5 134,217,726
c. Solution 1:

 2122 123 1 Á 12n

 5 2(112122 123 1 Á 12n21)

 5 212(n21)11 21

221 2 5 12n 21

221 222 5 2n11 22

 Solution 2:

 2122 123 1 Á 12n 5 (112122 123 1

 Á 12n)21

 5 
2n11 21

221
21 5 2n11 22

28. 
11

22
n11

21

1

2
21

5

1

2n11 21

2
1

2

5 1 1

2n11 212(22)

52
2

2n11 12 5 22
1

2n

30.  General formula: For every integer n $ 1,

1

1?3
1

1

3?5
1 Á 1

1

(2n21)(2n11)
 5

n

2n11
 

Proof (by mathematical induction): Let the property 
P(n) be the equation

1

1?3
1

1

3?5
1 Á 1

1

(2n21)(2n11)
5

n

2n11
.

Show that P(1) is true:

The left-hand side of P(1) equals 1
1?3, and the right-hand 

side equals 1
2?1 1 1. But both of these equal 13, so P(1) is 

true.

Show that for each integer k $ 1, if P(k) is true then 
P (k11) is true:

Suppose that k is any integer with k $ 1, and

1

1?3
1

1

3?5
1 Á 1

1

(2k21)(2k11)
5

k

2k11
.

We must show that
1

1?3
1

1

3?5
1 Á 1

1

(2(k11)21)(2(k11)11)

5
k11

2(k11)11
.

by part (a)

d P(k) inductive 
hypothesis

or, equivalently,

1

1?3
1

1

3?5
1 Á 1

1

(2k11)(2k13)
5

k11

2k13
.

Now the left-hand side of P(k11) is

1

1?3
1

1

3?5
1 Á 1

1

(2k11)(2k13)

 5
1

1?3
1

1

3?5
1 Á 1

1

(2k21)(2k11)

 1
1

(2k11)(2k13)

5
k

2k11
1

1

(2k11)(2k13)

5 
k(2k13)

(2k11)(2k13)
1

1

(2k11)(2k13)

5 
2k2 13k11

(2k11)(2k13)

5 
(2k11)(k11)

(2k11)(2k13)

5 
k11

(2k13)

and this is the right-hand side of P(k11) [as was to be 
shown].

32. Hint 1: The general formula is

124192161 Á 1 (21)n−1n2

5 (21)n−1(112131 Á 1n)

Or: o
n

i51

(21)i21i2 5 (21)n211o
n

i51

i2
Hint 2: In the proof, use the fact that

112131 Á 1n 5 o
n

i51

i 5
n(n11)

2
.

33. Hint:

c1 (c1d)1 (c12d)1 Á 1 (c1nd)

5 (n11)c1d?
n(n11)

2
.

36.  In the inductive step, both the inductive hypothesis and 
what is to be shown are wrong. The inductive hypoth-
esis should be

Suppose that for some integer k $ 1,

12 122 1 Á 1k2 5
k(k11)(2k11)

6
.

d P(k11)

by inductive 
hypothesis

by algebra,

in expanded form

in summation 
notation.
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And what is to be shown should be

12 122 1 Á 1 (k11)2

5 
(k11)((k11)11)(2(k11)11)

6
.

37. Hint: See the Caution note in Section 5.1, page 262.

38.  Hint: See the subsection Proving an Equality on 
page 284 in Section 5.2.

40.  Hint: Form the sum n2 1 (n11)2 1 (n12)2 1 Á 1

(n1 (p21))2, and show that it equals

pn2 12n(112131 Á 1 (p21))

1 (114191161 Á 1 (p21)2).

Section 5.3
1. Proof: Let the property P(n) be the sentence “n cents 

can be obtained by using 3-cent and 8-cent coins.”

We will show that P(n) is true for every integer n $ 14.

Show that P(14) is true:

Fourteen cents can be obtained by using two 3-cent 
coins and one 8-cent coin.

Show that for every integer k $ 14, if P(k) is true then 
P(k11) is also true:

Suppose k is any integer with k $ 14 such that k cents can 
be obtained using 3-cent and 8-cent coins. [Inductive  
hypothesis] We must show that k11 cents can be 
obtained using 3-cent and 8-cent coins. If the k cents in-
cludes an 8-cent coin, replace it by three 3-cent coins to 
obtain a total of k11 cents. Otherwise the k cents con-
sists of 3-cent coins exclusively, and so there must be 
least five 3-cent coins (since the total amount is at least 
14 cents). In this case, replace five of the 3-cent coins by 
two 8-cent coin to obtain a total of k11 cents. Thus, in 
either case, k11 cents can be obtained using 3-cent and 
8-cent coins. [This is what we needed to show.]

[Since we have proved the basis step and the inductive 
step, we conclude that the given statement is true for every 
integer n $ 14.]

4. a.  P(0) is “50 21 is divisible by 4.” P(0) is true be-
cause 50 21 5 0, which is divisible by 4.

b. P (k) is “5k 21 is divisible by 4.”
c. P (k11) is “5k11 21 is divisible by 4.”
d. Must show: If k is any integer such that k $ 0 and 

5k 21 is divisible by 4, then 5k11 21 is divisible by 4.

6. For each positive integer n, let P(n) be the sentence

Any checkerboard with dimensions 2 3 3n can be com-
pletely covered with L-shaped trominoes.

a. P(1) is the sentence “Any checkerboard with 
dimensions 2 3 3 can be completely covered with 
L-shaped trominoes.” The following diagram shows 
that P(1) is true:

b. P(k) is the sentence “Any checkerboard with 
dimensions 2 3 3k can be completely covered with 
L-shaped trominoes.”

c. P(k11) is the sentence “Any checkerboard with 
dimensions 2 3 3(k11) can be completely covered 
with L-shaped trominoes.”

d. The inductive step requires showing that for every 
integer k $ 1, if any checkerboard with dimensions 
2 3 3k can be completely covered with L-shaped 
trominoes, then any checkerboard with dimensions 
2 3 3(k11) can be completely covered with L-shaped 
trominoes.

8.  Proof (by mathematical induction): For the given state-
ment, the property is the sentence “5n 21 is divisible 
by 4.”

Show that P(0) is true:

P(0) is the sentence “50 21 is divisible by 4.” Now 
50 21 5 121 5 0, and 0 is divisible by 4 because 
0 5 4 # 0. Thus P(0) is true.

Show that for every integer k $ 0, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 0, and suppose P(k) is true. 
That is, suppose 5k 21 is divisible by 4. [This is the induc-
tive hypothesis.] We must show that P(k11) is true. That 
is, we must show that 5k11 21 is divisible by 4. Now

5k11 21 5 5k?521

55k?(411)21 5 5k?41 (5k 21).  (*)

By the inductive hypothesis, 5k 21 is divisible by 4, and 
so 5k 21 5 4r for some integer r. Substitute 4r in place 
of 5k 21 in equation (*), to obtain

5k11 21 5 5k?414r 5 4(5k 1 r).

But 5k 1 r is an integer because k and r are integers. 
Hence, by definition of divisibility, 5k11 21 is divisible 
by 4 [as was to be shown].

An alternative proof of the inductive step goes as follows:

Let k be any integer with k $ 0, and suppose that 5k 21 
is divisible by 4. Then 5k 21 5 4r for some integer r, 
and hence 5k 5 4r11.
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It follows that 5k11 5 5k # 5 5 (4r11) # 5 5 20r15. 
Subtracting 1 from both sides gives that 5k11 21 5
20r14 5 4(5r11). Now since 5r11 is an integer, by 
definition of divisibility, 5k11 21 is divisible by 4.

11.  Proof (by mathematical induction): For the given state-
ment, the property P(n) is the sentence “32n 21 is divis-
ible by 8.”

Show that P(0) is true:

P(0) is the sentence “32 # 0 21 is divisible by 8.” Observe 
that 32 # 0 21 5 121 5 0, and 0 is divisible by 8 because 
0 5 8 # 0. Thus P(0) is true.

Show that for every integer k $ 0, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 0, and suppose P(k) is 
true. That is, suppose 32k 21 is divisible by 8. [This is 
the inductive hypothesis.] We must show that P(k11) is 
true. That is, we must show that 32(k11) 21 is divisible 
by 8, or, equivalently, that 32k12 21 is divisible by 8. 
Now

32k12 21 5 32k?32 21 5 32k?921

5 32k?(811)21 5 32k?81 (32k 21). (*)

By the inductive hypothesis 32k 21 is divisible by 8, 
and so 32k 21 5 8r for some integer r. By substitution 
into equation (*),

32k12 21 5 32k?818r 5 8(32k 1 r).

Now 32k 1 r is an integer because k and r are integers, 
and hence, by definition of divisibility, 32k12 21 is 
divisible by 8 [as was to be shown].

13. Hint:

xk11 2yk11 5 xk11 2x?yk 1x?yk 2yk11

5 x?(xk 2yk)1yk?(x2y)

14. Hint 1:

(k11)3 2 (k11) 5 k3 13k2 13k112k21

5 (k3 2k)13k2 13k

5 (k3 2k)13k(k11)

Hint 2: k(k11) is a product of two consecutive integers.

By Theorem 4.5.2, one of these must be even.

16.  Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the inequality 2n , (n11)!.

Show that P(2) is true:

P(2) says that 22 , (211)!. The left-hand side is 22 5 4 
and the right-hand side is 3! 5 6. So, because 4 , 6, 
P(2) is true.

Show that for every integer k $ 2, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 2, and suppose P(k) is 
true. That is, suppose 2k , (k11)!. [This is the inductive 
hypothesis.] We must show that P(k11) is true. That is, 
we must show that 2k11 , ((k11)11), or, equivalently, 
that 2k11 , (k12)!. By the laws of exponents and the 
inductive hypothesis,

2k11 5 2?2k , 2(k11)!. (*)

Since k $ 2, then 2 , k12, and so

2(k11)! , (k12)(k11)! 5 (k12)!. (**)

Combining inequalities (*) and (**) gives

2k11 , (k12)!

[as was to be shown].

19.  Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the inequality n2 , 2n.

Show that P(5) is true:

P(5) says that 52 , 25. But 52 5 25 and 25 5 32, and 
25 , 32. Hence P(5) is true.

Show that for any integer k $ 5, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 5, and suppose P(k) is 
true. That is, suppose k2 , 2k. [This is the inductive 
hypothesis.] We must show that P(k11) is true. That is, 
we must show that (k11)2 , 2k11. Now

(k11)2 5 k2 12k11 , 2k 12k11

Also, by Proposition 5.3.2,

2k11 , 2k

Putting these inequalities together gives

(k11)2 , 2k 12k11 , 2k 12k 5 2k11

[as was to be shown].

24.  Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the equation an 5 3?7n−1.

Show that P(1) is true:

The left-hand side of P(1) is a1, which equals 3 by 
definition of the sequence. The right-hand side is 
3?71−1 5 3 also. Thus P(1) is true.

Show that for every integer k $ 1, if P(k) is true then 
P(k11) is true:

Let k be any integer with k $ 1, and suppose P(k) is 
true. That is, suppose ak 5 3?7k−1. [This is the inductive 
hypothesis.] We must show that P(k11) is true. That is, 

by inductive hypothesis.

Prop. 5.3.2 applies since k $ 5 $ 3.
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we must show that ak11 5 3?7(k11)21, or, equivalently, 
ak11 5 3?7k. But the left-hand side of P(k11) is 

ak11 5 7ak

5 7(3?7k21)

5 3?7k

and this is the right-hand side of P(k11) [as was to 
be shown].

25.  Proof (by mathematical induction): According to the 
definition of b0, b1, b2, …, we have that b0 5 5 and 
bk 5 41bk21 for every integer k $ 1. Let the property 
P(n) be the inequality

bn . 4n.

We will prove that P(n) is true for each integer n $ 0.

Show that P(0) is true: To show that P(0) is true we 
must show that b0 . 4?0. But 4?0 5 0, b0 5 5 (by defi-
nition of b0, b1, b2, …), and 5 . 0. So P(0) is true.

Show that for every integer k $ 0, if P(k) is true then 
P(k11) is true: Let k be any integer with k $ 0, and 
suppose that

bk . 4k.

We must show that

bk11 . 4(k11).

Now

bk11 5 41bk

. 414k

. 4(11k)

. 4(k11)

[as was to be shown].

29. Proof (by mathematical induction):

A set L consists of strings obtained by juxtaposing one 
or more of abb, bab, and bba. Let the property P(n) 
be the sentence “If a string s in L has length 3n, then s 
contains an even number of b’s.”

Show that P(1) is true: P(1) is the statement that a 
string s in L of length 3 contains an even number of b’s. 
The only strings in L that have length 3 are abb, bab, 
and bba, and each of these strings has an even number 
of b’s. So P(1) is true.

Show that for every integer k $ 1, if P(k) is true then 
P(k11) is true: Let k be any integer with k $ 1 and 
suppose that

  if a string s in L has length 3k, then s contains an 
even number of b’s.  d P(k) inductive hypothesis

by definition of the sequence a1, a2, a3, …

by inductive hypothesis

by the laws of exponents,

d inductive hypothesis

by definition of b0, b1, b2, …
because bk . 4k by inductive 
hypothesis
by factoring out a 4

by the commutative law of 
addition

We must show that

  if a string s in L has length 3(k11), then s contains 
an even number of b’s.  d P(k11)

So, suppose s is a string in L that has length 3(k11). 
Now 3(k11) 5 3k13 and the strings in L are obtained 
by juxtaposing strings already in L with one of abb, 
bab, or bba. Thus, either the initial or the final three 
characters in s are abb, bab, or bba. Moreover, the other 
3k characters in s are also in L by definition of L, and 
so, by inductive hypothesis, the other 3k characters in s 
contain an even number, say m, of b’s. Because each of 
abb, bab, and bba contains 2 b’s, the total number of b’s 
in s is m12, which is a sum of even integers and hence 
is even [as was to be shown].

32.  Hint: Consider the problem of trying to cover a 3 3 3 
checkerboard with trominoes. Place a checkmark in 
certain squares as shown in the following figure.

Observe that no two squares containing checkmarks 
can be covered by the same tromino. Since there are 
four checkmarks, four trominoes would be needed to 
cover these squares. But, since each tromino cov-
ers three squares, four trominoes would cover twelve 
squares, not the nine squares in this checkerboard. It 
follows that such a covering is impossible.

34. a.  Hint: For the inductive step, note that a 2 3 3(k11) 
checkerboard can be split into a 2 3 3k checker-
board and a 2 3 3 checkerboard.

35. b.  Hint: Consider a 3 3 5 checkerboard, and refer to 
the hint for exercise 32. Figure out a way to place 
six checkmarks in squares so that no two of the 
squares that contain checkmarks can be covered by 
the same tromino.

37.  Hint: Use proof by contradiction. If the statement  
is false, then there exists some ordering of the 
integers from 1 to 30, say, x1, x2, . . ., x30, such 
that x1 1x2 1x3 , 45, x2 1x3 1x4 , 45, …, and 
x30 1x1 1x2 , 45. Evaluate the sum of all these inequali-
ties using the fact that o30

i51  xi 5 o30
i51 i and Theorem 5.2.1.

38.  Hint: Given k11 a’s and k11 b’s arrayed around the 
outside of the circle, there has to be at least one loca-
tion where an a is followed by a b as one travels in the 
clockwise direction. In the inductive step, temporarily 
remove such an a and the b that follows it, and apply the 
inductive hypothesis.
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40. b.  Hint: In the inductive step, imagine dividing a 
2(k11) 3 2(k11) checkerboard into two sections: 
a center checkerboard of dimensions 2k 3 2k and 
an outer perimeter of single, adjacent squares. Then 
examine three cases: case 1 is where both removed 
squares are in the central 2k 3 2k checkerboard, 
case 2 is where one removed square is in the central 
2k 3 2k checkerboard and the other is on the perim-
eter, and case 3 is where both removed squares are 
on the perimeter.

41.  Hint: Let P(n) be the sentence: If (1) 2n11 people are 
all positioned so that the distance between any two 
people is different from the distance between any two 
other people, and if (2) each person sends a message to 
their nearest neighbor, then there is at least one person 
who does not receive a message from anyone. Use 
mathematical induction to prove that P(n) is true for 
each integer n $ 1.

43. a. Hint:

WW

Hint:

WB
BB

B
B

Start End
W W BW

02 10
11 01
20 10

B

Two Balls Summary

b. Hint: In all three cases when the urn initially 
contains an odd number of white balls, there is one 
white ball in the urn at the end of the game, and 
when the urn initially contains an even number of 
white balls, there is one black ball (i.e., zero white 
balls) in the urn at the end of the game.

44.  Hint: Given a graph G satisfying the given condition, 
form a new graph G9 by deleting one vertex v of G 
and all the edges that are incident on v. Then apply the 
inductive hypothesis to G9.

45.  The inductive step fails for going from n 5 1 to n 5 2, 
because when k 5 1,

A 5 {a1, a2}    and    B 5 {a1}

and no set C can be defined to have the properties 
claimed for the C in the proof. The reason is that 
C 5 {a1} 5 B, and so an element of A, namely a2, is 
not in either B or C.

Since the inductive step fails for going from n 5 1 to 
n 5 2, the truth of the following statement is never 
proved: “All the numbers in a set of two numbers are 
equal to each other.” This breaks the sequence of induc-
tive steps, and so none of the statements for n . 2 is 
proved true either.

Here is an explanation for what happens in terms of the 
domino analogy. The first domino is tipped backward 
(the basis step is proved). Also, if any domino from the 
second onward tips backward (the inductive step works 
or n $ 2). In this case, however, when the first domino 
is tipped backward, it does not tip the second domino 
backward. So only the first domino falls down; the rest 
remain standing.

46. Hint: Is the basis step true?

Section 5.4
1. Proof (by strong mathematical induction): Let the prop-

erty P(n) be the sentence “an is odd.”

Show that P(1) and P(2) are true:

Observe that a1 5 1 and a2 5 3 and both 1 and 3 
are odd.

Thus P(1) and P(2) are true.

Show that for every integer k $ 2, if P(i) is true for 
each integer i with 1 # i # k, then P(k11) is true:

Let k be any integer with k $ 2, and suppose ai is odd 
for each integer i with 1 # i # k. [This is the inductive 
hypothesis.] We must show that ak11 is odd. We know 
that ak11 5 ak−1 12ak by definition of a1, a2, a3, …. 
Moreover, k21 is less than k11 and is greater than or 
equal to 1 (because k $ 2). Thus, by inductive hypoth-
esis, ak−1 is odd. Also, every term of the sequence is an 
integer (being a sum of products of integers), and so 2ak 
is even by definition of even. It follows that ak11 is the 
sum of an odd integer and an even integer and hence is 
odd by Theorem 4.1.2 (exercise 30, Section 4.1). [This is 
what was to be shown.]

4. Proof (by strong mathematical induction): Let the prop-
erty P(n) be the inequality dn # 1.

Show that P(1) and P(2) are true:

Observe that d1 5
9

10 and d2 5
10
11 and both 

9
10 # 1 

and 
10
11 # 1. Thus P(1) and P(2) are true.

Show that for every integer k $ 2, if P(i) is true for 
each integer i with 1 # i # k, then P(k11) is true:

Let k be any integer with k $ 2, and suppose di # 1 
for each integer i with 1 # i # k. [This is the induc-
tive hypothesis.] We must show that dk11 # 1. Now, by 
definition of d1, d2, d3, . . ., dk11 5 dk?dk−1. Moreover 
dk # 1 and dk−1 # 1 by inductive hypothesis because 
both k21 and k are less than or equal to k. Consequent-
ly, dk11 5 dk?dk−1 # 1 because if two positive numbers 
are each less than or equal to 1, then their product is 
less than or equal to 1. [To see why this is so, note that 
if 0 , a # 1 and 0 , b # 1, then multiplying a # 1 by 

94193_AppB_ptg01.indd   46 12/11/18   6:39 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A-47  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

b gives ab # b, and since b # 1, then, by transitivity of 
order, ab # 1.] Thus the inductive step has been proved. 
[Since we have proved both the basis step and the inductive 
step, we conclude that dn # 1 for every integer n $ 1.]

5. Proof (by strong mathematical induction): Let the prop-
erty P(n) be the equation en 5 5?3n 17?2n.

Show that P(0) and P(1) are true:

We must show that e0 5 5?30 17?20 and 
e1 5 5?31 17?21. The left-hand side of the first  
equation is 12 (by definition of e0, e1, e2, …), and  
its right-hand side is 5?117?1 5 12 also. The 
left-hand side of the second equation is 29 (by 
definition of e0, e1, e2, …), and its right-hand side is 
5?317?2 5 29 also. Thus P(0) and P(1) are true.

Show that for every integer k $ 1, if P(i) is true for 
each integer i with 0 # i # k, then P(k11) is true:

Let k be any integer with k $ 1, and suppose 
ei 5 5?3i 17?2i for each integer i with 0 # i # k. 
[Inductive hypothesis] We must show that 

ek11 5 5?3k11 17?2k11.

Now

ek11 5 5ek 2  6ek21

5 5(5?3k 17?2k)26(5?3k21 17?2k21)

5 25?3k 135?2k 230?3k21 242?2k21

5 25?3k 135?2k 210?3?3k21 221?2?2k21

5 25?3k 135?2k 210?3k 221?2k

5 (25210)?3k 1 (35221)?2k

5 15?3k 114?2k

5 5?3?3k 17?2?2k

5 5?3k11 17?2k11

[as was to be shown].

10.  Hint: In the basis step, show that P(14), P(15), 
and P(16) are all true. For the inductive step, note 
that k11 5 [(k11)23]13, and if k $ 16, then 
(k11)23 $ 14.

11.  Proof (by strong mathematical induction): Let the prop-
erty P(n) be the sentence

A jigsaw puzzle consisting of n pieces takes 
n21 steps to put together.

Show that P(1) is true:

A jigsaw puzzle consisting of just one piece does not 
take any steps to put together. Hence it is correct to say 
that it takes zero steps to put together.

by definition of e0, e1, e2, ….

by inductive hypothesis

by algebra

Show that for every integer k $ 1, if P(i) is true for 
each integer i with 1 # i # k, then P(k11) is true:

Let k be any integer with k $ 1 and suppose that for 
each integer i with 1 # i # k, a jigsaw puzzle consisting 
of i pieces takes i21 steps to put together. [This is the 
inductive hypothesis.] We must show that a jigsaw puz-
zle consisting of k11 pieces takes k steps to put togeth-
er. Consider assembling a jigsaw puzzle consisting of 
k11 pieces. The last step involves fitting together two 
blocks. Suppose one of the blocks consists of r pieces 
and the other consists of s pieces. Then r1 s 5 k11, 
and 1 # r # k and 1 # s # k. Thus, by the inductive 
hypothesis, the numbers of steps required to assemble 
the blocks are r21 and s21, respectively. Then the 
total number of steps required to assemble the puzzle is 
(r21)1 (s21)11 5 (r1 s)21 5 (k11)21 5 k  
[as was to be shown].

12.  Hint: For any collection of cans, at least one must 
contain enough gasoline to enable the car to get to the 
next can. (Why?) Imagine taking all the gasoline from 
that can and pouring it into the can that immediately 
precedes it in the direction of travel around the track.

13.  Sketch of proof: Given any integer k . 1, either k is 
prime or k is a product of two smaller positive integers, 
each greater than 1. In the former case, the property is 
true. In the latter case, the inductive hypothesis ensures 
that both factors of k are products of primes and hence 
that k is also a product of primes.

14.  Proof (by strong mathematical induction): Let the prop-
erty P(n) be the sentence “Any product of n odd integers 
is odd.”

Show that P(2) is true:

We must show that any product of two odd integers is odd. 
But this was established in exercise 20 of Section 4.2.

Show that for every integer k $ 2, if P(i) is true for 
each integer i with 2 # i # k then P(k11) is true:

Let k be any integer with k $ 2, and suppose that for 
each integer i with 2 # i # k, any product of i odd 
integers is odd. [Inductive hypothesis] Consider any 
product M of k11 odd integers. Some multiplication 
is the final one that is used to obtain M. Thus, there 
are integers A and B such that M 5 AB, and each of A 
and B is a product of between 1 and k odd integers. (For 
instance, if M 5 ((a1a2)a3)a4, then A 5 (a1a2)a3 and 
B 5 a4.) By inductive hypothesis, each of A and B is 
odd, and, as in the basis step, we know that any product 
of two odd integers is odd. Hence M 5 AB is odd.

16.  Hint: Let the property P(n) be the sentence “If n is 
even, then any sum of n odd integers is even, and if 

94193_AppB_ptg01.indd   47 12/11/18   6:39 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.4 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-48

n is odd, then any sum of n odd integers is odd.” For 
the inductive step, consider any sum S of k11 odd 
integers. Some addition is the final one that is used to 
obtain S. Thus, there are integers A and B such that 
S 5 A1B, and A is a sum of r odd integers and B is a 
sum of (k11)2 r odd integers. Consider the two cases 
where k11 is even and k11 is odd, and for each case 
consider the two subcases where r is even and where r 
is odd.

17.  41 5 4, 42 5 16, 43 5 64, 44 5 256, 45 5 1024, 
46 5 4096, 47 5 16384, and 48 5 65536.

Conjecture: The units digit of 4n equals 4 if n is odd 
and equals 6 if n is even.

Proof by strong mathematical induction: Let the prop-
erty P(n) be the sentence “The units digit of 4n equals 4 
if n is odd and equals 6 if n is even.”

Show that P(1) and P(2) are true:

When n 5 1, 4n 5 41 5 4, and so the units digit is 4. 
When n 5 2, then 4n 5 42 5 16, and so the units digit 
is 6. Thus, P(1) and P(2) are true.

Show that for every integer k $ 2, if the property is 
true for each integer i with 1 # i # k then it is true 
for k11:

Let k by any integer with k $ 2, and suppose that for 
each integer i with 0 # i # k, the units digit of 4i equals 
4 if i is odd and equals 6 if i is even. [Inductive hypoth-
esis] We must show that the units digit of 4k11 equals 4 
if k11 is odd and equals 6 if k11 is even.

Case 1 (k11 is odd): In this case, k is even, and 
so, by inductive hypothesis, the units digits of 4k 
is 6. Thus 4k 5 10q16 for some nonnegative inte-
ger q. It follows that 4k11 5 4k?4 5 (10q16)?4 5
40q124 5 10(4q12)14. Thus, the units digit of  
4k11 is 4.

Case 2 (k11 is even): In this case, k is odd, and 
so, by inductive hypothesis, the units digit of 4k is 
4. Thus 4k 5 10q14 for some nonnegative inte-
ger q. It follows that 4k11 5 4k?4 5 (10q14)?4 5
40q116 5 10(4q11)16. Thus, the units digit of  
4k11 is 6.

Conclusion: Because cases 1 and 2 are the only pos-
sibilities and 4k11 has one of the required forms in each 
case, we have shown that P(k11) is true.

19.  Proof (by strong mathematical induction): Let a1, a2, 
a3, … be a sequence that satisfies the recurrence relation 
ak 5 2?a:k/2; for every integer k $ 2, with initial condi-
tion a1 5 1, and let the property P(n) be the inequality

an # n. d P(n)

We will show that P(n) is true for each integer n $ 1.

Show that P(1) is true: a1 5 1 and 1 # 1. So P(1) 
is true.

Show that for every integer k $ 1, if P(i) is true for 
each integer i from 1 through k, then P(k11) is true: 
Let k be any integer with k $ 1, and suppose that

ai # i for each integer i with  
1 # i # k.

We must show that

ak11 # k11.

Now

ak11 5 2?a:(k11)y2;

#    2? :(k11)y2;

# 2?((k11)y2) if k is odd

2?(ky2) if k is even

# k11 if k is odd

k if  k is even

# k11

Thus ak11 # k11 [as was to be shown].

22.  Proof (by strong mathematical induction): Let P(n) be 
the sentence

In this version of NIM, if both piles initially 
contain n objects, the player who goes second can 
always win.

We will prove that P(n) is true for every integer n $ 0.

Show that P(0) is true:

If neither pile contains any objects, the player who goes 
first automatically loses because of not being able to 
make a move. So the second player wins the game by 
default. Thus P(0) is true.

Show that for every integer k $ 0, if P(i) is true for 
each integer i from 1 through k, then P(k11) is true:

Let k be any integer with k $ 0, and suppose:

In this version of NIM, for every integer i with 
0 # i # k, if both piles initially contain i objects, 
the player who goes second can always win.

We must show that

In this version of NIM, if both piles initially con-
tain k11 objects, the player who goes second can 
always win.

d inductive hypothesis

by definition of a1, a2, a3, …

(')
'*

by inductive hypothesis(')
'*

because both k # k11 and 
k11 # k11.

d P(k11)
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So suppose both piles contain k 11 objects, where 
0 # i # k, and suppose the first player removes r ob-
jects from pile #1, where 1 # r # 3. If the second player 
removes r objects from pile #2, then both piles will 
have the same number of objects, namely (k11)2 r 
and (k11)2 r # k because r $ 1. Thus, by inductive 
hypothesis, the second player can win.

23. a. 

11
1 1 1 1 1 1

1
1 2 4 3 14

217
10

3

22 2 7
3

1 · 2 1 4 · 3
3 · 7

1 · 1 1 2 · 2 1 1 · 2
1 · 1 1 1 · 1 1 1 · 1

45TOTAL

24. a.  The results are shown both diagrammatically and in 
a table.

1

9

2
3

4

513

14

15
16

12 6

11 7
10 8

Initial State After the 1st Round After the 2nd Round After the 3rd Round After the 4th Round

1

9

3

513

15

11 7

1

9

513

1

9

1

1

9

2
3

4

513

14

15
16

12 6

11 7
10 8

Initial State After the 1st Round After the 2nd Round After the 3rd Round After the 4th Round

1

9

3

513

15

11 7

1

9

513

1

9

1

Round Eliminated Remaining

1 2, 4, 6, 8, 10, 12, 
14, 16

1, 3, 5, 7, 9,  
11, 13

2 3, 7, 11, 15 1, 5, 9, 13

3 5, 13 1, 9

4 9 1

26.  Proof: Let n be any integer greater than 1. Consider the 
set S of all positive integers other than 1 that divide n. 
Since n | n and n . 1, there is at least one element in S. 
Hence, by the well-ordering principle for the integers, 
S has a smallest element; call it p. We claim that p is 
prime. For suppose p is not prime. Then there are inte-
gers a and b with 1 , a , p, 1 , b , p, and p 5 ab. 
By definition of divides, a | p. Also p | n because p is in 
S and every element in S divides n. Therefore, a | p  
and p | n, and so, by transitivity of divisibility,  
a | n. Consequently, a [ S. But this contradicts the fact 
that a , p, and p is the smallest element of S. [This 
contradiction shows that the supposition that p is not 

prime is false.] Hence p is prime, and we have shown the 
existence of a prime number that divides n.

28. a.  Proof: Suppose r is any rational number. [We need 

to show that there is an integer n such that r , n.]

 Case 1 (r # 0): In this case, take n 5 1. Then 
r , n.

 Case 2 (r . 0): In this case, r 5
a
b for some posi-

tive integers a and b (by definition of rational and 
because r is positive). Note that r 5

a
b , n if, and 

only if, a , nb. Let n 5 2a. Multiply both sides of 
the inequality 1 , 2 by a to obtain a , 2a, and 
multiply both sides of the inequality 1 , b by 2a to 
obtain 2a , 2ab 5 nb. Thus a , 2a , nb, and so, 
by transitivity of order, a , nb. Dividing both sides 
by b gives that ab , n, or, equivalently, that r , n.

 Hence, in both cases, r , n [as was to be shown].

29.  Hint: If r is any rational number, let S be the set of all 
integers n such that r , n. Use the results of exercises 
28(a), 28(c), and the well-ordering principle for the inte-
gers to show that S has a least element, say v, and then 
show that v21 # r , v.

30.  Proof: Let S be the set of all integers r such that 
n 5 2i?r for some integer i. Then n [ S because 
n 5 20?n, and so S Þ [. Also, since n $ 1, each r in 
S is positive, and so, by the well-ordering principle, S 
has a least element m. This means that n 5 2k?m (*) for 
some nonnegative integer k, and m # r for every r in S. 
We claim that m is odd. The reason is that if m is even, 
then m 5 2p for some integer p. Substituting into equa-
tion (*) gives

n 5 2k?m 5 2k?2p 5 (2k?2)p 5 2k11?p.

It follows that p [ S and p , m, which contradicts the 
fact that m is the least element of S. Hence m is odd, 
and so n 5 m?2k for some odd integer m and nonnega-
tive integer k.

34.  Hint: In the inductive step, divide into cases depending 
on whether k can be written as k 5 3x or k 5 3x11 or 
k 5 3x12 for some integer x.

35.  Hint: In the inductive step, let an integer k $ 0 be given 
and suppose that there exist integers q9 and r9 such that 
k 5 dq91 r9 and 0 # r9 , d. You must show that there 
exist integers q and r such that

k11 5 dq1 r and 0 # r , d.

To do this, consider the two cases r9 , d21 and 
r9 5 d21.

36.  Hint: Given a predicate P(n) that satisfies conditions 
(1) and (2) of the principle of mathematical induction, 
let S be the set of all integers greater than or equal to a 
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for which P(n) is false. Suppose that S has one or more 
elements, and use the well-ordering principle for the 
integers to derive a contradiction.

37.  Hint: Suppose S is a set containing one or more inte-
gers, all of which are greater than or equal to some inte-
ger a, and suppose that S does not have a least element. 
Let the property P(n) be the sentence “i Ó S for any 
integer i with a # i # n.” Use mathematical induction 
to prove that P(n) is true for every integer n $ a, and 
explain how this result contradicts the supposition that 
S does not have a least element.

Section 5.5
1. Proof: Suppose the predicate m1n 5 100 is true before 

entry to the loop. Then

mold 1nold 5 100.

After execution of the loop,

mnew 5 mold 11 and nnew 5 nold 21,

so

mnew 1nnew 5 (mold 11)1 (nold 21)

5 mold 1nold 5 100.

3. Proof: Suppose the predicate m3 . n2 is true before 
entry to the loop. Then

m3
old . n2

old.

After execution of the loop,

mnew 5 3?mold and nnew 5 5?nold,

so

m3
new 5 (3?mold)

3 5 27?m3
old . 27?n2

old.

Now since nnew 5 5?nold, then nold 5 1
5nnew. Hence

m3
new . 27?n2

old 5 27?11

5
nnew2

2

5 27?
1

25
n2

new

5
27

25
?n2

new . n2
new.

6.  Proof: [The wording of this proof is almost the same as 
that of Example 5.5.2.]

I. Basis Property: [I(0) is true before the first iteration 
of the loop.]

 I(0) is “exp 5 x0 and i 5 0.” According to the pre-
condition, before the first iteration of the loop exp 5 1 
and i 5 0. Since x0 5 1, I(0) is evidently true.

II. Inductive Property: [If G ` I(k) is true before a 
loop iteration (where k $ 0), then (k11) is true 
after the loop iteration.]

 Suppose k is any nonnegative integer such that 
G ` I(k) is true before an iteration of the loop. 
Then as execution reaches the top of the loop, 
i Þ m, exp 5 xk, and i 5 k. Since i Þ m, the guard 
is passed and statement 1 is executed. Now before 
execution of statement 1,

expold 5 xk,

 so execution of statement 1 has the following effect:

expnew 5 expold?x 5 xk?x 5 xk11.

 Similarly, before statement 2 is executed,

iold 5 k,

 so after execution of statement 2,

inew 5 iold 11 5 k11

 Hence after the loop iteration, the two statements 
exp 5 xk11 and i 5 k11 are true, and so I(k11) is 
true.

iii. Eventual Falsity of Guard: [After a finite number of 
iterations of the loop, G becomes false.]

 The guard G is the condition i Þ m, and m is a non-
negative integer. By I and II, it is known that 

 for every integer n $ 0, if the loop is  
iterated n times, then exp 5 xn and i 5 n.

 So after m iterations of the loop, i 5 m. Thus  
G becomes false after m iterations of the loop.

iV. Correctness of the Post-Condition: [If N is the 
least number of iterations after which G is false and 
I(N) is true, then the value of the algorithm variables 
will be as specified in the post-condition of the loop.]

 According to the post-condition, the value of exp 
after execution of the loop should be xm. But when 
G is false, i 5 m. And when I(N) is true, i 5 N and 
exp 5 xN. Since both conditions (G false and I(N) 
true) are satisfied, m 5 i 5 N and exp 5 xm, as 
required.

8. Proof:
i. Basis Property: I(0) is “i 5 1 and sum 5 A[1].”  

According to the pre-condition, this statement is true.
II. Inductive Property: Suppose k is a non-

negative integer such that G ` I(k) is true be-
fore an iteration of the loop. Then as execution 
reaches the top of the loop, i Þ m, i 5 k11, 
and sum 5 Af1g1Af2g1 Á 1Afk11g. Since 
i Þ m, the guard is passed and statement 1 
is executed. Now before execution of state-
ment 1, iold 5 k11. So after execution of state-
ment 1, inew 5 iold 11 5 (k11)11 5 k12. 
Also before statement 2 is executed, 
sumold 5 Af1g1Af2g1 Á 1Afk11g.  
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Execution of statement 2 adds A[k12] to this 
sum, and so after statement 2 is executed, 
sumnew 5 Af1g1Af2g1 Á 1Afk11g1 Afk12g. 
Thus after the loop iteration, I(k11) is true.

III. Eventual Falsity of Guard: The guard G is the 
condition i Þ m. By I and II, it is known that for 
every integer n $ 1, after n iterations of the loop, 
I(n) is true. Hence, after m21 iterations of the loop, 
I(m) is true, which implies that i 5 m and G is false.

IV. Correctness of the Post-Condition: Suppose 
that N is the least number of iterations after 
which G is false and I(N) is true. Then (since G 
is false) i 5 m and (since I(N) is true) i 5 N11 
and sum 5 Af1g1Af2g1 Á 1AfN11g. Put-
ting these together gives m 5 N11, and so 
sum 5 Af1g1Af2g1 Á 1Afmg, which is the  
post-condition.

10.  Hint: Assume G ` I(k) is true for a nonnegative integer 
k. Then aold Þ 0 and bold Þ 0 and
(1)  aold and bold are nonnegative integers with 

gcd(aold, bold) 5 gcd(A, B).
(2) At most one of aold and bold equals 0.
(3) 0 # aold 1bold #  A1B2k.

It must be shown that I(k11) is true after the loop 
iteration. That means it is necessary to show that
(1)  anew and bnew are nonnegative integers with 

gcd(anew, bnew) 5 gcd(A, B).
(2)  At most one of anew and bnew equals 0.
(3) 0 # anew 1bnew # A1B2 (k11).

To show (3), observe that

anew 1bnew 5 5aold 2bold 1bold if aold $ bold

bold 2aold 1aold if aold , bold
.

[The reason for this is that when aold $ bold, then 
anew 5 aold 2bold and bnew 5 bold, and when aold , bold, 
then bnew 5 bold 2aold and anew 5 aold.]

anew 1bnew 5 5aold if aold $ bold

bold if aold , bold
.

Now since aold Þ 0 and bold Þ 0, and since aold and 
bold are nonnegative integers, then aold $ 1 and 
bold $ 1. Hence, aold 21 $ 0 and bold 21 $ 0, and so 
aold # aold 1bold 21 and bold # bold 1aold 21. It follows 
that anew 1anew # aold 1bold 21 # (A1B2k)21 by 
noting that (3) is true when going into the kth itera-
tion. Thus, anew 1bnew , A1B2 (k11) by algebraic 
simplification.

Section 5.6
1. a1 5 1, a2 5 2a1 12 5 2?112 5 4,

a3 5 2a2 13 5 2?413 5 11,

a4 5 2a3 14 5 2?1114 5 26

3.  c0 5 1, c1 5 1?(c0)
2 5 1?(1)2 5 1,

c2 5 2(c1)
2 5 2?(1)2 5 2,

c3 5 3(c2)
2 5 3?(2)2 5 12

5.  s0 5 1, s1 5 1, s2 5 s1 12s0 5 112?1 5 3,

 s3 5 s2 12s1 5 312?1 5 5

7. u1 5 1, u2 5 1, u3 5 3u2 2u1 5 3?121 5 2,

u4 5 4u3 2u2 5 4?221 5 7

9. By definition of a0, a1, a2,…, for each integer k $ 1,

 (*) ak 5 3k11 and

(**) ak−1 5 3(k21)11.

Then ak−1 13

5 3(k21)1113

5 3k231113

5 3k11

5 ak

11.  By definition of c0, c1, c2,…, cn 5 2n 21, for each inte-
ger n $ 0. Substitute k and k21 in place of n to get

(*) ck 5 2k 21 and

(**) ck−1 5 2k−1 21

for every integer k $ 1. Then

2ck21 11 5 2(2k21 21)11

5 2k 2211

5 2k 21

5 ck

13.  By definition of t0, t1, t2, …, tn 5 21n, for each integer 
n $ 0. Substitute k, k21, and k22 in place of n to get

(*) tk 5 21k,

(**) tk−1 5 21 (k21), and

(***) tk−2 5 21 (k22)

for each integer k $ 2. Then

2tk21 2 tk22

5 2(21 (k21))2 (21 (k22))

5 2(k11)2k

5 21k

5 tk

15.  Hint: Mathematical induction is not needed for the 
proof. Start with the right-hand side of the equation and 

by substitution from (**)

by basic algebra

by substitution from (*).

by substitution from (**)

by basic algebra

by substitution from (*).

by substitution from (**) and (***)

by basic algebra

by substitution from (*).
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use algebra to transform it into the left-hand side of the 
equation.

17. a. a1 5 2

a2 5 2  (moves to move the top disk from pole A to 
pole C)

11  (move to move the bottom disk from 
pole A to pole B)

12  (moves to move top disk from pole C  
to pole A)

11  (move to move the bottom disk from 
pole B to pole C)

12  (moves to move top disk from pole A  
to pole C)

5 8

a3 5 811181118 5 26
c. For every integer k $ 2,

ak 5 ak21  (moves to move the top k21 disks from 
pole A to pole C)

11  (move to move the bottom disk from 
pole A to pole B)

1ak21  (moves to move the top disk 
from pole C to pole A)

11  (move to move the bot-
tom disks from pole B 
to pole C)

1ak21  (moves to move 
the top disks 
from pole A to  
pole C)

5 3ak21 12.

18. b. b4 5 40
e. Hint: One solution is to use mathematical induc-

tion and apply the formula from part (c). Another 
solution is to prove by mathematical induction that 
when a most efficient transfer of n disks from one 
end pole to the other end pole is performed, at some 
point all the disks are on the middle pole.

19. a. s1 5 1, s2 5 11111 5 3,

 s3 5 s1 1 (11111)1 s1 5 5
b. s4 5 s2 1 (11111)1 s2 5 9

20. b.  Call the poles A, B, and C. Compute c2 by using the 
following sequence of steps to transfer two disks 
from A to B:

 1 (move to transfer the top disk from A to B)
11  (move to transfer the top disk from  

B to C)

11  (move to transfer the bottom disk from A to B)
11  (move to transfer the top disk from C to A)
11  (move to transfer the top disk from A to B).

 This sequence of steps is the least possible, and so 
c2 5 5.

 A tower of 3 disks can be transferred from A to B 
by using the following sequence of steps:

 1 (move to transfer the top disk from A to B)
11 (move to transfer the top disk from B to C)
11  (move to transfer the middle disk from A to B)
11  (move to transfer the top disk from C to A)
11  (move to transfer the middle disk from B to C)
11  (move to transfer the top disk from A to B)
11  (move to transfer the top disk from B to C).

 After these 7 steps have been completed, the bottom 
disk can be transferred from A to B. At that point 
the top two disks are on C, and a modified version 
of the initial seven steps can be used to transfer 
them from C to B. Thus the total number of steps is 
71117 5 15, and 15 , 21 5 4c2 11.

21. b. t3 5 14

22. b.  r0 5 1, r1 5 1, r2 5 114?1 5 5, r3 5 514?1 5 9,

 r4 5 914?5 5 29, r5 5 2914?9 5 65,

 r6 5 6514?29 5 181

23. c.  There are 904 rabbit pairs, or 1,808 rabbits, after  
12 months.

25. a.  Each term of the Fibonacci sequence beyond 
the second equals the sum of the previous two. 
For any integer k $ 1, the two terms previous 
to Fk11 are Fk and Fk−1. Hence, for every integer 
k $ 1, Fk11 5 Fk 1Fk−1.

26.  By repeated use of definition of the Fibonacci sequence, 
for each integer k $ 4,

Fk 5 Fk21 1Fk22 5 (Fk22 1Fk23)1 (Fk23 1Fk24)

5 ((Fk23 1Fk24)1Fk23)1 (Fk23 1Fk24)

5 3Fk23 121Fk24.

27. For each integer k $ 1,

F2
k 2F2

k21

5 (Fk 2Fk21)(Fk 1Fk21)

5 (Fk 2Fk21)Fk11

5 FkFk11 2Fk21Fk11

32.  Hint: Use mathematical induction. In the inductive step, 
use Lemma 4.10.2 and the fact that Fk12 5 Fk11 1Fk to 
deduce that

gcd(Fk12, Fk11) 5 gcd(Fk11, Fk).

by basic algebra (difference 
of two squares)

by definition of the 
Fibonacci sequence.
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34.  Hint: Let L 5 lim
nS `

 
Fn11

Fn
 and show that L 5 1

L 11.  

Deduce that L 5
1 1 Ï5

2 .

35.  Hint: Use the result of exercise 30 to prove that the 

infinite sequence 
F0

F1
, 

F2

F3
, 

F4

F5
, Á is strictly decreasing and 

that the infinite sequence 
F1

F2
, 

F3

F4
, 

F5

F6
, Á is strictly increas-

ing. The first sequence is bounded below by 0, and the 
second sequence is bounded above by 1. Deduce that 
the limits of both sequences exist, and show that they 
are equal.

37. a.  Because the 4% annual interest is compounded 
quarterly, the quarterly interest rate is (4%)y4 5 1%. 
Then Rk 5 Rk21 10.01Rk−1 5 1.01Rk21.

b. Because one year equals four quarters, the amount 
on deposit at the end of one year is R4 5 $5,203.02 
(rounded to the nearest cent).

c. The annual percentage yield (APY) for the account 

is 
$5203.02 2 $5000.00

$5000.00 5 4.0604%.

39.  When one is climbing a staircase consisting of n stairs, 
the last step taken is either a single stair or two stairs 
together. The number of ways to climb the staircase and 
have the final step be a single stair is cn21; the number 
of ways to climb the staircase and have the final step 
be two stairs is cn22. Therefore, cn 5 cn21 1cn22. Note 
also that c1 5 1 and c2 5 2 [because either the two  
stairs can be climbed one by one or they can be climbed 
as a unit].

41.  Proof (by mathematical induction): Let the property, 
P(n), be the equation on

i51 
cai 5 on

i51 ai, where a1, a2, 
a3, …, an and c are any real numbers.

Show that P(1) is true:

Let a1 and c be any real numbers. By the recursive 

definition of sum, o1
i51

 

(cai) 5 ca1 and o1
i51

 

ai 5 a1. 

Therefore, o1
i51(cai) 5 c o1

i51
 

ai, and so P(1) is true.

Show that for every integer k $ 1, if P(k) is true,  
then P(k11) is true:

Let k be any integer with k $ 1. Suppose that 
for any real numbers a1, a2, a3, …, ak and c, 
ok

i51 
(cai) 5 c ok

i51
 

ai. [This is the inductive hypothesis.] 
[We must show that for any real numbers a1, a2, a3, …, 

ak11 and c, ok11
i51 (cai) 5 c ok11

i51 ai.]

Let a1, a2, a3, …, ak11 and c be any real numbers. Then

o
k11

i51

cai 5 o
k

i51

cai 1cak11

5 co
k

i51

ai 1cak11

by the recursive 
definition of o

by inductive hypothesis

5 c1o
k

i51

ai 1ak112
5 co

k11

i51

ai

44. Hint: Let the property be the inequality

*on

i51

ai* # o
n

i51
uai u.

To prove the inductive step, note that because 

uok11
i51  

aiu 5 uok
i51

 

ai 1ak11u, you can use the triangle 

inequality for absolute value (Theorem 4.5.6) to deduce 

uok
i51ai 1ak11u # uok

i51aiu1 uak11u.

45.  We give two proofs for the given statement, one less 
formal and the other more formal.

Proof 1 (by mathematical induction): For the basis 
step observe that any “sum” of one even integer is the 
integer itself, which is even. For the inductive step 
we suppose that for an arbitrarily chosen even integer 
r $ 1., the sum of any r even integers is even. Then we 
must show that any sum of r11 even integers is even. 
But any sum of r11 even integers is equal to a sum of 
r even integers, which is even (by inductive hypothesis), 
plus another even integer. The result is a sum of two 
even integers, which is even (by Theorem 4.1.1) [as was 
to be shown].

Proof 2 (by mathematical induction): Let P(n) be the 
sentence:

If a1, a2, a3, …, an are any even integers, then 

o
n

i51

ai is even.

We will show that P(n) is true for every integer n $ 1.

Show that P(n) is true for n 5 1:

Suppose a1 is any even integer. Then o1
i51 ai 5 a1, 

which is even. So P(1) is true.

Show that for every integer k $ 1, if P(k) is true, then 
P(k11) is true:

Let k be any integer with k $ 1, and suppose that

If a1, a2, a3, …, ak are any even integers,  

then ok
i51 

ai is even.
We must show that

If a1, a2, a3, …, ak11 are any even integers, 

then ok11
i51  

ai is even.

by the distributive law  
for the real numbers

by the recursive  
definition of o.

d P(n)

d P(k) inductive hypothesis

d P(k11)
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So suppose a1, a2, a3, …, ak11 are any even integers, 
then

o
k11

i51

ai 5 o
k

i51

ai 1ak11

by writing the final term of the sum separately. Now, by 
inductive hypothesis, ok

i51 ai is even, and, by assump-
tion, ak11 is even. Therefore, ok11

i51  ai is the sum of two 
even integers, which is even (by Theorem 4.1.1) [as was 
to be shown].

47.  Hint: Use proof by contradiction or proof by  
contraposition.

Section 5.7
1. a. 11  2 1  3 1 Á 1 (k21)

5
(k21)((k21)11)

2
5

(k21)k

2

b. 5121416181 Á 12n
5 512(112131 Á 1n)

5 512
n(n11)

2
5 51n(n11)

5 n2 1n15

2. a. 112122 1 Á 12i21 5
2(i21)11 21

221
5 2i 21

c. 2n 12n22?312n23?31 Á 122?312?313

5 2n 13(2n22 12n23 1 Á 122 1211)

5 2n 13(112122 1 Á 12n23 12n22)

5 2n 1312(n22)11 21

221 2
5 2n 13(2n21 21)

5 2?2n21 13?2n21 23

5 5?2n21 23

3. a0 5 1

a1 5 1?a0 5 1?1 5 1

a2 5 2a1 5 2?1

a3 5 3a2 5 3?2?1

a4 5 4a3 5 4?3?2?1

o
Guess:

an 5 n(n21) Á 3?2?1 5 n!

5. c1 5 1

c2 5 3c1 11 5 3?111 5 311

c3 5 3c2 11 5 3?(311)11 5 32 1311

c4 5 3c3 11 5 3?(32 1311)11

5 33 132 1311

o
Guess:

cn 5 3n21 13n22 1 Á 133 132 1311

5
3n 21

321
 by Theorem 5.2.2 with r 5 3

5
3n 21

2

6. Hint:

dn 5 2n 12n22?312n23?31 Á 122?312?313

5 5?2n21 23

for every integer n $ 1.

9. Hint: For any positive real numbers a and b,

a

b

a

b
12

5

a

b

a

b
12

?
b

b
5

a

a12b
.

10. h0 5 1

h1 5 21 2h0 5 21 21

h2 5 22 2h1 5 22 2 (21 21) 5 22 221 11

h3 5 23 2h2 5 23 2 (22 221 11)

5 23 222 121 21

h4 5 24 2h3 5 24 2 (23 222 122 21)

5 24 223 122 221 11

o
Guess:

hn 5 2n 22n21 1 Á 1 (21)n?1

5 (21)n f122122 2 Á 1 (21)n?2ng

5 (21)n f11 (22)

1 (22)2 2 Á 1 (22)ng

5 (21)n 3(22)n11 21

(22)21 4
5

(21)n11?f(22)n11 21g
(21)?(23)

5
2n11 2 (21)n11

3

by basic algebra

by Theorem 5.2.2

by basic algebra
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12. s0 5 3

s1 5 s0 12?1 5 312?1

s2 5 s1 12?2 5 f312?1g12?2

5 312?(112)

s3 5 s2 12?3 5 f312?(112)g12?3

5 312?(11213)

s4 5 s3 12?4 5 f312?(11213)g12?4

5 312?(1121314)
o

Guess:

sn 5 312?(112131 Á 1 (n21)1n)

5 312?
n(n11)

2

5 31n(n11)

14. x1 5 1

x2 5 3x1 12 5 312

x3 5 3x2 13 5 3(312)13 5 32 13?213

x4 5 3x3 14 5 3(32 13?213)14

5 33 132?213?314

x5 5 3x4 15 5 3(33 132?213?314)15

5 34 133?2132?313?415

x6 5 3x5 16

5 3(34 133?2132?314?315)16

5 35 134?2133?3132?413?516

o
Guess:

xn 5 3n21 13n22?213n23?31 Á 13(n21)1n

5 3n21 13n22 13n22 13n23 13n23 13n23 1

3131 Á 1311111 Á 11

5 (3n21 13n22 1 Á 132 1311)

1 (3n22 13n23 1 Á 132 1311)1 Á

1 (32 1311)1 (311)11

5
3n 21

2
1

3n21 21

2
1 Á 1

33 21

2

1
32 21

2
1

321

2

5 1
2 f(3

n 13n21 1 Á 132 13)2ng

5 1
2 f3(3n21 13n22 1 Á 1311)2ng

5 1
2 13 13n 21

321 22n2
5 1

4 
s3n11 2322nd

by Theorem 5.2.1

by basic algebra

(++)++*
2 times

(++++)++++*
3 times

(+++)+++*
(n21) times

(+++)+++*
n times

18.  Proof (by mathematical induction): Let d be any fixed 
constant, and let a0, a1, a2, … be the sequence defined 
recursively by ak 5 ak21 1d for each integer k $ 1.  
The property P(n) is the equation an 5 a0 1nd. We 
show by mathematical induction that P(n) is true for 
every integer n $ 0.

Show that P(0) is true:

When n 5 0, the left-hand side of the equation is a0, 
and the right-hand side is a0 10?d 5 a0, which equals 
the left-hand side. Thus P(0) is true.

Show that for every integer k $ 0, if P(k) is true,  
then P(k11) is true:

Suppose k is any integer such that k $ 0 and

ak 5 a0 1kd.

[This is the inductive hypothesis.]

We must show that ak11 5 a0 1 (k11)d. Now

ak11 5 ak 1d

5 fa0 1kdg1d

5 a0 1 (k11)d

[as was to be shown].

19. Let Un 5 the number of units produced on day n. Then

Uk 5 Uk21 12 for each integer k $ 1,

U0 5 170.

Hence U0, U1, U2, … is an arithmetic sequence with 
fixed constant 2. It follows that when n 5 30,

Un 5 U0 1n?2 5 17012n 5 17012?30

5 230 units.

Thus the worker must produce 230 units on day 30.

24. o20
k50 

5k 5
521 2 1

4 > 1.192 3 1014 >
119,200,000,000,000 > 119 trillion people (This is 
about 20,000 times the current population of the earth!)

26. b. Hint: Before simplification,
 An 5 1,000(1.0025)n 1200[(1.0025)n21 1

 (1.0025)n21 1 Á 1 (1.0025)2 11.002511].
d. A240 > $67,481.15, A480 > $188,527.05
e. Hint: Use logarithms to solve the equation 

An 5 10,000, where An is the expression found after 
simplifying the result in part (b).

27. a. Hint: APY > 19.6%
c. Hint: approximately two years

28.  Proof (by mathematical induction): Let a0, a1,  
a2, … be the sequence defined recursively by a0 5 1 
and ak 5 kak21 for each integer k $ 1, and let the  
property P(n) be the equation an 5 n!. We show by 

by definition of a0, a1, a2, … 

by substitution from the 
inductive hypothesis

by basic algebra
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mathematical induction that P(n) is true for every 
integer n $ 0.

Show that P(0) is true:

When n 5 0, the right-hand side of the equation is 
0! 5 1, and by definition of a0, a1, a2, …, the left-hand 
side of the equation, a0, is also 1. Thus the property is 
true for n 5 0.

Show that for every integer k $ 0, if P(k) is true, then 
P(k11) is true:

Suppose k is any integer with k $ 0 and

ak 5 k!.

[This is the inductive hypothesis.]

We must show that ak11 5 (k11)!. Now

ak11 5 (k11)?ak

5 (k11)?k!

5 (k11)!

[Hence if P(k) is true, then P(k11) is true.]

30.  Proof (by mathematical induction): Let c1, c2, c3, … 
be the sequence defined recursively by c1 5 1 and 
ck 5 3ck21 11 for each integer k $ 2.

Let the property P(n) be the equation cn 5
3n 2 1

2 . We 
show by mathematical induction that P(n) is true for 
every integer n $ 1.

Show that P(1) is true:

When n 5 1, the right-hand side of the equation is 
31 2 1

2 5
3 2 1

2 5 1, and by definition of c1, c2, c3, …, the 

left-hand side of the equation, c1, is also 1. Thus the 
property is true for n 5 1.

Show that for every integer k $ 1, if P(k) is true, then 
P(k11) is true:

Suppose that k is any integer with k $ 1 and

ck 5
3k 21

2
.

[This is the inductive hypothesis.]

We must show that ck11 5
3k11 21

2
. Now

ck11 5 3ck 11

5 313k 21

2 211

5
3k11 23

2
1

2

2

5
3k11 21

2

by definition of a0, a1, a2, … 

by substitution from the 
inductive hypotheses

by definition of factorial.

by definition of c1, c2, c3, … 

by substitution from the 
inductive hypothesis

by basic algebra.

35. Hint:

2k11 2
2k11 2 (21)k11

3

5
3?2k11

3
2

2k11 2 (21)k11

3

5
2?2k11 1 (21)k11

3
5

2k12 2 (21)k12

3

37. Hint:

f31k(k11)g12(k11)

5 31k2 1k12k12 5 31 fk2 13k12g
5 31 (k11)(k12)

5 31 (k11)f(k11)11g

39.  Proof (by mathematical induction): Let x1, x2, x3, … 
be the sequence defined recursively by x1 5 1 and 
xk 5 3xk21 1k for each integer k $ 2. Let the property, 

P(n), be the equation xn 5
3n11 2 2n 2 3

4 . We show by 

mathematical induction that P(n) is true for every integer 
n $ 1.

Show that P(1) is true:

When n 5 1, the right-hand side of the equation is 
3111 2 2?1 2 3

4 5
32 2 2 2 3

4 5 1, and by definition of x1, x2, 

x3, …, the left-hand side of the equation, x1, is also 1. 
Thus P(1) is true.

Show that for every integer k $ 1, if P(k) is true, then 
P(k11) is true:

Suppose that k is any integer with k $ 0 and 

xk 5
3k11 2 2k 2 3

4 . [Inductive hypothesis] We must show 

that

xk11 5
3(k11)11 22(k11)23

, or, equivalently,

xk11 5
3k12 22k25

4
. Now

xk11 5 3xk 1k

5 313k11 22k23

4 21k11

5
3?3k11 23?2k23?3

4
1

4(k11)

4

5
3k12 26k2914k14

4

5
3k12 22k25

4

[as was to be shown].

by definition 
of x1, x2, x3,

by inductive 
hypothesis

by algebra
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43 a. a0 5 2

a1 5
a0

2a0 21
5

2

2?221
5

2

3

a2 5
a1

2a1 21
5

2

3

2?
2

3
2

3

3

5

2

3

1

3

5 2

a3 5
a2

2a2 21
5

2

2?221
5

2

3

a4 5
a3

2a3 21
5

2

3

2?
2

3
2

3

3

5

2

3

1

3

5 2

Guess: an 5 52 if n is even

2
3 if n is odd

.

b. Proof (by strong mathematical induction): Let a0, 

a1, a2, … be the sequence defined recursively by 

x0 5 2 and ak 5
ak21

2ak21 2 1 for each integer k $ 1. Let 

the property, P(n), be the equation

an 5 52 if n is even
2
3 if n is odd.

We show by strong mathematical induction that 
P(n) is true for every integer n $ 1.

Show that P(0) and P(1) are true:

The results of part (a) show that P(0) and P(1) are true.

Show that for every integer k $ 0, if P(k) is true 
for each integer i with 0 # i # k, then P(k11) 
is true:

Let k be any integer with k $ 0, and suppose that 
for each integer i with 0 # i # k,

ai 5 52 if i is even
2
3 if i is odd.

   [Inductive hypothesis]

We must show that

ak11 5 52 if k is even
2
3 if k is odd.

Now

ak11 5
ak

2ak 21

5 5
2

2?2 2 1 if k is even

2
3

2?2
3 21

if k is odd

by definition of 
a0, a1, a2, …

by inductive 
hypothesis

5 5
2
3 if k is even

2
3
1
3

if k is odd

5 5
2
3 if k11 is odd

2 if k11 is even

[as was to be shown].

45. v1 5 1

v2 5 v:2y2;1v:3y2;12 5 v1 1v1 12

5 11112

v3 5 v:3y2;1v:4y2;12 5 v1 1v2 12

5 11 (11112)12 5 312?2

v4 5 v:4y2;1v:5y2;12 5 v2 1v2 12

5 (11112)1 (11112)12

5 413?2

v5 5 v:5y2;1v:6y2;12 5 v2 1v3 12

5 (312?2)1 (11112)12

5 514?2

v6 5 v:6y2;1v:7y2;12 5 v3 1v3 12

5 (312?2)1 (312?2)12

5 615?2

o

Guess:

vn 5 n12(n21) 5 3n22 for every integer n $ 1

b. Proof (by strong mathematical induction): Let v1, 
v2, v3, … be the sequence defined recursively by 
v1 5 1 and vk 5 v:ky2;1v:(k11)y2;12 for each integer 
k $ 1. Let the property, P(n), be the equation

vn 5 3n22.

 We show by strong mathematical induction that 
P(n) is true for every integer n $ 1.

Show that P(1) is true:

When n 5 1, the right-hand side of the equation is 
3?122 5 1, which equals v1 by definition of v1, v2, 
v3, …. Thus P(1) is true.

Show that for every integer k $ 1, if P(i) is true 
for each integer i with 0 # i # k, then P(k11) 
is true:

Let k be any integer with k $ 1, and suppose that 
for each integer i with 1 # i # k, vi 5 3i22.

because k11 is 
odd when k is even

and k11 is even 
when k is odd
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[This is the inductive hypothesis.] We must show that 
vk11 5 3(k11)22 5 3k11.

vk11 5 v:(k11)y2;1v:(k12)y2;12

5 13 jk11

2
k222113 jk12

2
k22212

5 31jk11

2
k1 jk12

2
k222

5 531k

2
1

k12

2 222 if k is even

31k11

2
1

k11

2 222 if k is odd

5 312k12

2 222

5 3(k11)22

5 3k11

[as was to be shown].

46.  Hint: Show that for every integer n $ 0, s2n 5 2n and 
s2n11 5 2n11. Then combine these formulas using the 
ceiling function to obtain sn 5 2<ny2=.

48. a. Hint:

wn 5 51
n11

2 2
2

if n is odd

n

21n

2
112 if n is even

49. a.  Hint: Express the answer using the Fibonacci se-
quence.

50.  Performing the inductive step for a proof by math-
ematical induction of the formula, involves sub-
stituting (k22)2 in place of ak21 in the expression 
ak 5 2ak21 1k21 in hopes of showing that ak equals 
(k21)2. However, solving 2(k22)2 1k21 5 (k21)2 
for k, gives that k25k16 5 0, which implies that 
k 5 2 or k 5 3. It turns out that the sequence a1, a2, 
a3 ,… does satisfy the given formula for k 5 2 and 
k 5 3, but when k 5 4, a4 5 2?41 (421) 5 11, and 
11 Þ (421)2. Hence the sequence does not satisfy the 
formula for n 5 4.

52. a.  Hint: The maximum number of regions is obtained 
when each additional line crosses all the previ-
ous lines, but not at any point that is already the 
intersection of two lines. When a new line is added, 
it divides each region through which it passes into 
two pieces. The number of regions a newly added 
line passes through is one more than the number of 
lines it crosses.

53. Hint: The answer involves the Fibonacci numbers! 

by definition of 
v1, v2, v3, … 

by the laws of 
algebra

Section 5.8
1. (a), (d), and (f)

3. a. a0 5 C?20 1D 5 C1D 5 1

a1 5 C?21 1D 5 2C1D 5 36
3 5D 5 12C

2C1 (12C) 5 36 3 5C 5 2

D 5 21

a2 5 2?22 1 (−1) 5 7

4. a.
 

b0 5 C?30 1D?(22)0 5 C1D 5 0

b1 5 C?31 1D?(22)1 5 3C22D 5 56
3 5D 5 2C

3C22(2C) 5 56 3 5C 5 1

D 5 21

b2 5 32 1 (−1)(−2)2 5 924 5 5

5. Proof: Given that an 5 C?2n 1D, then for any choice of 
C and D and an integer k . 2,

ak 5 C?2k 1D

ak21 5 C?2k21 1D

ak22 5 C?2k22 1D.
Hence

3ak21 22ak22 5 3(C?2k21 1D)22(C?2k22 1D)

5 3C?2k21 13D22C?2k22 22D

5 3C?2k21 2C?2k21 1D

5 2C?2k21 1D

5 C?2k 1D 5 ak.

8. a.  If, for each k . 2, tk 5 2tk21 13tk22 and t Þ 0, 
then t2 5 2t13 [by dividing by tk22], and so 
t2 22t23 5 0. And, since t2 22t23 5

(t23)(t11), then t 5 3 or t 5 21.
b. It follows from (a) and the distinct roots theorem 

that for some constants C and D, a0, a1, a2, … satis-
fies the equation

an 5 C?3n 1D?(21)n for every integer n $ 0.

Since a0 5 1 and a1 5 2, then

a0 5 C?30 1D?(21)0 5 C1D 5 1

a1 5 C?31 1D?(21)1 5 3C2D 5 26
3 5D 5 12C

3C2 (12C) 5 26
3 5D 5 12C

4C21 5 26
3 5C 5 3y4

D 5 1y4.

Thus an 5
3
4(3n)1 1

4(21)n for every integer n $ 0.
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11.  Characteristic equation: t2 24 5 0. Since t2 24 5

(t22)(t12), t 5 2 and t 5 22 are the roots. By the 
distinct roots theorem, for some constants C and D

dn 5 C?(2n)1D?(22)n for every integer n $ 0.

Since d0 5 1 and d1 5 21, then

d0 5 C?20 1D?(22)0 5 C1D 5 1

d1 5 C?21 1D?(22)1 5 2C22D 5 216
3 5D 5 12C

2C22(12C) 5 21

3 5D 5 12C

4C22 5 21

3 5C 5 1
4

D 5
3
4.

Thus dn 5 1
4(2n)1

3
4(22)n for every integer n $ 0.

13.  Characteristic equation: t2 22t11 5 0. By the qua-
dratic formula,

t 5
2 6 Ï424?1

2
5

2

2
5 1.

By the single root theorem, for some constants C and D

rn 5 C?(1n)1Dn?(1n)
5 C1nD for every integer n $ 0.

Since r0 5 1 and r1 5 4, then

r0 5 C10?D 5 C 5 1

r1 5 C11?D 5 C1D 5 46 3  5C 5 1

11D 5 46
3 5C 5 1

D 5 3.

Thus rn 5 113n for every integer n $ 0.

16. Hint: For every integer n $ 0,

sn 5
Ï312

2Ï3
 (11Ï3)n 1

Ï322

2Ï3
 (12Ï3)n.

19.  Proof: Suppose r, s, a0, and a1 are numbers with r Þ s. 
Consider the system of equations

C1D 5 a0

Cr1Ds 5 a1.

By solving for D and substituting, we find that

D 5 a0 2C

Cr1  (a0 2C)s 5 a1.

Hence

C(r2 s) 5 a1 2a0s.

Since r Þ s, both sides may be divided by r2 s. Thus 
the given system of equations has the unique solution

C 5
a1 2a0s

r2 s

and

D 5 a0 2C 5 a0 2
a1 2a0s

r2 s

5
a0r2a0s2a1 1a0s

r2 s
5

a0r2a1

r2 s
.

Alternative solution: Since the determinant of the 
system is 1?s2 r?1 5 s2 r and since r Þ s, the given 
system has nonzero determinant and therefore has a 
unique solution.

21.  Hint: Use strong mathematical induction. First note that 
the formula holds for n 5 0 and n 5 1. To prove the in-
ductive step, suppose that k is any integer such that k $ 2 
and the formula holds for every integer i with 0 # i # k. 
Then show that the formula holds for k11. Use the proof 
of Theorem 5.8.3 (the distinct roots theorem) as a model.

22.  The characteristic equation is t2 22t12 5 0. By the 
quadratic formula, its roots are

t 5
2 6 Ï428

2
5

2 6 2i

2
5 511 i

12 i.

By the distinct roots theorem, for some constants C  
and D

an 5 C(11 i)n 1D(12 i)n

for every integer n $ 0.

 Since a0 5 1 and a1 5 2, then

a0 5 C(11 i)0 1D(12 i)0 5 C1D 5 1

a1 5 C(11 i)1 1D(12 i)1

5 C(11 i)1D(12 i) 5 2

3 5D 5 12C

C(11 i)1 (12C)(12 i) 5 26
3 5D 5 12C

C(11 i211 i)112 i 5 26
3 5D 5 12C

C(2i) 5 11 i6
3 5D 5 12C

C 5
11 i

2i
5

11 i

2i
?
i

i
5

i21

22
5

12 i

2
6

3 5D 5 12
12 i

2
5

2211 i

2
5

11 i

2

C 5
12 i

2
6.
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Thus for every integer, n $ 0,

an 5 112 i

2 2(11 i)n 1111 i

2 2(12 i)n.

Section 5.9
1. a.  (1) p, q, r, and s are Boolean expressions by I.

(2) ,s is a Boolean expression by (1) and II(c).
(3)  r ~ ,s is a Boolean expression by (1), (2), and 

II(b).
(4)  (r ~ ,s) is a Boolean expression by (3) and 

II(d). 
(5)  q ` (r ~ ,s) is a Boolean expression by (1), (4), 

and II(a)
(6)  (q ` (r ~ ,s)) is a Boolean expression by (5) 

and II(d)
(7)  ,p is a Boolean expression by (1) and II(c).
(8)  ,p ~ (q ` (r ~ ,s)) is a Boolean expression by 

(6), (7), and II(b).

2. a. (1) ( ) is in C by I.
(2) (( )) is in C by (1) and II(a).
(3) ( )(( )) is in C by (1), (2), and II(b).

3. a.  (1)  By Theorem 5.9.1, a and b are strings in S 
because a and b are in A.

(2)  By (1) and part II(c) of the definition of string, 
a(bc) 5 (ab)c because a and b are strings in S 
and c is in A.

4. a. (1)  M I is in the M I U system by I.
(2)  M I I is in the M I U system by (1) and II(b).
(3)  M I I I I is in the M I U system by (3) and II(b).
(4)  M I I I I I I I I is in the M I U system by (3) and 

II(b).
(5)  M I U I I I I is in the M I U system by (4) and 

II(c).
(6)  M I U U I is in the M I U system by (5) and II(c).
(7)  M I U I is in the M I U system by (6) and II(d).

5. a. (1)  2, 0.3, 4.2, and 7 are arithmetic expressions  
by I.

(2)  (0.324.2) is an arithmetic expression by (1) 
and II(d).

(3)  (2?(0.324.2)) is an arithmetic expression by 
(1), (2), and II(e).

(4)  (27) is an arithmetic expression by (1) and 
II(b).

(5)  ((2?(0.324.2))1 (27)) is an arithmetic ex-
pression by (3), (4), and II(c).

6. Proof (by structural induction): By the definition of S in 
exercise 6, the only integer in the base for S is 5, and the 
recursion rule states that for every integer n in S, n14 
is in S. Given any integer n in S, let property P(n) be the 
sentence, “n mod 2 5 1.”

Show that P(n) is true for each integer n in the base 
for S:

The only integer in the base for S is 5, and P(5) is true 
because 5 mod 2 5 1 since 5 5 2?211.

Show that for each integer n in S, if P(n) is true and 
if m is obtained from n by applying a rule from the 
recursion for S, then P(m) is true:

Suppose n is any integer in S such that P(n) is true, or, 
in other words, n mod 2 5 1. [This is the inductive hy-
pothesis.] The recursion for S consists of only one rule, 
and when the rule is applied to n, the result is n14. To 
complete the inductive step, we must show that P(n14) 
is true, or, equivalently, that (n14) mod 2 5 1. Now 
since n mod 2 5 1, then

n 5 2k11 for some integer k.

Hence

(n14) mod 2 5 f(2k11)14g mod 2 by substitution

5 f2(k12)11g mod 2 by basic algebra

5 1  because k12  
is an integer,

and so P(n14) is true [as was to be shown]. 

Conclusion: Because there are no integers in S other 
than those obtained from the base and the recursion 
for S, we conclude that every integer n in S satisfies the 
equation n mod 2 5 1.

7. Proof (by structural induction): By the definition of S 
in exercise 7, the only element in the base is 1, and the 
recursion rules II(a) and II(b) state that for every string 
s in S, 0s and 1s are in S. Given any string s in S, let 
property P(s) be the sentence “s ends in a 1.”

Show that P(a) is true for each string a in the base  
for S:

The only string in the base for S is 1, which ends in a 1, 
and so P(1) is true. 

Show that for each string x in S, if P(x) is true and 
if y is obtained from x by applying a rule from the 
recursion for S, then P(y) is true:

The recursion for S consists of two rules: II(a) and II(b). 
Suppose s is any string in S such that P(s) is true, which 
means that s ends in a 1. [This is the inductive hypoth-
esis.] To complete the inductive step, we must show 
that applying either of the two recursion rules to s also 
results in a string that ends in 1.

Now when rule II(a) is applied to s, the result is 0s and 
when rule II(b) is applied to s, the result is 1s. Because s 
ends in a 1, so do 0s and 1s, which means that P(0s) and 
P(1s) are true and completes the inductive step. 

Conclusion: Because there are no strings in S other 
than those obtained from the base and recursion for S, 
we conclude that every string in S ends in a 1.
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9. Proof (by structural induction): By the definition of S 
in exercise 9, the only element in the base is l, and the 
recursion rules II(a)–II(d) state that for every string s in S, 
bs, sb, saa, and aas are in S. Given any string, s in S, let 
property P(s) be the sentence “s contains an even number 
of a’s.”

Show that P(a) is true for each string a in the base  
for S:

The only string in the base for S is l, which contains 0 
a’s. Since 0 is an even number, P(l) is true.

Show that for each string x in S, if P(x) is true and 
if y is obtained from x by applying a rule from the 
recursion for S, then P(y) is true:

Suppose s is a string in S such that P(s) is true, or, in 
other words, suppose that s has an even number of a’s. 
[This is the inductive hypothesis.] 

When either rule II(a) or II(b) is applied to s, the result 
is either bs or sb, each of which contains the same num-
ber of a’s as s and hence an even number of a’s. Thus 
both P(bs) and P(sb) are true.  

When either rule II(c) or II(d) is applied to s, the result 
is either aas or saa, each of which contains two more 
a’s than does s. Because two more than an even number 
is an even number, both aas and saa contain an even 
number of a’s. Hence both P(aas) and P(saa) are true. 
This completes the inductive step because II(a)–II(d) 
are the only rules in the recursion.

Conclusion: Because there are no strings in S other 
than those obtained from the base and the recursion for 
S, we conclude that every string in S contains an even 
number of a’s.

10.  Hint: For each string s in S, let property P(s) be the 
sentence: “s represents an odd integer.” In the decimal 
notation, a string represents an odd integer if, and only 
if, it ends in 1, 3, 5, 7, or 9.

11.  Hint: By divisibility results from Chapter 4 (exercises 
15 and 16 of Section 4.4), if both k and m are divisible 
by 5, then so are k1m and k2m. 

13.  Hint: Can the number of I’s in a string in the M I U sys-
tem be a multiple of 3? How do rules II(a)–II(d) affect 
the number of I’s in a string?

15. a.  The parenthesis structure ( )(( ) is not in C. To see 
why this is so, we will prove that every parenthe-
sis structure in C has an equal number of left and 
right parentheses. It will follow that, since ( )(( ) 
has 3 left parentheses and 2 right parentheses, ( )(( ) 
cannot be in C. 

Proof (by structural induction):

Define a function f : C S Z as follows: For each 
parenthesis structure x in C, let

f (x) 5 3the number of left
parentheses in x 423the number of right

parentheses in x 4.

Given any parenthesis structure x in C, let property 
P(x) be the sentence, “ f(x) 5 0.”

Show that P(a) is true for each parenthesis struc-
ture a in the base for C:

The only parenthesis structure in the base for C is  
( ), and f [( )] 5 0 because ( ) has one left parenthesis 
and one right parenthesis. Hence P[( )] is true.

Show that for each parenthesis structure x in C, if 
P(x) is true and if y is obtained from x by applying a 
rule from the recursion for C, then P(y) is true:

The recursion for C consists of two rules, denoted 
II(a) and II(b).

Suppose u and v are any parenthesis structures 
in C such that P(u) and P(v) are true. This means 
that f (u) 5 0 and f (v) 5 0. [This is the inductive 
hypothesis.]

Let k and m be the numbers of left and right pa-
rentheses, respectively, in u, and let n and p be the 
numbers of left and right parentheses, respectively, 
in v. Then k2m 5 0 and n2p 5 0 by definition of f. 

When rule II(a) is applied to u, the result is (u), and 
f [(u)] 5 0 because (u) has one more left paren-
thesis and one more right parenthesis than u, and 
(k11)2 (m11) 5 0. Hence, P(u) is true.

When rule II(b) is applied to u and v, the  
result is uv. Now uv has k1n left parentheses 
and m1p right parentheses. Hence f (uv) 5
(k1n)2 (m1p) 5 (k2m)1 (n2p) 5 010 5 0. 
Hence, f (uv) 5 0, and so P(uv) is true.

Conclusion: Because there are no parenthesis 
structures in C other than those obtained from the 
base and the recursion for C, we conclude that given 
any parenthesis structure x in C, f (x) 5 0. There-
fore, every parenthesis structure in C has the same 
number of left and right parentheses. 

b. Hint: This parenthesis structure is not in C either 
even though it has equal numbers of left and right 
parentheses.

16.  Let S be the set of all strings of 0’s and 1’s with the 
same number of 0’s and 1’s. The following is a recursive 
definition for S.

I. Base: The null string l [ S.
II. Recursion: If s [ S, then

a. 01s [ S  b. s01 [ S  c.  10s [ S
d.  s10 [ S    e.  0s1 [ S   f.  1s0 [ S

III.  Restriction: There are no elements of S other that 
those obtained from the base and recursion for S. 
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18.  Let T be the set of all strings of a’s and b’s that contain 
an odd number of a’s. The following is a recursive 
definition of T.

I. Base: a [ T.
II. Recursion: If t [ T, then

a. bt [ T  b. tb [ T  c. aat [ T
d. ata [ T   e. taa [ T

III.   Restriction: There are no elements of T other than 
those obtained from the base and recursion for T.

20. a.  Suppose a is any character in A. [We must show that 

L(a) 5 1.] Then

L(a) 5 L(l?a)  by part II(b) of the definition of string

5 L(l)11  by part (b) of the definition of the 
length function

5 011  by part (a) of the definition of the 
length function

5 1 by definition of 0.

22.  Hint: If S is the set of all strings over a finite set 
A, then for any string u in S, let the property P(v) 
be the sentence “If v is any string of length n, then 
Rev(uv) 5 Rev(v)Rev(u).” For the basis step you will 
show that P(l) is true by showing that Rev(ul) 5
Rev(l)Rev(u). For the inductive step you will as-
sume that x is any string for which P(x) is true, and 
you will show that if y is the result of applying rule 
II(a) to x, then P(y) is true.

23. a. M(86) 5 M(M(97)) since 86 # 100

5 M(M(M(108))) since 97 # 100

5 M(M(98)) since 108 . 100

5 M(M(M(109))) since 98 , 100

5 M(M(99)) since 109 . 100

5 M(91) by Example 5.9.7

25. a. A(1, 1) 5 A(0, A(1, 0))  by (5.9.3) with m 5 1 and 
n 5 1

5 A(1, 0)11 by (5.9.1) with n 5 A(1, 0)

5 A(0, 1)11 by (5.9.2) with m 5 1

5 (111)11 by (5.9.1) with n 5 1
5 3

Alternative solution:

A(1, 1) 5 A(0, A(1, 0)) by (5.9.3) with m 5 1 and n 5 1

5 A(0, A(0, 1)) by (5.9.2) with m 5 1

5 A(0, 2) by (5.9.1) with n 5 1

5 3 by (5.9.1) with n 5 2

26. a.  Proof by mathematical induction: Let the property, 
P(n), be the equation A(1, n) 5 n12.

Show that P(0) is true:

When n 5 0,

A(1, n) 5 A(1, 0) by substitution

5 A(0, 1) by (5.9.2)

5 111  by (5.9.1)

5 2.

On the other hand, n12 5 012 also. Thus 
A(1, n) 5 n12 for n 5 0.

Show that for every integer k $ 0, if P(k) is true, 
then P(k11) is true:

Let k be an integer with k $ 1 and suppose P(k) 
is true. In other words, suppose A(1, k) 5 k12. 
[This is the inductive hypothesis.] We must show that 
P(k11) is true. In other words, we must show that 
A(1, k11) 5 (k11)12 5 k13. Now

A(1, k11) 5 A(0, A(1, k)) by (5.9.3)

5 A(1, k)11 by (5.9.1)

5 (k12)11 by inductive hypothesis

5 k13

[as was to be shown].

[Since both the basis and the inductive steps have been 
proved, we conclude that the equation holds for every 
nonnegative integer n.]

28.  Suppose F is a function. Then F(1) 5 1, F(2) 5 F(1) 5 1, 
F(3) 5 11F(5?329) 5 11F(6) 5 11  F(3). Subtract-
ing F(3) from the extreme left and extreme right of this 
sequence of equations gives 1 5 0, which is false. Hence F 
is not a function.

Section 6.1
1. a.  A 5 h2, h2j, (Ï2)2j 5 h2, h2j, 2j 5 h2, h2jj  

and B 5 {2, {2}, {{2}}}. So A # B because every 
element in A is in B, but B Ü A because {{2}}[ B 
and {{2}} Ó A. Thus A is a proper subset of B. 

c. A 5 {{1, 2}, {2, 3}} and B 5 {1, 2, 3}. So A Ü B 
because {1, 2} [ A and {1, 2} Ó B. Also B Ü A 
because 1 [ B and 1 Ó A.

e. A 5 hÏ16, h4jj 5 h4, h4jj and B 5 {4}. Then 
B # A because the only element in B is 4 and 4 is in 
A, but A Ü B because {4} [ A and {4} Ó B. Thus B is 
a proper subset of A.

2. Proof That B # A:

Suppose x is a particular but arbitrarily chosen element 
of B.

[We must show that x [ A. By definition of A, this 
means we must show that x 5 2?(some integer).]

By definition of B, there is an integer b such that 
x 5 2b22.
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[Given that x 5 2b22, can x also be expressed as 2?

(some integer)? That is, is there an integer—say, a—
such that 2b22 5 2a? Solve for a to obtain a 5 b21. 
Check to see if this works.]

Let a 5 b21.

[First check that a is an integer.]

We know that a is an integer because it is a difference 
of integers.

[Then check that x 5 2a.]

By substitution, 2a 5 2(b21) 5 2b22 5 x.

Thus, by definition of A, x is an element of A,

[as was to be shown].

3. a.  R Ü T because there are elements in R that are not 
in T. For example, the number 2 is in R but 2 is not 
in T since 2 is not divisible by 6.

b. T # R because every element in T is in R since 
every integer divisible by 6 is divisible by 2. To 
see why this is so, suppose n is any integer that is 
divisible by 6. Then n 5 6m for some integer m. 
Since 6m 5 2(3m) and since 3m is an integer (being 
a product of integers), it follows that n 5 2?(some 
integer), and, hence, that n is divisible by 2. 

5. a.  C # D because every element in C is in D. To see 
why this is so, suppose n is any element of C. Then 
n 5 6r25 for some integer r. Let s 5 2r22. Then 
s is an integer (because products and differences of 
integers are integers), and

3s11 5 3(2r22)11 5 6r2611 5 6r25,

which equals n. Thus n satisfies the condition for 
being in D. Hence, every element in C is in D.

b. D Ü C because there are elements of D that are not 
in C. For example, 4 is in D because 4 5 3?111. 
But 4 is not in C because if it were, then 4 5 6r25 
for some integer r, which would imply that 9 5 6r, 
or, equivalently, that r 5 3/2, and this contradicts 
the fact that r is an integer. 

6. c.  Sketch of proof that B # C: If r is any element of 
B then there is an integer b such that r 5 10b23. 
To show that r is in C, you must show that there is 
an integer c such that r 5 10c17. In scratch work, 
assume that c exists and use the information that 
10b23 would have to equal 10c17 to deduce 
the only possible value for c. Then show that this 
value is (1) an integer and (2) satisfies the equation 
r 5 10c17, which will allow you to conclude that r 
is an element of C.

Sketch of proof that C # B: If s is any element of C 
then there is an integer c such that s 5 10c17. To show 
that s is in B, you must show that there is an integer b 
such that s 5 10c23. In scratch work,  

assume that b exists and use the information that 
10c17 would have to equal 10b23 to deduce the only 
possible value for b. Then show that this value is (1) an 
integer and (2) satisfies the equation s 5 10b23, which 
will allow you to conclude that s is an element of B.

8. a.  In words: The set of all x in U such that x is in A 
and x is in B. 

In symbolic notation: A ù B.

9. a. x Ó A and x Ó B

10. a. A ø B 5 {1, 3, 5, 6, 7, 9}
b. A ù B 5 {3, 9}
c. A ø C 5 {1, 2, 3, 4, 5, 6, 7, 8, 9}
d. A ù C 5 [

e. A2B 5 {1, 5, 7}

11. a.  A ø B 5 {x [ R u0 , x , 4}
b. A ù B 5 {x [ R u1 # x # 2}
c. Ac 5 {x [ R ux # 0 or x . 2}
d. A ø C 5 {x [ R u0 , x # 2 or 3 # x , 9}
e. A ù C 5 [

f. Bc 5 {x [ R ux , 1 or x $ 4}
g. Ac ù Bc 5 {x [ R ux # 0 or x $ 4}
h. Ac ø Bc 5 {x [ R ux , 1 or x . 2}
i. (A ù B)c 5 {x [ R ux , 1 or x . 2}
j. (A ø B)c 5 {x [ R ux # 0 or x $ 4}

13. a. A ù B 5 {1111}
c. A2B 5 {1110, 1000, 1001}

14. a. 
UB

A C

15. a. 
U

C

A

B

16. a.  A ø (B ù C ) 5 {a, b, c}, (A ø B) ù C 5

{b, c}, and (A ø B) ù (A ø C ) 5  
{a, b, c, d} ù {a, b, c, e} 5 {a, b, c}.

Hence A ø (B ù C ) 5 (A ø B) ù (A ø C ).
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17. a. 

A B

C

U

18. a.  The number 0 is not in [ because [ has no  
elements.

b. No. The left-hand set is the empty set; it does not 
have any elements. The right-hand set is a set with 
one element, namely [.

19.  A1 5 {1, 12} 5 {1}, A2 5 {2, 22} 5 {2, 4},  
A3 5 {3, 32} 5 {3, 9}, A4 5 {4, 42} 5 {4, 16}
a. A1 ø A2 ø A3 ø A4 5 {1} ø {2, 4} ø {3, 9}

ø {4, 16} 5 {1, 2, 3, 4, 9, 16}
b. A1 ù A2 ù A3 ù A4 5

{1} ù {2, 4} ù {3, 9} ù {4, 16} 5 [ 
c. A1, A2, A3, and A4 are not mutually disjoint, because 

A2 ù A4 5 {4} 5 [.

21.  C0 5 {0, 20} 5 {0}, C1 5 {1, 21}, C2 5 {2, 22}, 
C3 5 {3, 23}, C4 5 {4, 24}

a. ø
4

i50

Ci 5 h0j ø h1, 21j ø h2, 22j ø h3, 23j ø   

     h4, 24j 5 h24, 23, 22, 21, 0, 1, 2, 3, 4j

b. >
4

i50

Ci 5 h0j ù h1,21j ù h2,22j ù h3,23j ù

h4, 24j 5 [
c. C0, C1, C2, . . . are mutually disjoint because no 

two of the sets have any elements in common.

d. ø
n

i50

Ci 5

 h2n, 2(n21), . . . , 22, 21, 0, 1, 2, . . . , (n21), nj

e. >
n

i50

Ci 5 [

f. ø
`

i50

Ci 5 Z, the set of all integers

g. >
`

i50

Ci 5 [

22.  D0 5 [20, 0] 5 {0}, D1 5 [21, 1], D2 5 [22, 2], 
D3 5 [23, 3], D4 5 [24, 4]

a. ø
4

i50

Di 5 h0j ø f21, 1g ø f22, 2g ø f23, 3g ø  

f24, 4g 5 f24, 4g

b. >
4

i50

Di 5 h0j ù f21, 1g ù f22, 2g ù f23, 3g ù  

f24, 4g 5 h0j
c. D0, D1, D2, . . . , are not mutually disjoint. In fact, 

each Dk # Dk11.

d. ø
n

i50

Di 5 f2n, ng

e. >
n

i50

Di 5 h0j

f. ø
`

i50

Di 5 R, the set of all real numbers

g. >
`

i50

Di 5 h0j

24.  W0 5 (0, `), W1 5 (1, `), W2 5 (2, `), W3 5 (3, `), 
W4 5 (4, `)

a. ø
4

i50

Wi 5 (0, `) ø (1, `) ø (2, `) ø (3, `) ø  

(4, `) 5 (0, `)

b. >
4

i50

Wi 5 (0, `) ù (1, `) ù (2, `) ù (3, `) ù  

(4, `) 5 (4, `)

c. W0, W1, W2, . . . are not mutually disjoint. In fact, 
Wk11 # Wk for every integer k $ 0.

d. ø
n

i50

Wi 5 (0, `)

e. >
n

i50

Wi 5 (n, `)

f. ø
`

i50

Wi 5 (0, `)

g. >
`

i50

Wi 5 [

27. a. No. The element d is in two of the sets.
b. No. None of the sets contains 6.

28.  Yes. Every integer is either even or odd, and no integer 
is both even and odd.

31. a. A ù B 5 {2}, so 3(A ù B) 5 {[, {2}}.
b. A 5 {1, 2}, so 3(A) 5 {[, {1}, {2}, {1, 2}}.
c. A ø B 5 {1, 2, 3}, so 3(A ø B) 5 {[, {1},
 {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
d. A 3 B 5 {(1, 2), (1, 3), (2, 2), (2, 3)}, so

3(A 3 B) 5 {[, {(1, 2)}, {(1, 3)}, {(2, 2)}, {(2, 3)},

{(1, 2), (1, 3)}, {(1, 2), (2, 2)},

{(1, 2), (2, 3)}, {(1, 3), (2, 2)}, {(1, 3), (2, 3)},

94193_AppB_ptg01.indd   64 12/11/18   6:41 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A-65  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

{(2, 2), (2, 3)}, {(1, 2), (1, 3), (2, 2)},

{(1, 2), (1, 3), (2, 3)},

{(1, 2), (2, 2), (2, 3)}, {(1, 3), (2, 2), (2, 3)},

{(1, 2), (1, 3), (2, 2), (2, 3)}}.

32. a.  3(A 3 B) 5 {[, {(1, u)}, {(1, v)}, {(1, u), (1, v)}}

33. b.  3(3([)) 5 3({[}) 5 {[, {[}}

34. a. A1 ø (A2 3 A3)

5 {1} ø {(u, m), (u, n), (v, m), (v, n)}

5 {1, (u, m), (u, n), (v, m), (v, n)}

35. a. A 3 (B ø C) 5 {a, b} 3 {1, 2, 3}

5 {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}
b. (A 3 B) ø (A 3 C ) 5 h(a, 1), (a, 2), (b, 1),
  (b, 2), (a, 2), (a, 3), (b, 2), (b, 3)j 

5 h(a, 1), (a, 2), (b, 1), (b, 2), (a, 3), (b, 3)j

36. 

i 1 2 3 4

j 1 2 3 1 2 3 4 1 2

found no yes no yes no yes

answer A # B

Section 6.2
1. a. (1) A (2) B ø C

b. (1) A ù B 
(2) C

d. (1) (A ø B) ù C (2) A ø (B ù C )

2. a. (1) A2B (2) A (3) A (4) B

3. a. by definition of subset (because A # B)
b. by definition of subset (because B # C)
c. by definition of subset

5. Proof: Suppose A and B are any sets.

Proof that B2A # B ù Ac: Suppose x [ B2A. By 
definition of set difference, x [ B and x Ó A. It follows 
by definition of complement that x [ B and x [ Ac, 
and so by definition of intersection, x [ B ù Ac. [Thus 
B2A # B ù Ac by definition of subset.]

Proof that B ù Ac # B2A: Suppose x [ B ù Ac. By 
definition of intersection, x [ B and x [ Ac. It follows 
by definition of complement that x [ B and x Ó A, and 
so by definition of set difference, x [ B2A. [Thus 
B ù Ac # B2A by definition of subset.]

[Since both subset relations have been proved, 
B2A 5 B ù Ac by definition of set equality.]

6. Partial answers
(1) a. (A ù B) ø (A ù C ) b. A c. x [ C
d. x [ (A ù B) ø (A ù C )

¡ ¡ ¡
¡

7. Hint: This is somewhat similar to the proof in  
Example 6.2.3.

8. Proof: Suppose A and B are any sets.

Proof that (A ù B) ø (A ù B c ) # A: Suppose

x [ (A ù B) ø (A ù B c ). [We must show that x [ A.] 
By definition of union, x [ A ù B or x [ (A ù B c).

Case 1 (x [ A ù B): In this case x is in A and x is in B, 
and so, in particular, x [ A.

Case 2 (x [ A ù B c): In this case x is in A and x is not 
in B, and so, in particular, x [ A.

Thus, in either case, x [ A [as was to be shown].  So 
(A ù B) ø (A ù B c) # A [by definition of subset].

Proof that A # (A ù B) ø (A ù B c): Suppose  
x [ A. [We must show that x [ (A ù B) ø (A ù Bc).]  
Either x [ B or x Ó B.

Case 1 (x [ B) : In this case we know that x is in A and 
we are also assuming that x is in B. Hence, by definition 
of intersection, x [ A ù B.

Case 2 (x [ A ù Bc): In this case we know that x is in 
A and we are also assuming that x is in Bc. Hence, by 
definition of intersection, x [ A ù B c.

Thus, in either case x [ A ù B or x [ A ù B c, and so, 
by definition of union, x [ (A ù B) ø (A ù B c) [as was 
to be shown]. So A # (A ù B) ø (A ù B c ) [by definition of 
subset].

Conclusion: Since both subset relations have been 
proved it follows by definition of set equality that 
(A ù B) ø (A ù Bc) 5 A.

9. Partial proof: Suppose A, B, and C are any sets. To 
show that (A2B) ø (C2B) 5 (A ø C )2B, we must 
show that (A2B) ø (C2B) # (A ø C )2B and that 
(A ø C )2B # (A2B) ø (C2B).

Proof that (A 2 B) ø (C 2 B) # (A ø C ) 2 B:  
Suppose that x is any element in (A2B) ø (C2B). [We 
must show that x [ (A ø C )2B.] By definition of union, 
x [ A2B or x [ C2B.

Case 1 (x [ A 2 B): Then, by definition of set dif-
ference, x [ A and x Ó B. Now because x [ A, we 
have that x [ A ø C by definition of union. Hence 
x [ A ø C and x Ó B, and so, by definition of set dif-
ference, x [ (A ø C )2B.

Case 2 (x [ C 2 B): Then, by definition of set dif-
ference, x [ C and x Ó B. Now because x [ C, we 
have that x [ A ø C by definition of union. Hence 
x [ A ø C and x Ó B, and so, by definition of set dif-
ference, x [ (A ø C )2B.

Thus, in both cases, x [ (A ø C )2B [as was to 
be shown]. So (A2B) ø (C2B) # (A ø C )2B 
[by definition of subset]. To complete the proof that 
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(A2B ) ø (C2B) 5 (A ø C )2B, you must show that 
(A ø C )2B # (A2B) ø (C2B).

10. Proof: Suppose A, B, and C are any sets.

We will show that (A ø B) ù C # A ø (B ù C ).

Suppose x is any element (A ø B) ù C. 

By definition of intersection x is in A ø B and x is in C.

Then by definition of union x is in A or x is in B, and 
in both cases x is in C. It follows by definition of 
union that in case x is in A and x is in C, then x is in 
A ø (B ù C ) by virtue of being in A. And in case x is 
in B ù C, then x is in A ø (B ù C ) by virtue of being 
in B ù C. Thus in both cases x is in A ø (B ù C ), 
which proves that every element in (A ø B) ù C is in 
A ø (B ù C ).

Hence (A ø B) ù C # A ø (B ù C ) by definition of 
subset.

14.  Partial proof: Suppose A and B are any sets. We will 
show that A ø (A ù B) # A. Suppose x is any element 
in A ø (A ù B). [We must show that x [ A.] By defini-
tion of union, x [ A or x [ A ù B. In the case where x
[ A, clearly x [ A. In the case where x [ A ù B, x [

A and x [ B (by definition of intersection), and so, in 
particular, x [ A. Hence, in both cases x [ A [as was 
to be shown]. Thus A ø (A ù B) # A by definition of 
subset.

To complete the proof that A ø (A ù B) 5 A, you must 
show that A # A ø (B ù A).

15.  Proof: Let A be any set. [We must show that A ø [ 5 A.]

Proof that A ø [ # A: Suppose x [ A ø [. Then  
x [ A or x [ [ by definition of union. But  
x Ó [ since [ has no elements. Hence x [ A.

Proof that A # A ø [: Suppose x [ A. Then the 
statement “x [ A or x [ [” is true. Hence x [ A ø [ 
by definition of union. [Alternatively, A # A ø [ by the 
inclusion in union property.]  
Since A ø [ # A and A # A ø [, then A ø [ 5 A by 
definition of set equality.

16.  Proof: Suppose A, B, and C are any sets such that A # B. 
Let x [ A ù C. By definition of intersection, x [ A and 
x [ C. Now since A # B and x [ A, then x [ B. Hence 
x [ B and x [ C, and so, by definition of intersection, 
x [ B ù C. [Thus A ù C # B ù C by definition of subset.]

19. Hint: The proof has the following outline:

Starting point: Suppose A, B, and C are any sets such 
that A # B and A # C.

To show: A # B ù C.

21. Proof: Suppose A, B, and C are arbitrarily chosen sets.

A 3 (B : C )  (A 3 B) : (A 3 C ): Suppose  
(x, y) [ A 3 (B ø C ). [We must show that 
(x, y) [ (A 3 B) ø (A 3 C ).] Then x [ A and 
y [ B ø C. By definition of union, this means that  
y [ B or y [ C.

Case 1 (y [ B): Then, since x [ A, (x, y) [ A 3 B 
by definition of Cartesian product. Hence 
(x, y) [ (A 3 B) ø (A 3 C ) by definition of union.

Case 2 (y [ C): Then, since x [ A, (x, y) [ A 3 C  
by definition of Cartesian product. Hence 
(x, y) [ (A 3 B) ø (A 3 C ) by definition of union.

Hence, in either case, (x, y) [ (A 3 B) ø (A 3 C ) [as 
was to be shown].

Thus A 3 (B ø C ) # (A 3 B) ø (A 3 C ) by definition 
of subset.

(A 3 B) ø (A 3 C ) # A 3 (B ø C ): Suppose 
(x, y) [ (A 3 B) ø (A 3 C ). Then (x, y) [ A 3 B or 
(x, y) [ A 3 C.

Case 1 ((x, y) [ A 3 B): In this case, x [ A and y [ B.  
Now since y [ B then y [ B ø C by definition of 
union. Hence x [ A and y [ B ø C, and so, by defini-
tion of Cartesian product, (x, y) [ A 3 (B ø C ).

Case 2 ((x, y) [ A 3 C): In this case x [ A and y [ C.  
Now since y [ C, then y [ B ø C by definition of 
union. Hence x [ A and y [ B ø C, and so, by defini-
tion of Cartesian product, (x, y) [ A 3 (B ø C ).

Thus, in either case, (x, y) [ A 3 (B ø C ).  
[Hence, by definition of subset, 
(A 3 B) ø (A 3 C ) # A 3 (B ø C ).]

[Since both subset relations have been proved, we can con-
clude that A 3 (B ø C ) 5 (A 3 B) ø (A 3 C ) by defini-
tion of set equality.]

23.  There is more than one error in this “proof.” The most 
serious is the misuse of the definition of subset. To say 
that A is a subset of B means that for every x, if x [ A  
then x [ B. It does not mean that there exists an ele-
ment of A that is also an element of B. The second error 
in the proof occurs in the last sentence. Even if there is 
an element in A that is in B and an element in B that is 
in C, it does not follow that there is an element in A that 
is in C. For instance, suppose A 5 {1, 2}, B 5 {2, 3}, 
and C 5 {3, 4}. Then there is an element in A that is in 
B (namely 2) and there is an element in B that is in C 
(namely, 3), but there is no element in A that is in C.

24.  Hint: The words “and so x Ó A ø B” do not necessar-
ily follow from “x Ó A or x Ó B.” Try to think of an 
example of sets A and B and an element x for which “x
Ó A or x Ó B” is true and “x Ó A ø B” is false.

94193_AppB_ptg01.indd   66 12/11/18   6:41 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A-67  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

26. a. 

A B

C

U

The shaded region is A ø (B ù C ).

A B

C

U

The most darkly shaded region is
(A ø B) ù (A ø C ).

27. (a) (A2B) ù (B2A)
(b) intersection
(c) B2A
(d) B
(e) A
(f) A
(g) (A2B) ù (B2A) 5 [ 

28.  Proof by contradiction: Suppose not. That 
is, suppose there exist sets A and B such that 
(A ù B) ù (A ù B c) Þ [. Then there is an element x 
in (A ù B) ù (A ù B c). By definition of intersection, 
x [ (A ù B) and x [ (A ù B c ). Applying the definition 
of intersection again, we have that since x [ (A ù B),  
x [ A and x [ B, and since x [ (A ù B c), x [ A and  
x Ó B. Thus, in particular, x [ B and x Ó B, which is 
a contradiction. It follows that the supposition is false, 
and so (A ù B) ù (A ù Bc) 5 [.

30.  Proof: Let A be a subset of a universal set U. Suppose 
A ù Ac Þ [, that is, suppose there is an element x such 
that x [ A ù Ac. By definition of intersection, x [ A and 
x [ Ac, and so by definition of complement, x [ A and 
x Ó A. This is a contradiction. [Hence the supposition is 

false, and we conclude that A ù Ac 5 [.]

32.  Proof: Let A be a set. Suppose A 3 [ Þ [. Then there 
would be an element (x, y) in A 3 [. By definition of 
Cartesian product, x [ A and y [ [. But there are no 

elements y such that y [ [. Hence there are no ele-
ments (x, y) in A 3 [, which is a contradiction. [Thus 

the supposition is false, and so A 3 [ 5 [.]

33.  Proof: Let A and B be sets such that A # B. [We must show 

that A ù B c 5 [.] Suppose A ù B c Þ [; that is, suppose 
there were an element x such that x [ A ù B c. Then  
x [ A and x [ Bc by definition of intersection. So x [

A and x Ó B by definition of complement. But A # B by 
hypothesis, and, since x [ A, then x [ B by definition of 
subset. Thus x Ó B and also x [ B, which is a contradic-
tion. Hence the supposition that A ù B c Þ [ is false, and 
so A ù B c 5 [.

36.  Proof: Let A, B, and C be any sets such that C # B2A. 
Suppose A ù C Þ [. Then there is an element x such 
that x [ A ù C. By definition of intersection, x [ A  
and x [ C. Now since x [ C and C # B2A, then x
[ B and x Ó A. So x [ A and x Ó A, which is a 
contradiction. Hence the supposition is false, and thus 
A ù C 5 [.

39. a.  Start of proof that 

A ø B # (A2B) ø (B2A) ø (A ù B): Given any 
element x in A ø B, by definition of union x is in at 
least one of A and B. Thus x satisfies exactly one of 
the following three conditions:

(1) x [ A and x Ó B (x is in A only)
(2) x [ B and x Ó A (x is in B only)
(3) x [ A and x [ B (x is in both A and B) 

b. To show that (A2B), (B2A), and (A ù B) are mu-
tually disjoint, we must show that the intersection of 
any two of them is the empty set. Now, by definition 
of set difference and set intersection, saying that 
x [ A2B means that (1) x [ A and x Ó B, saying 
that x [ B2A means that (2) x [ B and x Ó A, 
and saying that x [ A ù B means that (3) x [ A and 
x [ B. Conditions (1)–(3) are mutually exclusive: no 
two of them can be satisfied at the same time. Thus 
no element can be in the intersection of any two of 
the sets, and, therefore, the intersection of any two 
of the sets is the empty set. Hence, (A2B), (B2A), 
and (A ù B) are mutually disjoint.

40.  Suppose that n is any positive integer and that A and B1, 
B2, B3, . . . , Bn are any sets.

Proof that A " 1ø
n

i51

Bi2  ø
n

i51

(A " Bi):

Suppose x is any element in A ù 1ø
n

i51

Bi2. [We must 

show that x [ ø
n

i51

(A ù Bi).] By definition of intersection, 
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x [ A and x [ ø
n

i51

Bi. Since x [ ø
n

i51

Bi, the definition of 

general union implies that x [ Bi for some i 5 1,  
2, . . . , n, and so, since x [ A, the definition of intersec-
tion implies that x [ A ù Bi. Thus, by definition of 

general union, x [ ø
n

i51

(A ù Bi) [as was to be shown].

Proof that ø
n

i51
(A " Bi )  A " 1ø

n

i51
Bi2:

Suppose x is any element in ø
n

i51

(A ù Bi). [We must show 

that x [ A ù 1ø
n

i51

Bi2.] By definition of  

general union, x [ A ù Bi for some i 5 1, 2, . . . , n.

Thus, by definition of intersection, x [ A and 

x [ Bi. Since x [ Bi for some i 5 1, 2, . . . , n, then  

by definition of general union, x [ ø
n

i51

Bi.

Thus we have that x [ A and x [ ø
n

i51

Bi, and so, 

by definition of intersection, x [ A ù 1ø
n

i51

Bi2  
[as was to be shown].

Conclusion: Since both subset relations have been 

proved, it follows by definition of set equality that 

A ù 1ø
n

i51

Bi2 5 ø
n

i51

(A ù Bi).

41.  Proof sketch: If x [ ø
n

i51

(Ai 2B), then x [ Ai 2B for 

some i 5 1, 2, . . . , n, and so, (1) for some i 5 1, 2, . . . , n, 

x [ Ai (which implies that x [ 1ø
n

i51

Ai2) and (2) x Ó B.

Conversely, if x [ 1ø
n

i51

Ai22B, then x [ 1ø
n

i51

Ai2 

and x Ó B, and so, by definition of general union,  
x [ Ai for some i 5 1, 2, . . . , n, and x Ó B.  
This implies that there is an integer i such that 

x [ Ai 2B, and thus that x [ ø
n

i51

(Ai 2B).

43.  Suppose that n is any positive integer and that A and B1, 
B2, B3, . . . , Bn are any sets.

Proof that ø
n

i51
(A 3 Bi)  A 3 1ø

n

i51
Bi2:

Suppose (x, y) is any element in ø
n

i51

(A 3 Bi). [We must 

show that (x, y) [ A 3 1ø
n

i51

Bi2.] By definition of general 

union, (x, y) [ A 3 Bi for some i 5 1, 2, . . . , n. By 
definition of Cartesian product, this implies that (1) x
[ A and (2) y [ Bi for some i 5 1, 2, . . . , n. By defini-

tion of general union, (2) implies that y [ ø
n

i51

Bi. Thus 

x [ A and y [ ø
n

i51

Bi, and so by definition of Cartesian 

product, (x, y) [ A 3 1ø
n

i51

Bi2 [as was to be shown].

Proof that A 3 1ø
n

i51
Bi2  ø

n

i51
(A 3 Bi):

Suppose (x, y) is any element in A 3 1ø
n

i51

Bi2. [We must 

show that (x, y) [ ø
n

i51

(A 3 Bi).] By definition of Carte-

sian product, (1) x [ A and (2) y [ ø
n

i51

Bi. By definition 

of general union, (2) implies that y [ Bi for some  
i 5 1, 2, . . . , n. Thus x [ A and y [ Bi for some 
i 5 1, 2, . . . , n, and so, by definition of Cartesian  
product, (x, y) [ A 3 Bi for some i 5 1, 2, . . . , n.  
It follows from the definition of general union that 

(x, y) [ ø
n

i51

(A 3 Bi) [as was to be shown].

Conclusion: Since both subset relations have been 
proved, it follows by definition of set equality that 

ø
n

i51

(A 3 Bi) 5 A 3 1ø
n

i51

Bi2.

Section 6.3
1. Counterexample: A, B, and C can be any sets  

where A has an element that is not in C. For  
instance, let A 5 {1, 2}, B 5 {2}, and C 5 {2}.  
Then (A ø B) ù C 5 ({1, 2} ø {2}) ù {2} 5

{1, 2} ù {2} 5 {2}, and A ø (B ù C) 5

{1, 2} ø ({2} ù {2}) 5 {1, 2} ø {2} 5 {1, 2}. Thus 
1 [ A ø (B ù C) but 1 Ó (A ø B) ù C, and hence 
(A ø B) ù C Þ A ø (B ù C) by definition of subset.

3. Counterexample: A, B, and C can be any sets where 
A # C and B contains at least one element that is not in 
either A or C. For instance, let A 5 {1}, B 5 {2}, and 
C 5 {1, 3}. Then A Ü B and B Ü C but A # C.

5. False. Counterexample: A, B, and C can be any sets where 
all three sets have an element in common or where A and 
C have a common element that is not in B. For instance, 
let A 5 {1, 2, 3}, B 5 {2, 3}, and C 5 {3}. Then B2C 5

{2}, and so A2 (B2C ) 5 {1, 2, 3}2{2} 5 {1, 3}.  
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On the other hand, A2B 5 {1, 2, 3}2{2, 3} 5 {1},  
and so (A2B)2C 5 {1}2{3} 5 {1}. Since  
{1, 3} Þ {1}, A2 (B2C ) Þ (A2B)2C.

6. True. Proof: Let A and B be any sets.

Proof that A ù (A ø B) # A: Suppose  
x [ A ù (A ø B). By definition of intersection, x [ A 
and x [ A ø B. In particular, x [ A. Thus, by definition 
of subset, A ù (A ø B) # A.

Proof that A # A ù (A ø B): Suppose x [ A. Then 
by definition of union, x [ A ø B. Hence x [ A 
and x [ A ø B, and so, by definition of intersec-
tion x [ A ù (A ø B). Thus, by definition of subset, 
A # A ù (A ø B).

Because both A ù (A ø B) # A and A # A ù (A ø B) 
have been proved, we conclude that A ù (A ø B) 5 A.

9. True. Proof: Suppose A, B, and C are any sets such  
that A # C and B # C. Let x [ A ø B. By definition  
of union, x [ A or x [ B. But if x [ A then  
x [ C (because A # C), and if x [ B then x [ C 
(because B # C). Hence, in either case, x [ C. [So, by 

definition of subset, A ø B # C.]

11.  Hint: The statement is false. Consider sets U, A, B, and 
C as follows: U 5 {1, 2, 3, 4}, A 5 {1, 2}, B 5 {1, 2, 3},  
and C 5 {2}.

12.  Hint: The statement is true. Observe that if 
x [ A ù (B2C), then x Ó C, and so x Ó A ù C. Con-
versely, if x [ (A ù B)2 (A ù C ), then x Ó A ù C, and 
so, in particular, x Ó C. 

14.  Hint: The statement is true. Sketch of part of proof: 
Suppose x [ A. [We must show that x [ B.] Either x [

C or x Ó C. In case x [ C, make use of the fact that 
A ù C # B ù C to show that x [ B. In case x Ó C, 
make use of the fact that A ø C # B ø C to show that  
x [ B.

15. Hint: The statement is false.

17.  True. Proof: Suppose A and B are any sets with 
A # B. [We must show that 3(A) # 3(B).] So suppose 
X [ 3(A). Then X # A by definition of power set. And 
because A # B, we also have that X # B by the transi-
tive property for subsets. Thus, by definition of power 
set, X [ 3(B). This proves that for all X, if X [ 3

(A) then X [ 3(B), and so 3(A) # 3(B) [as was to be 
shown].

18.  False. Counterexample: For any sets A and B, the 
only sets in 3(A) ø 3(B) are subsets of either A or B, 
whereas a set in 3(A ø B) can contain elements from 
both A and B. Thus, if at least one of A or B contains 
elements that are not in the other set, 3(A) ø 3(B) and 

3(A ø B) will not be equal. For instance, let A 5 {1} 
and B 5 {2}. Then {1, 2} [ 3(A ø B) but {1, 2}
Ó 3(A) ø 3(B).

19.  Hint: The statement is true. To prove it, suppose A and 
B are any sets, and suppose X [ 3(A) ø 3(B). Note 
that if X # A, then X # A ø B, and so X [ 3(A ø B).

22. a.  Statement: 5 set S, E a set T such that S ù T 5 [.

Negation: E a set S such that 5 set T, S ù T Þ [.

The statement is true. Given any set S, take T 5 Sc.

Then S ù T 5 S ù Sc 5 [ by the complement law 
for >. Alternatively, T could be taken to be [.

23. Hint: S0 5 {[}, S1 5 {{a}, {b}, {c}}

24. a.  S1 5 {[, {t}, {u}, {v}, {t, u}, {t, v}, {u, v}, {t, u, v}}
b. S2 5 {{w}, {t, w}, {u, w}, {v, w}, {t, u, w},
  {t, v, w}, {u, v, w}, {t, u, v, w}}
c. Yes

25.  Hint: The proof uses the same basic idea as the proof of 
Theorem 6.3.1. In this case let P(n) be the sentence “If a 
set S has n elements, the number of subsets of S with an 
even number of elements equals the number of subsets 
of S with an odd number of elements.”

26.  Hint: Use mathematical induction. In the inductive 
step, you will consider the set of all nonempty subsets 
of {2, . . . , k} and the set of all nonempty subsets of 
{2, . . . , k11}. Any subset of {2, . . . , k11} either 
contains k11 or does not contain k11. Thus

3the sum of all products
of elements of nonempty
subsets of {2, Á , k11}4
5 3

the sum of all products
of elements of nonempty
subsets of {2, Á , k11}
that do not contain k11

413
the sum of all products
of elements of nonempty
subsets of {2, Á , k11}
that contain k11

4
Now any subset of {2, . . . , k11} that does not con-
tain k11 is a subset of {2, . . . , k}. And any subset 
of {2, . . . , k11} that contains k11 is the union of a 
subset of {2, . . . , k} and {k11}.

27. a. commutative law for >
b. distributive law
c. commutative law for >

28. Partial answer:
a. set difference law
b. set difference law
c. commutative law for >
d. De Morgan’s law
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29.  Hint: Remember to use the properties in Theorem 6.2.2 
exactly as they are written. For example, the distribu-
tive law does not state that for all sets A, B, and C, 
(A ø B) ù C 5 (A ù C ) ø (B ù C ).

30. Proof: Let sets A, B, and C be given. Then

(A ù B) ø C 5 C ø (A ù B) by the commutative law for < 5 (C ø A) ù (C ø B) by the distributive law 5 (A ø C) ù (B ø C ) by the commutative law for <.

31. Proof: Suppose A and B are sets. Then

A ø (B2A) 5 A ø (B ù Ac) by the set difference law 5 (A ø B) ù (A ø Ac) by the distributive law 5 (A ø B) ù U by the complement law for < 5 A ø B by the identity law for ù.

36. Proof: Let A and B be any sets. Then

((Ac ø Bc)2A)c

 5 ((Ac ø B c ) ù Ac )c by the set difference law 5 (Ac ø B c )c ø (Ac )c by De Morgan’s law 5 ((Ac)c ù (B c)c ) ø (Ac )c by De Morgan’s law 5 (A ù B) ø A  by the double  
complement law 5 A ø (A ù B ) by the commutative law for < 5 A by the absorption law.

39.  Partial proof: Let A and B be any sets. Then

(A2B) ø (B2A)

5 (A ù B c) ø (B ù Ac) by the set difference law

5 f(A ù B c ) ø Bg ù f(A ù B c) ø Ac)g 
 by the distributive law

5 f(B ø (A ù B c )g ù fAc ø (A ù B c )g 
 by the commutative law for <

5 f(B ø A) ù (B ø B c )g ù f(Ac ø A) ù (Ac ø B c )g 
 by the distributive law

5 f(A ø B) ù (B ø Bc )g ù f(A ø Ac) ù (Ac ø Bc )g 
 by the commutative law for <.

41. Hint: The answer is [.

44. a.  Proof (by contradiction): Suppose not. That is, suppose 
there exist sets A and B such that A2B and B are not 
disjoint. Then (A2B) ù B Þ [, which means there is 
an element x in (A2B) ù B. By definition of intersec-
tion, x [ A2B and x [ B, and by definition of set 
difference, x [ A and x Ó B. Hence x [ B and  
x Ó B, which is a contradiction. Thus the supposition 
is false, and so A2B and B are disjoint.

b. Let A and B be any sets. Then

(A2B) ù B 5 (A ù B c ) ù B by the set difference law 5 A ù (B c ù B) by the associative law for ù 5 A ù (B ù B c ) by the commutative law for ù 5 A ù [ by the complement law for ù 5 [  by the universal bound law for ù.

Thus A2B and B are disjoint.

46. a.  A D B 5 (A2B) ø (B2A) 5 {1, 2} ø {5, 6} 5  
{1, 2, 5, 6}

47.  Proof: Let A and B be any subsets of a universal set. By 
definition of D, showing that A D B 5 B D A is equivalent 
to showing that (A2B) ø (B2A) 5 (B2A) ø (A2B). 
This follows immediately from the commutative law 
for <.

48. Proof: Let A be any subset of a universal set. Then

A D [ 5 (A2[ ) ø ([2A) by definition of D 5 (A ù [ c ) ø ([ ù Ac ) by the set difference law 5 (A ù U ) ø (Ac ù [ )  by the complement of < law 
and the commutative law for > 5 A ø  [  by the identity law for > and 
the universal bound law for > 5 A by the identity law for <.

51.  Hint: First show that for any sets A and B and for any 
element x,

x [ A D B 3  (x [ A and x Ó B) or (x [ B and x Ó A)

and

x Ó A D B 3 (x Ó A and x Ó B) or (x [ B and x [ A).

52. Same hint as for exercise 51.

53.  Start of proof: Suppose A and B are any subsets of a 
universal set U. By the universal bound law for union, 
B ø U 5 U, and so, by the commutative law for union, 
U ø B 5 U. Take the intersection of both sides of the 
equation with A. 

Section 6.4
1. a. because 1 is an identity for ?

b. by the complement law for1

c. by the distributive law for1over ?
d. by the complement law for ?
e. because 0 is an identity for1

94193_AppB_ptg01.indd   70 12/11/18   6:41 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A-71  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

4. Proof: For every a in B, 

 a?0 5 a?(a?a) by the complement law for ?

 5 (a?a)?a by the associative law for ?

 5 a?a by exercise 1

 5 0 by the complement law for ?.

5. a.  Proof: 0?1 5 0 because 1 is an identity for ?,  
and 011 5 110 5 1 because1 is commutative 
and 0 is an identity for 1. Thus, by the uniqueness 
of the complement law, 0 5 1.

6. Proof: Suppose 0 and 09 are elements of B both of 
which are identities for 1. Then both 0 and 09 satisfy 
the identity, complement, and universal bound laws. 
[We will show that 0 5 09.] By the identity law for 1, for 
every a [ B,

a10 5 a (*) and a109 5 a (**).

It follows that

 09 5 0910 by (*) with a 5 09

 5 0109 by the commutative law for 1

 5 0 by (**) with a 5 0.

[This is what was to be shown.]

7. Hint: Suppose 1 and 19 are elements of B both of 
which are identities for ·. Then for every a [ B, by the 
identity law for ·, a?1 5 a and a?19 5 a. It follows that 
a?1 5 a?19, and thus a1a?1 5 a1a?19, and so forth.

8. Proof: Suppose B is a Boolean algebra and a 
and b are any elements of B. We first prove that 
(a?b)1 (a1b) 5 1.

a?b1 (a1b) 5 ((a?b)?a)1 ((a?b)?b) 
 by the commutative law for 1 5 ((b?a)?a)?(a?(b?b)) 
 by the distributive law of1over ? 5 ((b1a)1a)?(a1 (b1b)) 
 by the commutative and associative laws for 1 5 (b1 (a1a))?(a1 (b1b)) 
 by the associative and commutative laws for 1 5 (b1 (a1a))?(a11) 
 by the commutative and complement laws for 1 5 (b11)?1 by the universal bound laws for 1 5 1?1 by the universal bound law for 1 5 1 by the identity law for ?.

Next we prove that (a?b)?(a1b) 5 0.

(a?b)?(a1b) 5 ((a?b)?a)1 ((a?b)?b) 
 by the distributive law of?over 1

 5 ((b?a)?a)1 (a?(b?b)) 
 by the commutative and associative laws for ? 5 (b?(a?a))1 (a?0) 
 by the associative and complement laws for ? 5 (b?0)10 
 by the complement and universal bound laws for ? 5 010 by the universal bound law for ? 5 0  by the identity law for 1.

Because both (a?b)1 (a1b) 5 1 and (a?b)?(a1b) 5 0, 
it follows, by the uniqueness of the complement law, that 
a?b 5 a1b.

10.  Hint: One way to prove the statement is to use the result 
of exercise 3. Some stages in the proof are the following:

 y 5 (y1x)?y 5 Á 5 (x?y)1 (z?y) 5 Á

 5 z?(x1y) 5 Á 5 z.

11. a.  (i) Because S has only two distinct elements, 0 and 
1, we only need to check that 011 5 110. This is 
true because both sums equal 1.

(v) Partial answer: Show that for all a, b, and c in B, 
a1 (b?c) 5 (a1b)?(a1b). 
 01 (0?0) 5 010 5 0 and (010)?(010)

 5 0?0 5 0 [a 5 b 5 c 5 0]
 01 (0?1) 5 010 5 0 and (010)?(011)

5 0?1 5 0 [a 5 b 5 0, c 5 1]
 01 (1?0) 5 010 5 0 and (011)?(010)

5 1?0 5 0 [a 5 c 5 0, b 5 1]
 01 (1?1) 5 011 5 1 and (011)?(011)

5 1?1 5 1 [a 5 0, b 5 c 5 1]
b. Hint: Verify that 01x 5 x and that 1?x 5 x for 

every x [ S.

12. Proof: Suppose a is any element of a Boolean algebra B.

 a11 5 (a11)?1 because 1 is an identity for ?

 5 (a11)?(a1a) by the complement law for 1

 5 a11?a by the distributive law for 1 over ?

 5 a1a?1 by the commutative law for ?

 5 a1a because 1 is an identity for ?

 5 1 by the complement law for 1.

13.  Start of proof: Suppose a and b are any elements of a 
Boolean algebra B.

a?b1a 5 a?b1a?1 because 1 is an identity for ·

15.  For part (1), show that both sides of the equation equal 
a. For part (2), show that both sides of the equation 
equal a?(b1c).

16.  The sentence is not a statement because it is both true 
and false. If the sentence were true, then because it 
declares itself to be false, the sentence would be false. 
Therefore, the sentence is not true. On the other hand, 
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if the sentence were false, then it would be false that 
“This sentence is false,” and so the sentence would be 
true. Consequently, the sentence is false. It follows that 
the sentence is both true and false.

17.  This sentence is a statement because it is true. Recall that 
the only way for an if-then statement to be false is for 
the hypothesis to be true and the conclusion false. In this 
case the hypothesis is not true. So regardless of what the 
conclusion states, the sentence is true. (This is an example 
of a statement that is vacuously true, or true by default.)

20.  This sentence is not a statement because it is both 
true and false. If the sentence is true, then, by defini-
tion of an or statement, either the sentence is false or 
111 5 3. But 111 Þ 3, and so the sentence is false. 
On the other hand, if the sentence is false, then (by 
DeMorgan’s law) both of the following must be true: 
“This sentence is false” and “111 5 3.” But it is not 
true that 111 5 3. So it is impossible for the sentence 
to be false and hence the sentence is true. Consequently, 
the sentence is both true and false.

23.  Hint: Suppose that apart from statement (ii), all of 
Nixon’s other assertions about Watergate are evenly 
split between true and false.

24.  No. Suppose there exists a computer program P that has 
as output a list of all computer programs that do not list 
themselves in their output. If P lists itself as output, then 
it would be on the output list of P, which consists of all 
computer programs that do not list themselves in their 
output. Hence P would not list itself as output. But if P 
does not list itself as output, then P would be a member 
of the list of all computer programs that do not list them-
selves in their output, and this list is exactly the output 
of P. Hence P would list itself as output. This analysis 
shows that the assumption of the existence of such a pro-
gram P is contradictory, and so no such program exists.

28.  Hint: Show that any algorithm that solves the printing 
problem can be adapted to produce an algorithm that 
solves the halting problem. 

Section 7.1
1. a.  domain of f 5 {1, 3, 5}, co-domain of 

f 5 {s, t, u, v}
b. f (1) 5 v, f (3) 5 s, f (5) 5 v
c. range of f 5 {s, v}
d. yes, no
e. inverse image of s 5 {3}, inverse image of u 5 [, 

inverse image of v 5 {1, 5}
f. {(1, v), (3, s), (5, v)} 

3. a.  True. The definition of function says that for any 
input there is one and only one output, so if two 
inputs are equal, their outputs must also be equal.

c. True. The definition of function does not prohibit 
this occurrence.

4. a.  There are four functions from X to Y as shown below. 

a

b

X Y

u

a

b

X Y

u

a

b

X Y

u

a

b

X Y

u

5. a. IZ (e) 5 e

b. IZ _b jk
i + 5 b jk

i

6. a.  The sequence is given by the function  
f : Znonneg S R defined by the rule

f (n) 5
(21)n

2n11
 for each nonnegative integer n.

7. a.  F ({1, 3, 4}) 5 1 [because {1, 3, 4} has an odd number 
of elements]

c. F ({2, 3}) 5 0 [because {2, 3} has an even number of 
elements]

8. a. F (0) 5 (03 12?014) mod 5 5 4 mod 5 5 4
b. F (1) 5 (13 12?114) mod 5 5 7 mod 5 5 2

9. a. S  (1) 5 1 b.  S  (15) 5 11315115 5 24
c. S  (17) 5 1117 5 18

10. a. T  (1) 5 {1} b.  T  (15) 5 {1, 3, 5, 15}
c. T  (17) 5 {1, 17}

11. a. F (4, 4) 5 (2?411, 3?422) 5 (9, 10)
b. F  (2, 1) 5 (2?211, 3?122) 5 (5, 1)

12. a.  G   (4, 4) 5 ((2?411) mod 5, (3?422) mod 5) 5  
(9 mod 5, 10 mod 5) 5 (4, 0)

b. G   (2, 1) 5 ((2?211) mod 5, (3?122) mod 5) 5 
(5 mod 5, 1 mod 5) 5 (0, 1)

13. x f (x) g(x)

0 42 mod 5 5 1 (02 13?011) mod 5 5 1

1 52 mod 5 5 0 (12 13?111) mod 5 5 0

2 62 mod 5 5 1 (22 13?211) mod 5 5 1

3 72 mod 5 5 4 (32 13?311) mod 5 5 4

4 82 mod 5 5 4 (42 13?411) mod 5 5 4
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The table shows that f (x) 5 g(x) for every x in J5. Thus, 
by definition of equality of functions, f 5 g.

15. F?G and G?F are equal because for every real number x,

(F?G)(x) 5 F(x)?G  (x) by definition of F?G

5 G  (x)?F(x) by the commutative law for 
multiplication of real numbers

5 (G?F   )(x) by definition of G?F.

17. a. 23 5 8 c.  41 5 4

18. a. log3 81 5 4 because 34 5 81

c. log3 _ 1
27+ 5 23 because 323 5

1
27

19.  Let b be any positive real number with b Þ 1. Since 
b1 5 b, then logb  b 5 1 by definition of logarithm. 

21.  Proof: Suppose b and u are any positive real numbers 

with b Þ 1. [We must show that logb _ 

1
u

 

+ 5 2logb 
(u).] 

Let v 5  logb _ 

1
u

 

+. By definition of logarithm, bv 5 1
u. 

Multiplying both sides by u and dividing by bv 
gives u 5 b2v, and thus, by definition of logarithm, 
2v 5 logb 

(u). When both sides of this equation are 
multiplied by 21, the result is v 5 2logb(u). Therefore, 
logb _ 

1
u

 

+ 5 2 logb 
(u) because both expressions equal v. 

[This is what was to be shown.]

22.  Hint: Use a proof by contradiction. Suppose log3 7 is 
rational. Then  log3 

7 5
a
b for some integers a and b with 

b Þ 0.

Apply the definition of logarithm to rewrite  log3 
7 5

a
b 

in exponential form.

23.  Suppose b and y are positive real numbers with  
logb y 5 3.

By definition of logarithm, this implies that b3 5 y. 
Then

y 5 b3 5
1
1
b3

5
1

_  

1
b  

+3
5 S1

bD23

.

Thus, by definition of logarithm (with base 1yb), 
log1yb(y) 5 23.

25. a. p1(2, y) 5 2, p1(5, x) 5 5, range of p1 5 {2, 3, 5}

26. a.  mod(67, 10) 5 7 and div(67, 10) 5 6 since 
67 5 10?617.

27. f  (aba) 5 0 [because there are no b
,
s to the left

of the left{most a in aba]

f  (bbab) 5 2  [because there are two b
,
s to the left

of the left{most a in bbab]

f  (b) 5 0 [because the string b contains no a,s]

range of f 5 Znonneg

28. a.  E   (0110) 5 000111111000 and  
D   (111111000111) 5 1101

29. a. H (10101, 00011) 5 3

30. a. 

(1, 1)
(1, 0)
(0, 1)
(0, 0)

1

0

32. a.  f (1, 1, 1) 5 (4?113?112?1) mod 2 
         5 9 mod 2 5 1

f (0, 0, 1) 5 (4?013?012?1) mod 2 
         5 2 mod 2 5 0

33.  If g were well defined, then g (1y2) 5 g(2y4) be-
cause 1y2 5 2y4. However, g (1y2) 5 122 5 21 
and g (2y4) 5 224 5 22. Since 21 Þ 22, 
g (1y2) Þ g (2y4). Thus g is not well defined.

35.  Student B is correct. If R were well defined, then R  (3) 
would have a uniquely determined value. However, on 
the one hand, R  (3) 5 2 because (3?2) mod 5 5 1, and, 
on the other hand, R  (3) 5 7 because (3?7) mod 5 5 1. 
Hence R  (3) does not have a uniquely determined value, 
and so R is not well defined.

38. a.  
a

b

c

r
s
t
u
v
w

b. f (A) 5 {v}, f (X) 5 {t, v},  f 21(C) 5 {c},    
 f 21(D) 5 {a, b}, f 21(E) 5 [,  f 21(Y) 5

{a, b, c} 5 X

40.  Partial answer: (i) y [ F(A) or y [ F(B) 
(ii) some (iii) A ø B (iv) F(A ø B)

41.  The statement is true. Proof: Let F be a function from 
X to Y, and suppose A # X, B # X, and A # B. Let 
y [ F (A). [We must show that y [ F  (B).] By definition 
of image of a set, y 5 F (x) for some x [ A. Thus since 
A # B, x [ B, and so y 5 F  (x) for some x [ B. Hence 
y [ F  (B) [as was to be shown].

43.  The statement is false. Counterexample: Let 
X 5 {1, 2, 3}, let Y 5 {a, b}, and define a function F: 
X S Y by the arrow diagram shown below.

1
2
3

a

b

F
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Let A 5 {1, 2} and B 5 {1, 3}. Then F (A) 5
{a, b} 5 F (B), and so F (A) ù F (B) 5 {a, b}. 
But F (A ù B) 5 F ({1}) 5 {a} Þ {a, b}. And so 
F (A) ù F (B) Ü F (A ù B).

(This is just one of many possible counterexamples.)

45.  The statement is true. Proof: Let F be a function from 
a set X to a set Y, and suppose C # Y, D # Y, and 
C # D. [We must show that F21(C) # F21(D).] Suppose 
x [ F 21(C). Then F(x) [ C. Since C # D, F (x) [ D 
also. Hence, by definition of inverse image, x [ F21(D). 
[So F 21(C) # F 21(D).]

46.  Hint: x [ F 21(C ø D) 3 F  (x) [ C ø D 3 F (x) [ C 
or F (x) [ D

51. a.  f(15) 5 8  [because 1, 2, 4, 7, 8, 11, 13, and 14 have 
no common factors with 15 other than 61]

b. f(2) 5 1  [because the only positive integer less 
than or equal to 2 having no common 
factors with 2 other than 61 is 1]

c. f(5) 5 4  [because 1, 2, 3, and 4 have no common 
factors with 5 other than 61]

52.  Proof: Let p be any prime number and n any integer 
with n $ 1. There are pn21 positive integers less than 
or equal to pn that have a common factor other than 61 
with pn—namely, p, 2p, 3p, Á , (pn21)p. Hence, there 
are pn 2pn21 positive integers less than or equal to pn 
that do not have a common factor with pn except for 61.

53. Hint: Use the result of exercise 52 with p 5 2. 

Section 7.2
1. The second statement is the contrapositive of the first.

2. a. most

3. Hint: One counterexample is given and explained 
below. Give a different counterexample and accompany 
it with an explanation. Counterexample: Consider the 
function defined by the following arrow diagram:

a

b

u

f

Observe that a is sent to exactly one element of Y, 
namely, u, and b is also sent to exactly one element of 
Y, namely, u also. So it is true that every element of X is 
sent to exactly one element of Y. But f is not one-to-one 
because f (a) 5 f (b) whereas a Þ b. [Note that to say, 
“Every element of X is sent to exactly one element of Y” is 
just another way of saying that in the arrow diagram for 

the function there is only one arrow coming out of each 
element of X. But this statement is part of the definition of 
any function, not just of a one-to-one function.]

4. Hint: The statement is true.

5. Hint: One of the incorrect ways is (b).

6. a.  f is not one-to-one because f (1) 5 4 5 f (9) and 
1 Þ 9. f is not onto because f (x) Þ 3 for any x in X.

b. g is one-to-one because g (1) Þ g (5), g (1) Þ g (9), 
and g (5) Þ g (9). g is onto because each element 
of Y is the image of some element of X: 3 5 g (5), 
4 5 g (9), and 7 5 g (1).

7. a.  F is not one-to-one because F (c) 5 e 5 F (d)  
and c Þ d. F is onto because each element  
of Y is the image of some element of X: 
e 5 F (c) 5 F (d), f 5 F (a), and g 5 F (b).

9. a. One example of many is the following:

1
2
3

X Y

1
2
3
4

f

10. a. (i)  f is one-to-one. Proof: Suppose f (n1) 5 f (n2) 
for some integers n1 and n2. [We must show that 

n1 5 n2.] By definition of f, 2n1 5 2n2, and divid-
ing both sides by 2 gives n1 5 n2 [as was to be 
shown].

(ii)  f is not onto. Counterexample: Consider 1 [ Z. 
We claim that 1 Þ f (n), for any integer n, 
because if there were an integer n such that 
1 5 f (n), then, by definition of f, 1 5 2n. Divid-
ing both sides by 2 would give n 5 1y2. But 
1y2 is not an integer. Hence 1 Þ f (n) for any 
integer n, and so f is not onto.

b. h is onto. Proof: Suppose m [ 2Z. [We must show 
that there exists an integer such that h of that integer 

equals m.] Since m [ 2Z, m 5 2k for some integer 
k. Then h (k) 5 2k 5 m. Hence there exists an inte-
ger (namely, k) such that h (k) 5 m [as to be shown].

11. Hints: a. (i) g is one-to-one (ii) g is not onto
b. G is onto. Proof: Suppose y is any element of R. 

[We must show that there is an element x in R such 
that G (x) 5 y. What would x be if it exists? Scratch 
work shows that x would have to equal (y15)y4. 
The proof must then show that x has the necessary 
properties.] Let x 5 (y15)y4. Then (1) x [ R, and 
(2) G  (x) 5 G  ((y15)y4) 5 4[(y15)y4]25 5
(y15)25 5 y [as was to be shown].
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13. a. (i)  H is not one-to-one. Counterexample: 
H  (1) 5 1 5 H  (21) but 1 Þ 21.

(ii)  H is not onto. Counterexample: H  (x) Þ 21 for 
any real number x because H  (x) 5 x2  and no 
real numbers have negative squares.

14.  The “proof” claims that f is one-to-one because for 
each integer n there is only one possible value for f (n). 
But to say that for each integer n there is only one pos-
sible value for f (n) is just another way of saying that f 
satisfies one of the conditions necessary for it to be a 
function. To show that f is one-to-one, one must show 
that any integer n has a different function value from 
that of the integer m whenever n Þ m.

15.  f is one-to-one. Proof: Suppose f (x1) 5 f (x2) where x1 
and x2 are nonzero real numbers. [We must show that 

x1 5 x2.] By definition of f,

x1 11

x1
5

x2 11

x2
.

Cross-multiplying gives

x1x2 1x2 5 x1x2 1x1,

and so

x1 5 x2 by subtracting x1x2 from both sides.

[This is what was to be shown.]

16. f is not one-to-one. Counterexample: Note that
x1

x2
1 11

5
x2

x2
2 11

1 x1x
2
2 1x1 5 x2x

2
1 1x2

1 x1x
2
2 2x2x

2
1 5 x2 2x1

1 x1x2(x2 2x1) 5 x2 2x1

1 x1 5 x2  or  x1x2 5 1.

Thus for a counterexample take any x1 and x2 with 
x1 Þ x2 but x1x2 5 1. For instance, take x1 5 2 
and x2 5 1y2. Then f (x1) 5 f (2) 5 2y5 and 
f (x2) 5 f (1y2) 5 2y5, but 2 Þ 1y2.

19. a.  Note that because 417302072
7 > 59614581.7 and 

41730207227?59614581 5 5, H(417302072) 5

417302072 mod 7 5 5. But position 5 is already 
occupied, so the next position is checked. It is free, 
and thus the record is placed in position 6.

20.  Recall that :x; 5 that unique integer n such that 
n # x , n11.
a. Floor is not one-to-one. Counterexample:  

Floor(0) 5 0 5 Floor(1y2) but 0 Þ 1y2.
b. Floor is onto. Proof: Suppose m [ Z. [We must 

show that there exists a real number y such that 

Floor (y) 5 m.] Let y 5 m. Then Floor(y) 5 Floor(m)

5 m since m is an integer. (Actually, Floor takes 
the value m for all real numbers in the interval 
m # x , m11.) Hence there exists a real number y 
such that Floor(y) 5 m [as was to be shown].

21. a.  L is not one-to-one. Counterexample: L (0) 5 L (1) 5 1 
but 1 Þ 0.

b. L is onto. Proof: Suppose n is a nonnegative integer. 
[We must show that there exists a string s in S such 

that L (s) 5 n.] Let

s 5 5l(the null string) if n 5 0

00 Á 0 if n . 0.

Then L (s) 5 the length of s 5 n [as was to be 
shown].

23. a.  F is not one-to-one. Let A 5 {a} and B 5 {b}. 
Then F (A) 5 F (B) 5 1 but A Þ B.

24. b.  N is not onto. The number 21 is in Z but N(s) Þ 21 
for any string s in S because no string has a negative 
number of a’s.

26.  S is not one-to-one. Counterexample: S (6) 5 11

21316 5 12 and S (11) 5 1111 5 12. So 
S (6) 5 S (11) but 6 Þ 11.

S is not onto. Counterexample: In order for there to be 
a positive integer n such that S (n) 5 5, n would have to 
be less than 5. But S (1) 5 1, S (2) 5 3, S (3) 5 4, and 
S (4) 5 7. Hence there is no positive integer n such that 
S (n) 5 5.

27. Hint: a.  T is one-to-one. b.  T is not onto.

28. a.  G is one-to-one. Proof: Suppose (x1, y1) and  
(x2, y2) are any elements of R 3  R such that 
G (x1, y1) 5 G (x2, y2). [We must show that 
(x1, y1) 5 (x2, y2).] Then, by definition of G, 
(2y1, 2x1) 5 (2y2, 2x2), and, by definition of 
ordered pair,

2y1 5 2y2 and 2x1 5 2x2.

Dividing both sides of the equation on the left by 
2 and both sides of the equation on the right by 21 
gives that

y1 5 y2 and x1 5 x2,

and so, by definition of ordered pair, (x1, y1) 5  
(x2, y2) [as was to be shown].

b. G is onto. Proof: Suppose (u, v) is any element of  
R 3 R. [We must show that there is an element 

(x, y) in R 3 R such that G (x, y) 5 (u, v).] Let 
(x, y) 5 (2v, uy2). Then (1) (x, y) [ R 3 R and (2) 
G  (x, y) 5 (2y, 2x) 5 (2(uy2), 2(2v)) 5 (u, v)  
[as was to be shown].

(+)+* 
n  0’s
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30. a.  Hint: Use properties of rational numbers from 
Section 4.3 and facts about rational and irrational 
numbers from Sections 4.7 and 4.8.

b. Hint: Show that Ï3 is not the image of any ordered 
pair in Q 3 Q.

31. a.  Hint: F is one-to-one. Use the unique factorization 
of integers theorem in the proof.

32. a.  Let x 5 log8 
27 and y 5 log2 

3. [The question is: Is 
x 5 y?] By definition of logarithm, both of these 
equations can be written in exponential form as

8x 5 27 and 2y 5 3.

Now 8 5 23. So

8x 5 (23)x 5 23x.

Also 27 5 33 and 3 5 2y. So

27 5 33 5 (2y)3 5 23y.

Hence, since 8x 5 27,

23x 5 23y.

By (7.2.5), then,

3x 5 3y,

and so

x 5 y.

But x 5 log8 27 and y 5 log2 3, and so log8 27 5 y 5

log2 3 and the answer to the question is yes.

33.  Proof: Suppose that b, x, and y are any positive real 

numbers such that b Þ 1. Let u 5 logb (x) and v 5

logb (y). By definition of logarithm, bu 5 x and bv 5 y. 

By substitution, xy 5
bu

bv 5 bu2v [by (7.2.3) and the fact 

that b2v 5 1
bv]. Translating xy 5 bu2v into logarithmic 

form gives  logb  

_  

x
y

  

+ 5 u2v, and so, by substitution, 

 logb  

_  

x
y

  

+ 5 logb 
(x)2 logb 

(y) [as was to be shown].

35.  Start of Proof: Suppose a, b, and x are any [particular 
but arbitrarily chosen] real numbers such that b  
and x are positive and b Þ 1. [We must show that  

logb  (x
a) 5 a logb  x.] Let

r 5 logb 
(xa) and s 5 logb   

x.

36.  No. Counterexample: Define f: R S R and g: R S R 
as follows: f (x) 5 x and g(x) 5 2x for every real num-
ber x. Then f and g are both one-to-one [because for all 

real numbers x1 and x2, if f (x1) 5 f (x2) then x1 5 x2, and 

if g(x1) 5 g(x2) then 2x1 5 2x2, so x1 5 x2 in this case as 

well]. But f1g is not one-to-one [because f1g satis-

fies the equation ( f1g)(x) 5 x1 (2x) 5 0 for every real 

number x, and so, for instance, ( f1g)(1) 5 ( f1g)(2) but 

1 Þ 2].

38.  Yes. Proof: Let f be a one-to-one function from R to R, 
and let c be any nonzero real number. Suppose  
(c?f ) (x1) 5 (c?f ) (x2). [We must show that x1 5 x2.] It 
follows by definition of (c?f ) that c?( f (x1)) 5 c?( f (x2)). 
Since c Þ 0, we may divide both sides of the equation 
by c to obtain f (x1) 5 f (x2). And since f is one-to-one, 
this implies that x1 5 x2 [as was to be shown].

40. a.  Hint: The assumption that F is one-to-one is needed 
in the proof that F 21(F (A)) # A. If F (r) [ F (A), 
the definition of image of a set implies that there is 
an element x in A such that F (r) 5 F (x).

b. Hint: The assumption that F is one-to-one is needed 
in the proof that F (A1) ù F (A2) #  F (A1 ù A2). If 
u [ F (A1) and u [ F (A2), then the definition of im-
age of a set implies that there are elements x1 in A1 
and x2 in A2 such that F (x1) 5 u and F (x2) 5 u and, 
thus, that F (x1) 5 F (x2).

42.  

s
t
u

F –1

a
b
c
d
e

44.  The function is not a one-to-one correspondence be-
cause it is not onto.

45.  The answer to exercise 10(b) shows that h is onto. To 
show that h is one-to-one, suppose h(n1) 5 h(n2). By 
definition of h, this implies that 2n1 5 2n2. Dividing 
both sides by 2 gives n1 5 n2. Hence h is one-to-one, 
and so h is a one-to-one correspondence.

Given any even integer m, if m 5 h(n), then by defini-
tion of h, m 5 2n, and so n 5 my2. Thus

h21(m) 5
m

2
 for every m [ 2Z.

46.  The function g is not a one-to-one correspondence 
because it is not onto. For instance, if m 5 2, it is im-
possible to find an integer n such that g (n) 5 m. (This 
is because if g (n) 5 m, then 4n25 5 2, which implies 
that n 5 7y4. Thus the only number n with the property 
that g (n) 5 m is 7y4. But 7y4 is not an integer.)

47.  The answer to exercise 11b shows that G is onto. 
In addition, G is one-to-one. To prove this, sup-
pose G  (x1) 5 G  (x2) for some x1 and x2 in R. 
[We must show that x1 5 x2.] By definition of G, 
4x1 25 5 4x2 25. Add 5 to both sides of this equa-
tion and divide both sides by 4 to obtain x1 5 x2 [as 

was to be shown]. We claim that G21(y) 5 (y15)y4 
for each y in R. By definition of inverse function, 
this is true if, and only if, G  ((y15)y4) 5 y. But 
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G  ((y15)y4) 5 4((y15)/4)25 5 (y15)25 5 y, and 
so it is the case that G 

21(y) 5 (y15)y4 for each y in R.

50.  The function L is not a one-to-one correspondence 
because it is not one-to-one.

52.  The answer to exercise 15 shows that f is one-to-one, 
and if the co-domain is taken to be the set of all 
real numbers not equal to 1, then f is also onto. The 
reason is that given any real number y Þ 1, if we take 
x 5 1

y 2 1, then x is a real number and

f (x) 5 f S 1

y21D 5

1

y21
11

1

y21

5
11 (y21)

1
5 y.

Thus f 
21(y) 5 1

y 2 1 for each real number y Þ 1.

53.  The answer to exercise 16 in Appendix B shows that 
f is not one-to-one. Therefore, it is not a one-to-one 
correspondence.

57.  Hint: Let a function F be given and suppose the 
domain of F is represented as a one-dimensional array 
a[1], a[2], Á , a[n]. Introduce a variable answer whose 
initial value is “one-to-one.” The main part of the body 
of the algorithm could be written as follows:

while (i # n21 and answer 5 “one-to-one”)
j :5 i11
while ( j # n and answer 5 “one-to-one”)

if (F(a[i]) 5 F(a[ j]) and a[i] Þ a[ j])
then answer :5 “not one-to-one”
j :5 j11

end while
i :5 i11

end while

What can you say if execution reaches this point?

58.  Hint: Let a function F be given and suppose the 
domain and co-domain of F are represented by the 
one-dimensional arrays a[1], a[2], Á , a[n] and b[1], 
b[2], Á , b[m], respectively. Introduce a variable 
answer whose initial value is “onto.” For each  
b[i] from i 5 1 to m, make a search through a[1], 
a[2], Á , a[n] to check whether b[i] 5 F(a[ j]) for 
some a[ j]. Introduce a Boolean variable to indicate 
whether a search has been successful. (Set the vari-
able equal to 0 before the start of each search, and 
let it have the value 1 if the search is successful.) 
At the end of each search, check the value of the 
Boolean variable. If it is 0, then F is not onto. If all 
searches are successful, then F is onto. 

Section 7.3
1. g + f  is defined as follows:

(g + f )(1) 5 g ( f (1)) 5 g (5) 5 1

(g + f )(3) 5 g ( f (3)) 5 g (3) 5 5

(g + f )(5) 5 g ( f (5)) 5 g (1) 5 3. 

f + g is defined as follows:

( f + g)(1) 5 f (g(1)) 5 f (3) 5 3

( f + g)(3) 5 f (g(3)) 5 f (5) 5 1

( f + g)(5) 5 f (g(5)) 5 f (1) 5 5.

Then g + f Þ f + g because, for example, (g + f )
(1) Þ (f + g)(1). 

3. (G + F)(x) 5 G(F(x)) 5 G(x3) 5 x3 21 for every real 
number x.

(F + G)(x) 5 F(G(x)) 5 F(x21) 5 (x21)3 for every 
real number x.

G + F Þ F + G because, for instance, (G + F)(2) 5
23 21 5 7, whereas (F + G)(2) 5 (221)3 5 1.

6. (G + F)(0) 5 G(F(0)) 5 G(7?0) 5 G(0) 
      5 0 mod 5 5 0

(G + F )(1) 5 G(F(1)) 5 G(7?1) 5 G(7) 
     5 7 mod 5 5 2

(G + F)(2) 5 G(F(2)) 5 G(7?2) 5 G(14) 
      5 14 mod 5 5 4

(G + F)(3) 5 G(F(3)) 5 G(7?3) 5 G(21) 
      5 21 mod 5 5 1

(G + F)(4) 5 G(F(4)) 5 G(7?4) 5 G(28) 
      5 28 mod 5 5 3

7. a. Partial answer:

(L + M)(12) 5 L(M(12)) 5 L(12 mod 5) 5 L(2)

5 22 5 4

(M + L)(12) 5 M(L(12)) 5 M(122) 5 M(144)

5 144 mod 5 5 4

8. a.  (T + L)(abaa) 5 T(L(abaa)) 5 T(4) 
        5 4 mod 3 5 1

9. a.  (G + F)(2) 5 G(F(2)) 5 G(22y3) 5 G(4/3) 5
:4y3; 5 1

10. a. (G + F)(8) 5 G(F(8)) 5 G(16) 5 :16y2; 5 8
(F + G)(8) 5 F(G(8)) 5 F(:8/2;) 5 F(4) 5 8
(G + F)(3) 5 G(F(3)) 5 G(6) 5 :6/2; 5 3
(F + G)(3) 5 F(G(3)) 5 F(:3/2;) 5 F(1) 5 2

b. G + F Þ F + G because (G + F)(3) 5 (F + G)(3)5 2 
and 3 Þ 2.

12. (F21 + F)(x) 5 F 21(F(x)) 5 F 21(3x12)

5
(3x 1 2) 2 2

3 5
3x
3 5 x 5 IR(x)
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for every x in R. Hence F 21 + F 5 IR by definition of 
equality of functions.

(F + F 21)(y) 5 F(F 21(y)) 5 FSy22

3 D
5 3Sy22

3 D12 5 (y22)12

5 y 5 IR(y)

for every y in R. Hence F + F 21 5 IR by definition of 
equality of functions.

15. a.  By definition of logarithm with base b, for each real 
number x, logb (b

x) is the exponent to which b must 
be raised to obtain bx. But this exponent is just x. So 
logb (b

x) 5 x.

16.  Hint: Suppose f is any function from a set X to a set Y, 
and show that for every x in X, (IY + f )(x) 5 f (x).

18. a. sk 5 sm

19. The answer is no. 

Counterexample: Define f and g by the arrow diagrams 
below.

X

a

b

Z

x

y

Y

1

2

3

f g

Then g + f  is one-to-one but g is not one-to-one. (This 
is one counterexample among many. Can you construct 
a different one?)

21.  Hint  : Suppose f  : X S Y and g  : Y S Z are func-
tions and g + f  is one-to-one. Given x1 and x2 in X, if 
f (x1) 5 f (x2) then (g + f )(x1) 5 (g + f )(x2). (Why?) Then 
use the fact that g + f  is one-to-one.

22.  Hint  : Suppose f  : X S Y and g  : Y S Z are functions 
and g + f  is onto. Given z [ Z, there is an element x in 
X such that (g + f )(x) 5 z. (Why?) If y 5 f (x), what can 
you deduce about g(y)?

24.  True. Proof: Suppose X is any set and f, g, and h are 
functions from X to X such that h is one-to-one and 
h + f 5 h + g. [We must show that for every x in X, 

f (x) 5 g(x).] Suppose x is any element in X. Because 
h + f 5 h + g, we have that (h + f )(x) 5 (h + g)(x) by 
definition of equality of functions. Then, by definition 
of composition of functions, h ( f (x)) 5 h (g(x)). And 
since h is one-to-one, this implies that f (x) 5 g(x) [as 
was to be shown].

26. 
X Z

ua
b
c

XZ

u a
b
c

Z X

u a
b
c

Z Y

u x
y
z

g–1 Y X

x
y
z

a
b
c

f –1

 f –1  g–1

g f (g f )–1

The functions (g + f )21 and f 21 + g21 are equal.

29.  Hints: (1) Theorems 7.3.3 and 7.3.4 taken together insure 
that g + f  is one-to-one and onto. (2) Use the inverse 
function property: F 21(b) 5 a 3 F(a) 5 b, for every a 
in the domain of F and every b in the domain of F 21. 

Section 7.4
1. The student should have replied that for A to have the 

same cardinality as B means that there is a function 
from A to B that is one-to-one and onto. A set cannot 
have the property of being onto or one-to-one another 
set; only a function can have these properties.

2. Define a function f : Z1 S S as follows: For every posi-
tive integer k, f (k) 5 k2.

f is one-to-one: [We must show that for all k1 and 
k2 [ Z1, if f (k1) 5 f (k2) then k1 5 k2.] Suppose k1 and k2 
are positive integers and f (k1) 5 f (k2). By definition of 
f, (k1)

2 5 (k2)
2, so k1 5 6k2. But k1 and k2 are positive. 

Hence k1 5 k2.

f is onto: [We must show that for each n [ S, there  
exists k [ Z1 such that n 5 f (k).] Suppose n [ S. By 
definition of S, n 5 k2 for some positive integer k. Then 
by definition of f, n 5 f (k).

Since there is a one-to-one, onto function (namely, f ) 
from Z1 to S, the two sets have the same cardinality.

3. Define f : Z S 3Z by the rule f (n) 5 3n for each  
integer n.

The function f is one-to-one because for any integers n1 
and n2, if f (n1) 5 f (n2) then 3n1 5 3n2 and so n1 5 n2. 

94193_AppB_ptg01.indd   78 12/11/18   6:42 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A-79  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

Also f is onto because if m is any element in 3Z, then  
m 5 3k for some integer k. Then f (k) 5 3k 5 m by defi-
nition of f. Thus, since there is a function f : Z S 3Z that 
is one-to-one and onto, Z has the same cardinality as 3Z.

6. Hint: If m [ 2Z, show that J(m) 5 J(m11) 5 m.

7. b. For each positive integer n, F(n) 5 (21)n :n2;.
8. It was shown in Example 7.4.2 that Z is countably 

infinite, which means that Z1 has the same cardinal-
ity as Z. By exercise 3, Z has the same cardinality as 
3Z. It follows by the transitive property of cardinality 
(Theorem 7.4.1 (c)) that Z1 has the same cardinality as 
3Z. Thus 3Z is countably infinite [by definition of count-
ably infinite], and hence 3Z is countable [by definition of 
countable].

10.  Proof: Define f : S S U by the rule f (x) 5 2x for each 
real number x in S. Then f is one-to-one by the same 
argument as in exercise 10a of Section 7.2 with R in 
place of Z. Furthermore, f is onto because if y is any 
element in U, then 0 , y , 2 and so 0 , yy2 , 1. Con-
sequently, yy2 [ S and f (yy2) 5 2(yy2) 5 y. Hence f is 
a one-to-one correspondence, and so S and U have the 
same cardinality.

11.  Hint: Define h  : S S V as follows: h(x) 5 3x12, for 
every x [ S.

13.  

y = tan x –
2( )

0.5 x

y

1

It is clear from the graph that f is one-to-one (since it is 
increasing) and that the image of f is all of R (since the 
lines x 5 0 and x 5 1 are vertical asymptotes). Thus S 
and R have the same cardinality.

16.  In Example 7.4.4 it was shown that there is a one-to-one 
correspondence from Z1 to Q1. This implies that the 
positive rational numbers can be written as an infinite 
sequence: r1, r2, r3, r4, Á . Now the set Q of all rational 
numbers consists of the numbers in this sequence 
together with 0 and the negative rational numbers: 

2r1, 2r2, 2r3, 2r4, Á . 

Let r0 5 0. Then the elements of the set of all rational 
numbers can be “counted” as follows:

r0, r1, 2r1, r2, 2r2, r3, 2r3, r4, 2r4, Á .

In other words, we can define a one-to-one correspon-
dence as follows: for each integer n $ 1,

G(n) 5 5rny2 if n is even

2r(n21)y2 if n is odd

Therefore, Q is countably infinite and hence countable.

17.  Hint: See the hints for exercises 18 and 19 in Section 4.3.

18. Hint: No.

19.  Hint: Suppose r and s are real numbers with 

s . r . 0. Let n be an integer such that n .
Ï2
s 2 r, 

and let m 5 : nr

Ï2;11. Show that m .
nr

Ï2
$ m21, 

and use the fact that s 5 r1 (s2 r) to conclude that 

r ,
Ï2m

n , s.

22.  Hint: Use the unique factorization of integers theorem 
(Theorem 4.4.5) and Theorem 7.4.3.

23. a.  Define a function G : Znonneg S Znonneg 3 Znonneg  
as follows: Let G(0) 5 (0, 0), and then follow 
the arrows in the diagram, letting each succes-
sive ordered pair of integers be the value of G for 
the next successive integer. Thus, for instance, 
G(1) 5 (1, 0), G(2) 5 (0, 1), G(3) 5 (2, 0), 
G(4) 5 (1, 1), G(5) 5 (0, 2), G(6) 5 (3, 0), 
G(7) 5 (2, 1), G(8) 5 (1, 2), and so forth.

b. Hint: Observe that if the top ordered pair of any given 
diagonal is (k, 0), the entire diagonal (moving from top 
to bottom) consists of (k, 0), (k21, 1), (k22, 2), Á , 
(2, k22), (1, k21), (0, k). Thus for every ordered pair 
(m, n) within any given diagonal, the value of m1n is 
constant, and as you move down the ordered pairs in 
the diagonal, starting at the top, the value of the second 
element of the pair keeps increasing by 1.

25.  Hint: There are at least two different approaches 
to this problem. One is to use the method dis-
cussed in Section 4.3. Another is to suppose that 
1.999999 Á , 2 and derive a contradiction. (Show 
that the difference between 2 and 1.999999 Á can be 
made smaller than any given positive number.)

26.  Proof: Let A be an infinite set. Construct a countably 
infinite subset a1, a2, a3, Á of A, by letting a1 be any ele-
ment of A, letting a2 be any element of A other than a1, 
letting a3 be any element of A other than a1 or a2, and so 
forth. This process never stops (and hence a1, a2, a3, Á
is an infinite sequence) because A is an infinite set. More 
formally,
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1. Let a1 be any element of A.

2.  For each integer n ± 2, let an be any element of  
A2{a1, a2, a3, Á , an21}. Such an element exists, for 
otherwise A2{a1, a2, a3, Á , an21} would be empty 
and A would be finite.

27.  Proof: Suppose A is any countably infinite set, B is any 
set, and g : A S B is onto. Since A is countably infinite, 
there is a one-to-one correspondence f : Z1 S A. Then, 
in particular, f is onto, and so by Theorem 7.3.4, g + f  
is an onto function from Z1 to B. Define a function h : 
B S Z1 as follows: Suppose x is any element of B. Since 
g + f  is onto, {m [ Z1 u(g + f ) (m) 5 x} Þ [. Thus, by 
the well-ordering principle for the integers, this set has 
a least element. In other words, there is a least positive 
integer n with (g + f )(n) 5 x. Let h(x) be this integer.

We claim that h is a one-to-one. Suppose h (x1) 5  
h (x2) 5 n. By definition of h, n is the least positive inte-
ger with (g + f )(n) 5 x1. Moreover, by definition of h, n 
is the least positive integer with (g + f  )(n) 5 x2. Hence 
x1 5 (g + f )(n) 5 x2.

Thus h is a one-to-one correspondence between B and a 
subset S of positive integers (the range of h). Since any 
subset of a countable set is countable (Theorem 7.4.3), 
S is countable, and so there is a one-to-one correspon-
dence between B and a countable set. It follows from 
the transitive property of cardinality that B is countable.

29.  Hint: Suppose A and B are any two countably infinite 
sets. Then there are one-to-one correspondences  
f : Z1 S A and g: Z1 S B.

Case 1 (A ù B 5 [): In this case define h : Z1 S A ø B 
as follows: For every integer n $ 1,

h(n) 5 5f (ny2) if n is even

g((n11)y2) if n is odd.

Show that h is one-to-one and onto.

Case 2 (A ù B Ó [): In this case let C 5 B2A. Then 
A ø B 5 A ø C and A ù C 5 [. If C is countably 
infinite, use the result of case 1 to complete the proof. 
If C is finite, use the result of exercise 28 to complete 
the proof.

30.  Hint: Use proof by contradiction and the fact that the 
set of all real numbers is uncountable.

31.  Hint: Consider the following cases: (1) A and B 
are both finite, (2) at least one of A or B is infinite 
and A ù B 5 [, (3) at least one of A or B is in-
finite and A ù B Þ [. In case 3 use the fact that 
A ø B 5 (A2B) ø (B2A) ø (A ù B) and that the sets 
(A2B), (B2A), and (A ù B) are mutually disjoint.

32.  Hint: Use the one-to-one correspondence F : Z1 S Z of 
Example 7.4.2 to define a function G : Z1 3 Z1 S  Z 3 Z  

by the formula G (m, n) 5 (F(m), F(n)). Show that G is a 
one-to-one correspondence, and use the result of exer-
cise 22 and the transitive property of cardinality.

34.  Hint for Solution 1: Define a function f : 3(S) S T as 
follows: For each subset A of S, let f (A) 5 xA, the char-
acteristic function of A, where  
xA : S S {0, 1} is defined by the rule

xA(x) 5 51 if x [ A

0 if x Ó A for every x [ S.

Show that f is one-to-one (for all subsets A1 and A2 in 
S, if xA1

5 xA2
 then A1 5 A2) and that f is onto (given 

any function g : S S {0, 1}, there is a subset A of S such 
that g 5 xA).

Hint for Solution 2: Define H : T S 3(S) by letting 
H  ( f ) 5 {x [ S  u   f (x) 5 1}. Show that H is a one-to-one 
correspondence.

35.  Partial proof (by contradiction): Suppose not. Suppose 
there is a one-to-one, onto function f  : S S 3(S). Let

A 5 {x [ S  u   x Ó f (x)}.

Then A [ 3(S) and since f is onto, there exists z [ S such 
that A 5 f (z). [Now derive a contradiction!]

37.  Hint: Since A and B are countable, their elements can 
be listed as

A: a1, a2, a3, Á and B: b1, b2, b3, Á

Represent the elements of A 3 B in a grid:

(a1, b1) (a1, b2) (a1, b3)  Á
(a2, b1) (a2, b2) (a2, b3)  Á
(a3, b1) (a3, b2) (a3, b3)  Á

o o o

Now use a counting method similar to that 
of Example 7.4.4. 

Section 8.1
1. a. 0 E 0 because 020 5 0 5 2?0, so 2 u  (020).

5 E 2 because 522 5 3 and 3 Þ 2k for any integer 
k, so 2 u  (522).
(6, 6) [ E because 626 5 0 5 2?0, so 2 u  (626).
(21, 7) [ E because 2127 5 28 5 2?(24), so 
2 u  (2127). 

2. Hint: To prove a statement of the form p 4 (q ~ r), you 
need to prove both (1) p S (q ~ r) and (2) (q ~ r) S p. 
The easiest way to prove p S (q ~ r) is to prove the 
logically equivalent statement form ( p ` ,q) S r. And 
the easiest way to prove (q ~ r) S p is to prove the  
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logically equivalent statement form (q S  p) ` (r S p). 
In this case, suppose m and n are any integers, and let 
p be “m2n is even,” let q be “both m and n are even,” 
and let r be “both m and n are odd.”

3. a.  10 T 1 because 1021 5 9 5 3?3, and so 
3 u  (1021).
1 T 10 because 1210 5 29 5 3?(23), and so 
3 u  (1210).
2 T 2 because 222 5 0 5 3?0, and so 3 u  (222).
8 T 1 because 821 5 7 Þ 3k, for any integer k. So 
3 u  (821).

b. One possible answer: 3, 6, 9, 23, 26
e. Hint: All integers of the form 3k11, for some 

integer k, are related by T to 1. 

4. a.  Yes, because 15 and 25 are both divisible by 5, 
which is prime.

b. No, because 22 and 27 have no common prime  
factor. 

5. a.  Yes, because both {a, b} and {b, c} have two  
elements. 

6. a. No, because {a} ù {c} 5 [.

7. a.  Yes. 1 R (29) 3 5 u  (12 2 (29)2). But 
12 2 (29)2 5 1281 5 280, and 5 u  (280) because 
280 5 5?(216).

8. a.  Yes, because both abaa and abba have the same 
first two characters ab.

b. No, because the first two characters of aabb are dif-
ferent from the first two characters of bbaa. 

9. a.  Yes, because the sum of the characters in 0121 is 4 
and the sum of the characters in 2200 is also 4.

b. No, because the sum of the characters in 1011 is 3, 
whereas the sum of the characters in 2101 is 4.

10. R 5 {(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}
R21 5 {(4, 3), (5, 3), (6, 3), (5, 4), (6, 4), (6, 5)}

12. a.  No. If F: X S Y is not onto, then F 21 fails to be 
defined on all of Y. In other words, there is an ele-
ment y in Y such that (y, x) Ó F21 for any x [ X. 
Consequently, F 21 does not satisfy property (1) of 
the definition of function.

13. 

0

2

1

3

 15. 

2

3

8

4

5

6

7

16. Hint: See Example 8.1.6.

19. A 3 B 5 {(2, 6), (2, 8), (2, 10), (4, 6), (4, 8), (4, 10)}
R 5 {(2, 6), (2, 8), (2, 10), (4, 8)}
S 5 {(2, 6), (4, 8)}
R ø S 5 R,  R ù S 5 S

21. 

x

y

The shaded region
is R. The dashed
line is not included.

x

y

S consists of the
points on this line.

x

y

The shaded region
is R ø S. The line
y = x is included.

Note that the union of the
“less than” relation, <, and
the “equals” relation, =, is
the “less than or equal to”
relation, #.

The graph of the intersection of R and S is obtained by 
finding the set of all points common to both graphs. 
But there are no points for which both x , y and x 5 y. 
Hence R ù S 5 [ and the graph consists of no points 
at all.

24. a. 574329 Tak Kurosawa
011985 John Schmidt
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Section 8.2
1. R1:

a. 

0

2

1

3

b. R1 is not reflexive: 2 R12.
c. R1 is not symmetric: 2 R1 3 but 3 R1 2.
d. R1 is not transitive: 1 R1 0 and 0 R1 3 but 1 R1 3.

3. R3:
a. 

2 3

0 1

b. R3 is not reflexive: (0, 0) Ó R3.
c. R3 is symmetric. (If R3 were not symmetric, there 

would be elements x and y in A 5 {0, 1, 2, 3} such 
that (x, y) [ R3 but (y, x) Ó R3. It is clear by inspec-
tion that no such elements exist.)

d. R3 is not transitive: (2, 3) [ R3 and  
(3, 2) [ R3 but (2, 2) Ó R3. 

6. R6:
a. 

2 3

0 1

b. R6 is not reflexive: (0, 0) Ó R6.
c. R6 is not symmetric: (0, 1) [ R6 but (1, 0) Ó R6.
d. R6 is transitive. (If R6 were not transitive, there 

would be elements x, y, and z in {0, 1, 2, 3} such 
that (x, y) [ R6 and (y, z) [ R6 and (x, z) Ó R6. It is 
clear by inspection that no such elements exist.) 

9. R is reflexive: R is reflexive 3 for every real number x, 
x R x. By definition of R, this means that for every real 
number x, x $ x. In other words, for every real number 
x, x . x or x 5 x, which is true.

R is not symmetric: R is symmetric 3 for all real num-
bers x and y, if x R y then y R x. By definition of R, this 
means that for all real numbers x and y, if x $ y then 

y $ x. The following counterexample shows that this is 
false. x 5 1 and y 5 0. Then x $ y, but y à x because 
1 $ 0 and 0 à 1.

R is transitive: R is transitive 3 for all real numbers 
x, y, and z, if x R y and y R z then x R z. By definition 
of R, this means that for all real numbers x, y, and z, if 
x $ y and y $ z then x $ z. This is true by definition 
of $ and the transitive property of order for the real 
numbers. (See Appendix A, T18.)

11.  D is reflexive: For D to be reflexive means that for ev-
ery real number x, x D x. By definition of D, this means 
that for every real number x, xx 5 x2 $ 0, which is true.

D is symmetric: For D to be symmetric means that for 
all real numbers x and y, if x D y then y D x. By defini-
tion of D, this means that for all real numbers x and y, 
if xy $ 0 then yx $ 0, which is true by the commutative 
law of multiplication.

D is not transitive: For D to be transitive means that 
for all real numbers x, y, and z, if x D y and y D z then 
x D z. By definition of D, this means that for all real 
numbers x, y, and z, if xy $ 0 and yz $ 0 then xz $ 0. 
This is false because there exist real numbers x, y, and 
z such that xy $ 0 and yz $ 0 but xz à 0. As a coun-
terexample, let x 5 1, y 5 0, and z 5 21. Then x D y 
and y D z because 1?0 $ 0 and 0?(21) $ 0. But x D z 
because 1?(21) à 0.

12.  E is reflexive: [We must show that for every integer m, m 

E m.] Suppose m is any integer. Since m2m 5 0 and 
4 u  0, we have that 4 u  (m2m). Consequently, m E m by 
definition of E.

E is symmetric: [We must show that for all integers m 
and n, if m E n then n E m.] Suppose m and n are any 
integers such that m E n. By definition of E, this means 
that 4 u  (m2n), and so, by definition of divisibility, 
m2n 5 4r for some integer r. Now n2m 5 2(m2n). 
Hence, by substitution, n2m 5 2(4r) 5 4(2r). It fol-
lows that 4 u  (n2m) by definition of divisibility (since 
2r is an integer), and thus n E m by definition of E.

E is transitive: [We must show that for all integers m, n, 
and p if m E n and n E p then m E p.] Suppose m, n, and p 
are any integers such that m E n and n E p. By defini-
tion of E this means that 4 u  (m2n) and 4 u  (n2p), 
and so, by definition of divisibility, m2n 5 4r for 
some integer r and n2p 5 4s for some integer s. Now 
m2p 5 (m2n)1 (n2p). Hence, by substitution, 
m2p 5 4r14s 5 4(r1 s). It follows that 4 u  (m2p) by 
definition of divisibility (since r1 s is an integer), and 
thus m E p by definition of E.

15.  D is reflexive: [We must show that for every positive inte-
ger m, m D m.] Suppose m is any positive integer. Since 
m 5 m?1, by definition of divisibility m u  m. Hence  
m D m by definition of D.
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D is not symmetric: For D to be symmetric would 
mean that for all positive integers m and n, if m D n 
then n D m. By definition of divisibility, this would 
mean that for all positive integers m and n, if m u  n then 
n u  m. A counterexample shows that this is false. Let 
m 5 2 and n 5 4. Then m un because 2 u  4 but n u  m 
because 4 u  2.

D is transitive: To prove transitivity of D, we must 
show that for all positive integers m, n, and p, if m D n 
and n D p then m D p. By definition of D, this means 
that for all positive integers m, n, and p, if m u  n and 
n u  p then m u  p. But this is true by Theorem 4.4.3 (the 
transitivity of divisibility).

18. Hint: Q is reflexive, symmetric, and transitive.

20.  E is reflexive: E is reflexive 3 for every subset A of 
X, A E A. By definition of E, this means that for every 
subset A of X, A has the same number of elements as A, 
which is true.

E is symmetric: E is symmetric 3 for all subsets A 
and B of X, if A E B then B E A. By definition of E, this 
means that if A has the same number of elements as B, 
then B has the same number of elements as A, which is 
true.

E is transitive: E is transitive 3 for all subsets A, B, and 
C of X, if A E B and B E C then A E C. By definition of E, 
this means that for all subsets, A, B, and C of X, if A has 
the same number of elements as B and B has the number 
of elements as C, then A has the same number of elements 
as C, which is true.

23.  S is reflexive: S is reflexive 3 for every subset A of 
X, A S A. By definition of S, this means that for every 
subset A of X, A # A. This is true because every set is a 
subset of itself.

S is not symmetric: S is symmetric 3 for all subsets A 
and B of X, if A S B then B S A. By definition of S, this 
means that for all subsets A and B of X, if A # B then 
B # A. This is false because X Þ [ and so there is an 
element, say a, in X. As a counterexample, take A 5 [ 
and B 5 {a}. Then A # B but B Ü A.

S is transitive: S is transitive 3 for all subsets A, B, 
and C of X, if A S B and B S C, then A S C. By defini-
tion of S, this means that for all subsets A, B, and C of 
X, if A # B and B # C then A # C, which is true by the 
transitive property of subsets (Theorem 6.2.1 (3)).

25.  R is reflexive: Suppose s is any string in A. Then s R s 
because s has the same first two characters as s.

R is symmetric: Suppose s and t are any strings in A 
such that s R t. By definition of R, s has the same first 
two characters as t. It follows that t has the same first 
two characters as s, and so t R s.

R is transitive: Suppose s, t, and u are any strings in A 
such that s R t and t R u. By definition of R, s has the 
same first two characters as t and t has the same first 
two characters as u. It follows that s has the same two 
characters as u, and so s R u.

27.  I is reflexive: [We must show that for every statement p,  
p I p.] Suppose p is a statement. The only way a condi-
tional statement can be false is for its hypothesis to be 
true and its conclusion false. Consider the statement 
p S p. Both the hypothesis and the conclusion have the 
same truth value. Thus it is impossible for p S p to be 
false, and so p S p must be true.

I is not symmetric: I is symmetric 3 for all statements 
p and q, if p I q then q I p. By definition of I, this means 
that for all statements p and q, if p S q then q S p. 
But this is false: there are statements p and q such that 
p S q is true and q S p is false. For instance, let p 
be “10 is divisible by 4” and let q be “10 is divisible by 
2.” Then p S q is “If 10 is divisible by 4, then 10 is 
divisible by 2.” This is true because its hypothesis, p, 
is false. On the other hand, q S p is “If 10 is divisible 
by 2, then 10 is divisible by 4.” This is false because its 
hypothesis, q, is true and its conclusion, p, is false.

I is transitive: [We must show that for all statements p, 
q, and r, if p I q and q I r then p I r.] Suppose p, q, and r 
are statements such that p I q and q I r. By definition of 
I, this means that p S q and q S r are both true. By 
transitivity of if-then (Example 2.3.6 and exercise 20 of 
Section 2.3), we can conclude that p S r is true. Hence, 
by definition of I, p I r.

28.  F is reflexive: F is reflexive 3 for all elements (x, y) in 
R 3 R, (x, y) F (x, y). By definition of F, this means that 
for all elements (x, y) in R 3 R, x 5 x, which is true.

F is symmetric: [We must show that for all elements  
(x1, y1) and (x2, y2) in R 3 R, if (x1, y1) F (x2, y2) then  
(x2, y2) F (x1, y1).] Suppose (x1, y1) and (x2, y2) are elements  
of R 3 R such that (x1, y1) F (x2, y2). By definition of F,  
this means that x1 5 x2. By symmetry of equality,  
x2 5 x1. Thus, by definition of F, (x2, y2) F (x1, y1).

F is transitive: [We must show that for all elements  
(x1, y1), (x2, y2), and (x3, y3) in R 3 R, if (x1, y1) F (x2, y2) 
and (x2, y2) F (x3, y3) then (x1, y1) F (x3, y3).] Suppose  
(x1, y1), (x2, y2), and (x3, y3) are elements of R 3 R 
such that (x1, y1) F (x2, y2) and (x2, y2) F (x3, y3). By 
definition of F, this means that x1 5 x2 and x2 5 x3. By 
transitivity of equality, x1 5 x3. Hence, by definition of 
F, (x1, y1) F (x3, y3).

31.  R is reflexive: R is reflexive 3 for every person p in A, 
p R p. By definition of R, this means that for every per-
son p living in the world today, p lives within 100 miles 
of p, which is true.
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R is symmetric: [We must show that for all people p and 
q in A, if p R q then q R p.] Suppose p and q are people 
in A such that p R q. By definition of R, this means that 
p lives within 100 miles of q. This implies that q lives 
within 100 miles of p. So, by definition of R, q R p.

R is not transitive: R is transitive 3 for all people p, 
q, and r, if p R q and q R r then p R r. This is false. As a 
counterexample, take p to be an inhabitant of Chicago, 
Illinois, q an inhabitant of Kankakee, Illinois, and r an 
inhabitant of Champaign, Illinois. Then p R q because 
Chicago is less than 100 miles from Kankakee, and 
q R r because Kankakee is less than 100 miles from 
Champaign, but p R r because Chicago is not less than 
100 miles from Champaign.

34.  Proof: Suppose R is any reflexive relation on a set A. 
[We must show that R21 is reflexive. To show this, we must 
show that for every x in A, x R21 x.] Given any element x 
in A, since R is reflexive, x R x, and by definition of 
relation, this means that (x, x) [ R. It follows, by 
definition of the inverse of a relation, that (x, x) [ R21, 
and so, by definition of relation, x R21 x [as was to be 
shown].

37. a.  R " S is reflexive: Suppose R and S are reflexive. 
[To show that R ù S is reflexive, we must show that 

5x [ A, (x, x) [ R ù S.]  So suppose x [ A. Since 
R is reflexive, (x, x) [ R, and since S is reflexive, 
(x, x) [ S. Thus, by definition of intersection, 
(x, x) [ R ù S [as was to be shown]. 

38. Hint: The answer is yes.

41.  Yes. To prove this we must show that for all x and y in 
A, if (x, y) [ R ø S then (y, x) [ R ø S. So suppose 
(x, y) is a particular but arbitrarily chosen element in 
R ø S. [We must show that (y, x) [ R ø S.] By definition 
of union, (x, y) [ R or (x, y) [ S. In case (x, y) [ R, 
then (y, x) [ R because R is symmetric, and hence 
(y, x) [ R ø S by definition of union. In case (x, y) [ S 
then (y, x) [ S because S is symmetric, and hence 
(y, x) [ R ø S by definition of union. Thus, in both 
cases, (y, x) [ R ø S [as was to be shown].

43.  R1 is not irreflexive because (0, 0) [ R1. R1 is not 
asymmetric because (0, 1) [ R1 and (1, 0) [ R1. R1 is 
not intransitive because (0, 1) [ R1 and (1, 0) [ R1 and 
(0, 0) [ R1.

45.  R3 is irreflexive because no element of A is related by R3 
to itself. R3 is not asymmetric because (2, 3) [ R3 and 
(3, 2) [ R3. R3 is intransitive. To see why, observe that 
R3 consists only of (2, 3) and (3, 2). Now (2, 3) [ R3 
and (3, 2) [ R3 but (2, 2) Ó  R3. Also (3, 2) [ R3 and 
(2, 3) [ R3 but (3, 3) Ó R3.

48.  R6 is irreflexive because no element of A is related 
by R6 to itself. R6 is asymmetric because R6 consists 
only of (0, 1) and (0, 2) and neither (1, 0) nor (2, 0) is 
in R6. R6 is not intransitive. Let x 5 y 5 z 5 0. Then 
(x, y) [ R6 and (y, z) [ R6 and (x, z) [ R6.    

51. Rt 5 R ø {(0, 0), (0, 3), (1, 0), (3, 1), (3, 2), (3, 3), 

(0, 2), (1, 2)}

5 {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), 

(1, 3), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)} 

54. Algorithm—Test for Reflexivity

[The input for this algorithm is a binary relation R defined 
on a set A, that is represented as the one-dimensional 
array a[1], a[2],…, a[n]. To test whether R is reflexive, a 
variable called answer is initially set equal to “yes,” and 
each element a[i] of A is examined in turn to see whether 
it is related by R to itself. If any element is not related to 
itself by R, then answer is set equal to “no,” the while loop 
is not repeated, and processing terminates.]

Input:  n [a positive integer], a[1], a[2], Á , a[n]  
[a one-dimensional array representing a set A],  
R [a subset of A 3 A]

Algorithm Body:
i :5 1, answer :5 “yes”
while (answer 5“yes” and i # n)

if (a[i], a[i]) Ó R then answer :5 “no”
i :5 i11

end while
Output: answer [a string] 

Section 8.3
1. a. c R c b.  b R a, c R b, e R d c.  a R c

d. c R c, b R a, c R b, e R d, a R c, c R a

2. a.  R 5 {(0, 0), (0, 2), (2, 0), (2, 2), (1, 1), (3, 3),  
(3, 4), (4, 3), (4, 4)}

3. [0] 5 {0, 4}, [1] 5 {1, 3}, [2] 5 {2}, [3] 5 {1, 3}

There are three distinct equivalence classes:

[0] 5 {0, 4} 5 [4], [1] 5 {1, 3} 5 [3], [2] 5 {2}

5. [1] 5 {1, 5, 9, 13, 17}, [2] 5 {2, 6, 10, 14, 18}, 
[3] 5 {3, 7, 11, 15, 19}, [4] 5 {4, 8, 12, 16, 20}, 
[5] 5 {5, 9, 13, 17, 1} 5 [1]

There are four distinct equivalence classes: [1], [2], [3], [4]

7. {(1, 3), (3, 9)}, {(2, 4), (24, 28), (3, 6)}, {(1, 5)}

8. {[}, {{a}, {b}, {c}}, {{a, b}, {a, c}, {b, c}}, {{a, b, c}}

11. [0] 5 {x [ A u  4 u (x2 20)} 5 {x [ A u   4 u x2}
5 {24, 22, 0, 2, 4} 

[1] 5 {x [ A u  4 u (x2 212)} 5 {x [ A u  4 u (x2 21)}
5 {23, 21, 1, 3}
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13.  {aaaa, aaab, aaba, aabb}, {abaa, abab, abba, abbb}, 
{baaa, baab, baba, babb}, {bbaa, bbab, bbba, bbbb}

15. a. True. 1722 5 15 and 5 u15.

16. a.  [7] 5 [4] 5 [19], [24] 5 [17],  [26] 5 [27]

17. a.  Proof: Suppose that m and n are integers such that 
m ; n (mod 3). [We must show that  m mod 3 5 n mod 

3.] By definition of congruence, 3 u (m2n), and so, by 
definition of divisibility, m2n 5 3a for some integer 
a. Let r 5  m mod 3. Then m 5 3b1 r for some in-
teger b. Since m2n 5 3a, it follows by substitution 
thatm2n 5 (3b1 r)2n 5 3a, or, equivalently,  
n 5 3(b2a)1 r.
Now b2a is an integer and 0 # r , 3. So, by defi-
nition of mod, n mod 3 5 r, which equals m mod 3.
Suppose that m and n are integers such that  
m mod 3 5 n mod 3. [We must show that m ; n 
(mod 3).] Let r 5 m mod 3 5 n mod 3. Then, by 
definition of mod, m 5 3p1 r and n 5 3q1 r 
for some integers p and q. By substitution, 
m2n 5 (3p1 r)2 (3q1 r) 5 3(p2q). Since p2q 
is an integer, it follows that 3 u(m2n), and so, by 
definition of congruence, m ; n (mod 3).

18. a.  One possible answer: Let A 5 {1, 2} and 
B 5 {2, 3}. Then A Þ B, so A and B are distinct. 
But A and B are not disjoint since 2 [ A ù B.

19. a.  (1) Proof: R is reflexive because it is true that for 
each student x at a college, x has the same major (or 
double major) as x.

R is symmetric because it is true that for all students 
x and y at a college, if x has the same major (or 
double major) as y, then y has the same major (or 
double major) as x.

R is transitive because it is true that for all students 
x, y, and z at a college, if x has the same major (or 
double major) as y and y has the same major (or dou-
ble major) as z, then x has the same major (or double 
major) as z. R is an equivalence relation because it is 
reflexive, symmetric, and transitive.

(2) There is one equivalence class for each major 
and double major at the college. Each class consists 
of all students with that major (or double major).

20. (1)  The solution to exercise 12 in Section 8.2 proved 
that E is reflexive, symmetric, and transitive. Thus 
E is an equivalence relation.

(2)  Observe that for any integer a, the equivalence class 
of a is

[a] 5 {x [ Z u  x E a}
by definition of equivalence class

5 {x [ Z u  x2a is divisible by 4}
by definition of E

5 {x [ Z u  x2a 5 4k for some integer k}
by definition of divisibility

5 {x [ Z u  x 5 4k1a for some integer k}

by algebra.

Now when any integer a is divided by 4, the only pos-
sible remainders are 0, 1, 2, and 3 and no integer has 
two distinct remainders when it is divided by 4. Thus 
every integer is contained in exactly one of the follow-
ing four equivalence classes:

{x [ Z u  x 5 4k for some integer k}

{x [ Z u  x 5 4k11 for some integer k}

{x [ Z u  x 5 4k12 for some integer k}

{x [ Z u  x 5 4k13 for some integer k}

21.  Hint: Use facts about even and odd integers from Sec-
tion 4.2 to show that m R n, if, and only if, m and n are 
both even or m and n are both odd, or, in other words, 
if, and only if, both m and n have the same parity. Use 
that result to show that R is an equivalence relation 
with two distinct equivalence classes: the set of all even 
integers and the set of all odd integers.

25.  (1) Proof: A is reflexive because each real number has 
the same absolute value as itself.

A is symmetric because for all real numbers x and y, if 
ux u 5 uy u  then uy u 5 ux u .
A is transitive because for all real numbers x, y, and z, if 
ux u 5 uy u  and uy u 5 uz u  then ux u 5 uz u .
A is an equivalence relation because it is reflexive, sym-
metric, and transitive.

(2) The distinct classes are all sets of the form {x, 2x}, 
where x is a real number.

26.  Hints: (1) D is reflexive, symmetric, and transitive. The 
proofs are very similar to the proofs in exercise 17.

(2) There are two distinct equivalence classes. Note that 
m2 2n2 5 (m2n)(m1n) for all integers m and n. In 
addition, 3 u(m2n) or 3 u(m1n) 3 either m2n 5 3r or 
m1n 5 3r, for some integer r.

28.  (1) Proof: I is reflexive because the difference between 
each real number and itself is 0, which is an integer.

I is symmetric because for all real numbers x and y, if 
x2y is an integer, then y2x 5 (21)(x2y), which is 
also an integer.

I is transitive because for all real numbers x, y, and 
z, if x2y is an integer and y2 z is an integer, then 
x2 z 5 (x2y)1 (y2 z) is the sum of two integers and 
thus is an integer.

I is an equivalence relation because it is reflexive, sym-
metric, and transitive.
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(2) There is one class for each real number x with 
0 # x , 1. The distinct classes are all sets of the form 
{y [ R u  y 5 n1x, for some integer n}, where x is a real 
number such that 0 # x , 1.

29.  (1) Proof: P is reflexive because each ordered pair of 
real numbers has the same first element as itself.

P is symmetric for the following reason: Suppose (w, x) 
and (y, z) are ordered pairs of real numbers such that  
(w, x) P (y, z). Then, by definition of P, w 5 y. Now by 
the symmetric property of equality, this implies that 
y 5 w, and so, by definition of P, (y, z) P (w, x).

P is transitive for the following reason: Suppose (u, v), 
(w, x), and (y, z) are ordered pairs of real numbers such 
that (u, v) P (w, x) and (w, x) P (y, z). Then, by definition 
of P, u 5 w and w 5 y. It follows from the transitive 
property of equality that u 5 y. Hence, by definition of 
P, (u, v) P (y, z).

P is an equivalence relation because it is reflexive, sym-
metric, and transitive.

(2) There is one equivalence class for each real number. 
The distinct equivalence classes are all sets of ordered 
pairs {(x, y) [ R 3 R u  x 5 a}, for each real number 
a. Equivalently, the equivalence classes consist of all 
vertical lines in the Cartesian plane.

32.  Solution: There is one equivalence class for each real 
number t such that 0 # t , p. One line in each class 
goes through the origin, and that line makes an angle 
of t with the positive horizontal axis.

line L

t

Alternatively, there is one equivalence class for every 
possible slope: all real numbers plus “undefined.”

34.  No. If points p, q, and r all lie on a straight line with q 
in the middle, and if p is c units from q and q is c units 
from r, then p is more than c units from r.

36.  Proof: Suppose R is an equivalence relation on a set A 
and a [ A. Because R is an equivalence relation, R is 
reflexive, and because R is reflexive, each element of A 
is related to itself by R. In particular, a R a. Hence, by 
definition of equivalence class, a [ [a].

38.  Proof: Suppose R is an equivalence relation on a set A 
and a, b, and c are elements of A with b R c and c [ [a]. 
Since c [ [a], then c R a by definition of equivalence 

class. Now R is transitive because R is an equivalence 
relation. Thus, since b R c and c R a, then b R a. It fol-
lows that b [ [a] by definition of equivalence class.

40.  Proof: Suppose a, b, and x are in A, a R b, and x [ [a]. 
By definition of equivalence class, x R a. So x R a and  
a R b, and thus, by transitivity, x R b. Hence x [ [b].

41.  Hint: To show that [a] 5 [b], show that [a] # [b] and 
[b] # [a]. To show that [a] # [b], show that for every x 
in A, if x [ [a] then x [ [b].

42. c.  One possible answer: (2, 6), (22, 26), (3, 9),  
(23, 29).

43. a.  Suppose that (a, b), (a9, b9), (c, d), and (c9, d9) are 
any elements of A such that

[(a, b)] 5 [(a9, b9)] and [(c, d)] 5 [(c9, d9)].

By definition of R, 

ab9 5 ba9 (*) and cd9 5 dc9 (**).

We must show that 

[(a, b)]1 [(c, d)] 5 [(a9, b9)]1 [(c9, d9)].

By definition of the addition on A, this equation is 
true if, and only if,

 [(ad1bc, bd)] 5 [(a9d91b9c9, b9d9)].

And, by definition of the relation, this equation is 
true if, and only if,

(ad1bc)b9d9 5 bd(a9d91b9c9).

After multiplying out, this becomes 

adb9d91bcb9d9 5 bda9d91bdb9c9,

and regrouping, turns it into 

(ab9)(dd9)1 (cd9)(bb9) 5 (ba9)(dd9)1 (dc9)(bb9).

Substituting the values from (*) and (**)  shows that 
this last equation is true.

c. Suppose that (a, b) is any element of A. We must 
show that 

[(a, b)]1 [(0, 1)] 5 [(a, b)].

By definition of the addition on A, this equation is 
true if, and only if,

[(a?11b?0, b?1)] 5 [(a, b)].

And this last equation is true because a?11b?0 5 a 
and b?1 5 b.

e. Suppose that (a, b) is any element of A. We must 
show that 

[(a, b)]1 [(2a, b)]

 5 [(2a, b)]1 [(a, b)] 5 [(0, 1)].

By definition of the addition on A, this equation is 
true if, and only if,

[(ab1b(2a), bb)] 5 [(0, 1)],
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or, equivalently,

[(0, bb)] 5 [(0, 1)].

By definition of the relation, this last equation is 
true if, and only if, 0?1 5 bb?0, which is true. 

44. a.  Let (a, b) be any element of Z1 3 Z1. We must 
show that (a, b) R (a, b). By definition of R, this 
relationship holds if, and only if, a1b 5 b1a. But 
this equation is true by the commutative law of ad-
dition for real numbers. Hence R is reflexive.

c. Hint: You will need to show that for any posi-
tive integers a, b, c, and d, if a1d 5 c1b and 
c1 f 5 d1e, then a1 f 5 b1e.

d. One possible answer: (1, 1), (2, 2), (3, 3), (4, 4),  
(5, 5)

g. Observe that for any positive integers a and b, the 
equivalence class of (a, b) consists of all ordered 
pairs in Z1 3 Z1 for which the difference between 
the first and second coordinates equals a2b. Thus 
there is one equivalence class for each integer: 
positive, negative, and zero. Each positive integer n 
corresponds to the class of (n11, 1); each negative 
integer 2n corresponds to the class of (1, n11); 
and zero corresponds to the class (1, 1).

47. c. “Ways and Means” 

Section 8.4
1. a. ZKHUH VKDOO ZH PHHW

b. IN THE CAFETERIA

3. a.  The relation 3 u  (25219) is true because 
25219 5 6 and 3 u  6 (since 6 5 3?2).

b. By definition of congruence modulo n, to show that 
25 ; 19 (mod 3), one must show that 3y(25219). 
This was verified in part (a).

c. To show that 25 5 1913k for some integer k, one 
solves the equation for k and checks that the result 
is an integer. In this case, k 5 (25219)y3 5 2, 
which is an integer. Thus 25 5 1912?3.

d. When 25 is divided by 3, the remainder is 1 be-
cause 25 5 3?811. When 19 is divided by 3, the 
remainder is also 1 because 19 5 3?611. Thus 25 
and 19 have the same remainder when divided by 3.

e. By definition, 25 mod 3 is the remainder obtained 
when 25 is divided by 3, and 19 mod 3 is the 
remainder obtained when 19 is divided by 3. In part 
(d) these two numbers were shown to be equal.

6. Hints: (1) Use the quotient-remainder theorem and 
Theorem 8.4.1 to show that given any integer a, a is in 
one of the classes [0], [1], [2], Á  [n21]. (2) Use the 
quotient-remainder theorem (Theorem 4.5.1) to prove 
that if 0 # a , n, 0 # b , n, and a ; b (mod n), then 
a 5 b.

7. a.  128 ; 2 (mod 7) because 12822 5 126 5 7?18, and 
61 ; 5 (mod 7) because 6125 5 56 5 7?8

b. 128161 ; (215) (mod 7) because 128161 5 189, 
215 5 7, and 18927 5 182 5 7?26

c. 128261 ; (225) (mod 7) because 128261 5 67, 
225 5 23, and 672 (23) 5 70 5 7?10

d. 128?61 ; (2?5) (mod 7) because 128?61 5 7808, 
2?5 5 10, and 78082 (10) 5 7798 5 7?1114

e. 1282 ; 22 (mod 7) because 1282 5 16384, 22 5 4, 
and 1638424 5 16380 5 7?2340.

9. a.  Proof: Suppose a, b, c, d, and n are integers with 
n . 1, a ; c (mod n), and b ; d (mod n). By 
Theorem 8.4.1, a2c 5 nr and b2d 5 ns for some 
integers r and s. Then

(a1b)2 (c1d) 5 (a2c)1 (b2d) 5 nr1ns

5 n(r1 s).

Now r1 s is an integer, and so, by Theorem 8.4.1, 
a1b ; (c1d) (mod n).

12. a.  Proof (by mathematical induction): Let the property 
P (n) be the congruence 10n ; 1 (mod 9).

Show that P (0) is true:
When n 5 0, the left-hand side of the congruence is 
100 5 1 and the right-hand side is also 1.

Show that for every integer k $ 0, if P (k) is true, 
then P (k11) is true.

Let k be any integer with k $ 0, and suppose P (k) is 
true. That is, suppose 10k ; 1 (mod 9). (*) [This is 
the inductive hypothesis.] By Theorem 8.4.1, 10 ; 1 
(mod 9) (**) because 1021 5 9 5 9?1. And by 
Theorem 8.4.3, we can multiply the left- and right-
hand sides of (*) and (**) to obtain 10k?10 ; 1?1 
(mod 9), or, equivalently, 10k11 ; 1 (mod 9). Hence 
P (k11) is true.

Alternative Proof: Note that 10 ; 1 (mod 9)  
because 1021 5 9 and 9 u  9. Thus by 
Theorem 8.4.3(4), 10n ; 1n ; 1 (mod 9).

14. 141 mod 55 5 14

142 mod 55 5 196 mod 55 5 31

144 mod 55 5 (142 mod 55)2 mod 55 5

312 mod 55 5 26

148 mod 55 5 (144 mod 55)2 mod 55 5

262 mod 55 5 16

1416 mod 55 5 (148 mod 55)2 mod 55 5

162 mod 55 5 36

15. 427 mod 55 5 1416181211 mod 55
5 {(1416 mod 55)(148 mod 55)(142 mod 55)

(141 mod 55)} mod 55
5 (36?16?31?14) mod 55 5 249984 mod 55 5 9
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16. Note that 307 5 2561321161211.

6751 mod 713 5 675

6752 mod 713 5 18

6754 mod 713 5 182 mod 713 5 324

6758 mod 713 5 3242 mod 713 5 165

67516 mod 713 5 1652 mod 713 5 131

67532 mod 713 5 1312 mod 713 5 49

67564 mod 713 5 492 mod 713 5 262

675128 mod 713 5 2622 mod 713 5 196

675256 mod 713 5 1962 mod 713 5 627

Thus

675307 mod 713 5 6752561321161211 mod 713

5 (675256?67532?67516?6752?6751) mod 713

5 (627?49?131?18?675) mod 713 5 3.

19.  The letters in HELLO translate numercially into 08, 05, 
12, 12, and 15. By Example 8.4.9, the H is encrypted as 
17. To encrypt E, we compute 53 mod 55 5 15. To en-
crypt L, we compute 123 mod 55 5 23. And to encrypt O, 
we compute 153 mod 55 5 20. Thus the ciphertext is 17 
15 23 23 20. (In practice, individual letters of the alphabet 
are grouped together in blocks during encryption so that 
deciphering cannot be accomplished through knowledge 
of frequency patterns of letters or words.)

22.  By Example 8.4.10, the decryption key is 27. Thus the 
residues modulo 55 for 1327, 2027, and 927 must be found 
and then translated into letters of the alphabet.

Because 27 5 16181211, we first perform the fol-
lowing computations:

131 ; 13 (mod 55) 201 ; 20 (mod 55)

132 ; 4 (mod 55) 202 ; 15 (mod 55)

134 ; 42 ; 16 (mod 55) 204 ; 152 ; 5 (mod 55)

138 ; 162 ; 36 (mod 55) 208 ; 252 ;  5 (mod 55)

1316 ; 362 ; 31 (mod 55) 2016 ; 252 ; 20 (mod 55)

91 ; 9 (mod 55)

92 ; 26 (mod 55)

94 ; 262 ; 16 (mod 55)

98 ; 162 ; 36 (mod 55)

916 ; 362 ; 31 (mod 55)

Then we compute

1327 mod 55 5 (31?36?4?13) mod 55 5 7,

2027 mod 55 5 (20?25?15?20) mod 55 5 15,

927 mod 55 5 (31?36?26?9) mod 55 5 4.

Finally, because 7, 15, and 4 translate into letters as G, 
O, and D, we see that the message is GOOD.

25.  Hint: By Theorem 5.2.2, using a in place of r and n21 
in place of n, we have 11a1a2 1 Á 1an21 5

an 2 1
a 2 1 . 

Multiplying both sides by a21 gives

an 21 5 (a21)(11a1a2 1 Á 1an21).

26.  Step 1: 6664 5 765?81544, and so 544 5

66642765?8

Step 2: 765 5 544?11221, and so 221 5 7652544

Step 3: 544 5 221?21102, and so 102 5 5442221?2

Step 4: 221 5 102?2117, and so 17 5 2212102?2

Step 5: 102 5 17?610

Thus gcd(6664, 765) 5 17 (which is the remainder 
obtained just before the final division). Substitute back 
through steps 4–1 to express 17 as a linear combination 
of 6664 and 765:

17 5 2212102?2

5 2212 (5442221?2) 5 221?52544?2

5 (7652544)?52544?2 5 765?52544?7

5 765?52 (66642765?8)?7 5 (27)?6664161?765.

(When you have finished this final step, it is wise to 
verify that you have not made a mistake by checking 
that the final expression really does equal the greatest 
common divisor.)

28.
a 330 156 18 12 6

b 156 18 12 6 0

r 18 12 6 0

q 2 8 1 2

s 1 0 1 28 9

t 0 1 22 17 219

u 0 1 28 9 226

v 1 22 17 219 55

newu 1 28 9 226

newv 22 17 219 55

sa1 tb 330 18 26 6 6

31. a.  Step 1:  210 5 13?1612, and so 2 5 210216?13
Step 2: 13 5 2?611, and so 1 5 1322?6
Step 3: 6 5 1?610, and so gcd(210, 13) 5 1
Substitute back through steps 2 and 1:

1 5 1322?6
5 132 (210216?13)?6 5 (26)?210197?13

Thus 210?(26) ; 1 (mod 13), and so 26 is an 
inverse for 210 modulo 13.

b. Compute 1326 5 7. Note that 7 ; 26 (mod 13)  
because 72 (26) 5 13 5 13?1. Thus, by Theorem 
8.4.3(3), 210?7 ; 210?(26) (mod 13). By part (a), 26 
is an inverse for 210 modulo 13, and so 210?(26) ; 1 
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(mod 13). It follows, by the symmetric and transitive 
properties of congruence, that 210?7 ; 1 (mod 13), 
and so 7 is a positive inverse for 210 modulo 13.

c. This problem can be solved using either the result 
of part (a) or that of part (b). By part (b) 210?7 ; 1 
(mod 13). Multiply both sides by 8 and apply Theo-
rem 8.4.3(3) to obtain 210?56 ; 8 (mod 13). Thus 
a positive solution for 210x ; 8 (mod 13) is x 5 56. 
Note that the least positive residue corresponding 
to this solution is also a solution. By Theorem 8.4.1, 
56 ; 4 (mod 13) because 56 5 13?414, and so, by 
Theorem 8.4.3(3), 210?56 ; 210?4 ;  9 (mod 13). 
This shows that 4 is also a solution for the congru-
ence, and because 0 # 4 , 13, 4 is the least positive 
solution for the congruence.

33.  Hint: If as1bt 5 1 and c 5 au 5 bv, then 
c 5 asc1btc 5 as(bv)1bt(au).

35.  Proof: Let a be any integer and let n be any positive in-
teger, and suppose s and t are any inverses for a modulo 
n. Thus as ; 1 (mod n) and at ;  1 (mod n). Note that 
ast 5 (as)?t 5 (at)?s By Theorem 8.4.3(3), (as)?t ; t 
(mod n)  and (at)?s ;  s (mod n). Thus, by symmetry 
and transitivity of congruence modulo n, s ; t (mod n). 
Because s and t were chosen arbitrarily, we conclude 
that any two inverses for a are congruent modulo n.

36.  The numeric equivalents of H, E, L, and P are 08, 
05, 12, and 16. To encrypt these letters, the following 
quantities must be computed: 843 mod 713, 543 mod 713, 
1243 mod 713, and 1643 mod 713. We use the fact that 
43 5 32181211.

H: 8 ; 8 (mod 713)

82 ; 64 (mod 713)

84 ; 642 ; 531 (mod 713)

88 ; 5312 ; 326 (mod 713)

816 ; 3262 ; 39 (mod 713)

832 ; 392 ; 95 (mod 713)

Thus the ciphertext is

843 mod 713

5 (95?326?64?8) mod 713 5 233.

E: 5 ; 5 (mod 713)

52 ; 25 (mod 713)

54 ; 625 (mod 713)

58 ; 6252 ; 614 (mod 713)

516 ; 6142 ; 532 (mod 713)

532 ; 5322 ; 676 (mod 713)

Thus the ciphertext is

843 mod 713

5 (676?614?25?5) mod 713 5 129.

L: 12 ; 12 (mod 713)

122 ; 144 (mod 713)

124 ; 1442 ; 59 (mod 713)

128 ; 592 ; 629 (mod 713)

1216 ; 6292 ; 639 (mod 713)

1232 ; 6392 ; 485 (mod 713)
Thus the ciphertext is

1243 mod 713
5 (485?629?144?12) mod 713 5 48.

P: 16 ; 16 (mod 713)

162 ; 256 (mod 713)

164 ; 2562 ; 653 (mod 713)

168 ; 6532 ; 35 (mod 713)

1616 ; 352 ; 512 (mod 713)

1632 ; 5122 ; 473 (mod 713)
Thus the ciphertext is

1643 mod 713

5 (473?35?256?16) mod 713 5 128.

Therefore, the encrypted message is 233 129 048 128. 
(Again, note that in practice, individual letters of the 
alphabet are grouped together in blocks during encryp-
tion so that deciphering cannot be accomplished through 
knowledge of frequency patterns of letters or words. We 
kept them separate so that the numbers in the computa-
tions would be smaller and easier to work with.)

39.  By exercise 38, the decryption key, d, is 307. 
Hence, to decrypt the message, the following quan-
tities must be computed: 675307 mod 713, 89307 
mod 713, and 48307 mod 713. We use the fact that 
307 5 2561321161211.

675 ; 675 (mod 713)

6752 ; 18 (mod 713)

6754 ; 182 ; 324 (mod 713)

6758 ; 3242 ; 165 (mod 713)

67516 ; 1652 ; 131 (mod 713)

67532 ; 1312 ; 49 (mod 713)

67564 ; 492 ; 262 (mod 713)

675128 ; 2622 ; 196 (mod 713)

675256 ; 1962 ; 627 (mod 713)

89 ; 89 (mod 713)

892 ; 78 (mod 713)

894 ; 782 ; 380 (mod 713)

898 ; 3802 ; 374 (mod 713)

8916 ; 3742 ; 128 (mod 713)

8932 ; 1282 ; 698 (mod 713)

8964 ; 6982 ; 225 (mod 713)

89128 ; 2252 ; 2 (mod 713)

89256 ; 22 ; 4 (mod 713)
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48 ; 48 (mod 713)

482 ; 165 (mod 713)

484 ; 131 (mod 713)

488 ; 49 (mod 713)

4816 ; 262 (mod 713)

4832 ; 196 (mod 713)

4864 ; 627 (mod 713)

48128 ; 6272 ; 266 (mod 713)

48256 ; 2662 ; 169 (mod 713)
Thus the decryption for 675 is

675307 mod 713 5 (6752561321161211) mod 713

5 (627?49?131?18?675) mod 713 5 3,

which corresponds to the letter C.

The decryption for 89 is

89307 mod  713 5 (892561321161211) mod  713

5 (4?698?128?78?89) mod  713 5 15,

which corresponds to the letter O.

The decryption for 48 is

48307 mod 713 5 (482561321161211) mod 713

5 (169?196?262?165?48) mod 713 5 12,

which corresponds to the letter L.

Thus the decrypted message is COOL.

41. a.  Hint: For the inductive step, assume p uq1q2
Á qs11 

and let a 5 q1q2
Áqs. Then p uaqs11, and either 

p 5 qs11 or Euclid’s lemma and the inductive  
hypothesis can be applied.

42. a.  When a 5 15 and p 5 7, ap21 5 156 5

11390625 ; 1 (mod 7) because 113906252

1 5 7?1627232. 

Section 8.5
1. a. 

0

3

1

2

R1 is not antisymmetric: 1 R1 3
and 3 R1 1 and 1 Þ 3.

b. 

0

3

1

2

R2 is antisymmetric: There are
no cases where a R b and
b R a and a Þ b.

2. R is not antisymmetric. Let x and y be any two distinct 
people of the same age. Then x R y and y R x but x Þ y.

5. R is a partial order relation.

Proof:

R is reflexive: Suppose (a, b) [ R 3 R. Then  
(a, b) R (a, b) because a 5 a and b # b.

R is antisymmetric: Suppose (a, b) and (c, d) are  
ordered pairs of real numbers such that (a, b) R (c, d) 
and (c, d) R (a, b). Then

either a , c or both a 5 c and b # d

and

either c , a or both c 5 a and d # b.

Thus

a # c and c # a

and so

a 5 c.

Consequently,

b # d and d # b

and so

b 5 d.

Hence (a, b) 5 (c, d).

R is transitive: Suppose (a, b), (c, d), and (e, f) are or-
dered pairs of real numbers such that (a, b) R (c, d) and 
(c, d) R (e, f ). Then

either a , c or both a 5 c and b # d

and

either c , e or both c 5 e and d # f .

It follows that one of the following cases must occur.

Case 1 (a , c and c , e): Then by transitivity of ,,  
a , e, and so (a, b) R (e, f) by definition of R.

Case 2 (a , c and c 5 e): Then by substitution, a , e, 
and so (a, b) R (e, f ) by definition of R.

Case 3 (a 5 c and c , e): Then by substitution, a , e, 
and so (a, b) R (e, f) by definition of R.
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Case 4 (a 5 c and c 5 e): Then by definition of R, 
b # d and d # f , and so by transitivity of #, b # f . 
Hence a 5 e and b # f , and so (a, b) R (e, f) by defini-
tion of R.

In each case, (a, b) R (e, f). Therefore, R is transitive. 
Since R is reflexive, antisymmetric, and transitive, R is 
a partial order relation.

8. R is not a partial order relation because R is not anti-
symmetric.

Counterexample: 1 R 3 (because 113 is even) and 3 R 
1 (because 311 is even) but 1 Þ 3.

10.  No. Counterexample: Define relations R and S 
on the set {1, 2} as follows: R 5 {(1, 2)} and S 5
{(2, 1)}. Then both R and S are antisymmetric, but 
R ø S 5 {(1, 2), (2, 1)} is not antisymmetric because 
(1, 2) [ R ø S and (2, 1) [ R ø S but 1 Þ 2.

11. a. True, by (1).
b. False. By (1), bba  bbab.

13.  R1 5 {(a, a), (b, b)}, R2 5 {(a, a), (b, b), (a, b)},  
R3 5 {(a, a), (b, b), (b, a)}

14. a.  R1 5 {(a, a), (b, b), (c, c)}

R2 5 {(a, a), (b, b), (c, c), (b, a)}

R3 5 {(a, a), (b, b), (c, c), (c, a)}

R4 5 {(a, a), (b, b), (c, c), (b, a), (c, a)}

R5 5 {(a, a), (b, b), (c, c), (c, b), (c, a)}

R6 5 {(a, a), (b, b), (c, c), (b, c), (b, a)}

R7 5 {(a, a), (b, b), (c, c), (c, b), (b, a), (c, a)}

R8 5 {(a, a), (b, b), (c, c), (b, c), (b, a), (c, a)}

R9 5 {(a, a), (b, b), (c, c), (b, c)}

R10 5 {(a, a), (b, b), (c, c), (c, b)}

15.  Hint: R is the identity relation on A: x R x for each 
x [ A, and x R y if x Þ y.

16. a. 20

10 154

2 5

1

17. a. {0, 1}

{1}{0}

[

 18. (1, 1)

(1, 0)

(0, 1)

(0, 0)

21. a.  Proof: [We must show that for all a and b in A, a u  b 

or b u  a.] Let a and b be particular but arbitrarily 
chosen elements of A. By definition of A, there are 
nonnegative integers r and s such that a 5 2r and 
b 5 2s. Now either r # s or s , r. If r # s, then

b 5 2s 5 2r?2s2r 5 a?2s2r,

where s2 r $ 0. It follows, by definition of divisibil-
ity, that a u  b. By a similar argument, if s , r, then 
b ua. Hence either a u  b or b u  a [as was to be shown].

b. 
1 2 22 23 24

22.  greatest element: none; least element: 1; maximal ele-
ments: 15, 20; minimal element: 1

24.  greatest element: {0, 1}; least element: [; maximal ele-
ment: {0, 1}; minimal element: [

26.  greatest element: (1, 1); least element: (0, 0); maximal 
element: (1, 1); minimal element: (0, 0)

30. a. No greatest element, no least element
b. Least element is 0, greatest element is 1

31.  R is a total order relation because it is reflexive, anti-
symmetric, and transitive (so it is a partial order) and 
because [b, a, c, d] is a chain that contains every ele-
ment of A: b R c, c R a, and a R d.

34.  Hint: Let R9 be the restriction of R to B and show that 
R9 is reflexive, antisymmetric, and transitive. In each 
case, this follows almost immediately from the fact that 
R is reflexive, antisymmetric, and transitive.

35.  One possible solution: [ # {w} # {w, x} # {w, x, y} #  
{w, x, y, z}

38.  Proof: Suppose A is a partially ordered set with respect 
to a relation . By definition of total order, A is totally 
ordered if, and only if, any two elements of A are com-
parable. By definition of chain, this is true if, and only 
if, A is a chain.

39.  Proof (by mathematical induction): Let A be a set that 
is totally ordered with respect to a relation , and let 
the property P (n) be the sentence “Every subset of A 
with n elements has both a least element and a greatest 
element.”
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Show that P (1) is true:

If A 5 [, then P (1) is true by default. So assume that 
A has at least one element, and suppose S 5 {a1} is a 
subset of A with one element. Because  is reflexive,  
a1  a1. So, by definition of least element and greatest 
element, a1 is both a least element and a greatest ele-
ment of S, and thus the property is true for n 5 1.

Show that for every integer k $ 1, if P (k) is true, then 
P (k11) is true:

Let k be any integer with k $ 1, and suppose that any 
subset of A with k elements has both a least element 
and a greatest element. [Inductive hypothesis.] We must 
show that any subset of A with k11 elements has 
both a least element and a greatest element. If A has 
fewer than k11 elements, then the statement is true by 
default. So assume that A has at least k11 elements and 
that S 5 {a1, a2, Á , ak11} is a subset of A with k11 
elements. By inductive hypothesis, S2{ak11} has both 
a least element s and a greatest element t. Now because 
A is totally ordered, ak11 and s are comparable. If  
ak11  s, then, by transitivity of , ak11 is the least 
element of S; otherwise, s remains the least element of 
S. And if t  ak11, then, by transitivity of , ak11 is the 
greatest element of S; otherwise, t remains the greatest 
element of S. Thus S has both a greatest element and a 
least element [as was to be shown].

40. a.  Proof by contradiction: Suppose not. Suppose A is 
a nonempty, finite set that is partially ordered with 
respect to a relation , and suppose no element of A 
is minimal. Construct a sequence of elements x1, x2, 
x3, … of A as follows:
1. Pick any element of A and call it x1.
2.  For each i 5 2, 3, 4, Á , pick xi to be an element 

of A for which xi  xi21 and xi Þ xi21. [Such an 
element must exist because otherwise xi21 would  
be minimal, and we are supposing that no element 
of A is minimal.] Now xi Þ xj for any i Þ j.  
[For if xi 5 xj, where i , j, then on the one hand,  
xj  xj21 Á  xi11  xi and so xj  xi11. On  
the other hand, since xi 5 xj and xi  xi11, then  
xj  xi11. Hence by antisymmetry, xj 5 xi11, and  
so xi 5 xi11 because xi 5 xj. But this contradicts  
the definition of the sequence x1, x2, x3, Á]  
Thus x1, x2, x3, Á is an infinite sequence of dis-
tinct elements, and consequently {x1, x2, x3, Á}  
is an infinite subset of the finite set A, which is 
impossible. Hence the supposition is false and we 
conclude that any partially ordered subset of a 
finite set has a minimal element. 

42. c d

a b

44. One such total order is 1, 5, 2, 15, 10, 4, 20.

46. One such total order is (0, 0), (1, 0), (0, 1), (1, 1).

50. a. One possible answer: 1, 6, 10, 9, 5, 7, 2, 4, 8, 3

51. b. Critical path: 1, 2, 5, 8, 9

Section 9.1
2. 3y4, 1y2, 1y2

3. {1◆, 2◆, 3◆, 4◆, 5◆, 6◆, 7◆, 8◆, 9◆, 10◆, 1♥, 2♥, 
3♥, 4♥, 5♥, 6♥, 7♥, 8♥, 9♥, 10♥}, probability 5

20y52 > 38.5%

5. {10♣, J♣, Q♣, K♣, A♣, 10◆, J◆, Q◆, K◆, A◆, 10♥, 
J♥, Q♥, K♥, A♥, 10♠, J♠, Q♠, K♠, A♠}, probability 5

20y52 5 5y13 > 38.5%

7. {26, 35, 44, 53, 62}, probability 5 3y8 > 37.5%

9. {11, 12, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 41, 42, 51}, 
probability 5 15y36 5 412

3%

11. a.  {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
b. (i)  {HTT, THT, TTH}, probability 5 3y8 > 37.5%

12. a.  {BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG}
b. (i)  {GBB, BGB, BBG}, probability 5 3y8 5 37.5%

13. a.  {CCC, CCW, CWC, CWW, WCC, WCW, WWC, 
WWW}

b. (i)  {CWW, WCW, WWC}, probability 5 3y8 5
37.5%

14. a. probability 5 3y8 5 37.5%

16. a.  {RRR, RRB, RRY, RBR, RBB, RBY, RYR, RYB, RYY, 
BRR, BRB, BRY, BBR, BBB, BBY, BYR, BYB, BYY, 
YRR, YRB, YRY, YBR, YBB, YBY, YYR, YYB, YYY}

b. {RBY, RYB, YBR, BRY, BYR, YRB}, probability 5  
6y27 5 2y9 > 22.2%

c. {RRB, RBR, BRR, RRY, RYR, YRR, BBR, BRB, RBB, 
BBY, BYB, YBB, YYR, YRY, RYY, YYB, YBY, BYY}, 
probability 5 18y27 5 2y3 5 662

3%

18. a.  {B1B1, B1B2, B1W, B2B1, B2B2, B2W, WB1, WB2, WW}
b. {B1B1, B1B2, B2B1, B2B2}, probability 5 4y9 > 44.4%
c. {B1W, B2W, WB1, WB2}, probability 5 4y9 > 44.4%

21. a. 10  11 12 13  14 15 16 17 18 Á 96 97  98 99

D D D D D
3?4 3?5 3?6 3?32 3?33

The above diagram shows that there are as many 
positive two-digit integers that are multiples of 3 as 
there are integers from 4 to 33 inclusive. By Theo-
rem 9.1.1, there are 332411, or 30, such integers.
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A-93  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

b. There are 9921011 5 90 positive two-digit 
integers in all, and by part (a), 30 of these are 
multiples of 3. So the probability that a randomly 
chosen positive two-digit integer is a multiple of 
3 is 30y90 5 1y3 5 331

3%.
c. Of the integers from 10 through 99 that are mul-

tiples of 4, the smallest is 12 (54?3) and the largest 
is 96 (54?24). Thus there are 242311 5 22 
two-digit integers that are multiples of 4. Hence the 
probability that a randomly chosen two-digit integer 
is a multiple of 4 is 22y90 5 362

3%.

23. c.  Probability 5
m 2 3 1 1

n 5
m 2 2

n

d. Because :39
2 ;5 19, the probability is 39 2 19 1 1

39 5 21
39.

24. a. (i)  If n is even, there are :n2;5
n
2 elements in the 

sub-array.

(ii)  If n is odd, there are :n2;5
n 2 1

2  elements in the 
sub-array.

b. There are n elements in the array, so
(i)  The probability that an element is in the given 

sub-array when n is even is 
n
2

n
5 1

2,

(ii)  The probability that an element is in the given 

sub-array when n is odd is 
n 2 1

2

n
5

n 2 1
2n .

26.  Let k be the 27th element in the array. By Theorem 9.1.1, 
k24211 5 27, and so k 5 4212721 5 68. Thus the 
27th element in the array is A[68].

28.  Let m be the smallest of the integers. By Theorem 9.1.1, 
2792m11 5 56, and so m 5 27925611 5 224. 
Thus the smallest of the integers is 224.

31. 1   2 3 4    5 6 7   8 9 Á 999 1000    1001

D D D D
3?1 3?2 3?3 3?333

Thus there are 333 multiples of 3 between 1 and 1001.

32. a. 
M Tu W Th F Sa Su M Tu W Th F Sa Su Á F Sa Su M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 362 363 364 365

D D D
7?1 7?2 7?52

Sundays occur on the 7th day of the year, the 14th 
day of the year, and in fact on all days that are 
multiples of 7. There are 52 multiples of 7 between 
1 and 365, and so there are 52 Sundays in the year. 

Section 9.2
1. 

There are five ways to complete the series: A, B–A,  
B–B–A, B–B–B–A, and B–B–B–B.

3. Four ways: A–A–A–A, B–A–A–A–A, B–B–A–A–A–A, 
and B–B–B–A–A–A–A

4. Two ways: A–B–A–B–A–B–A and B–A–B–A–B–A–B

6. a. Step 1:
Choose urn.

Step 2:
Choose ball 1.

Step 3:
Choose ball 2.

Start

Urn 1

Urn 2

B1

B2

W

B

W1

W2

B2

W

B1

W

B1

B2

W1

W2

B

W2

B

W1

b. There are 12 equally likely outcomes of the  
experiment.

c. 2y12 5 1y6 5 16 
2
3%  d. 8y12 5 2y3 5 66 

2
3%

8. By the multiplication rule, the answer is 3?2?2 5 12.

9. a.  In going from city A to city B, one may take any of 
the 3 roads. In going from city B to city C, one may 
take any of the 5 roads. So, by the multiplication 
rule, there are 3?5 5 15 ways to travel from city A 
to city C via city B.

b. A round-trip journey can be thought of as a four-
step operation:

Step 1: Go from A to B.

Step 2: Go from B to C.

Step 3: Go from C to B.

Step 4: Go from B to A. 

Since there are 3 ways to perform step 1, 5 ways to 
perform step 2, 5 ways to perform step 3, and  

Start:
A has
won 3

Game 4 Game 5 Game 6 Game 7

A (A wins)
(A wins)

(A wins)
(A wins)

(B wins)

B

A

B

A

B

A

B
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3 ways to perform step 4, by the multiplication rule, 
there are 3?5?5?3 5 225 round-trip routes.

c. In this case the steps for making a round-trip journey 
are the same as in part (b), but since no route segment 
may be repeated, there are only 4 ways to perform 
step 3 and only 2 ways to perform step 4. So, by the 
multiplication rule, there are 3?5?4?2 5 120 round-
trip routes in which no road is traversed twice. 

11. a.  Imagine constructing a bit string of length 8 as an 
eight-step process:

Step 1:  Choose either a 0 or a 1 for the left-most 
position,

Step 2:  Choose either a 0 or a 1 for the next position 
to the right.

o
Step 8:  Choose either a 0 or a 1 for the right-most 

position.

Since there are 2 ways to perform each step, the 
total number of ways to accomplish the entire op-
eration, which is the number of different bit strings 
of length 8, is 2?2?2?2?2?2?2?2 5 28 5 256.

b. Imagine that there are three 0’s in the three left-
most positions, and imagine filling in the remaining 
5 positions as a five-step process, where step i is to 
fill in the (i13)rd position. Since there are 2 ways 
to perform each of the 5 steps, there are 25 ways to 
perform the entire operation. So there are 25, or 32, 
8-bit strings that begin with three 0’s.

12. a.  Think of creating a hexadecimal number that satis-
fies the given requirements as a five-step process.

Step 1:  Choose the left-most hexadecimal 
digits. It can be any of the 9 hexa-
decimal digits from 3 through B.

Steps 2–4:  Choose the three hexadecimal digits 
for the middle three positions. Each 
can be any of the 16 hexadecimal 
digits.

Step 5:  Choose the right-most hexadecimal 
digit. It can be any of the 11 hexa-
decimal digits from 5 through F. 

There are 9 ways to perform step 1, 16 ways to 
perform each of steps 2 through 4, and 11 ways to 
perform step 5. Thus, the total number of specified 
hexadecimal numbers is 9?16?16?16?11 5 405,504. 

13. a.  In each of the four tosses there are two possible 
results: Either a head (H) or a tail (T) is obtained. 
Thus, by the multiplication rule, the number of 
outcomes is 2?2?2?2 5 24 5 16.

b. There are six outcomes with two heads: HHTT, 
HTHT, HTTH, THHT, THTH, TTHH. Thus the 
probability of obtaining exactly two heads is 
6y16 5 3y8.

14. a.  Think of creating license plates that satisfy the given 
conditions as the following seven-step process: In 
steps 1–4 choose the letters to put in positions 1–4, 
and in steps 5–7, choose the digits to put in positions 
5–7. Since there are 26 letters and 10 digits and since 
repetition is allowed, there are 26 ways to perform 
each of steps 1–4 and 10 ways to perform each of 
steps 5–7. Thus the number of license plates is

26?26?26?26?10?10?10 5 456,976,000.

b. In this case there is only one way to perform step 1 
(because the first letter must be an A) and only one 
way to perform step 7 (because the last digit must 
be a 0). Therefore, the number of license plates is 
26?26?26?10?10 5 1,757,600.

d. In this case there are 26 ways to perform step 1,  
25 ways to perform step 2, 24 ways to perform step 
5, and 8 ways to perform step 6, so the number of li-
cense plates is 26?25?24?23?10?9?8 5 258,336,000.

16. a. Two solutions:

(i)  By the multiplication rule, the number of inte-
gers from 10 through 99

5 3the number of
ways to pick
the first digit 43

the number of
ways to pick
the second digit4

5 9?10 5 90

(ii)  By Theorem 9.1.1, the number of integers from 
10 through 99 5 9021011 5 90.

b. Because odd integers end in 1, 3, 5, 7, or 9, the 
number of odd integers from 10 through 99

5 3the number of
ways to pick
the first digit 43

the number of
ways to pick
the second digit4

5 9?5 5 45.

An alternative solution uses the listing method 
shown in the solution for Example 9.1.4.

c. 3the number of integers
with distinct digits 4

5 3the number of
ways to pick
the first digit 43

the number of
ways to pick
the second digit4

5 9?9 5 81

d. 3the number of odd integers
with distinct digits 4

5 3the number of
ways to pick
the second digit43

the number of
ways to pick
the first digit 4

5 5?8 5 40  because the first digit
can’t equal 0, nor can it
equal the second digit

e. 81y90 5 9y10, 40y90 5 4y9
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18. a.  Let step 1 be to choose either the number 2 or one 
of the letters corresponding to the number 2 on the 
keypad, let step 2 be to choose either the number 1 
or one of the letters corresponding to the number 
1 on the keypad, and let steps 3 and 4 be to choose 
either the number 3 or one of the letters correspond-
ing to the number 3 on the keypad. There are 4 ways 
to perform step 1, 3 ways to perform step 2, and  
4 ways to perform each of steps 3 and 4. So by the 
multiplication rule, there are 4?3?4?4 5 192 ways 
to perform the entire operation. Thus there are 192 
different PINs that are keyed the same as 2133. Note 
that on a computer keyboard, these PINs would not 
be keyed the same way.

19. Step 1:
Choose the
secretary.

Step 2:
Choose the
treasurer.

Step 3:
Choose the
president.

Ann

Bob

Dan

Cyd

Dan

Ann

Cyd

Dan

Ann

Cyd

Bob

Bob

Bob

Bob

Cyd

Cyd

Cyd

Cyd

Dan

Dan

Dan

Ann

Ann

Ann

There are 14 different paths from “root” to “leaf” of 
this possibility tree, and so there are 14 ways the of-
ficers can be chosen. Because 14 5 2?7, reordering the 
steps will not make it possible to use the multiplication 
rule alone to solve this problem.

20. a.  The number of ways to perform step 4 is not con-
stant; it depends on how the previous steps were 
performed. For instance, if 3 digits had been chosen 
in steps 1–3, then there would be 1023 5 7 ways 
to perform step 4, but if 3 letters had been chosen in 
steps 1–3, then there would be 10 ways to perform 
step 4.

21. Hint:
a. The answer is 2mn. b. The answer is nm.

22. a.  The answer is 4?4?4 5 43 5 64. Imagine creating 
a function from a 3-element set to a 4-element set 
as a three-step process: Step 1 is to send the first 
element of the 3-element set to an element of the 

4-element set (there are four ways to perform this 
step); step 2 is to send the second element of the 
3-element set to an element of the 4-element set 
(there are also four ways to perform this step); and 
step 3 is to send the third element of the 3-element 
set to an element of the 4-element set (there are four 
ways to perform this step). Thus the entire process 
can be performed in 4?4?4 different ways.

24.  The outer loop is iterated 30 times, and during each 
iteration of the outer loop there are 15 iterations of the 
inner loop. Hence, by the multiplication rule, the total 
number of iterations of the inner loop is 30?15 5 450.

27.  The outer loop is iterated 502511 5 46 times, 
and during each iteration of the outer loop there are 
2021011 5 11 iterations of the inner loop. Hence, by 
the multiplication rule, the total number of iterations of 
the inner loop is 46?11 5 506.

29.  Hint: An efficient solution is to add leading zeros as 
needed to make each number five digits long. For 
instance, write 1 as 00001. Then, instead of choosing 
digits for the positions, choose positions for the digits. 
The answer is 720. 

31. a. There are a11 divisors: 1, p, p2, Á , pa.
b. A divisor is a product of any one of the a11 

numbers listed in part (a) times any one of the b11 
numbers 1, q, q2, Á , qb. So, by the multiplication 
rule, there are (a11)(b11) divisors in all.

32. a.  Since the nine letters of the word ALGORITHM are 
all distinct, there are as many arrangements of these 
letters in a row as there are permutations of a set with 
nine elements: 9! 5 362,880.

b. In this case there are effectively eight symbols to 
be permuted (because AL  may be regarded as a 
single symbol). So the number of arrangements is 
8! 5 40,320.

34.  The same reasoning as in Example 9.2.9 gives an  
answer of 4! 5 24.

35. WX, WY, WZ, XW, XY, XZ, YW, YX, YZ, ZW, ZX, ZY

37. a. P (6, 4) 5
6!

(624)!
5

6?5?4?3?2?1

2?1
5 360

38. a. P (5, 3) 5
5?4?3?2!

2!
5 60

39. a. P (9, 3) 5
9?8?7?6!

6!
5 504

c. P (8, 5) 5
8?7?6?5?4?3!

3!
5 6,720
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41. Proof: Let n be an integer and n $ 2. Then

P (n11, 2)2P (n, 2)

5
(n11)!

[(n11)22]!
2

n!

(n22)!
5

(n11)!

(n21)!
2

n!

(n22)!

5
(n11)?n?(n21)!

(n21)!
2

n?(n21)?(n22)!

(n22)!

5 n2 1n2 (n2 2n) 5 2n 5 2?
n?(n21)!

(n21)!

5 2?
n!

(n21)!
5 2P (n, 1).

This is what was to be proved.

45.  Hint: Let P (n) be the sentence, “There are n! permuta-
tions of a set with n elements.” In the inductive step, as-
sume P  (k) is true, and let X be a set with k11 elements. 
Use a 2-step operation to create a permutation of the 
elements of X, where step 1 is to choose the element to 
write first, and step 2 is to write the remaining elements 
of X in some order.

47. a. 1 2 3
T T T
1 2 3

 1 2 3
T T T
2 1 3

 1 2 3
T T T
3 2 1

1 2 3
T T T
1 3 2

 
1 2 3
T T T
2 3 1

  
1 2 3
T T T
3 1 2

b. 1 2 3
T T T
2 3 1

   1 2 3
T T T
3 1 2

Section 9.3
1. a.  Think of creating a bit string with n bits as an n-

step process where a general step k is to place either 
a 0 or a 1 in the kth position. Since there are two 
ways to do this for each position, by the multiplica-
tion rule, the number of bit strings of length k is 
2k. Now the set of all bit strings consisting of from 
1 through 4 bits can be broken into four disjoint 
subsets:

bit strings
consisting
of 1 bit

bit strings
consisting
of 2 bits

bit strings
consisting
of 3 bits

bit strings
consisting
of 4 bits

There are
2 of these.

There are
22 of these.

There are
24 of these.

There are
23 of these.

Applying the addition rule to the figure shows that 
there are 2122 123 124 5 30 bit strings consisting 
of from one through four bits.

b. By reasoning similar to that of part (a), there are 
25 126 127 128 5 480 bit strings of from five 
through eight bits.

3. a.  The set of integers from 1 through 999 with no re-
peated digit can be broken into three disjoint subsets: 
those from 1 through 9, those from 1 through 99, and 
those from 100 through 999. Now constructing an 
integer from 100 through 999 with no repeated digit 
can be thought of as a three-step process.

Step 1: Choose a digit for the left-most position 
(where there are 9 choices because 0 cannot be 
chosen).

Step 2: Choose a digit for the middle position 
(where there are also 9 choices because the digit in 
the left-most position cannot be reused but 0 can be 
used).

Step 3: Choose a digit for the right-most position 
(where there are 8 choices because neither of the 
other two digits can be reused).

Thus there are 9?9?8 integers from 100 through 
999 with no repeated digit. Similar reasoning 
shows that there are 9?9 integers from 10 through 
99 with no repeated digit. Finally, there are clearly 
9 integers from 1 through 9 with no repeated digit. 
Hence, by the addition rule, the number of inte-
gers from 1 through 999 with no repeated digit is 
919?919?9?8 5 738.

b. 3number of integers from 1 through 999
with at least one repeated digit 4

5 3total number of
integers from
1 through 999 423number of integers 

from 1 through 999
with no repeated digits4

5 9992738 5 261
c. The probability that an integer chosen at random 

has at least one repeated digit is 261y999 > 26.1%.

4. Use the multiplication rule to count the elements in 
each of the three sets containing 1, 2, and 3 letters, re-
spectively. Then, because these sets are disjoint, use the 
addition rule to compute the total number of elements 
in the three sets taken together.

arrangements
of no more
than 1 letter

arrangements

Set of Arrangements (without repetition)
of No More Than 3 Letters of NETWORK

of no more
than 2 letters

arrangements
of no more
than 3 letters

There are
7 of these.

There are
7 6 5 of these.

There are
7 6 of these.

Applying the addition rule to the figure above shows that 
there are 717?617?6?5 5 259 arrangements of three 
letters of the word NETWORK if repetition of letters is 
not permitted.
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6. In this exercise the 26 letters in the alphabet plus the 
10 digits give a total of 36 symbols that can be used on 
a license plate.
a. Imagine constructing a license plate with 4 sym-

bols as a four-step process: step 1 is to fill in the 
first symbol, step 2 is to fill in the second symbol, 
step 3 is to fill in the third symbol, and step 4 is 
to fill in the fourth symbol. Because any one of 
the 36 symbols can be used in each step, by the 
multiplication rule, the number of license plates 
that use four symbols is 364. Similarly, the number 
that use 5 symbols is 365, and the number that use 
six symbols is 366. Thus because license plates 
can have anywhere from 4 to 6 symbols, the total 
number of plates with repeated symbols allowed is

364 1365 1366 5 2,238,928,128.

b. When repetition is not allowed, the number of 
license plates that use four symbols is 36?35?34?33. 
The reason is that in the second step the symbol 
used in the first step cannot be used, so there are 
only 35 choices for the second step. In the third 
step, neither of the symbols used in the first two 
steps can be used, and so there are only 34 choices 
for the third step. And in the fourth step, none of 
the symbols used in the first three steps can be 
used, and so there are only 33 choices for the fourth 
step. Similarly, the number of license plates that use 
5 symbols is 36?35?34?33?32, and the number that 
use six symbols is 36?35?34?33?32?31. Thus the 
total number of license plates is

36?35?34?33136?35?34?33?32
136?35?34?33?32?31 5 1,449,063,000.

c. Consider two sets: the set of plates with repeti-
tion not allowed and the set of plates that have a 
repeated symbol. Note that these two sets have no 
elements in common, and that since every license 
plate either has a repeated symbol or does not have 
a repeated symbol, every license plate considered 
in part (a) is in one of the two sets. In other words, 
the set of all license plates with repetition allowed 
is composed of two disjoint subsets: the set of plates 
with repetition not allowed and the set of plates that 
have a repeated symbol. Thus, by the difference 
rule, the number of license plates with a repeated 
symbol is the difference between the number of 
plates with repetition allowed minus the number of 
plates with repetition not allowed:

2,238,928,12821,449,063,000 5 789,865,128.

d. The probability that a license plate chosen at 
random has at least one repeated symbol is 
789,865,128

2,238,928,128 > 35.3%.  

7. a.  The 26 letters in the alphabet plus the 10 digits plus 
the 14 special characters give a total of 50 symbols 

that can be used. By the multiplication rule, the 
number of passwords with 3, 4, and 5 symbols is 
503, 504, and 505. Since the sets consisting of these 
passwords are disjoint, by the addition rule, the 
number of passwords is

503 1504 1505 5 318,875,000.

8. a.  Hint: One approach is to divide the license plates 
into four groups depending on the number of digits 
and letters they contain. Another approach is to 
consider creating a license plate as a two-step pro-
cess: step 1: either choose one digit or do not choose 
a digit; and step 2: choose 4 or 5 letters.

9. a.  Each column of the table below corresponds to a 
pair of values of i and j for which the inner loop 
will be iterated.

i 1 2 3 4
j 1 1 2 1 2 3 1 2 3 4

1 2 3 4

Since there are 1121314 5 10 columns, the in-
ner loop will be iterated ten times.

11. a.  The answer is the number of permutations of the 
five letters in QUICK, which equals 5! 5 120. 

b. Because QU (in order) is to be considered as a sin-
gle unit, the answer is the number of permutations 
of the four symbols QU , I, C, K. This is 4! 5 24.

c. By part (b), there are 4! arrangements of QU , I, C, 

K. Similarly, there are 4! arrangements of UQ ,  
I, C, K. Therefore, by the addition rule, there are 
4!14! 5 48 arrangements in all. 

13. a. 3the number of ways to place eight people
in a row keeping A and B together 4

5 3the number of ways to arrange 

AB  C D E F G H 4
13the number of ways to arrange 

BA  C D E F G H 4
5 7!17! 5 5,04015,040 5 10,080

b. 3the number of ways to arrange the eight
people in a row keeping A and B apart 4

5 3the total number of ways
to place the eight
people in a row 4

23the number of ways to place
the eight people in a row
keeping A and B together 4

5 8!210,080 5 40,320210,080

5 30,240
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14. the number of variable names

5 3the number of numeric
variable names 413the number of string

variable names 4
5 (26126?36)1 (26126?36) 5 1,924

15. Hint: In exercise 14 note that

26126?36 5 26o
1

k50

36k.

Generalize this idea here. Use Theorem 5.2.3 to evalu-
ate the expression you obtain. 

16. a. 10?9?8?7?6?5?4 5 604,800

b. 3the number of phone numbers 
with at least one repeated digit4

5 3the total number 
of phone numbers4

23the number of phone numbers
with no repeated digits 4

5 107 2604,800 5 9,395,200

c. 
9,395,200

107 > 93.95%

18. a.  Proof: Let A and B be mutually disjoint events 
in a sample space S. By the addition rule, 
N(A ø B) 5 N(A)1N(B). Therefore, by the equally 
likely probability formula,

P (A ø B) 5
N (A ø B)

N  (S)
5

N  (A)1N (B)

N (S)

5
N  (A)

N  (S)
1

N (B)

N (S)
5 P (A)1P (B).

19. Hint: Justify the following answer: 39?38?38.

20. a.  Use strings of five digits to represent integers from 1 
to 100,000 that contain the digit 6 exactly once. For 
example, use 00306 to represent 306. Strings of six 
digits are not needed because 100,000 does not con-
tain a 6. Imagine constructing a five-digit string that 
contains  exactly one 6 as a five-step operation to fill 
in five positions with five digits:     .

Step 1: Choose one of the five positions for the 6. 

Step 2:  Choose a digit for the left-most remaining 
position.

Step 3:  Choose a digit for the next remaining posi-
tion to the right.

Step 4:  Choose a digit for the next remaining posi-
tion to the right.

Step 5:  Choose a digit for the right-most  
position.

1   2    3    4  5

Since there are 5 choices for step 1 (any one of 
the five positions) and 9 choices for each of steps 
2–5 (any digit except 6), by the multiplication 
rule, the number of ways to perform this op-
eration is 5?9?9?9?9 5 32,805. Hence there are 
32,805 integers from 1 to 100,000 that contain 
the digit 6 exactly once.

21. Hint: The answer is 2y3.

23. a.  Let A 5 the set of integers that are multiples of 4 and 
B 5 the set of integers that are multiples of 7. Then 
A ù B 5 the set of integers that are multiples of 28. 

Now N(A) 5 250 since 1 2 3 4 5 6 7 8 Á 999 1000,
D   D       D

4?1    4?2 Á  4?250
or, equivalently, since 1,000 5 4?250.

Also N(B) 5 142 since 1 2 3 4 5 6 7 Á 14 Á 994 995 Á 1000
D       D   D

7?1    7?2 Á 7?142
or, equivalently, since 1,000 5 7?14216.

And N(A ù B) 5 35 since 1 2 3 Á 28 Á 56 Á     980 Á 1000,
D    D             D

28?1 28?2 Á 28?35
or, equivalently, since 1,000 5 28?35120.

So N(A ø B) 5 2501142235 5 357.

25. a. Length 0 : l

Length 1: 0, 1

Length 2: 00, 01, 10, 11

Length 3: 000, 001, 010, 011, 100, 101, 110

Length 4:  0000, 0001, 0010, 0011, 0100, 0101, 0110, 
1000, 1001, 1010, 1011, 1100, 1101

b.  By part (a), d0 5 1, d1 5 2, d2 5 4, d3 5 7, and 
d4 5 13.

c. Let k be an integer with k $ 3. Any string of length 
k that does not contain the bit pattern 111 starts 
either with a 0 or with a 1. If it starts with a 0, this 
can be followed by any string of k21 bits that does 
not contain the pattern 111. There are dk21 of these. 
If the string starts with a 1, then the first two bits 
are 10 or 11. If the first two bits are 10, then these 
can be followed by any string of k22 bits that 
does not contain the pattern 111. There are dk22 of 
these. If the string starts with a 11, then the third bit 
must be 0 (because the string does not contain 111), 
and these three bits can be followed by any string 
of k23 bits that does not contain the pattern 111. 
There are dk23 of these. Therefore, for every integer 
k $ 3, dk 5 dk21 1dk23.

d. By parts (b) and (c), d5 5 d4 1d3 1d2 5 131714
5 24. This is the number of bit strings of length five 
that do not contain the pattern 111.
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26. c. Hint: sk 5 2sk21 12sk22

e. Hint: For every integer n $ 0,

sn 5
Ï312

2Ï3
 (11Ï3)n 1

Ï322

2Ï3
 (12Ï3)n.

28. a.  a3 5 3 (The three permutations that do not move 
more than one place from their “natural” positions 
are 213, 132, and 123.)

29. a. 110010102 5 2123 126 127 5 202 

001110002 5 23 124 125 5 56 

011010112 5 112123 125 126 5 107

111011102 5 2122 123 125 126 127 5 238 

So the answer is 202.56.107.238.
b. The network ID for a Class A network consists of 

8 bits and begins with 0. If all possible combina-
tions of eight 0’s and l’s that start with a 0 were 
allowed, there would be 2 choices (0 or 1) for each 
of the 7 positions from the second through the 
eighth. This would give 27 5 128 possible ID’s. But 
because neither 00000000 nor 01111111 is allowed, 
the total is reduced by 2, so there are 126 possible 
Class A networks.

c. Let w.x.y.z be the dotted decimal form of the IP ad-
dress for a computer in a Class A network. Because 
the network IDs for a Class A network go from 
00000001 (51) through 01111110 (5126), w can be 
any integer from 1 through 126. In addition, each of 
x, y, and z can be any integer from 0 (500000000) 
through 255 (511111111), except that x, y, and z 
cannot all be 0 simultaneously and cannot all be 
255 simultaneously.

d. Twenty-four positions are allocated for the host ID in 
a Class A network. If each could be either 0 or 1,  
there would be 224 5 16,777,216 possible host 
IDs. But neither all 0’s nor all 1’s is allowed, which 
reduces the total by 2. Thus there are 16,777,214 
possible host IDs in a Class A network.

i. Observe that 140 5 1281814 5 100011002, 
which begins with 10. Thus the IP address comes 
from a Class B network. An alternative solution 
uses the result of Example 9.3.5: Network IDs for 
Class B networks range from 128 through 191. 
Thus, since 128 # 140 # 191, the given IP address 
is from a Class B network.

31. a.  There are 12 possible birth months for A, 12 for B, 
12 for C, and 12 for D, so the total is 124 5 20,736.

b. If no two people share the same birth month, there 
are 12 possible birth months for A, 11 for B, 10 for C, 
and 9 for D. Thus the total is 12?11?10?9 5 11,880.

c. If at least two people share the same birth month, the 
total number of ways birth months could be associ-
ated with A, B, C, and D is 20,736211,880 5 8,856.

d. The probability that at least two of the four people 

share the same birth month is 
8,856

20,736 > 42.7%.

e. When there are five people, the probability 
that at least two share the same birth month is 
125 2 12?11?10?9?8

125 > 61.8%, and when there are 
more than five people, the probability is even 
greater. Thus, since the probability for four people 
is less than 50%, the group must contain five or 
more people for the probability to be at least 50% 
that two or more share the same birth month.

32. Hint: Analyze the solution to exercise 31.

33. a.  The number of students who checked at 
least one of the statements is N(H)1N(C)1

N(D)2N(H ù C)2N(H ù D)2N(C ù D)1

N(H ù C ù D) 5 2812611428242

312 5 55.
b. By the difference rule, the number of students who 

checked none of the statements is the total number 
of students minus the number who checked at least 
one statement. This is 100255 5 45. 

d. The number of students who checked #1 and #2 but 
not #3 is N(H ù D)2N(H ù C ù D) 5 822 5 6.

35. Let

M 5 the set of married people in the sample, 

Y 5  the set of people between 20 and 30 in the  
sample, and

F 5 the set of females in the sample.

Then the number of people in the set M ø Y ø F is less 
than or equal to the size of the sample. And so

1,200 $ N(M ø Y ø F)
5 N(M)1N(Y)1N(F)2N(M ù Y)

2N(M ù F)2N(Y ù F)1N(M ù Y ù F)
5 675168216842195246723181165
5 1,226.

This is impossible since 1,200 , 1,226, so the polltaker’s 
figures are inconsistent. They could not have occurred as 
a result of an actual sample survey.

37.  Let A be the set of all positive integers less than 1,000 
that are not multiples of 2, and let B be the set of all 
positive integers less than 1,000 that are not multiples 
of 5. Since the only prime factors of 1,000 are 2 and 5, 
the number of positive integers that have no common 
factors with 1,000 is N(A ù B). Let the universe U be 
the set of all positive integers less than 1,000. Then Ac 
is the set of positive integers less than 1,000 that are 
multiples of 2, Bc is the set of positive integers less than 
1,000 that are multiples of 5, and Ac ù Bc is the set of 
positive integers less than 1,000 that are multiples of 
10. By one of the procedures discussed in Section 9.1 
or 9.2, it is easily found that N(Ac) 5 499, N(Bc) 5 199, 
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and N(Ac ù Bc) 5 99. Thus, by the inclusion/exclusion 
rule,

N(Ac ø Bc) 5 N(Ac)1N(Bc)2N(Ac ù Bc)
5 4991199299 5 599.

But by De Morgan’s law, N(Ac ø Bc) 5 N((A ù B)c),  
and so

N((A ù B)c) 5 599. (*)

Now since (A ù B)c 5 U2 (A ù B), by the difference 
rule we have

N((A ù B)c) 5 N(U)2N(A ù B). (**)

Equating the right-hand sides of (*) and (**) gives 
N(U)2N(A ù B) 5 599. And because N(U) 5 999, we 
conclude that 9992N(A ù B) 5 599, or, equivalently, 
N(A ù B) 5 9992599 5 400. So there are 400 positive 
integers less than 1,000 that have no common factor with 
1,000. 

40.  Hint: Let A and B be the sets of all positive integers less 
than or equal to n that are divisible by p and q, respec-
tively. Then f(n) 5 n2 (N(A ø B)).

42. c.  Hint: If k $ 6, any sequence of k games must begin 
with W, LW, or LLW, where L stands for “lose” and 
W stands for “win.”

43. c.  Hint: Divide the set of all derangements into two 
subsets: one subset consists of all derangements in 
which the number 1 changes places with another 
number, and the other subset consists of all de-
rangements in which the number 1 goes to position 
i Þ 1 but i does not go to position 1. The answer is 
dk 5 (k21)dk21 1 (k21)dk22. Can you justify it?

48.  Hint: Use the associative law for sets from Theorem 
6.2.2 and the generalized distributive law for sets from 
exercise 40, Section 6.2.

49.  Hint: Use the solution method described in Section 5.8. 
The answer is sk 5 2sk21 13sk22 for every integer k $ 4. 

Section 9.4
1. a.  No. For instance, the aces of the four different suits 

could be selected.
b.  Yes. Let x1, x2, x3, x4, x5 be the five cards. Consider 

the function S that sends each card to its suit.

x1

x2

x3

x4

x5

S

S(xi ) = the suit

5 cards (pigeons) 4 suits (pigeonholes)

club

diamond

heart

spade

of xi

By the pigeonhole principle, S is not one-to-one: 
S(xi) 5 S(xj) for some two cards xi and xj. Hence at 
least two cards have the same suit. 

3. Yes. Denote the residents by x1, x2, Á , x500. Consider 
the function B from residents to birthdays that sends 
each resident to his or her birthday:

x1

x2

x3

x500

B

Jan 1

Jan 2

Jan 3

Dec 31

B(xi) = the birthday

500 residents (pigeons) 366 birthdays (pigeonholes)

of xi

By the pigeonhole principle, B is not one-to-one: 
B(xi) 5 B(xj) for some two residents xi and xj. Hence at 
least two residents have the same birthday.

5. a.  Yes. There are only three possible remainders that 
can be obtained when an integer is divided by 3: 0, 
1, and 2. Thus, by the pigeonhole principle, if four 
integers are each divided by 3, then at least two of 
them must have the same remainder.

More formally, call the integers n1, n2, n3, and n4, 
and consider the function R that sends each integer 
to the remainder obtained when that integer is 
divided by 3:

n1

n2

n3

n4

R

R(ni ) = the remainder

4 integers (pigeons) 3 remainders (pigeonholes)

0

1

2
obtained when ni
is divided by 3

By the pigeonhole principle, R is not one-to-one: 
R(ni) 5 R(nj) for some two integers ni and nj. Hence 
at least two integers must have the same remainder.

b. No. For instance, {0, 1, 2} is a set of three integers 
no two of which have the same remainder when 
divided by 3.

7. Hint: Look at Example 9.4.3.

9. a. Yes.

Solution 1: Only six of the numbers from 1 to 12 
are even (namely, 2, 4, 6, 8, 10, 12), so at most six 
even numbers can be chosen from between 1 and 
12 inclusive. Hence if seven numbers are chosen, at 
least one must be odd.
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Solution 2: Partition the set of all integers from 1 
through 12 into six subsets (the pigeonholes), each 
consisting of an odd and an even number: {1, 2},  
{3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}. If seven inte-
gers (the pigeons) are chosen from among 1 through 
12, then, by the pigeonhole principle, at least two 
must be from the same subset. But each subset con-
tains one odd and one even number. Hence at least 
one of the seven numbers is odd.

Solution 3: (a formal version of Solution 2): Let  
S 5 {x1, x2, x3, x4, x5, x6, x7) be a set of seven num-
bers chosen from the set T 5 {1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12), and let P be the following partition of 
T: {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, and {11, 12}. 
Since each element of S lies in exactly one subset of 
the partition, we can define a function F from 5 to P 
by letting F(xi) be the subset that contains xi.

x1

x2

x3

x4

x5

x6

x7

{1, 2}

{3, 4}

{5, 6}

{7, 8}

{9, 10}

{11, 12}

S (pigeons) P (pigeonholes)

F

F(xi ) = the subset
that
contains xi

Since S has 7 elements and P has 6 elements, by the 
pigeonhole principle, F is not one-to-one. Thus two 
distinct numbers of the seven are sent to the same 
subset, which implies that these two numbers are 
the two distinct elements of the subset. Therefore, 
since each pair consists of one odd and one even 
integer, one of the seven numbers is odd.

b. No. For instance, none of the 10 numbers 1, 3, 5, 7, 
9, 11, 13, 15, 17, 19 is even.

10.  Yes. There are n even integers in the set {1, 2, 3, Á , 2n}, 
namely, 2(5 2?1),  4(5 2?2), 6(5 2?3), Á , 2n(5 2?n). 
So the maximum number of even integers that can be 
chosen is n. Thus if n11 integers are chosen, at least one 
of them must be odd.

12.  The answer is 27. There are only 26 black cards in a 
standard 52-card deck, so at most 26 black cards can be 
chosen. Hence if 27 are taken, at least one must be red.

14.  There are 61 integers from 0 through 60. Of these, 31 are 
even (0 5 2?0, 2 5 2?1, 4 5 2?2, Á , 60 5 2?30 ) and 
so 30 are odd. Hence if 32 integers are chosen, at least 
one must be odd, and if 31 integers are chosen, at least 
one must be even.

17.  The answer is 8. (There are only seven possible remain-
ders for division by 7: 0, 1, 2, 3, 4, 5, 6. Hence if 8 are 
chosen, at least two must be the same.)

20. a.  The answer is 20,483 because the possible remain-
ders are 0, 1, 2, Á , 20482.

b. The length of the repeating section of the decimal 
representation of 5y20483 is less than or equal to 
20,482. The reason is that 20,482 is the number of 
nonzero remainders that can be obtained when a 
number is divided by 20,483. Thus, in the long-di-
vision process of dividing 5 by 20,483, either some 
remainder is 0 and the decimal expansion termi-
nates, or only nonzero remainders are obtained and 
at some point within the first 20,482 successive 
divisions, a nonzero remainder is repeated. At that 
point the digits in the developing decimal expansion 
begin to repeat because the sequence of successive 
remainders repeats those previously obtained.

22.  This number is irrational because the decimal expan-
sion neither terminates nor repeats.

24.  Let A be the set of the thirteen chosen numbers, and 
let B be the set of all prime numbers between 1 and 40. 
Note that B 5 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}. 
For each x in A, let F(x) be the smallest prime number 
that divides x. Since A has 13 elements and B has 12 el-
ements, by the pigeonhole principle F is not one-to-one. 
Thus F(x1) 5 F(x2) for some x1 Þ x2 in A. By defini-
tion of F, this means that the smallest prime number 
that divides x1 equals the smallest prime number that 
divides x2. Therefore, two numbers in A—namely, x1 

and x2—have a common divisor greater than 1. [Strictly 
speaking, only integers less than or equal to 20 can divide 
integers less than or equal to 40. So we could have made 
the set B even smaller.]  

25.  Yes. This follows from the generalized pigeonhole prin-
ciple with 30 pigeons, 12 pigeonholes, and k 5 2, using 
the fact that 30 . 2?12.

26.  No. For instance, the birthdays of the 30 people could 
be distributed as follows: three birthdays in each of the 
six months January through June and two birthdays in 
each of the six months July through December.

29.  The answer is x 5 3. There are 18 years from 17 through 
34. Now 40 . 18?2, so by the generalized pigeonhole 
principle, you can be sure that there are at least x 5 3 
students of the same age. However, since 18?3 . 40, 
you cannot be sure of having more than three students 
with the same age. (For instance, three students could be 
each of the ages 17 through 20, and two could be each of 
the ages from 21 through 34.) So x cannot be taken to be 
greater than 3.
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31.  Hint: Use the same type of reasoning as in Exam-
ple 9.4.6.

32.  Hints: (1) The number of subsets of the six integers 
is 26 5 64. (2) Since each integer is less than 13, the 
largest possible sum is 57. (Why? How is this sum 
obtained?)

33.  Hint: The power set of A has 26 5 64 elements, and 
so there are 63 nonempty subsets of A. Let k be the 
smallest number in A. Then the sums over the ele-
ments in the nonempty subsets of A lie in the range 
from k through k110111112113114 5 k160. 
How many numbers are in this range?

35.  Hint: Let X be the set consisting of the given 52 positive 
integers, and let Y be the set containing the following 
elements: {00}, {50}, {01, 99}, {02, 98}, {03, 97}, Á ,  
{48, 52}, {49, 51}. Define a function F from X to Y by the 
rule F(x) 5 the set containing the last two digits of x. 
Use the pigeonhole principle to argue that F is not one-
to-one, and show how the desired conclusion follows.

36.  Hint: Write the 101 integers as x1, x2, x3, Á , x101, and 
represent each xi as ai?2ki where ai is odd and ki . 0. 
Now 1 , xi # 200, and so 1 # ai # 199 for every i. Use 
the fact that there are only 100 odd integers from 1 to 
199 inclusive.

37. b.  Hint: For each k 5 1, 2, Á , n, let ak 5 x1 1
x2 1 Á 1xk. If some ak is divisible by n, then the 
problem is solved: the consecutive subsequence is 
x1, x2, Á , xk. If no ak is divisible by n, then a1, a2, 
a3, Á , an satisfies the hypothesis of part (a). Hence 
aj 2ai is divisible by n for some integers i and j with 
j . i. Write aj 2ai in terms of the xi’s to derive the 
given conclusion.

38.  Hint: Let a1, a2, Á , an211 be any sequence of n2 11 
distinct real numbers, and suppose that this sequence 
contains neither a strictly increasing subsequence of 
length n11 nor a strictly decreasing subsequence of 
length n11. Let S be the set of all ordered pairs of 
integers (i, d), where 1 # i # n and 1 # d # n. For each 
term ak in the sequence, let F(ak) 5 (ik, dk), where ik is 
the length of the longest increasing sequence starting 
at ak, and dk is the length of the longest decreasing se-
quence starting at ak. Suppose that F is one-to-one and 
derive a contradiction. 

Section 9.5
1. a. 2-combinations: {x1, x2}, {x1, x3}, {x2, x3}.

Hence, S3

2D 5 3.

b. Unordered selections: {a, b, c, d}, {a, b, c, e},  
{a, b, d, e}, {a, c, d, e}, {b, c, d, e}.

Hence, S5

4D 5 5.

3. P (7, 2) 5 S7

2D?2!

5. a. S6

0D 5
6!

0!(620)!
5

6!

1.6!
5 1

b. S6

1D 5
6!

0!(621)!
5

6.5!

1.5!
5 6

6. a. the number of committees of 6

5 S15

6 D 5
15!

(1526)!6!

5
15?14

7
?13?12?11?10

5
?9!

9!?6?5?4?3?2
5 5,005

b. 

3
the number of 
committees that
don’t contain A
and B together

4
5 3

the number of 
committees with A
and five others—
none of them B

413
the number of 
committees with B
and five others—
none of them A

4
13 the number of 

committees with
neither A nor B 4

5 S13

5 D1S13

5 D1S13

6 D
5 1,28711,28711,716 5 4,290

Alternative solution:

3the number of committees
that don’t contain 
A and B together 4

5 3the total number
of committees 4

23the number of committees
that contain both A and B 4

5 S15

6 D2S13

4 D
5 5,0052715 5 4,290
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c.  3the number of 
committees with
both A and B 413the number of 

committees with 
neither A nor B 4

5 S13

4 D1S13

6 D 5 71511,716 5 2,431

d.   (i)

3the number of subsets
of three men 
chosen from eight 4?3the number of subsets

of three women
chosen from seven 4

5 S8

3DS7

3D 5 56?35 5 1,960

(ii)  

3the number of 
committees with 
at least one woman4

5 3the total 
number of 
committees423the number

of all{male 
committees4

5 S15

6 D2S8

6D 5 5,005228

5 4,977

e. 

3the number of
ways to choose
two freshmen 4?3the number of

ways to choose
two sophomores4

?3the number of
ways to choose
two juniors 4?3the number of

ways to choose
two seniors 4

5 S3

2DS4

2DS3

2DS5

2D
5 540

8.  Hint: The answers are a. 1001, b. (i) 420, (ii) all 1001 
require proof, (iii) 175, c. 506, d. 561

9. b.  S24

3 DS16

3 D1S24

4 DS16

2 D1S24

5 DS16

1 D
1S24

6 DS16

0 D 5 3,223,220

11. a. (1)  4 (because there are as many royal flushes as 
there are suits) 

(2) 
4

_52
5 +

5
4

2,598,960
 >  0.0000015

c. (1)  13?_48
1 + 5 624 (because one can first choose 

the denomination of the four-of-a-kind and 

then choose one additional card from the 48 
remaining)

(2) 
624

_52
5 +

5
624

2,598,960
5 0.00024

f. (l)  Imagine constructing a straight (including a 
straight flush and a royal flush) as a six-step 
process: step 1 is to choose the lowest denomi-
nation of any card of the five (which can be 
any one of A, 2, Á , 10), step 2 is to choose a 
card of that denomination, step 3 is to choose 
a card of the next higher denomination, and so 
forth until all five cards have been selected. By 
the multiplication rule, the number of ways to 
perform this process is

10?S4

1DS4

1DS4

1DS4

1DS4

1D 5 10?45 5 10,240.

By parts (a) and (b), 40 of these numbers 
represent royal or straight flushes, so there are 
10,240240 5 10,200 straights in all. 

(2) 
10,200

_52
5 +

5
10,200

2,598,960
> 0.0039

13. a. 210 5 1,024

d. 3the number of
outcomes with 
at least one head4

5 3the total 
number of 
outcomes 423the number of

outcomes with 
no heads 4

5 1,02421 5 1,023

15. a. 50  b. 50
c. To get an even sum, both numbers must be even or 

both must be odd. Hence

3
the number of subsets 
of two integers chosen
from 1 through 100
whose sum is even

4
5 3

the number of 
subsets of two even
integers chosen from
the 50 even integers

413
the number of 
subsets of two odd
integers chosen from
the 50 odd integers

4
5 S50

2 D1S50

2 D 5 2,450.

d. To obtain an odd sum, one of the numbers must 
be even and the other odd. Hence the answer is 
_50

1 +?_50
1 + 5 2,500. Alternatively, note that the answer 

equals the total number of subsets of two integers 
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chosen from 1 through 100 minus the number of 
such subsets for which the sum of the elements is 
even. Thus the answer is _100

2 +22,450 5 2,500.

17. a. Two points determine a line. Hence

3the number of straight
lines determined
by the ten points 4 5 3the number of subsets

of two points
chosen from ten 4

5 S10

2 D 5 45.

19. a. 
10!

2!1!1!3!2!1!
5 151,200  since there are 2 A’s, 1 B, 1 

H, 3 L’s, 2 O’s, and 1 U

b. 
8!

2!1!1!2!2!
5 5,040 c. 

9!

1!2!1!3!2!
5 15,120

23.  The rook must move seven squares to the right and 
seven squares up, so

3the number of
paths the rook
can take 4 5 3

the number
of orderings
of seven R’s
and seven U’s

4 where R stands
for “right” and U
stands for “up”

5
14!

7!7!
5 3,432.

24. b.  Solution 1: One factor can be 1, and the other factor 
can be the product of all the primes. (This gives 1 
factorization.) One factor can be one of the primes, 
and the other factor can be the product of the other 
three. (This gives _41+ 5 4 factorizations.) One factor 
can be a product of two of the primes, and the other 
factor can be a product of the two other primes. 
The number _42+ 5 6 counts all possible sets of two 
primes chosen from the four primes, and each set 
of two primes corresponds to a factorization. Note, 
however, that the set {p1, p2} corresponds to the 
same factorization as the set {p3, p4}, namely, p1 p2 

p3 p4 (just written in a different order). In general, 
each choice of two primes corresponds to the same 
factorization as one other choice of two primes. 
Thus the number of factorizations in which each  

factor is a product of two primes is 
_42+
2

5 3. 

(This gives 3 factorizations.) The foregoing cases 
account for all the possibilities, so the answer is 
41311 5 8.

Solution 2: Let S 5 {p1, p2, p3, p4}. Let p1 p2 p3  

p4 5 P, and let f1?f2 be any factorization of P. The 
product of the numbers in any subset A # S can be 
used for f1, with the product of the numbers in Ac 
being f2. There are as many ways to write f1 as there 
are subsets of S, namely, 24 5 16 (by Theorem 6.3.1). 

However, because f1?f2 5 f2?f1, and because two fac-
torizations are considered the same regardless of the 
order in which the factors are written, the number of 
ways to write P as a product of two factors is half the 
number of subsets of S. So the answer is 16

2 5 8.

25. a.  There are four choices for where to send the first el-
ement of the domain (any element of the co-domain 
may be chosen), three choices for where to send 
the second (since the function is one-to-one, the 
second element of the domain must go to a different 
element of the co-domain from the one to which the 
first element went), and two choices for where to 
send the third element (again since the function is 
one-to-one). Thus the answer is 4?3?2 5 24.

b. none
e. Hint: The answer is n(n21) Á (n2m11).

26. a.  Let the elements of the domain be called a, b, and c 
and the elements of the co-domain be called u and v. 
In order for a function from {a, b, c} to {u, v} to be 
onto, two elements of the domain must be sent to u and 
one to v, or two elements must be sent to v and one to 
u. There are as many ways to send two elements of the 
domain to u and one to v as there are ways to choose 
which elements of {a, b, c} to send to u, namely, 
_32+ 5 3. Similarly, there are _32+ 5 3 ways to send two 
elements of the domain to v and one to u. Therefore, 
there are 313 5 6 onto functions from a set with 
three elements to a set with two elements.

c. Hint: The answer is 6.
d. Consider functions from a set with four elements 

to a set with two elements. Denote the set of four 
elements by X 5 {a, b, c, d} and the set of two 
elements by Y 5 {u, v}. Divide the set of all onto 
functions from X to Y into two categories. The first 
category consists of all those that send the three 
elements in {a, b, c} onto {u, v} and that send d to 
either u or v. The functions in this category can be 
defined by the following two-step process:

Step 1:  Construct an onto function from  
{a, b, c} to {u, v}.

Step 2: Choose whether to send d to u or to v.

By part (a), there are six ways to perform step 1, 
and, because there are two choices for where to 
send d, there are two ways to perform step 2. Thus, 
by the multiplication rule, there are 6?2 5 12 ways 
to define the functions in the first category.

The second category consists of all the other onto 
functions from X to Y: those that send all three 
elements in {a, b, c} to either u or v and that send d 
to whichever of u or v is not the image of a, b, and 
c. Because there are only two choices for where 
to send the elements in {a, b, c}, and because d is 
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simply sent to wherever a, b, and c do not go, there 
are just two functions in the second category. 

Every onto function from X to Y either sends at least 
two elements of X to the image of d or it does not. 
If it does, then it is in the first category. If it does 
not, then it is in the second category. Therefore, all 
onto functions from X to Y are in one of the two 
categories and no function is in both categories. So 
the total number of onto functions is 1212 5 14.

27. a.  A relation on A is any subset of A 3 A, and A 3 A 
has 82 5 64 elements. So there are 264 relations on A.

c. Form a relation that is both reflexive and symmetric 
by a two-step process: (1) pick a set of elements 
of the form (a, a) (there are eight such elements, 
so 28 sets); (2) pick a set of pairs of elements of 
the form (a, b) and (b, a) where a Þ b (there are 
(6428)y2 5 28 such pairs, so 228 such sets). The 
answer is therefore 28 3 228 5 236.

28.  Hint: Use the difference rule and the generalization of 
the inclusion/exclusion rule for 4 sets. (See exercise 48 
in Section 9.3.)

Section 9.6
1. a. _5 1 3 2 1

5 + 5 _75+ 5
7?6

2 5 21.

b. The three elements of the set are 1, 2, and 3. The 
5-combinations are [1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 
1, 1, 3], [1, 1, 1, 2, 2], [1, 1, 1, 2, 3],  
[1, 1, 1, 3, 3], [1, 1, 2, 2, 2], [1, 1, 2, 2, 3],  
[1, 1, 3, 3, 3], [1, 2, 2, 2, 2], [1, 2, 2, 2, 3],  
[1, 2, 2, 3, 3], [1, 2, 3, 3, 3], [1, 3, 3, 3, 3],  
[2, 2, 2, 2, 2], [2, 2, 2, 2, 3], [2, 2, 2, 3, 3],  
[2, 2, 3, 3, 3], [2, 3, 3, 3, 3], and [3, 3, 3, 3, 3].

2. a.  _4 1 3 2 1
4 + 5 _64+ 5

6?5
2 5 15

3. a. _20 1 6 2 1
20 + 5 _25

20+ 5 53,130

b. If at least three are éclairs, then 17 additional 

pastries are selected from six kinds. The number of 

selections is _17 1 6 2 1
17 + 5 _22

17+ 5 26,334.

Note: In parts (a) and (b), it is assumed that the 
selections being counted are unordered.

c. Let T be the set of selections of pastry that may 
be any one of the six kinds, let E$3 be the set of 
selections containing three or more éclairs, and let 
E$2 be the set of selections containing two or fewer 
éclairs. Then

N(E#2) 5 N(T)2N(E$3)  because T 5 E#2 ø E$3

and E#2 ù E$3 5 [

5 53,130226,334 by parts (a) and (b)

5 26,796.

Thus there are 26,796 selections of pastry contain-
ing at most two éclairs. 

5. The answer equals the number of 4-combinations with 
repetition allowed that can be formed from a set of n 
elements. It is

S41n21

4 D 5 Sn13

4 D
5

(n13)(n12)(n11)n(n21)!

4!(n21)!

5
n(n11)(n12)(n13)

24
.

8. As in Example 9.6.4, the answer is the same as the 
number of quadruples of integers (i, j, k, m) for which 
1 # i # j # k # m # n. By exercise 5, this number is 

_n 1 3
4 + 5

n(n 1 1)(n 1 2)(n 1 3)
24 .

10.  Think of the number 20 as divided into 20 individual 
units and the variables x1, x2, and x3 as three catego-
ries into which these units are placed. The number of 
units in category xi indicates the value of xi, in a solu-
tion of the equation. By Theorem 9.6.1, the number of 
ways to select 20 objects from the three categories is 

_20 1 3 2 1
20 + 5 _22

20+ 5 22?21
2 5 231, so there are 231 non-

negative integer solutions to the equation.

11.  The analysis for this exercise is the same as for exercise 
10 except that since each xi $ 1, we can imagine taking 
3 of the 20 units, placing one in each category x1, x2, and 
x3, and then distributing the remaining 17 units among 
the three categories. The number of ways to do this is 

_17 1 3 2 1
17 + 5 _19

17+ 5
19?18

2 5 171, so there are 171 positive 
integer solutions to the equation.

16. a.  Let L$7 be the set of selections that include at least 
seven cans of lemonade. In this case an additional 
eight cans can be selected from the five types of soft 
drinks, and so

N(L$7) 5 S81521

8 D 5 S12

8 D 5 495.

Let T be the set of selections of cans in which the 
soft drink may be any one of the five types as-
suming that there are at least 15 cans of each type 
assuming that there are at least 15 cans of each type 
and let L#6 be the set of selections that contain at 
most six cans of lemonade. Then

N(L#6) 5 N(T)2N(L$7)

5 3,8762495

5 3,381.

Thus there are 3,381 selections of fifteen cans of soft 
drinks that contain at most six cans of lemonade.

because T 5 L#6 ø L$7

and L#6 ù L$7 5 [
by the above and part (a)
of Example 9.6.2
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b. Let R#5 be the set of selections containing at most 
five cans of root beer, and let L#6 be the set of 
selections containing at most six cans of lemonade. 
The answer to the question can be represented as 
N(R#5 ù L#6). As in part (a), let T be the set of 
all the selections of fifteen cans in which the soft 
drink may be any one of the five types assuming 
that there are at least 15 cans of each type. If you 
remove all the selections from T that contain at 
least six cans of root beer or at least seven cans of 
lemonade, then you are left with all the selections 
that contain at most five cans of root beer and at 
most six cans of lemonade. Thus, in the notation of 
part (a) and Example 9.6.2, 

N(R#5 ù L#6) 5 N(T)2N(R$6 ø L$7). (*)

Use the inclusion/exclusion rule as follows to com-
pute N(R$6 ø L$7):

N(R$6 ø L$7)

5 N(R$6)1N(L$7)2N(R$6 ù L$7).

To find N(R$6 ù L$7), observe that if at least 6 cans 
of root beer and at least 7 cans of lemonade are 
selected, then at most 2 additional cans of soft drink 
can be chosen from the other three types to make 
up the total of 15 cans. A selection of two such cans 
can be represented by a string of 2 3’s and 3 u’s, and 
a selection of one such can can be represented by a 
string of 1 3 and 3 u’s. Hence

N(R$6 ù L$7) 5 S21321

2 D1S11321

1 D
5 S4

2D1S3

1D 5 613 5 9.

It follows that 

N(R$6 ø L$7) 5 N(R$6 1N(L$7)     by the inclusion/
exclusion rule

2N(R$6 ù L$7)

5 715149529

5 1,201.

Putting this result together with equation (*) and the 
value of N(T) from Example 9.6.2(a) gives that

N(R#5 ù L#6) 5 N(T)2N(R$6 ø L$7)

5 3,87621,201 5 2,675.

Thus there are 2,675 selections of fifteen soft drinks 
that contain at most five cans of root beer and at 
most six cans of lemonade.

17.  Hints: a. The answer is 10,295,472. b. See the so-
lution to part (c) of Example 9.6.2. The answer is 
9,949,368. c. The answer is 9,111,432. d. Let T denote 

by part (a) and 
the computa-
tion above, and 
by part (b) of 
Example 9.6.2

the set of all the selections of thirty balloons, assum-
ing that there are at least 30 of each color. Let R#12 
denote the set of selections from T that contain at most 
twelve red balloons, let B#8 denote the set of selec-
tions from T that contain at most eight blue balloons, 
let R$13 denote the set of selections that contain at 
least thirteen red balloons, and let B$9 denote the set 
of selections that contain at least nine blue balloons. 
Then the answer to the question can be represented 
as N(R#12 ù B#8). Out of the total of all the balloon 
selections, if you remove the selections containing at 
least thirteen red or at least nine blue balloons, then 
you are left with the selections containing at most 
twelve red and at most eight blue balloons. Thus 
N(R#12 ù B#8) 5 N(T)2N(R$13 ø B$9). Compute 
N(R$13 ù B$9), and use the inclusion/exclusion rule to 
find N(R$13 ø B$9).

19. Hints: The answers are a. 51,128 b. 46,761

Section 9.7

1. Sn

0D 5
n!

0!(n20)!
5

n!

1?n!
5 1

3. Sn

2D 5
n!

(n22)!?2!
5

n?(n21)?(n22)!

(n22)!?2!

5
n(n21)

2

5. Proof: Suppose n and r are nonnegative integers and 
r # n. Then

Sn

rD 5
n!

r!(n2 r)!
 by Theorem 9.5.1

5
n!

(n2 (n2 r))!(n2 r)!
  since n2 (n2 r) 5

n2n1 r 5 r

5
n!

(n2 r)!(n2 (n2 r))!
  by interchanging the fac-

tors in the denominator

5 S n

n2 rD  by Theorem 9.5.1.

6. Solution 1: Apply formula (9.7.2) with m1k in place of 
n. This is legal because m1k $ 1.

Solution 2:

S m1k

m1k21D 5
(m1k)!

(m1k21)![(m1k)2 (m1k21)]!

5
(m1k)?(m1k21)!

(m1k21)!(m1k2m2k11)!

5
(m1k)?(m1k21)!

(m1k21)!?1!
5 m1k
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10. a. S6

2D 5 S5

2D1S5

1D 5 1015 5 15

S6

3D 5 S5

3D1S5

2D 5 10110 5 20

S6

4D 5 S5

4D1S5

3D 5 5110 5 15

S6

5D 5 S5

5D1S5

4D 5 115 5 6

b. S7

3D 5 S6

3D1S6

2D 5 20115 5 35

S7

4D 5 S6

4D1S6

3D 5 15120 5 35

S7

5D 5 S6

5D1S6

4D 5 6115 5 21

c. Row for n 5 7:   1   7   21   35   35   21   7   1   

13.  Proof by mathematical induction: Let the property P  (n) 
be the formula

o
n11

i52
S i

2D 5 Sn12

3 D. d P (n).

Show that P  (1) is true:
To prove P  (1) we must show that

o
111

i52
S i

2D 5 S112

3 D. d P(1).

Now

o
111

i52
S i

2D 5 o
2

i52
S i

2D 5 S2

2D 5 1 5 S3

3D 5 S112

3 D,

so P  (1) is true.

Show that for every integer k $ 1, if P  (k) is true, then 
P (k11) is true:

Let k be any integer with k $ 1, and suppose that

o
k11

i52
S i

2D 5 Sk12

3 D. d P (k) inductive hypothesis

We must show that

o
(k11)11

i52
S i

2D 5 S(k11)12

3 D,

or, equivalently,

o
k12

i52
S i

2D 5 Sk13

3 D. d P (k11)

Now the left-hand side of P (k11) is

o
k12

i52
S i

2D 5 o
k11

i51
S i

2D1Sk12

2 D
5 Sk12

3 D1Sk12

2 D 

5 Ssk12d11

3 D
5 Sk13

3 D,

which is the right-hand side of P  (k 1 1) [as was to be 
shown]. [Since we have proved the basis step and the in-
ductive step, we conclude that P  (n) is true for all n $ 1.] 

14. Hint: Use the results of exercises 3 and 13. 

17.  Hint: This follows by letting m 5 n 5 r in exercise 16 
and using the result of Example 9.7.2.

19. 117x1S7

2Dx2 1S7

3Dx3 1S7

4Dx4 1S7

5Dx5

 1S7

6Dx6 1x7

5 117x121x2 135x3 135x4 121x5 17x6 1x7

21. 116(2x)1S6

2D(2x)2 1S6

3D(2x)3 1S6

4D(2x)4

1S6

5D(2x)5 1 (2x)6

5 126x115x2 220x3 115x4 26x5 1x6

23. (p22q)4 5 o
4

k50
S4

kDp42k(22q)k

5 S4

0Dp4(22q)0 1S4

1Dp3(22q)1

1S4

2Dp2(22q)2 1S4

3Dp1(22q)3

1S4

4Dp0(22q)4

5 p4 28p3q124p2q2 232pq3 116q4

25. Sx1
1
xD5

5 o
5

k50
S5

kDx52kS1
xDk

5 S5

0Dx5S1
xD0

1S5

1Dx4S1
xD1

by writing the last 
term separately

by inductive  
hypothesis

by Pascal’s formula

94193_AppB_ptg01.indd   107 12/11/18   6:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.8 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-108

1S5

2Dx3S1
xD2

1S5

3Dx2S1
xD3

1S5

4Dx1S1
xD4

1S5

5Dx0S1
xD5

5 x5 15x3 110x1
10
x

1
5

x3 1
1

x5

29. The term is _93+x
6y3 5 84x6y3, so the coefficient is 84.

31.  The term is _12
7 +a5(22b)7 5 792a5(2128)b7 5

2101,376a5b7, so the coefficient is 2101,376.

33.  The term is _15
8 +(3p2)8(22q)7 5 _15

8 +38(22)7p16q7, so the 

coefficient is _15
8 +38(22)7 5 25,404,164,480.

36.  Proof: Let a 5 1, let b 5 21, and let n be a positive 
integer. Substitute into the binomial theorem to obtain

(11 (21))n 5 o
n

k50
Sn

kD?1n2k?(21)k

5 o
n

k50
Sn

kD(21)k since 1n2k 5 1.

On the other hand, (11 (21))n 5 0n 5 0, so

0 5 o
n

k50
Sn

kD(21)k

5 Sn

0D2Sn

1D1Sn

2D2Sn

3D1 Á 1 (21)nSn

nD.

37. Hint: 3 5 211

38.  Proof: Let m be any integer with m $ 0, and apply the 
binomial theorem with a 5 2 and b 5 21. The result is

1 5 1m 5 (21 (21))m 5 o
m

i50
Sm

i D2m2 i(21)i

5 o
m

i50

(21)iSm

i D2m2i.

41.  Hint: Apply the binomial theorem with a 5 1 and 
b 5 21

2, and analyze the resulting equation when n is 
even and when n is odd.

43. o
n

k50
Sn

kD5k 5 o
n

k50
Sn

kD1n2k5k 5 (115)n 5 6n

45. o
n

i50
Sn

iDxi 5 o
n

i50
Sn

iD1n2 ixi 5 (11x)n

47. o
2n

j50

(21) 
jS2n

j Dx 
j 5 o

2n

j50
S2n

j D12n2j(2x) 
j 5 (12x)2n

51. o
m

i50

(21)jSm

i D1

2i 5 o
m

i50
Sm

i D1m2iS2
1

2Di

5 S12
1

2Dm

5
1

2m

53. o
n

i50

(21)iSn

iD5n2 i2i 5 o
n

i50
Sn

iD5n2i(22)i

5 (522)n 5 3n

55. b. n(11x)n21 5 o
n

k51
Sn

kDkxk21

[The term corresponding to k 5 0 is zero because 
d
dx(x0) 5 0.]

c. (i) Substitute x 5 1 in part (b) above to obtain 

n(111)n21 5 o
n

k51
Sn

kDk?1k21 5 o
n

k51
Sn

kDk

5 Sn

1D?11Sn

2D?21Sn

3D?31 Á 1Sn

nDn.

Dividing both sides by n and simplifying gives

2n21 5
1
n3Sn

1D12Sn

2D13Sn

3D1 Á 1nSn

nD4.

Section 9.8
1. By probability axiom 2, P ([) 5 0.

2. a.  By probability axiom 3, P (A ø B) 5

P (A)1P (B) 5 0.310.5 5 0.8.
b. Because A ø B ø C 5 S and because A, B, and C 

are mutually exclusive events, C 5 S2 (A ø B). 
Thus, by the formula for the probability of the 
complement of an event, P (C) 5 P  ((A ø B)c) 5
12P (A ø B) 5 120.8 5 0.2.

4. By the formula for the probability of a general 
union of two events, P (A ø B) 5 P (A)1P (B)2

P (A ù B) 5 0.810.720.6 5  0.9.

7. a. P (A ø B) 5 0.410.3 5 0.7
b. P (C) 5 P ((A ø B)c) 5 12P (A ø B) 5

120.7 5 0.3
c. P (A ø C) 5 0.410.3 5 0.7
d. P (Ac) 5 12P (A) 5 120.4 5 0.6
e. P (Ac ù B  

c   ) 5 P ((A ø B)c   ) 5 12P (A ø B) 5

120.7 5 0.3
f. P (Ac ø Bc) 5 P ((A ù B)c) 5 P ([c) 5 P (S) 5 1

9. a.  P (A ø B) 5 P (A)1P (B)2P (A ù B) 5

0.410.520.2 5 0.7
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d. P (Ac ù B 

c   ) 5 P ((A ø B)c   ) 5 12P (A ø B) 5

120.7 5 0.3

11. Hint: Since U # V, V 5 U ø (V2U)

12.  Hint: For arbitrarily chosen sets U and V, 
U ø (V2U) 5 U ø V.

13.  Hint: (A1 ø A2 ø Á ø Ak) ù Ak11 5 [  
and A1 ø A2 ø Á ø Ak ø Ak11 5

(A1 ø A2 ø Á ø Ak) ø Ak11.

14.  Solution 1: The net gain of the grand prize winner is 
$2,000,0002$2 5 $1,999,998. Each of the 10,000 sec-
ond prize winners has a net gain of $202$2 5 $18, and 
each of the 50,000 third prize winners has a net gain of 
$42$2 5 $2. The number of people who do not win any-
thing is 1,500,00021210,000250,000 5 1,439,999, 
and each of these people has a net loss of $2. Because all 
of the 1,500,000 tickets have an equal chance of winning 
a prize, the expected gain or loss of a ticket is

1

1500000
 ($1,999,998?11$18?10000

1$2?500001 (2$2)?1,439,999) 5 2$0.40.

Solution 2: The total income to the lottery organizer is 
$2 (per ticket)?1,500,000 (tickets) 5 $3,000,000. The 
payout the lottery organizer must make is $2,000,000 1 
($20)(10,000) 1 ($4)(50,000) 5 $2,400,000, so the net 
gain to the lottery organizer is $600,000, which amounts 

to 
$600,000
1,500,000 5 $0.40 per ticket. Thus the expected net loss 

to a purchaser of a ticket is $0.40.

16.  Let 21 and 22 denote the two balls with the number 2, 
and let 5 and 6 denote the other two balls. There are 

_62+ 5 4 subsets of 2 balls that can be chosen from the 
urn. The following table shows the sums of the numbers 
on the balls in each set and the corresponding prob-
abilities:

Subset Sum s Probability that the sum 5 s

{21, 22}  4 1y6

{21, 5},{22, 5}  7 2y6

{21, 6}{22, 6}  8 2y6

{5, 6} 11 1y6

So the expected value is 

4?1
6 17?2

6 18?2
6 111?1

6 5 7.5.

19.  The following table displays the sum of the numbers 
showing face up on the dice:

1 2 3  4  5  6

1 2 3 4  5  6  7

2 3 4 5  6  7  8

3 4 5 6  7  8  9

4 5 6 7  8  9 10

5 6 7 8  9 10 11

6 7 8 9 10 11 12

Each cell in the table represents an outcome whose prob-
ability is 1

36. Thus the expected value of the sum is

21 1

362131 2

362141 3

362151 4

362161 5

362171 6

362
181 5

362191 4

3621101 3

3621111 2

3621121 1

362
5

252

36
5 7.

20. Hint: The answer is about 7.7 cents. 

22. Hint: The answer is 1.875.

23.  Hint: To derive P20, use the distinct roots theorem from 

Section 5.8. The answer is P20 5
5300 2 520

5300 2 1
> 1.

Section 9.9

1. P (B) 5  
P (A ù B)

P (A uB)
 5  

1y6

1y2
 5  

1

3

3. Hint: The answer is 60%.

4. a.  Proof: Suppose S is any sample space and A and B 
are any events in S such that P (B) Þ 0. Note that
(1) A ø Ac 5 S by the complement law for <.
(2) B ù S 5 B by the identity law for >.
(3) B ù (A ø Ac) 5 (A ù B) ø (Ac ù B) by the 

distributive law and commutative laws for sets.
(4) (A ù B) ù (Ac ù B) 5 [ by the complement 

law for ù and the commutative and associative 
laws for sets.

 Thus B 5 (A ù B) ø (Ac ù B), and, by probability 
axiom 3, P (B) 5 P (A ù B)1P (Ac ù B). Therefore, 
P (Ac ù B) 5 P (B)2P (A ù B). By definition of 
conditional probability, it follows that

P (Ac uB) 5
P (Ac ù B)

P (B)
5

P (B)2P (A ù B)

P (B)

5 12
P (A ù B)

P(B)
5 12P (A uB).
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9.9 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-110

5. Hints: (1) A 5 (A ù B) ø (A ù B  

c   )

(2) The answer is P(A uB 

c   ) 5
P(A)2P(A uB)P(B)

12P(B)
.

6. a.  Let R1 be the probability that the first ball is red, 
and let R2 be the probability that the second ball is 
red. Then R 

c
1  is the probability that the first ball is 

not red, and R c
2  is the probability that the second 

ball is not red. The tree diagram shows the various 
relations among the probabilities.

P(R 1
) = — = —

5
825

40

P(R 2  R 1
) = — = —

8
1324

39

P(R
1

c) = — = —3
8

15
40

R
1

R
1    

   R
2

R
1    

   R
2
c

R
1
c
       R2

c

R
1
c
       R2

P(R
2
c
   R

1) = — = —5
13

15
39

R
1
c

14
39

P(R
2
c  

 R
1

c) = —

2

25
39P(R    R1

c) = —

Then

P(R1 ù R2) 5 P(R2 uR1)?P(R1)

5
8

13
?
5

8
5

5

13
> 38.5%

P(R1 ù R c
2 ) 5 P(R c

2 u R1)?P(R1)

5
5

13
?
5

8
5

25

104
> 24%,

P(R c
1 ù R2) 5 P(R2 uR c

1 )?P(R c
1 )

5
25

39
?
3

8
5

25

104
> 24%,

P(R c
1 ù R c

2 ) 5 P(R c
2 u R c

1 )?P(R c
1 )

5
14

39
?
3

8
5

14

104
> 13.5%

 So the probability that both balls are red is 5y13, the 
probability that the first ball is red and the second 
is not is 25y104, the probability that the first ball is 
not red and the second ball is red is 25y104, and the 
probability that neither ball is red is 14y104.

b. Note that

R2 5 (R2 ù R1) ø (R2 ù R c
1 )  and

(R2 ù R1) ù (R2 ù R c
1 ) 5 [

Thus the probability that the second ball is red is

P(R2) 5 P(R2 ù R1)1P(R2 ù R c
1 )

5
5

13
1

25

104
5

65

104
> 62.5%.

c. If exactly one ball is red, then either the first ball is 
red and the second is not or the first ball is not red 
and the second is red, and these possibilities are 
mutually exclusive. Thus

P (exactly one ball is red) 5 P (R1 ù R c
2 )1P (R c

1 ù R2)

5
25

104
1

25

104
5

50

104

5
25

52
> 48.1%.

The probability that both balls are red is 

P(R1 ù R2) 5
5
13 > 38.5%. Then

P (at least one ball is red) 5 P (exactly one ball is red)

1P (both balls are red)

5
25

52
1

5

13

5
45

52
> 86.5%.

8. a.  Let W1 be the event that a woman is chosen on the 
first draw,

W2 be the event that a woman is chosen on the 
second draw,

M1 be the event that a man is chosen on the first 
draw,

M2 be the event that a man is chosen on the second 
draw.

Then P (W1) 5
3
10 and P (W2 uW1) 5 2

9, and thus 

P (W1 ù W2) 5 P (W2 uW1)  P (W1) 5 2
9?

3
10 5 1

15 5 62
3%.

c. Hint: The answer is 7
15 5 462

3%.

9. Hint: Use the facts that P (Bk uA) 5
P  (Bk ù A)

P  (A)  and that 

(A ù B1) ø (A ù B2) 5 A.

11. a.  Let U1 be the event that the first urn is chosen, U2 
the event that the second urn is chosen, and B the 
event that the chosen ball is blue. Then

P (B uU1) 5
12

19
 and P (B uU2) 5

8

27
.

P (B ù U1) 5 P (B uU1)P (U1) 5
12

19
?
1

2
5

12

38
.

Also

P (A ù U2) 5 P (B uU2)P (U2) 5
8

27
?
1

2
5

8

54
.
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A-111  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

Now B is the disjoint union of B ù U1 and B ù U2. 
So

P (B) P (U1 uB) 5 P (B ù U1)1P (B ù U2)

5
12

38
1

8

54
> 46.4%.

Thus the probability that the chosen ball is blue is 
approximately 46.4%.

b. Given that the chosen ball is blue, the probability 
that it came from the first urn is P(U1 uB). By Bayes’ 
theorem and the computations in part (a),

P (U1 uB) 5
P (B uU1)P (U1)

P (B uU1)P (U1)1P (B uU2)P (U2)

5
(12y19)(0.5)

(12y19)(0.5)1 (8y27)(0.5)
> 68.1%

13.  Hint: The answers to parts (a) and (b) are approximately 
52.9% and 54.0%, respectively.

14.  Let A be the event that a randomly chosen person tests 
positive for drugs, let B1 be the event that a randomly 
chosen person uses drugs, and let B2 be the event that 
a randomly chosen person does not use drugs. Then 
Ac is the event that a randomly chosen person does not 
test positive for drugs, and P (B1) 5 0.04, P (B2) 5 0.96, 
P (A uB2) 5 0.03, and P (Ac uB1) 5 0.02. Hence 
P (A uB1) 5 0.98 and P (Ac uB2) 5 0.97.

a. P (B1 uA) 5
P (A uB1)P (B1)

P (A uB1)P (B1)1P (A uB2)P (B2)

5
(0.97)(0.04)

(0.97)(0.04)1(0.03)(0.96)
> 57.6%

b. P (B2 uAc) 5
P (Ac uB2)P (B2)

P (Ac uB1)P (B1)1P (Ac uB2)P (B2)

5
(0.98)(0.96)

(0.02)(0.04)1(0.98)(0.96)
> 99.9%

16.  Hint: The answers to parts (a) and (b) are 11.25% and 
211

3%, respectively.

17.  Proof: Suppose A and B are events in a sample space 
S, and P(A uB) 5 P(A) Þ 0. Then 

P (B uA) 5
P (B ù A)

P (A)
5

P (A uB)P (B)

P (A)

5
P (A)P (B)

P (A)
5 P (B).

19.  As in Example 6.9.1, the sample space is the set of all 
36 outcomes obtained from rolling the two dice and 
noting the numbers showing face up on each. Let A be 
the event that the number on the blue die is 2 and B the 
event that the number on the gray die is 4 or 5. Then

A 5 h21, 22, 23, 24, 25, 26j,

B 5 h14, 24, 34, 44, 54, 64, 15, 25, 35, 45, 55, 65j, and

A ù B 5 h24, 25j.

Since the dice are fair (so all outcomes are equally likely), 

P (A) 5
6
36, P (B) 5 12

36, and P (A ù B) 5 2
36. By definition 

of conditional probability,

P (A uB) 5
P (A ù B)

P (B)
5

2

36

12

36

5
1

6
  and

P (B uA) 5
P (A ù B)

P(A)
5

2

36

6

36

5
1

3
.

Now P (A) 5
6
36 5 1

6 and P (B) 5 12
36 5 1

3, and hence 

P (A uB) 5 P (A) and P (B uA) 5 P (B).

23.  Let A be the event that the student answers the first 
question correctly, and let B be the event that the 
student answers the second question correctly. Because 
two choices can be eliminated on the first question, 
P (A) 5 1

3, and because no choices can be eliminated 
on the second question, P (B) 5 1

5. Thus P (Ac) 5 2
3 and 

P (Bc) 5 4
5.

a. Hint: The probability that the student answers both 
questions correctly is

P(A ù B) 5 P(A)P(B) 5
1

3
?
1

5
5

1

15
5 6

2

3
%.

b. The probability that the student answers exactly one 
question correctly is

P ((A ù B c) ø (Ac ù B))

5 P (A ù B c )1P (Ac ù B)

5 P (A)P (B c)1P (Ac )P (B)

5
1

3
?
4

5
1

2

3
?
1

5
5

6

15
5

2

5
5 40%.

c. One solution is to say that the probability that 
the student answers both questions incorrectly is 
P (Ac ù B c ), and P (Ac ù B c) 5 P (Ac)  P (B c) by the 
result of exercise 22. Thus the answer is

P(Ac)P(B c) 5
2

3
?
4

5
5

8

15
5 53 

1

3
%.

Another solution uses the fact that the event that 
the student answers both questions incorrectly 
is the complement of the event that the student 
answers at least one question correctly. Thus, 
by the results of parts (a) and (b), the answer is 

12 _ 1
15 1 2

5+ 5
8
15 5 531

3%.
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10.1 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-112

25.  Let Hi be the event that the result of toss i is heads, and 
let Ti be the event that the result of toss i is tails. Then 
P (Hi) 5 0.7 and P (Ti) 5 0.3 for i 5 1 and 2.
b. The probability of obtaining exactly one head is

P ((H1 ù T2) ø (T1 ù H2))

5 P (H1 ù T2)1P (T1 ù H2)

5 P (H1)P (T2)1P (T1)P (H2)

5 (0.7)(0.3)1 (0.3)(0.7) 5 42%.

27. Hint: The answer is 12.

28. a. P (seven heads)

5 3the number of different
ways seven heads can
be obtained in ten tosses4(0.7)7(0.3)3

5 120(0.7)7(0.3)3 > 0.267 5 26.7%

29. a. P (none is defective)

5 3the number of different
ways of having 0 defective
items in the sample of 10 4(0.03)0(0.97)10

5 1?(0.3)0(0.97)10 > 0.737 5 73.7%

30. b.  The probability that a woman will have at least one 
false positive result over a period of ten years is 
12 (0.96)10 > 33.5%.

31. a. P (none is male) > 1.3%
b. P (at least one is male) 5

12P(none is male) > 120.013 5 98.7%

34. Hint: P(Y) 5 P(Y ù X)1P(Y ù Xc) 

Section 10.1
1. a.  trail (no repeated edge), not a path (has a repeated 

vertex, v1), not a circuit
b. walk, not a trail (has a repeated edge, e9), not a circuit
c. closed walk (starts and ends at the same vertex), 

trail (no repeated edge since no edge), not a path or 
a circuit (since no edge)

d. circuit, not a simple circuit (repeated vertex, v4)
e. closed walk (starts and ends at the same vertex but 

has repeated edges, {v2, v3} and {v3, v4})
f. path

3. a.  No. The notation v1v2v1 could equally well refer to 
v1e1v2e2v1 or to v1e2v2e1v1, which are different walks.

4. a.  Three. (There are three ways to choose the middle 
edge.)

b. 3!13 5 9 (The three paths from part (a) are also 
trails, and there are an additional 3! trails with 

vertices v1, v2, v3, v2, v3, v4. The reason is that from 
v2 there are 3 choices of an edge to go to v3, then 
2 choices of a different edge to go back to v2, and 
then 1 choice of a different edge to return to v3.

c. Infinitely many. (Since a walk may have repeated 
edges, a walk from v1 to v4 may contain an arbi-
trarily large number of repetitions of edges joining 
a pair of vertices along the way.)

6. a.  {v1, v3}, {v2, v3}, {v4, v3}, and {v5, v3} are all the 
bridges.

8. a.  Three connected components, as shown in the next 
column.

a

b g

d

c e hf

1 2 3

9. a.  No. This graph has two vertices of odd degree, 
whereas all vertices of a graph with an Euler circuit 
have even degree.

12. One Euler circuit is e4e5e6e3e2e7e8e1.

14. One Euler circuit is iabihbchgcdgfdefi.

19.  There is an Euler trail since deg(u) and deg(w) are odd, 
all other vertices have positive even degree, and the 
graph is connected. One Euler trail is uv1v0v7uv2v3v4v2 

v6v4wv5v6w.

23. a. The nonempty subgraphs are as follows:

�1

�2

e1

e2

�2

�1

e2

�1

�2

�2

�1

�2

�1

e1

1 2 3

4 5 6
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24. a. �2

�4

�1 �3

26. b. A

B

C

D

E

27.  Hint: Consider the graph obtained by taking the verti-
ces and edges of G plus all the edges of G9.

29. v0v7v1v2v3v5v6v0

31. Hint: See the solution to Example 10.1.9.

32.  Here is one sequence of reasoning you could use: Call 
the given graph G, and suppose G has a Hamiltonian 
circuit. Then G has a subgraph H that satisfies conditions 
(1)–(4) of Proposition 10.1.6. Since the degree of b in G is 
4 and every vertex in H has degree 2, two edges incident 
on b must be removed from G to create H. Edge {a, b} 
cannot be removed because doing so would result in 
vertex d having degree less than 2 in H. Similar reason-
ing shows that edge {b, c} cannot be removed either. So 
edges {b, i} and {b, e} must be removed from G to create 
H. Because vertex e must have degree 2 in H and be-
cause edge {b, e} is not in H, both edges {e, d} and {e, f} 
must be in H. Similarly, since both vertices c and g must 
have degree 2 in H, edges {c, d} and {g, d} must also be 
in H. But then three edges incident on d, namely, {e, d}, 
{c, d}, and {g, d}, must all be in H, which contradicts the 
fact that vertex d must have degree 2 in H.

34. Hint: This graph does not have a Hamiltonian circuit.

38. Partial answer:
�0

�1

�4

�2

�3

This graph has an Euler circuit v0v1v2v3v1v4v0 but no 
Hamiltonian circuit.

39. Partial answer:

�0 �2

�1

This graph has a Hamiltonian circuit v0v1v2v0 but no 
Euler circuit.

40. Partial answer:

�0 �2

�1

The walk v0v1v2v0 is both an Euler circuit and a Hamil-
tonian circuit for this graph.

41. Partial answer:
�0

�3 �1

�2

e1

e2

e3

e4

e5

e6

This graph has the Euler circuit e1e2e3e4e5e6 and the 
Hamiltonian circuit v0v1v2v3v0. These are not the same.

43. a.  Proof: Suppose G is a graph and W is a walk in G 
that contains a repeated edge e. Let v and w be the 
endpoints of e. In case v 5 w, then v is a repeated 
vertex of W. In case v Þ w, then one of the follow-
ing must occur: (1) W contains two copies of vew 
or of wev (for instance, W might contain a section 
of the form vewe9vew, as illustrated below); (2) W 
contains separate sections of the form vew and wev 
(for instance, W might contain a section of the form 
vewe9wev, as illustrated below); or (3) W contains a 
section of the form vewev or of the form wevew (as 
illustrated below). In cases (1) and (2), both vertices 
v and w are repeated, and in case (3), one of v or w is 
repeated. In all cases, there is at least one vertex in 
W that is repeated. 

�

e

�
e

�
e

e'

(1) (2)

(3)

e'

44.  Proof: Suppose G is a connected graph and v and w 
are any particular but arbitrarily chosen vertices of 
G. [We must show that u and v can be connected by a 
path.] Since G is connected, there is a walk from v to 
w. If the walk contains a repeated vertex, then delete 
the portion of the walk from the first occurrence of the 
vertex to its next occurrence. (For example, in the walk 
ve1v2e5v7e6v2e3w, the vertex v2 occurs twice. Deleting 
the portion of the walk from one occurrence to the next 
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10.2 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-114

gives ve1v2e3w.) If the resulting walk still contains a 
repeated vertex, do the above deletion process another 
time. Then check again for a repeated vertex. Continue 
in this way until all repeated vertices have been deleted. 
(This must occur eventually, since the total number of 
vertices is finite.) The resulting walk connects v to w 
but has no repeated vertex. By exercise 43(b), it has no 
repeated edge either. Hence it is a path from v to w.

46.  The graph below contains a circuit, any edge of which 
can be removed without disconnecting the graph. For 
instance, if edge e is removed, then the following walk 
can be used to go from v1 to v2: v1v5v3v2.

�0
�1

�2

�5

�3 �4

e

48.  Hint: Look at the answer to exercise 46 and use the fact 
that all graphs have a finite number of edges.

50.  Proof: Let G be a connected graph and let C be a circuit 
in G. Let G9 be the subgraph obtained by removing 
all the edges of C from G and also any vertices that 
become isolated when the edges of C are removed. [We 
must show that there exists a vertex v such that v is in both 
C and G9.] Pick any vertex v of C and any vertex w of 
G9. Since G is connected, there is a path from v to w  
(by Lemma 10.1.1(a)):

v 5 v0e1v1e2v2 Á vi21eiviei11vi11 . . . vn21envn 5 w.
c  c  c   c

in C in C  not in C in G9

Let i be the largest subscript such that vi is in C. If i 5 n, 
then vn 5 w is in C and also in G9, and we are done. 
If i , n, then vi is in C and vi11 is not in C. This im-
plies that ei11 is not in C (for if it were, both endpoints 
would be in C by definition of circuit). Hence when G9 
is formed by removing the edges and resulting isolated 
vertices from G, then ei11 is not removed. That means 
that vi does not become an isolated vertex, so vi is not 
removed either. Hence vi is in G9. Consequently, vi is in 
both C and G9 [as was to be shown].

51.  Proof: Suppose G is a graph with an Euler circuit. If G 
has only one vertex, then G is automatically connected. 
If v and w are any two vertices of G, then v and w each 
appear at least once in the Euler circuit (since an Euler 
circuit contains every vertex of the graph). The section 
of the circuit between the first occurrence of one of v or 
w and the first occurrence of the other is a walk from 
one of the two vertices to the other. Since the choice of 
v and w was arbitrary, given any two vertices in G there 
is a walk from one to the other. So, by definition, G 
is connected.

56. b.  Hint: Divide the proof into three parts. (1) Show 
that if G is any graph containing a closed walk with 
an odd number of edges, then G contains a circuit 
with an odd number of edges. (2) Show that if G is 
any connected graph that does not have a circuit 
with an odd number of edges, then G is bipartite. 
(3) Show that if G is any graph with at least two 
vertices and is such that G does not have a circuit 
with an odd number of edges, then G is bipartite.

Section 10.2
1. a. Equating corresponding entries shows that

 a1b 5 1

 a2c 5 0

 c 5 21

 b2a 5 3.

Thus a2c 5 a2 (21) 5 0, and so a 5 21. Conse-
quently, a1b 5 (21)1b 5 1, and hence b 5 2. The 
last equation should be checked to make sure the answer 
is consistent: b2a 5 22 (21) 5 3, which agrees.

2. a.  3
0 1 1

1 0 0

0 0 0
4 

3. a. 
�2

�1

�4

�3

4. a.  3
0 0 1 1

0 0 2 0

1 2 0 0

1 0 0 1
4   c.  3

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0
4

5. a. 

�2�1

�3

6. a. The graph is connected.

8. a. 2?11 (21)?3 5 21

v1   v2   v3

v1 

v2 

v3

Any labels may be 
applied to the edges 
because the adjacency 
matrix does not 
determine edge labels.

v1   v2   v3   v4

v1 

v2 

v3 

v4

v1   v2   v3   v4

v1 

v2 

v3 

v4

Any labels may 
be applied to the 
edges because the 
adjacency matrix 
does not determine 
edge labels.
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9. a. 33 23 12

1 25 24 d. 37 0

0 74
10. a.  No product. (A has three columns, and B has 

two rows.)

b. BA 5 322 22 2

1 25 24
f. B2 5 34 0

1 94
i. AC 5 3 2 21

25 224
12.  One among many possible examples is 

  A 5 B 5 30 1

0 04.

14.  Hint: If the entries of the m 3 m identity matrix are 

denoted by di  k, then di  k 5 50 if i Þ k

1 if i 5 k.
  

The i  j  th entry of IA is o
m

k51

di  k 
Ak   j.

15.  Proof: Suppose A is an m 3 m symmetric matrix. Then 
for all integers i and j with 1 # i, j # m,

(A2)i  j 5 o
m

k51

Ai  k   

Ak    j and (A2)j i 5 o
m

k51

A  j  k   

A  k   i.

But since A is symmetric, A  i  k 5 A  k   i and A  k   j 5 A  j k for 
all i, j, and k, and thus Ai k   

A  k   j 5 Aj  k 
A  k   i [by the com-

mutative law for multiplication of real numbers]. Hence 
(A2)i j 5 (A2)j i for all integers i and j with 1 # i, j # m.

17.  Proof (by mathematical induction): Let the property 
P(n) be the equation AnA 5 AAn.

Show that P(1) is true:
We must show that A1A 5 AA1. But this is true because 
A1 5 A and AA 5 AA.

Show that for every integer k $ 1, if P(k) is true, then 
P(k11) is true:
Let k be any integer such that k $ 1, and suppose that 
AkA 5 AAk. [This is the inductive hypothesis.] We must 
show that Ak11A 5 AAk11. But

 Ak11A 5 (AAk)A by definition of matrix power

 5 A(AkA) by exercise 16

 5 A(AAk) by inductive hypothesis

 5 AAk11  by definition of matrix power.

19. a. A2 5 3
1 1 2

1 0 1

2 1 0
43

1 1 2

1 0 1

2 1 0
45 3

6 3 3

3 2 2

3 2 5
4

   A3 5 3
1 1 2

1 0 1

2 1 0
43

6 3 3

3 2 2

3 2 5
45 3

15 9 15

 9 5  8

15 8  8
4

20. a. 2 since (A2)23 5 2
b. 3 since (A2)34 5 3
c. 6 since (A3)14 5 6
d. 17 since (A3)23 5 17

22. b.  Hint: If G is bipartite, then its vertices can be par-
titioned into two sets V1 and V2 so that no vertices 
in V1 are connected to each other by an edge and 
no vertices in V2 are connected to each other by an 
edge. Label the vertices in V1 as v1, v2, . . . , vk and 
label the vertices in V2 as vk11, vk12, . . . , vn. Now 
look at the matrix of G formed according to the 
given vertex labeling.

23. b. Hint: Consider the ijth entry of

A1A2 1A3 1 Á 1An.

If G is connected, then given the vertices vi and vj, 
there is a walk connecting vi and vj. If this walk has 
length k, then by Theorem 10.2.2, the i  j  th entry of 
Ak is not equal to 0. Use the facts that all entries of 
each power of A are nonnegative and that a sum of 
nonnegative numbers is positive provided that at 
least one of the numbers is positive. 

Section 10.3
1. The graphs are isomorphic. One way to define the 

isomorphism is as follows:

�1
�2
�3
�4

g

e1
e2
e3
e4

f1
f2
f3
f4

h

2. The graphs are not isomorphic. G has five vertices and 
G9 has six.
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10.3 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-116

6. The graphs are isomorphic. One isomorphism is the 
following:

�1
�2
�3
�4

g

8.  The graphs are not isomorphic. G has a simple circuit 
of length 3; G9 does not.

10.  The graphs are isomorphic. One way to define the 
isomorphism is as follows:

a

b

c

d

e

f

g

t

u

�

x

y

z

g

12.  The graphs are isomorphic. One isomorphism is 
the following:

a

b

c

d

e

f

g

h

s

t

u

�

x

y

z

g

14. 

1 2

3 4

16. 

1 2 3

4 5 6

7 8 9

18. Hint: There are 20.

19. 

1 2 3

4 5 6

7 8

10 11

9

21.  Proof: Suppose G and G9 are isomorphic graphs and G 
has n vertices, where n is a nonnegative integer.  

94193_AppB_ptg01.indd   116 12/11/18   6:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A-117  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

[We must show that G9 has n vertices.] By definition of 
graph isomorphism, there is a one-to-one correspon-
dence g : V(G) S V(G9) sending vertices of G to verti-
ces of G9. Since V(G) is a finite set and g is a one-to-one 
correspondence, the number of vertices in V(G9) equals 
the number of vertices in V(G). Hence G9 has n vertices 
[as was to be shown].

23.  Proof: Suppose G and G9 are isomorphic graphs and 
suppose G has a circuit C of length k, where k is a 
nonnegative integer. Let C be v0e1v1e2 . . . ekvk(5v0). By 
definition of graph isomorphism, there are one-to-one 
correspondences g : V(G) S V(G9) and h : E(G) S E(G9) 
that preserve the edge-endpoint functions in the sense that 
for each v in V(G) and each e in E(G), v is an endpoint 
of e 3 g(v) is an endpoint of h(e). Let C9 be g(v0)h(e1)
g(v1)h(e2) . . . . h(ek)g(vk)(5g(v0)). Then C9 is a circuit of 
length k in G9. The reasons are that (1) because g and 
h preserve the edge-endpoint functions, both g(vi) and 
g(vi11) are incident on h(ei11) for each i 5 0, 1, . . .  , 
k21, and so C9 is a walk from g(v0) to g(v0), and (2) since 
C is a circuit, then e1, e2, . . . , ek are distinct, and since h 
is a one-to-one correspondence, h(e1), h(e2), . . . , h(ek) are 
also distinct, which implies that C9 has k distinct edges. 
Therefore, G9 has a circuit C of length k.

25.  Hint: Suppose G and G9 are isomorphic and G has m 
vertices of degree k; call them v1, v2, . . . , vm. Since G 
and G9 are isomorphic, there are one-to-one correspon-
dences g : V(G) S V(G9) and h : E(G) S E(G9). Show 
that g(v1), g(v2), . . . , g(vm) are m distinct vertices of G9, 
each of which has degree k.

27.  Hint: Suppose G and G9 are isomorphic and G is con-
nected. To show that G9 is connected, suppose w and 
x are any two vertices of G9. Show that there is a walk 
connecting w with x by finding a walk connecting the 
corresponding vertices in G. 

Section 10.4
1. a. Math 110

2. a.
< sentence >

< noun phrase > < verb phrase >

< article > < adjective > < noun > < verb >

caught

< noun phrase >

< article > < noun >

the man

the young ball

3. Hint: The answer is 2n22. To obtain this result, use 
the relationship between the total degree of a graph and 
the number of edges of the graph.

4. a. H

H

H C

H

H

C

H

H

C H

d. Hint: Each carbon atom in G is bonded to four other 
atoms in G, because otherwise an additional hy-
drogen atom could be bonded to it, and this would 
contradict the assumption that G has the maximum 
number of hydrogen atoms for its number of carbon 
atoms. Also each hydrogen atom is bonded to 
exactly one carbon atom in G, because otherwise G 
would not be connected.

5. Hint: Revise the algorithm given in the proof of Lemma 
10.4.1 to keep track of which vertex and edge were cho-
sen in step 1 (by, say, labeling them v0 and e0). Then after 
one vertex of degree 1 is found, return to v0 and search 
for another vertex of degree 1 by moving along a path 
outward from v0 starting with another edge incident on 
v0. Such an edge exists because v0 has degree at least 2.

7. a. Internal (or branch) vertices: v2, v3, v4, v6

Leaves (or terminal vertices: v1, v5, v7

8. Any tree with nine vertices has eight edges, not nine. 
Thus there is no tree with nine vertices and nine edges.

9. One such graph is

a

i

b c d

h g f

e

10. One such graph is

a

b

i

c

h

d

g

e

f

11.  There is no tree with six vertices and a total degree of 
14. Any tree with six vertices has five edges and hence, 
by the handshake theorem (Theorem 4.9.1) it has a total 
degree of 10, not 14.

12. One such tree is shown.
a

b

c

d

e
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 10.5 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-118

13.  No such graph exists. By Theorem 10.4.4, a connected 
graph with six vertices and five edges is a tree. Hence 
such a graph cannot have a nontrivial circuit.

14. 

�1 �2

22.  Yes. Since it is connected and has 12 vertices and 
11 edges, by Theorem 10.4.4 it is a tree. It follows from 
Lemma 10.5.1 that it has vertex of degree 1.

25.  Suppose there were a connected graph with eight 
vertices and six edges. Either the graph itself would be 
a tree or edges could be eliminated from its circuits to 
obtain a tree. In either case, there would be a tree with 
eight vertices and six or fewer edges. But by Theorem 
10.4.2, a tree with eight vertices has seven edges, not 
six or fewer. This contradiction shows that the supposi-
tion is false, so there is no connected graph with eight 
vertices and six edges.

26. Hint: See the answer to exercise 25.

27.  Yes. Suppose G is a circuit-free graph with ten vertices 
and nine edges. Let G1, G2, . . . , Gk be the connected 
components of G. [To show that G is connected, we 

will show that k 5 1.] Each Gi is a tree since each Gi is 
connected and circuit-free. For each i 5 1, 2, . . . , k, let 
Gi have ni vertices. Note that since G has ten vertices 
in all,

n1 1n2 1 Á nk 5 10.

By Theorem 10.4.2,

G1 has n1 21 edges,

G2 has n2 21 edges,

 o
Gk has nk 21 edges.

So the number of edges of G equals

(n1 21)1 (n2 21)1 Á 1 (nk 21) 5 (n1 1n2 1 Á 1nk)2 (1111 Á 11)

 5 102k.

But we are given that G has nine edges. Hence 102k 5 9, 
and so k 5 1. Thus G has just one connected component, 
G1, and so G is connected.

28.  Hint: See the answer to exercise 27 and the proof of 
Corollary 10.4.5.

31. b. Hint: There are six. 

Section 10.5
1. a. 3 b. 0 c. 5 d. u, v  

e. d f. k, l g. m, s, t, x, y h. 12

k 1’s

3. a. 

d

c +a b

–

· /

e

Exercises 4 and 8–10 have other answers in addition to the  
ones shown.

4. a

b

d e f g

c

h i j k

5. There is no full binary tree with the given properties 
because any full binary tree with five internal vertices 
has six leaves, not seven.

6. Any full binary tree with four internal vertices has five 
leaves for a total of nine—not seven—vertices in all. 
Thus there is no full binary tree with the given properties.

7. There is no full binary tree with 12 vertices because 
any full binary tree has 2k11 vertices, where k is the 
number of internal vertices. But 2k11 is always odd, 
and 12 is even.

8. a

b

d e
f g

c

h i

9. 

m nl

a

b

d e f g

c

h i j k
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A-119  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

10. a

b

d e
f g

c

h i j k

11.  There is no binary tree that has height 3 and nine leaves be-
cause any binary tree of height 3 has at most 23 5 8 leaves.

20. a.  The height of the tree $ log2 25 > 4.6. So since the 
height of any tree is an integer, the height of this 
tree must be at least 5.

21. a. 16

3

9

7

24

18

21

22. a.  

Africa

Asia

Australia

North America

South America

Antarctica Europe

23.  

Carpe

day

diem

Seize

Make

lives

extraordinary

the
your

Section 10.6
1.  

a b a b

d c d c

a b

d c

3. One of many spanning trees is as follows:

a
b

d

e

f

c

g

5. Minimum spanning tree:

a

b c

d

e

f

g

1
7

4

2

3

6

Order of adding the edges:
{a, b}, {e, f}, {e, d}, {d, c}, {g, f}, {b, c}

7. Minimum spanning tree: same as in exercise 5 Order of 
adding the edges:

{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f, g}

9. There are four minimum spanning trees:

a b

g f

e

d

c
3

1

34
7

10

a b

g f

e

d

c
3

1

3

4

7

10

a b

g f

e

d

c
3

1

34

7

10

a b

g f

e

d

c
3

1

3

4
7 10

When Prim’s algorithm is used, edges are added in any 
of the orders obtained by following one of the eight paths 
from left to right across the diagram below.

{a, b} {a, e} {b, c}{e, f}

{a, e} {a, b} {e, c}{a, g}

{ f, g}
{c, d}
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10.6 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-120

When Kruskal’s algorithm is used, edges are added in any of the orders obtained by following one of the eight paths from 
left to right across the diagram below.

{a, e} {a, g} {b, c}

{a, b}

{a, b}

{a, e} {e, f } {e, c}

{c, d}{g, f }

12.  Let N 5 Nashville, S 5 St. Louis, Lv 5 Louisville, Ch 5 Chicago, Cn 5 Cincinnati, D 5 Detroit, Mw 5 Milwaukee,  
and Mn 5 Minneapolis.

Step V(T) E(T) F

0
1
2
3
4
5
6
7 
8

{N}
{N}
{N, Lv}
{N, Lv, Cn}
{N, Lv, Cn, S}
{N, Lv, Cn, S, Ch}
{N, Lv, Cn, S, Ch, D}
{N, Lv, Cn, S, Ch, D, Mw}
{N, Lv, Cn, S, Ch, D, Mw, Mn}

[
[
{{N, Lv}}
{{N, Lv}, {Lv, Cn}}
{{N, Lv}, {Lv, Cn}, {Lv, S}}
{{N, Lv}, {Lv, Cn}, {Lv, S}, {Lv, Ch}}
{{N, Lv}, {Lv, Cn}, {Lv, S}, {Lv, Ch}{Lv, D}}
{{N, Lv}, {Lv, Cn}, {Lv, S}, {Lv, Ch}{Lv, D}, {Ch, Mw}}
{{N, Lv}, {Lv, Cn}, {Lv, S}, {Lv, Ch}, {Lv, D}, {Ch, Mw}, {N, Mn}}

{N}
{Lv, Mn}

{Mn, S, Cn, Ch, D, Mw}
{Mn, S, Ch, D, Mw}
{Mn, Ch, D, Mw}

{Mn, D, Mw}
{Mn, Mw}

{Mn}

Step L(N) L(S) L(Lv) L(Cn) L(Ch) L(D) L(Mw) L(Mn)

0
1
2
3
4
5
6
7

0
0
0
0
0
0
0
0

`
`

393
393
393
393
393
393

`
151
151
151
151
151
151
151

`
`

234
234
234
234
234
234

`
`

420
420
420
420
420
420

`
`

457
457
457
457
457
457

`
`

499
499
499
494
494
494

`
695
695
695
695
695
695
695

Thus the shortest path from Nashville to Minneapolis has length L(Mn) 5 695 miles.

In step 2 D(Lv) 5 N, in step 3 D(Cn) 5 Lv, in step 4 D(S) 5 Cn, in step 5 D(Ch) 5 Lv, in step 6 D(D) 5 Lv, in step 7 
D(Mw) 5 Ch, and in step 8 D(Mn) 5 N. Tracing backwards from Mn gives D(Mn) 5 N, which is the starting point. So the 
shortest path is the direct route from Nashville to Minneapolis, without any intermediary stops.

13. Step V(T) E(T) F L(a) L(b) L(c) L(d) L(e) L(z)

0
1
2
3
4
5
6

{a}
{a}
{a, d}
{a, b, d}
{a, b, c, d}
{a, b, c, d, e}
{a, b, c, d, e, z}

[
[
{{a, d}}
{{a, d}, {a, b}}
{{a, d}, {a, b}, {b, c}}
{{a, d}, {a, b}, {b, c}, {c, e}}
{{a, d}, {a, b}, {b, c}, {c, e}, {e, z}}

{a}
{b, d}

{b, c, e}
{c, e}
{e, z}
{z}

0
0
0
0
0
0

`
2
2
2
2
2

`
`
6
5
5
5

`
1
1
1
1
1

`
`
11
6
6
6

`
`
`
`
13
8
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Thus the shortest path from a to z has length L(z) 5 8.

In step 2 D(d) 5 a, in step 3 D(b) 5 b, in step 4 D(c) 5 b, 
in step 5 D(e) 5 c, and in step 6 D(z) 5 e. Tracing back-
wards from z gives D(z) 5 e, D(e) 5 c, D(c) 5 b, and 
D(b) 5 a. So the shortest path from a to z is abcez.

18. b.  Proof: Suppose not. Suppose that for some tree T, 
u and v are distinct vertices of T, and P1 and P2 are 
two distinct paths joining u and v. [We must deduce 
a contradiction. In fact, we will show that T contains 

a circuit.] Let P1 be denoted u 5 v0, v1, v2, . . . , 
vm 5 v, and let P2 be denoted u 5 w0, w1, w2, . . . , 
wn 5 v. Because P1 and P2 are distinct, and T has 
no parallel edges, the sequence of vertices in P1 
must diverge from the sequence of vertices in P2 
at some point. Let i be the least integer such that 
vi Þ wi. Then vi21 5 wi21. Let j and k be the least 
integers greater than i so that vj 5 wk. (There must 
be such integers because vm 5 wn 5 v.) Then

vi21vivi11 Á vj(5wk)wk21 Á wiwi21(5vi21)

is a circuit in T. The existence of such a circuit con-
tradicts the fact that T is a tree. Hence the supposition 
must be false. That is, given any tree with vertices u 
and v, there is a unique path joining u and w.

20.  Proof: Suppose G is a connected graph, T is a circuit-
free subgraph of G, and if any edge e of G not in T is 
added to T, the resulting graph contains a circuit. Sup-
pose that T is not a spanning tree for G. [We must derive 
a contradiction.] 

Case 1 (T is not connected): In this case, there are ver-
tices u and v in T such that there is no walk in T from 
u to v. Now, since G is connected, there is a walk in G 
from u to v, and hence, by Lemma 10.2.1, there is a path 
in G from u to v. Let e1, e2, . . . , ek be the edges of this 
path that are not in T. When these edges are added to T, 
the result is a graph T9 in which u and v are connected 
by a path. In addition, by hypothesis, each of the edges 
ei creates a circuit when added to T. Now remove these 
edges one by one from T9. By the same argument used in 
the proof of Lemma 10.5.3, each such removal leaves u 
and v connected since each ei is an edge of a circuit when 
added to T. Hence, after all the ei have been removed, u 
and v remain connected. But this contradicts the fact that 
there is no walk in T from u to v.

Case 2 (T is connected): In this case, since T is not a 
spanning tree and T is circuit-free, there is a vertex v in 
G such that v is not in T. [For if T were connected, circuit-
free, and contained every vertex in G, then T would be a 
spanning tree for G.] Since G is connected, v is not iso-
lated. Thus there is an edge e in G with v as an endpoint. 

Let T9 be the graph obtained from T by adding e and v. 
[Note that e is not already in T because if it were, its end-
point v would also be in T and it is not.] Then T9 contains 
a circuit because, by hypothesis, addition of any edge to 
T creates a circuit. Also T9 is connected because T is and 
because when e is added to T, e becomes part of a circuit 
in T9. Now deletion of an edge from a circuit does not 
disconnect a graph, so if e is deleted from T9 the result 
is a connected graph. But the resulting graph contains v, 
which means that there is an edge in T connecting v to 
another vertex of T. This implies that v is in T [because 
both endpoints of any edge in a graph must be part of the 
vertex set of the graph], which contradicts the fact that v 
is not in T.

Thus, in either case, the supposition that T is not a span-
ning tree leads to a contradiction. Hence the supposition 
is false, and T is a spanning tree for G.

21. a.  No. Counterexample: Let G be the following graph.

�1

e1

e2

�2

Then G has the spanning trees shown below.

�1

e1

�2 �1

e2

�2

22.  Hint: Suppose e is contained in every spanning tree 
of G and the graph obtained by removing e from G is 
connected. Let G9 be the subgraph of G obtained by 
removing e, and let T9 be a spanning tree for G9. How is 
T9 related to G?

24.  Proof: Suppose that w(e9) . w(e). Form a new graph 
T9 by adding e to T and deleting e9. By exercise 20, 
addng an edge to a spanning tree creates a circuit, 
and by Lemma 10.5.3, deleting an edge from a circuit 
does not disconnect a graph. Consequently, T9 is also 
a spanning tree for G. Furthermore, w(T9) , w(T) 
because w(T9) 5 w(T)2w(e9)1w(e) 5 w(T)2 (w(e9)2

w(e)) , w(T) [since w(e9) . w(e), which implies that 

w(e9)2w(e) . 0]. But this contradicts the fact that T is a 
minimum spanning tree for G. Hence the supposition is 
false, and so w(e9) # w(e).

25.  Hint: Suppose e is an edge that has smaller weight than 
any other edge of G, and suppose T is a minimum span-
ning tree for G that does not contain e. Create a new 
spanning tree T9 by adding e to T and removing another 
edge of T (which one?). Then w(T9) , w(T).
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26.  Yes. Proof by contradiction: Suppose G is a weighted 
graph in which all the weights of all the edges are dis-
tinct, and suppose G has two distinct minimum span-
ning trees T1 and T2. Let e be the edge of least weight 
that is in one of the trees but not the other. Without 
loss of generality, we may say that e is in T1. Add e to 
T2 to obtain a graph G9. By exercise 19, G9 contains a 
nontrivial circuit. At least one other edge f of this cir-
cuit is not in T1 because otherwise T1 would contain the 
complete circuit, which would contradict the fact that 
T1 is a tree. Now f  has weight greater than e because all 
edges have distinct weights, f is in T2 and not in T1, and 
e is the edge of least weight that is in one of the trees 
and not the other. Remove f from G9 to obtain a tree 
T3. Then w(T3) , w(T2) because T3 is the same as T2 
except that it contains e rather than f and w(e) , w(f  ). 
Consequently, T3 is a spanning tree for G of smaller 
weight than T2. This contradicts the supposition that T2 
is a minimum spanning tree for G. Thus G cannot have 
more than one minimum spanning tree.

28.  The output will be a “minimum spanning forest” for 
the graph. It will contain a minimum spanning tree for 
each connected component of the input graph.

Section 11.1
1. a. f (0) is positive.

b. f (x) 5 0 when x 5 22 and x 5 3 (approximately)
c. x1 5 21 and x2 5 2 (approximately)
d. x 5 1 or x 5 21

2 (approximately)
e. increase
f. decrease

3. 

y = x1/3

y = x1/4

y

x0.5 1 1.5 2

0.5

1

1.5

When 0 , x , 1, x1y3 , x1y4. When x . 1, x1y3 . x1y4.

5. 

x1–1–2–3–4 2 3 4
–1

1

2

3

4

5

6

–3

–4

–5

–6

y

y = 2  x

1–1–2–3–4 2 3 4

1

2

3

4

5

6

–3

–4

–5

–6

y

x

y =   2x

The graphs show that 2 :x; Þ :2x; for many values of x.

6. 

1–1–2–3–4 2 3 4

1

2

3

–3

–2

–1

y

x

g(x) =   x

Graph of g
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8. 
x F(x) 5 :x1y2;

0 0
1

2
0

1 1

2 1

3 1

4 2

1 4 9 12 16

1

2

3

4

y

x

Graph of F

10. n f (n) 5 un u
0 0

1 1

2 2

3 3

21 1

22 2

23 3

1–1–2–3 2 3

1

2

3
Graph of f

12.
n h(n) 5 jn

2
k

0 0

1 0

2 1

3 1

4 2

5 2

6 3

7 3

8 4

9 4

1 2 3 4 5 6 7 8 9

1

2

3

4

Graph of h

14. f is increasing on the intervals
{x [ R u23 , x , 22} and
{x [ R u0 , x , 2.5}, and f is decreasing on
{x [ R u22 , x , 0} and {x [ R u2.5 , x , 4}  
(approximately).

15.  Proof: Suppose that x1 and x2 are particular but arbi-
trarily chosen real numbers such that x1 , x2. [We must 
show that f (x1) , f (x2).] Since

x1 , x2

then 2x1 , 2x2

and 2x123 , 2x223

by basic properties of inequalities. Thus, by definition 
of f,

f (x1) , f (x2)

[as was to be shown]. Hence f is increasing on the set of 
all real numbers.

17. a.  Proof: Suppose x1 and x2 are real numbers with 
x1 , x2 , 0. [We must show that h(x1) . h(x2).]  
Multiply both sides of x1 , x2 by x1 to obtain 
(x1)

2 . x1x2 [by T23 of Appendix A since x1 , 0], and 
multiply both sides of x1 , x2 by x2 to obtain  
x1x2 . (x2)

2 [by T23 of Appendix A since x2 , 0].  
By transitivity of order [Appendix A, T18] (x2)

2 , (x1)
2, 

and so, by definition of h, h(x2) , h(x1). 

18. a.  Preliminaries: If both x1 and x2 are positive, then 
by the rules for working with inequalities (see 
Appendix A), 

x1 21

x1
,

x2 21

x2
1 x2(x1 21) , x1(x2 21)

by multiplying both sides by
x1x2 (which is positive)

1 x1x2 2x2 , x1x2 2x1

by multiplying out

1 2x2 , 2x1

by subtracting x1x2 from both sides

1 x2 . x1
by multiplying by21.

Are these steps reversible? Yes!
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Proof: Suppose that x1 and x2 are positive real numbers 
and x1 , x2. [We must show that k(x1) , k(x2).] Then

x1 , x2 

1 2x2 , 2x1 

1 x1x2 2x2 , x1x2 2x1 

1 x2(x1 21) , x1(x2 21) 

1
x1 21

x1
,

x2 21

x2
 

1 k(x1) , k(x2) 

[This is what was to be shown.]

19.  Proof: Suppose f : R S R is increasing. [We must show 
that f is one-to-one. In other words, we must show that for 
all real numbers x1 and x2, if x1 Þ x2 then f (x1) 5 f (x2).] 
Suppose x1 and x2 are real numbers and x1 Þ x2. By the 
trichotomy law [Appendix A, T17] x1 , x2, or x1 . x2. 
In case x1 , x2, then since f is increasing, f (x1) , f (x2) 
and so f (x1) Þ f (x2). Similarly, in case x1 . x2, then 
f (x1) . f (x2) and so f (x1) Þ f (x2). Thus in either case, 
f (x1) Þ f (x2) [as was to be shown].

21. a.  Proof: Suppose u and v are nonnegative real num-
bers with u , v. [We must show that f (u) , f (v).] 
Note that v 5 u1h for some positive real number h. 
By substitution and the binomial theorem, 

vm 5 (u1h)m

5 um 13Sm

1Dum21h1Sm

2Dum22h2 1 Á

1S m

m21Duhm21 1hm4.

The bracketed sum is positive because u $ 0 and h . 0, 
and a sum of nonnegative terms that includes at least one 
positive term is positive. Hence

vm 5 um 1a positive number,

and so f (u) 5 um , vm 5 f (v) [as was to be shown]. 

22. 

1

1

–3

2

3

–2–3–5–6 2 3 4 5 6

Graph of 3 f

24.  Proof: Suppose that f is a real-valued function of a real 
variable, f is decreasing on a set S, and M is any positive 
real number. [We must show that Mf is decreasing on 

by multiplying by21

by adding x1x2 to both sides

by factoring both sides

by dividing both sides by 
the positive number x1x2

by definition of k.

S. In other words, we must show that for all x1 and x2 
in S, if x1 , x2 then (Mf )(x1) . (Mf )(x2).] Suppose x1 
and x2 are in S and x1 , x2. Since f is decreasing on S, 
f (x1) . f (x2), and since M is positive, M f (x1) . Mf (x2) 
[because when both sides of an inequality are multiplied 
by a positive number, the direction of the inequality is 
unchanged]. It follows by definition of Mf that  
(Mf )(x1) . (Mf )(x2) [as was to be shown].

27.  To find the answer algebraically, solve the equa-
tion 2x2 5 x2 110x111 for x. Subtracting x2 from 
both sides gives x2 210x211 5 0, and either using 
the quadratic formula or factoring x2 210x211 5
(x211)(x11) gives x 5 11 (since x . 0). To find an 
approximate answer with a graphing calculator, plot 
both f (x) 5 x2 110x111 and 2g(x) 5 2x2 for x . 0, 
as shown in the figure, and find that 2g(x) . f (x) when 
x . 11 (approximately). You can obtain only an ap-
proximate answer from a graphing calculator because 
the calculator computes values only to an accuracy of a 
finite number of decimal places. 

x

y

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

2g(x) = 2x2

f (x) = x2 + 10x + 11

Section 11.2
1. a.  Formal version of negation: f (n) is not V(g(n)) if, 

and only if, 5 positive real numbers a and A, E an 
integer n $ a such that Ag(n) . f (n).

b. Informal version of negation: f(n) is not V(g(n)) if, 
and only if, no matter what positive real numbers a 
and A might be chosen, it is possible to find an in-
teger n greater than or equal to a with the property 
that Ag(n) . f (n). 

4. n2 jn
2
k11 is V(n)

5.  n2 jn
2
k11 is O(n)

6. 3n(n22) is Q(n2)

10. a. For each integer n $ 1,

0 # 2n2 115n14
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because all terms in 2n2 115n14 are positive. 
Moreover,

2n2 115n14 # 2n2 115n2 14n2

because when n $ 1, 15n # 15n2  
and 4 # 4n2

5 21n2 by combining like terms.

Therefore, by transitivity of equality and order,

0 # 2n2 115n14 # 21n2 for each integer n $ 1.

b. For each integer n $ 1,

2n2 # 2n2 115n14

because 15n14 . 0 since n is positive.
c. Sketch of graph

y 5 21n2

y 5 2n2

y 5 2n2 1 15n 1 4

1

15

30

45

60

75

90

105

2 4 5 63

d. Let A 5 2 and a 5 1. Then, by substitution from 
the result of part (b),

An2 , 2n2 115n14 for each integer n $ a,

and hence, by definition of V-notation, 2n2 115n14 
is V(n2). Let B 5 21 and 6 5 1. Then, by substitu-
tion from the result of part (a),

0 , 2n2 115n14 # Bn2 for each integer n $ 6,

and hence by definition of O-notation, 2n2 115n14 
is O(n2).

e. Solution 1: Let A 5 2, B 5 21, and k 5 1. By the 
results of parts (a) and (b),

An2 # 2n2 115n14 # Bn2 for each integer n $ k,

and hence, by definition of Q-notation, 2n2 115n14 
is Q(n2).
Solution 2: By part (d), 2n2 115n14 is both V(n2) 
and O(n2). Hence, by Theorem 11.2.1,

2n2 115n14 is Q(n2).

13. For each integer n $ 1,

5n3 # 5n3 165n130

because 65n130 . 0 since n is positive. Moreover,

5n3 165n130 # 5n3 165n3 130n3

because when n $ 1, then  
65n , 65n3 and 30 , 30n3

      5 100n3 by combining like terms.

Therefore, by transitivity of order and equality,

5n3 # 5n3 165n130 # 100n3.

Thus, let A 5 5, B 5 100, and k 5 1. Then

An3 # 5n3 165n130 # Bn3 for each integer n $ k,

and hence, by definition of Q-notation, 5n3 165n130 
is Q(n3).

15. For each integer n $ 1,

n #  n1
1

2
 ,  n11,

and so :n1 1
2; 5 n, by definition of floor, and :n1 1

2;  
is nonnegative. In addition, when n $ 1, then 
n11 # n1n 5 2n, and thus, by transitivity of equality 
and order,

n #  jn1
1

2
k #  2n.

Let A 5 1, B 5 2, and k 5 1. Then

An #  jn1
1

2
k #  Bn for every integer n $ k,

and hence, by definition of Q-notation, :n1 1
2; is Q(n).

18. Proof of Theorem 11.2.7(b): 
Suppose f and g are real-valued functions defined on the 
same set of nonnegative integers, suppose f (n) $ 0 and 
g(n) $ 0 for every integer n $ r, where r is a positive 
real number, and suppose f (n) is Q(g(n)). [We must show 
that g(n) is Q(  f (n).] By definition of Q-notation, there 
exist positive real numbers A, B, and k with k $ r such 
that for each integer n $ k,

Ag(n) # f (n) # Bg(n).

Dividing the left-hand inequality by A and the right-
hand inequality by B gives that

g(n) #
1

A
  f (n) and 1

B
   f (n) # g(n),

and combining the resulting inequalities produces

1

B
   f (n) # g(n) #

1

A
   f (n)  for each integer n $ k.

Now both f (n) $ 0 and g(n) $ 0 for each integer n $ k.  
Also, since both A and B are positive real numbers, so 
are 1/A and 1/B. Thus, by definition of Q-notation, g(n) 
is Q( f(n)).

20.  Proof (by contradiction): Suppose not. That is, suppose 
n5 is O(n2). [We must show that this supposition leads to 
a contradiction.] By definition of O-notation, there exist 
positive real numbers B and b such that

0 # n5 # Bn2  for each integer n $ b.

Dividing the inequalities by n2 and taking the cube root 
of both sides gives

0 # n # Ï3 B  for each integer n $ b.
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These two conditions are contradictory because on the 
one hand n can be any integer greater than or equal to 
b, but when n is greater than b, then n is less than Ï3 B, 
which is a fixed integer. Thus the supposition leads to a 
contradiction, and hence the supposition is false.

22. a.  Solution 1 (using ad hoc calculations): Let 3 stand 
for the words “if, and only if,” and observe that

(*)  
1

2
  n4 # 2n4 290n3 13

      3  n4 # 4n4 2180n3 16
 because dividing or multiplying both sides 
of an inequality by 2, which is positive, 
preserves the direction of the inequality.

      3  180n3 26 # 3n4

because adding or subtracting 180n3 26 
to both sides of an inequality preserves 
the direction of the inequality.

(**) 3  602
2

n3 # n    because dividing or multiplying both sides 
of an inequality by 3n3, which is positive, 
preserves the direction of the inequality.

Because all the inequalities are equivalent (that is, 
each inequality is true if, and only if, all the others 
are true), any value of n that makes inequality (**) 
true makes inequality (*) true also. Now

if  n $ 60,  then  n $ 602
2

n3,

which is inequality (**). Therefore, inequality (*) is 
also true for n $ 60, for every integer n $ 60,

1

2
 n4 # 2n4 290n3 13.

Let A 5 1
2 and a 5 60. Then for every integer n $ a,

An4
  #   2n4 290n3 13.

and so, by definition of V-notation, 2n4 290n3 13 
is V(n4).
Solution 2 (using the general procedure):
To use the general procedure from Example 11.2.4 
to show that 2n4 290n3 13 is V(n4), let

A 5
1

2
?2 5 1 and a 5

2

2
 ( u 290 u 1 u3 u) 5 93

and note that a $ 1. We will show that 
n4 # 2n4 290n3 13 for every integer n $ a. Now 
n $ a means that 

n $ 9013.

Multiplying both sides by n3 gives

n4 $ 90n3 13n3

and subtracting first 3n3 and then 3 from the right-
hand side gives that

n4 $ 90n3 $ 90n3 23 for every integer n $ a.

Subtracting the right-hand side from the left-hand 
side and adding n4 to both sides gives

2n4 290n3 13 $ n4 for every integer n $ a.

Thus since A 5 1,

2n4 290n3 13 $ An4 for every integer n $ a,

and so, by definition of V-notation, 2n4 290n3 13 
is V(n4).

b. To show that 2n4 290n3 13 is O(n4), observe that 
for every integer n $ 1,

2n4 290n3 13 # 2n4 190n3 13
because when n $ 1,  
then 90n3 is positive

# 2n4 190n4 13n4

 by Theorem 11.2.2  
 (since n $ 1, n3 # n4 
 and 1 # n4, 

and so  90n3 # 90n4 and 3 # 3n4)

5 95n4 because 219013 5 95.

Thus, by transitivity of order and equality, for every 
integer n $ 1,

2n4 290n3 13 # 95n4.

In addition, by part (a), for every integer n $ 60,

1

2
 n4 # 2n4 290n3 13

so since 0 # 1
2 

n4, transitivity of order gives that for 
every integer n $ 60,

0 # 2n4 290n3 13 # 95n4.

Let B 5 14 and b 5 60. Then, for every integer 
n $ b,

0 # 2n4 290n3 13 # Bn4

and hence, by definition of O-notation, 

2n4 290n3 13 is O(n4).

c. Solution 1: Let A 5 1
2, B 5 95, and k 5 60. By the 

results of parts (a) and (b), for every integer n $ k,

An4 # 2n4 290n3 13 # Bn4

and hence, by definition of Q-notation,

 2n4 290n3 13 is Q(n4).

Solution 2: By parts (a) and (b), 2n4 290n3 13 is 
both V(n4) and O(n4). Hence, by Theorem 11.2.1,

2n4 290n3 13 is Q(n4).

25.  Proof: Suppose 

P(n) 5 amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 

where all the coefficients a0, a1, . . . , am are real numbers 
and am . 0.
a. Proof that P(n) is V(nm): According to the general 

procedure described in Example 11.2.4, we let

 A 5
1

2
 am,

 d 5 2 1 uam21 u 1 uam22 u 1 Á 1 ua2 u 1 ua1 u 1 ua0 u
am

2,

and  a 5 max(d, 1).
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Then n $ a means that

n $ 21 uam21 u 1 uam22 u 1 Á 1 ua2 u 1 ua1 u 1 ua0 u
am

2.

Multiplying both sides by 12 amnm21 gives

 
1

2
 amnm $  ( uam21 u 1 uam22 u 1 Á 1 ua2 u 1 ua1 u 1 ua0 u)nm21

5 uam21 unm21 1 uam22 unm21 1 Á

1 ua2 unm21 1 ua1 unm21 1 ua0 unm21

$ uam21 unm21 1 uam22 unm22 1 Á 1 ua2 un2 1 ua1 un1 ua0 u

Thus, by transitivity of order and equality, for each 
integer n $ a,

 1am

2 2nm $ uam21 unm21 1 uam22 unm21 1 Á 1 ua1 un1 ua0 u .

Subtracting the right side from the left gives

1am

2 2nm 2 uam21 unm21 2 uam22 unm21 2 Á 2 ua1 un 2 ua0 u $ 0 

for each integer n $ a. It follows that, for each 
integer n $ a,

1am

2 2nm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 $ 0  

because, by definition of absolute value, each 
2 uai u # ai. Adding _am

2 + nm to both sides gives that, 

for each integer n $ a,

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 $ 1am

2 2nm

Therefore, with A 5
am

2  and a 5 max(d, 1), we have 
that for each integer n $ a,

 amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 $  Anm,  

and so, by definition of V-notation,

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0

is V(nm).
b. Proof that P(n) is O(nm): Observe that for each 

integer n $ 1,

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0

 # uam unm 1 uam21 unm21 1 uam22 unm22

1 Á 1 ua2 un2 1 ua1 un1 ua0 u
because by definition of absolute value each ai # uai u

 # uam unm 1 uam21 unm 1 uam22 unm

1 Á 1 ua2 unm 1 ua1 unm 1 ua0 unm

by Theorem 11.2.2 since n $ 1, nm2 i # nm for each i 
from 0 through m

5 ( uam u 1 uam21 u 1 uam22 u 1 Á 1 ua2 u 1 ua1 u 1 ua0 u)nm

because nm21 $ nr for each 
r # m21 since n $ 1.

Let 

B 5 uam u 1 uam51 u 1 uam52 u 1 Á 1 ua2 u 1 ua1 u 1 ua0 u . 
Then, by transitivity of order and equality, for each 
integer n $ 1,

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 # Bnm.

In addition, by part (a), there exists a positive real 
number a such that for each integer n $ a,

am

2
 nm # amnm 1am21n

m21 1am22n
m22 1 Á 1a1n1a0.

Now 
am

2  
nm . 0 because am . 0, and thus, transitiv-

ity of order gives that for each integer n $ a,

0 # amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0

Let b 5 max(l, a). Then, for each integer n $ b,

0 # amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 # Bnm,

and hence, by definition of O-notation, 

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 

is O(nm).
c. Proof that P(n) is Q(nm): By parts (a) and (b),

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0 

is both V(nm) and O(nm). Hence, by Theorem 11.2.1,

amnm 1am21n
m21 1am22n

m22 1 Á 1a1n1a0

is Q(nm).

26.  
(n11)(n22)

4
5

1

4
  (n2 1n22n22) 5

1

4
  (n2 2n22)

5
1

4
  n2 2

1

4
  n2

1

2
, 

which is Q(n2) by the theorem on polynomial orders.

29.  
n(n11)(2n11)

6
5

1

6
  fn(n11)(2n11)g

 5
1

6
  f(n2 1n)(2n11)g 

  5
1

6
  (2n3 13n2 1n) 5  

1

3
  n3 1

1

2
  n2 1

1

6
  n,

which is Q(n3) by the theorem on polynomial orders.

32.  By exercise 10 of Section 5.2, 12 122 132 1 Á 1n2 5
n(n 1 1)(2n 1 1)

6 , which is Q(n3) by exercise 29 above. 

Hence 12 122 132 1 Á 1n2 is Q(n3).

34. Note that

 214161 Á 12n 5 2(112131 Á 1n)
by factoring out a 2

 5 21n(n11)

2 2 by Theorem 5.2.1

 5 n2 1n by algebra,

and so, by the theorem on polynomial orders,

214161 Á 12n is Q(n2).
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36. Note that

 on

i51
(4i29) 5 4on

i51
i2on

i51
9 by Theorem 5.1.1

 5 41n(n11)

2 22 (9191 Á 19)  

 5 2n2 12n29n 
   

 5 2n2 27n  by algebra,

and so, by the theorem on polynomial orders,

o
n

i51

(4i29) is Q(n2).

38. Hint: Use the result of exercise 13 from Section 5.2.

40. a.  Proof: Suppose c is a positive real number and f is 
a real-valued function defined on a set of nonnega-
tive integers with f(n) $ 0 for each integer n greater 
than or equal to a positive real number k. Now if we 
let A 5 B 5 c, we have that for each integer n $ k,

Af(n) # cf(n) # Bf(n)

and so, by definition of Q-notation, cf(n) is Q( f(n)).
b. Let c 5 3 and f(n) 5 n. Then f is a real-valued 

function and f(n) $ 0 for each integer n $ 0. So 
by part (a), cf(n) is Q( f(n)), or, by substitution, 3n is 
Q(n).

43.  By exercise 15, :n 1 1
2 ; is Q(n), and by exercise 40(b),  

3n is also Q(n). Thus :n 1 1
2 ;13n is Q(n) by  

Theorem 11.2.9(a).

44.  By exercise 28, 
n(n 2 1)

2  is Q(n2), by exercise 17, :n2; is 

Q(n), and by exercise 41 (with f(n) 5 1), 1 is Q(1). 
Now n # n2 and 1 # n2 for each integer n $ 1. Thus 
n(n 2 1)

2 1 :n2;11 is Q(n2) by Theorem 11.2.9(c).

46. a.  Proof (by mathematical induction): Let the property 
P(m) be the sentence

If n is any integer with n . 1, then nm . 1. dP(m)

Show that P(1) is true: We must show that if n is 
any integer with n . 1, then n1 . 1. But this is true 
because n1 5 n. So P(l) is true.
Show that for every integer k $ 1, if P(k) is true 
then P(k11) is true: Let k be a particular but arbi-
trarily chosen integer with k $ 1, and suppose that

If n is any integer with n . 1, then nk . 1. d P(k)  
 inductive  
 hypothesis

We must show that

If n is any integer with n . 1, then nk11 . 1. dP(k11)

So suppose n is any integer with n . 1. By induc-

n terms
by Theorem 5.2.1

by definition of  
mutiplication

tive hypothesis, nk . 1, and multiplying both sides 
by the positive number n gives n?nk . n?1, or, 
equivalently, nk11 . n. Thus nk11 . n and n . 1, 
and so, by transitivity of order, nk11 . 1 [as was to 
be shown].

b. Proof: Suppose n is any integer with n . 1 and 
r and s are integers with r , s. Then s2 r is an 
integer with s2 r $ 1, and so, by part (a), ns2r . 1. 
Multiplying both sides by nr gives nr?ns2r . nr?1, 
and so, by the laws of exponents, ns . nr [as was to 
be shown].

47. a.  Proof (by mathematical induction): Let the property 
P(m) be the sentence

   If 0 , x # 1, then xm # 1. dP(m)

Show that P(1) is true: We must show that if 
0 , x # 1, then x1 # 1. But x # 1 by assumption 
and x1 5 x. So P(1) is true.
Show that for every integer k $ 1, if P(k) is true 
then P(k11) is true: Let k be any integer with 
k $ 1, and suppose that

   If 0 , x # 1, then xk # 1.  d  P(k) inductive 
hypothesis

We must show that

   If 0 , x # 1, then xk11 # 1. d P(k11)

So let x be any number with 0 , x # 1. By induc-
tive hypothesis, xk # 1, and multiplying both sides 
of this inequality by the nonnegative number x 
gives x?xk # x?1. Thus, by the laws of exponents, 
xk11 # x.  Then

 xk11 # x and x # 1, 

and hence, by the transitive property of order (T18 
in Appendix A), xk11 # 1.

b. Hint: What is the contrapositive of the statement in 
part (a)?

48. Proof of Theorem 11.2.6(b):
Let f and g be real-valued functions defined on the same 
set of nonnegative integers, and suppose there is a posi-
tive real number r such that f (n) $ 0 and g(n) $ 0 for 
each integer n $ r. Suppose also that g(n) is O( f(n)). We 
will show that f (n) is V(g(n)). By definition of O-nota-
tion, there are positive real numbers B and b such that 
b $ r, and, for each integer n $ b,

0 # g(n) # Bf (n)

Divide the right-hand inequality by B to obtain

1

B
 g(n) # f (n), 

for each integer n $ b. Let A 5 1yB and a 5 b. Then for 
each integer n $ a,

Ag(n) # f (n)

and so f (n) is V(g(n)) by definition of V-notation.
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50. a. Proof of Theorem 11.2.8(a):
 Let f and g be real-valued functions defined on the 
same set of nonnegative integers, and suppose there is a 
positive real number r such that f (n) $ 0 and g(n) $ 0 
for each n $ r. Suppose also that f (n) is V(g(n)) and c 
is any positive real number. [We will show that cf(n) is 
V(g(n)).] By definition of V-notation, there are positive 
real numbers A and a such that a $ r, and, for each 
integer n $ a,

Ag(n) # f (n).

Multiply both sides of the inequality by c to obtain
cAg(n) # cf (n), 

and let A9 5 Ac. Then A9 is a positive real number 
because both A and c are positive real numbers. 

Hence there are positive real numbers A9 and a such 
that a $ r, and, for each integer n $ a,

A9g(n) # cf (n).

Thus cf (n) is V(g(n)) by definition of V-notation.

51. a.  Partial proof of Theorem 11.2.9(a): Let f1, f2, and g 
be real-valued functions defined on the same set of 
nonnegative integers, and suppose there is a posi-
tive real number r such that f1(n) $ 0, f2(n) $ 0, 
and g(n) $ 0 for each integer n $ r. Suppose also 
that f1(n) is Q(g(n)) and f2(n) is Q(g(n)). [We will 
show that (f1(n)1 f2(n)) is Q(g(n)).] By definition of 
Q-notation, there are positive real numbers A, B, 
A9, B9, k, and k9 such that k $ r, k9 $ r and, for each 
integer n such that n $ k and n $ k9,

Ag(n) # f1(n) # Bg(n) 

and

A9g(n) # f2(n) # B9g(n). 

Let k0 5 max(k, k9).

Section 11.3
1. a.  log2(200) 5

 ln 200
 ln 2 > 7.6 nanoseconds 5

0.0000000076 second
d. 2002 5 40,000 nanoseconds 5 0.00004 second
e. 2008 5 2.56 3 1018 nanoseconds >

2.56 3 1018

109?60?60?24?(365.25) 
years > 81.1215 years

[because there are 109 nanoseconds in a second, 
60 seconds in a minute, 60 minutes in an hour, 
24 hours in a day, and approximately 365.25 days in a 
year on average]. 

2. a.  When the input size is increased from m to 2m, 
the number of operations increases from cm2 to 
c(2m)2 5 4cm2.

b. By part (a), the number of operations increases by a 
factor of (4cm2)ycm2 5 4.

c. When the input size is increased by a factor of 10 
(from m to 10m), the number of operations increases by 
a factor of (c(10m)2)y(cm2) 5 (100cm2)/cm2 5 100. 

4. a.  Algorithm A has order n2 and algorithm B has order 

n3y2.
b. Algorithm A is more efficient than algorithm B 

when 2n2 , 80n3y2. This occurs exactly when

n2 , 40n3y2 3
n2

n3y2
, 40 3 n1y2 , 40 3 n , 402.

Thus, algorithm A is more efficient than algorithm 
B when n , 402 5 1,600.

c. Algorithm B is at least 100 times more efficient than 
algorithm A for values of n with 100(80n3y2) # 2n2.
This occurs exactly when 8,000n3y2 # 2n2 3
4,000 #

n2

n3y2 3 4,000 # Ïn 3 16,000,000 # n. 

Thus, algorithm B is at least 100 times more ef-
ficient than algorithm A when n $ 16,000,000. 

6. a.  There are two multiplications, one addition, and 
one subtraction for each iteration of the loop, so 
there are four times as many operations as there 
are iterations of the loop. The loop is iterated 
(n21)2311 5 n23 times (since the number of 
iterations equals the top minus the bottom index 
plus 1). Thus the total number of operations is 
4(n23) 5 4n212.

b. By the theorem on polynomial orders, 4n212 is 
Q(n), so the algorithm segment has order n. 

8. a.  There is one addition for each iteration of the loop, 
and there are :ny2; iterations of the loop.

b. Because 

 :ny2; 5 5ny2 if n is even

(n21)y2 if n is odd,
 
then :ny2;

 

is Q(n) by theorem on polynomial orders. So the 
algorithm segment has order n.

9. a.  For each iteration of the inner loop, there is one 
multiplication and one addition. There are 2n 
iterations of the inner loop for each iteration of 
the outer loop, and there are n iterations of the 
outer loop. Therefore, the number of iterations of 
the inner loop is 2n?n 5 2n2. It follows that the 
total number of elementary operations that must 
be performed when the algorithm is executed is 
2?2n2 5 4n2.

b. Since 4n2 is Q(n2) (by the theorem on polynomial 
orders), the algorithm segment has order n2.

11. a.  There is one addition for each iteration of the inner 
loop. The number of iterations in the inner loop 
equals the number of columns in the table below, 
which shows the values of k and j for which the 
inner loop is executed.

k 1 2 3 n2 1

j 1 2 1 2 3 1 2 3 4 1 2 3 n

2 3 4 n
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Hence the total number of iterations of the inner 
loop is

2131 Á 1n 5 (112131 Á 1n)21

5
n(n11)

2
21 5

n2 1n

2
21 5

1

2
n2 1

1

2
n21

(by Theorem 5.2.1). Because one operation is per-
formed for each iteration of the inner loop, the total 
number of operations is 12 n2 1 1

2 
n21.

b. By the theorem on polynomial orders, 12 n2 1 1
2 

n21 
is Q(n2), and so the algorithm segment has order n2.

14. a.  There is one addition for each iteration of the inner 
loop, and there is one additional addition and one 
multiplication for each iteration of the outer loop. 
The number of iterations in the inner loop equals 
the number of columns in the following table, which 
shows the values of i and j for which the inner loop 
is executed.

i 1 2 3 n

j 1 1 2 1 2 3 1 2 3 n

1 2 3 n

Hence the total number of iterations of the inner loop is

112131 Á 1n 5 (112131 Á 1n)

5
n(n11)

2
5

n2 1n

2
5

1

2
 n2 1

1

2
 n

(by Theorem 5.2.1). Because one addition is 
performed for each iteration of the inner loop, the 
number of operations performed when the inner 
loop is executed is 12 n2 1 1

2. Now an additional two 
operations are performed each time the outer loop 
is executed, and because the outer loop is execut-
ed n times, this gives an additional 2n operations. 
Therefore, the total number of operations is

1

2
 n2 1

1

2
 n12n 5

1

2
 n2 1

5

2
 n.

b. By the theorem on polynomial orders, 12 n2 1
5
2 n is 

Q(n2), and so the algorithm segment has order n2.

17. a.  There are two subtractions and one multiplication 
for each iteration of the inner loop. If n is odd, the 
number of iterations of the inner loop equals the 
number of columns in the following table, which 
shows the values of i and j for which the inner loop 
is executed.

i 1 2 3 4 5 6 n 1 n
i 1

2 1 1 2 2 3 3 n 1
2

n 1
2

j 1 1 1 2 1 2 1 2 3 1 2 3 1 2 n 1
2 1 2 n 1

2

1 1 2 2 3 3
n 1

2
n 1

2

2
2

2

2

1

1

11

Thus the number of iterations of the inner loop is

11112121 Á 1
n21

2
1

n21

2
1

n11

2

5 2?S112131 Á 1
n21

2 D1
n11

2

5 2?

n21

2 Sn21

2
11D

2
1

n11

2

5
n2 22n11

4
1

n21

2
1

n21

2

5
1

4
 n2 1

1

2
 n1

1

4
.

By similar reasoning, if n is even, then the number 
of iterations of the inner loop is

111121213131 Á 1
n

2
1

n

2

5 2?S112131 Á 1
n

2D

5 2?Sn

2Sn

2
11D
2

D by Theorem 5.2.1

5
n2

4
1

n

2
.

Because three operations are performed for each 

iteration of the inner loop, the answer is 3 _n
2

4 1
n
2+ 

when n is even and 3 _14 
n2 1 1

2 
n1 1

4+ when n is odd.

b. Since 3 _n
2

4 1
n
2+ is Q(n2) and 3 _14 

n2 1 1
2 

n1 1
4+ is also 

Q(n2) (by the theorem on polynomial orders), this 
algorithm segment has order n2.

19.  Hint: See Section 9.6 for a discussion of how to count 
the number of iterations of the innermost loop.

20. 

Initial order 6 2 1 8 4

Result of step 1 2 6 1 8 4

Result of step 2 1 2 6 8 4

Result of step 3 1 2 6 8 4

Final order 1 2 4 6 8

a[1] a[2] a[3] a[4] a[5]

by Theorem 5.2.1
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22. 
n 5

a[1] 6 2 1

a[2] 2 6 21

a[3] 1 6 4

a[4] 8 6

a[5] 4 8

k 2 3 4 5

x 2 1 8 4

j 1 0 2 1 0 3 0 4 3 2 0

4

24.  There are seven comparisons between values of x and 
values of a[  j]: one k 5 2, two when k 5 3, one when 
k 5 4, and three when k 5 5.

27.  Hint: En 5 1
2 

[3141 Á 1 (n11)], which equals 
1
2 [(112131 Á 1 (n11))2 (112)].

28.  The top row of the table shows the initial values of the 
array, and the bottom row shows the final values. The 
results for executing each step in the for-next loop are 
shown in separate rows.

Initial

k

7 3 8 4 2

2 3 8 4 7

2 3 8 4 7

2 3 4 8 7

2

1

2

3

4 3 4 7 8

25 3 4 7 8

a[1] a[2] a[3] a[4] a[5]

30. 

a[5]

a[4]

a[3]

a[2]

a[1]

n 5

7 3

3 7

8 4

8 7

8

7

4

2

k 1

7

2

IndexOfMin 1

i 2

2

3 4 5

5

temp 7 8

3

2

2

4 5 4

3

3

5

4

5

4 5

4

32. There is one comparison for each combination of values 
of k and i: namely, 4131211 5 10.

35. b. n2311 5 n22 d.  Hint: The answer is n2.

36. n 3

2

1

3

x 2

polyval 2 4 0 24

i 1 2 3

term 1 2 3 6 12 24

j 1 1 2 1 2 3

22 2421

21

a[0]

a[1]

a[2]

a[3]

38. Number of multiplications

5 number of iterations of the inner loop

5 112131 Á 1n

5
n(n11)

2
 by Theorem 5.2.1

Number of additions

5 number of iterations of the outer loop

5 n

Hence the total number of multiplications and additions is

n(n11)

2
1n 5

1

2
 n2 1

3

2
 n.

40. n 3

2

1

3

x 2

polyval 3 5 11 24

i 1 2 3

21

a[0]

a[1]

a[2]

a[3]

42. Hint: tn 5 2n.

Section 11.4
1. x f (x) 3x

0 30 1

1 31 3

2 32 9

1 3– 1 1/ 3

2 3– 2 1/ 9

1/ 2 31/ 2

(1/ 2) 3– (1/ 2)2

2

2

5

5

5

5

5

5

0.6

1.7
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x

y

1 2 3–1–2–3

1

2

3

4

(1, 3)

y = 3x

3. 

x

y

5 10 15 20–1

1
h(x) = log10 x

x h(x) log10 x

1 0

10 1

100 2

1/10 1

1/100 2

5

2

2

5. 

2 4 6 8 10 12 14 16

1

–1

–2

2

3

4

y

x

F(x) =   log2 x

x log2 x

1 # x , 2 0

2 # x , 4 1

4 # x , 8 2

8 # x , 16 3

1/ 2 # x , 1 1

1/ 4 # x , 1/ 2 2

2

2

7. 

2 4 6 8

8

16

24

x

y

y = x log2 x

x x log2 x

1 1. 0 0

2 2 1 2

4 4 2 8

8 8 3 24

1y8 (1y8) ( 3)

1y4 (1y4) ( 2)

3y8 (3y8) (log2(3y8))

5

5

5

5

523y8

521y2

2

2

2

0.53

.

.

.

.

.

.

9.  The distance above the axis is (264 units)?_14  inch 
unit + 5

264

4  inches 5 264

4?12?5280 miles > 72,785,448,520,000 

miles. The ratio of the height of the point to the aver-
age distance of the earth to the sun is approximately 
72785448520000y93000000 > 782,639. (If you 
perform the computation using metric units and the ap-
proximation 0.635 cm > 1y4 inch, the ratio comes out 
to be approximately 780,912.)

10. b.  By definition of logarithm, logb x is the exponent to 
which b must be raised to obtain x. Thus when b is 
actually raised to this exponent, x is obtained. That 
is, blogbx 5 x.

11. b. 

1

1

3

5

–1–3–5 3 5

–3

–5

–1
x

y

y = x
(3, 5)

(5, 3)

(4, 1)

(1, 4)

(–3, 1)

(–4, –2)

(–2, –4)

(1, –3)

Each pair of points
(u, �) and (�, u) are
"mirror image re�ections"
across the line y = x.
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13. Hints: (1)   :log10 x; 5 m, (2) See Example 11.4.1.

15.  No. Counterexample: Let n 5 2. Then 
<log2 (n21)= 5 <log2 1= 5 <0= 5 0, whereas 
<log2 n= 5 <log2 2= 5 <11= 5 1.

16. Hint: The statement is true.

18. :log2 148206;11 5 18

21. a. a1 5 1
a2 5 a:2y2;12 5 a1 12 5 112
a3 5 a:3y2;12 5 a1 12 5 112
a4 5 a:4/2;12 5 a2 12 5 (112)12

    5 112?2
a5 5 a:5y2;12 5 a2 12 5 (112)12
    5 112?2
a6 5 a:6y2;12 5 a3 12 5 (112)12
    5 112?2
a7 5 a:7y2;12 5 a3 12 5 (112)12
    5 112?2
a8 5 a:8y2;12 5 a4 12
    5 (112?2)12 5 113?2
a9 5 a:9y2;12 5 a4 12

5 (112?2)12 5 113?2
 o

a15 5 a:15y2;12 5 a7 12
5 (112?2)12 5 113?2

a16 5 a:16y2;12 5 a8 12
5 (113?2)12 5 114?2

Guess:
an 5 112 :log2 n;

b. Proof: Suppose the sequence a1, a2, a3, . . .  
is defined recursively as follows: a1 5 1 and 
ak 5 a:ky2;12 for each integer k $ 2. Let the prop-
erty P(n) be the equation an 5 112 :log2 n;. We 
will show by strong mathematical induction that 
P(n), is true for each integer n $ 1.

Show that P(1) is true: P(1) is the equation 
112 :log2 1; 5 112?0 5 1, which is the value of a1.

Show that for any integer k $ 1, if P(i) is true for 
every integer i from 1 through k, then P(k11) is 
true: Let k be any integer with k $ 1, and suppose 
ai 5 112 :log2 i; for each integer i from 1 through 
k. [This is the inductive hypothesis.] We must show 
that ak11 5 112 :log2 (k11);.
Case 1 (k is odd): In this case k11 is even, and
ak11 5 a:(k11)y2;12

by the recursive definition of a1, a2, a3. . . . 
    5 a(k11)y2 12

because k11 is even (Theorem 4.6.2)
    5 112 :log2((k11)y2);12

by inductive hypothesis
    5 312 :log2(k11)2 log2 2;

by Theorem 7.2.1(b)

    5 312 :log2(k11)21);
because log2 2 5 1

    5 312(:log2(k11);21)
because for every real number x, :x21; 5 :x ;21
by exercise 15, Section 4.6

    5 112 :log2(k11);
by algebra.

Case 2 (k is even): In this case k11 is odd, and
ak11 5 a:(k11)y2;12

by the recursive definition of a1, a2, a3, . . . 
    5 aky2 12

by Theorem 4.6.2 because k11 is odd.
    5 112 :log2(ky2);12

by inductive hypothesis
    5 312 :log2 k2 log2 2;

by Theorem 7.2.1(b)
    5 312 :log2 k21;

because log2 2 5 1
    5 312(:log2 k;21)

because for every real number x, :x21; 5 :x ;21
by exercise 15, Section 4.6

    5 112 :log2 k;
by algebra.

    5 112 :log2 

(k11);
by property 11.4.3.

Thus in either case, ak11 5 112 :log2(k11); [as 
was to be shown].

23.  Hint: When k $ 2, then k2 $ 2k, and so k #
k2

2 . Hence 
k2

2 1k #
k2

2 1
k2

2 5 k2. Also, when k $ 2 then k2 . 1, and 

so 12 ,
k2

2 . Consequently, k
2

2 1 1
2 ,

k2

2 1
k2

2 5 k2.

24.  Hint: Here is the argument for the inductive step in the 
case where k is odd and k11 is even.
ck11 5 2c:(k11)y2;1 (k11)

by the recursive definition of c1, c2, c3, . . . 
     5 2c(k11)y2 1 (k11)

by Theorem 4.6.2 because k11 is even

     # 2 3k11

2
log21k11

2 241 (k11)

by inductive hypothesis
     5 (k11)[log2(k11)2 log2 2]1 (k11)

by algebra and Theorem 7.2.1(b)
     5 (k11)[log2(k11)21]1 (k11)

because log2 2 5 1
     5 (k11)(log2(k11))

by algebra.

25.  Solution 1: One way to solve this problem is to 
compare values for log2 x and x1y10 for conve-
niently chosen, large values of x. For instance, if 
powers of 10 are used, the following results are 
obtained: log2(1010) 5 10 log2 10 > 33.2 and 

(1010)1y10 5 1010?(1y10) 5 101 5 10. Thus the value 

x 5 1010 does not work.
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 However, since log2(1020) 5 20 log210 5 66.4 and  
(1020)1y10 5 1020?(1y10) 5 102 5 100, and since 66.4 , 100, 
the value x 5 1020 works.

Solution 2: Another approach is to use a graphing 
calculator or computer to sketch graphs of y 5 log2 x 
and y 5 x1y10, taking seriously the hint to “think big” 
in choosing the interval size for the x’s. A few tries 
and use of the zoom and trace features make it appear 
that the graph of y 5 x1y10 crosses above the graph of 
y 5 log2 x at about 4.9155 3 1017. Thus, for values of x 
larger than this, x1y10 . log2 x.

27.  By Theorem 11.2.7, n is Q(n) and log2 n is Q(log2 n), 
and, by Theorem 11.2.8(c), 2n is Q(n). In addition, by 
property 11.4.9, there is a positive real number s such 
that for each integer n $ s, log2 n # n. Finally, if n is 
any integer with n $ 1, then n $ 0. Thus it follows from 
Theorem 11.2.9(c) that 2n1 log2 n is Q(n).

29.  By Theorem 11.2.7, n2 is Q(n2) and 2n is Q(2n). In addi-
tion, by property 11.4.10, there is a positive real number 
s such that for each integer n $ s, n2 # 2n. Finally, if n 
is any integer, then 2n $ 0. Thus it follows from Theo-
rem 11.2.9(c) that n2 12n is Q(2n).

30. Hint: 2n11 5 2?2n

31.  Hint: Use a proof by contradiction. Start by suppos-
ing that 4n is O(2n). That is, that there are positive real 
numbers B and b such that O # 4n # B?2n for every 
real number n . b, and use the fact that 4

n

2n 5 _42+n 5 2n 
to obtain a contradiction.

32. By Theorem 5.2.2, for each integer n $ 0,

112122 1 Á 12n 5
2n11 21

221
5 2n11 21.

Also,

2n # 2n11 21 # 2n11 5 2?2n.

Thus, by transitivity of order,

2n # 112122 1 Á 12n # 2?2n.

Moreover,

2n $ 0 for each integer n.

Let A 5 1, B 5 2, and k 5 1. Then, for each integer 
n . k,

A?2n # 112122 1 Á 12n # B?2n.

Thus, by definition of Q-notation, 112122 1 Á 12n 

is Q(2n).

33.  Hint: This is similar to the solution for exercise 32. 
Use the fact that 4142 143 1 Á 14n 5 4(1141
42 143 1 Á 1  4n21).

36. Factor out n to obtain

n1
n

2
1

n

4
1 Á 1

n

2n

  5 n 111
1

2
1

1

4
1 Á 1

1

2n2

  5 n 11
1

22
n11

21

1

2
21 2 by Theorem 5.2.2

  5 n 1122n11

2n(122)2     by multiplying numerator and 
denominator by 2n11

  5 n 12n11 21

2n 2
  5 n 122

1

2n2      by algebra.

Now 1 # 22
1

2n # 2 when n . 1. Thus

1?n #  n 122
1

2n2 #  2?n,

and so, by substitution,

1?n # n1
n

2
1

n

4
1 Á 1

n

2n # 2?n.

Let A 5 1, B 5 2, and k 5 1. Then, for each integer 
n . k,

A?n # n1
n

2
1

n

4
1 Á 1

n

2n # B?n.

Hence, by definition of Q-notation, 

n1
n

2
1

n

4
1 Á 1

n

2n is Q(n).

40. If n is any integer with n $ 3, then

n1
n

2
1

n

3
1 Á 1

n

n
5 n111

1

2
1

1

3
1 Á 1

1
n2.

By Example 11.4.7 and by Theorem 11.2.7(a),

11
1

2
1

1

3
1 Á 1

1
n

 is Q(log2 n) and n is Q(n).

Thus, by Theorem 11.2.9(c), 

n1
n

2
1

n

3
1 Á 1

n

n
 is Q(n log2 n).

41. Proof: If n is any positive integer, then log2 n is defined 
and by definition of floor,

:log2 n; # log2 n , :log2 n;11.

If, in addition, n is greater than 2, then since the logarith-
mic function with base 2 is increasing

log2 n . log2 2 5 1.

Thus, by definition of floor,

1 # :log2 n;.
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Adding :log2 n; to both sides of this inequality gives
:log2 n;11 # 2 :log2 n;.

Hence, by the transitive property of order (T18 in  
Appendix A),

log2 n # 2 :log2 n;,
and dividing both sides by 2 gives

1

2
 log2 n # :log2 n;.

Let A 5 1y2, B 5 1, and k 5 2. Then

A log2 n # :log2 n; # B log2 n for every integer n $ k.

Therefore, by definition of Q-notation, :log2 n; is Q(log2 n).

43.  Proof (by mathematical induction): Let the property 
P(n) be the inequality n # 10n.

Show that P(1) is true:
When n 5 1, the inequality is 1 # 10, which is true.
Show that for every integer k $ 1, if P(k) is true, then 
P(k11) is true:
Let k be any integer with k $ 1, and suppose k # 10k. 
[This is the inductive hypothesis.] We must show that 
k11 # 10k11. By inductive hypothesis, k # 10k. Add-
ing to both sides gives k11 # 10k 11. But when k $ 1, 
10k 11 # 10k 19?10k 5 10?10k 5 10k11. Thus, by tran-
sitivity of order, k11 # 10k11 [as was to be shown].

44.  Hint: To prove the inductive step, use the fact that if 
k . 1, then k11 # 2k. Apply the logarithmic function 
with base 2 to both sides of this inequality, and use 
properties of logarithms.

45. Hint: 2?2?2 . . . 2 # 2?(2?3?4 . . . n) 5 2?n!

46. a.  Example 11.4.6 showed that if n is any integer with 
n $ 1, then n! # nn. So, because the logarithmic 
function with base 2 is increasing,

log2(n!) # log2(n
n) (5n log2(n

n)).

Also, when n $ 1, then log2(n!) $ log2 1 $ 0. Thus 
let B 5 1 and b 5 1. Then

0 # log2(n!) # Bn log2 (nn) for every integer n $ b.

So, by definition of O-notation, log2(n!) is O(n log2 n).
b. Hint: 

 (n!)2 5 n!?n! 5 (1?2?3 Á 3)(n?(n21) Á 3?2?1)

  5 1P
n

r51

r21P
n

r51

(n2 r11)2 5 P
n

r51

r(n2 r11). 

Show that for each integer r 5 1, 2, . . . , n, 
nr2n2 1 r $ n.

47.  Let n be a positive integer, and suppose that x . (2n)2n. 
By properties of logarithms,

 log2 x 5 (2n)1 1

2n2(log2 x)

 5 (2n) log2_x
1
2n+ , 2nx 

1
2n     (*)

(where the last inequality holds by substituting  
x 

1
2n in place of u in log2 u , u). Now raising both  

n factors

sides of x . (2n)2n to the 1/2 power gives  

x1y2 . ((2n)2n)1y2 5 (2n)n. When both sides are  

multiplied by x1y2, the result is x 5 x1y2x1y2 . x1y2(2n)n 5  

x1y2(2n)n, or, more compactly,

x1y2(2n)n , x.

Then, since the power function defined by x S x1yn 
is increasing for every x . 0 (see exercise 21 of  
Section 11.1), we can take the nth root of both sides of 
the inequality and use the laws of exponents to obtain

(x1y2(2n)n)1yn , x1yn,

or, equivalently,

 2nx 
1
2n , x1yn. (**)

Finally use transitivity of order (Appendix A, T18) to 
combine (*) and (**) and conclude that log2 x , x1yn [as 
was to be shown].

49. a.  Proof (by mathematical induction): Let b be any 
real number with b . 1, and let the property P(n) be 
the equation

lim
x S `1xn

bx2 5 0.

Show that P(1) is true:
By L’Hôpital’s rule, lim

x S `
 _x

1

bx+ 5 lim
x S `

 _ 1
bxsln b)+ 5 0. 

Thus P(1) is true.

Show that for every integer k $ 1, if P(k) is true, 
then P(k11) is true:

Let k be any integer with k $ 1, and suppose 

lim
x S `

 _x
k

bx+ 5 0. [This is the inductive hypothesis.] 

We must show that lim
x S `

 _x
k 1 1

bx + 5 0. Now by 

L’Hôpital’s rule, lim
x S `

 _x
k 1 1

bx + 5 lim
x S `

(k 1 1)xk

(ln b)bx 5

(k 1 1)
(ln b)  3 lim

x S `
 x

k

bx 4 5
(k 1 1)
(ln b) ?0  [by inductive hypothesis]

5 0.
[This is what was to be shown.]

b. By the result of part (a) and the definition of limit, 
given any real number « . 0, there exists an integer 
N such that u xn

bn 20 u , « for every x . N. In this 
case take « 5 1. It follows that for every x . N, 
xn

bx , 1 since x and b are positive. Multiply both 
sides by bx to obtain xn , bx. Let B 5 1. Then 
0 , xn , B?bx for every x . N. Hence, by defini-
tion of O-notation, xn is O(bx).

Section 11.5
1. log2 1,000 5 log2(103) 5 3 log2 10 > 3(3.32) > 9.96

log2(1,000,000) 5 log2(106) 5 6 log2 10 > 6(3.32)
> 19.92

log2(1,000,000,000,000) 5 log2(1012) 5 12 log2 10
> 12(3.32) 5 39.84

94193_AppB_ptg01.indd   135 12/11/18   6:47 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



11.5 SOLUTIONS AND HINTS TO SELECTED EXERCISES  A-136

2. a.  If m 5 2k, where k is a positive integer, then the al-
gorithm requires c :log2(2

k); 5 c :k; 5 ck operations. 
If the input size is increased to m2 5 (2k)2 5 22k, 
then the number of operations required is 
c :log2(2

2k); 5 c :2k; 5 2(ck). Hence the number of 
operations doubles.

b. As in part (a), for an input of size m 5 2k, where 
k is a positive integer, the algorithm requires 
ck operations. If the input size is increased to 
m10 5 (2k)10 5 210k, then the number of operations 
required is c :log2(2

10k); 5 c :10k; 5 10(ck). Thus the 
number of operations increases by a factor of 10.

c. When the input size is increased from 27 to 228, the 
factor by which the number of operations increases 

is 
c :log2(2

28);

c :log2(2
7);

5
28c

7c
5 4.

3. A little numerical exploration can help find 
an initial window to use to draw the graphs 
of y 5 x and y 5 :50 log

2
 x;. Note that when 

x 5 28 5 256, :50 log2 x; 5 :50 log2(2
8); 5 :50?8; 5

:400; 5 400 . 256 5 x. But when x 5 29 5 512, 
:50 log2 x; 5 :50 log2(2

9); 5 :50?9; 5 :450; 5 450 ,
512 5 x. So a good choice of initial window would 
be the interval from 256 to 512. Drawing the graphs, 
zooming if necessary, and using the trace feature reveal 
that when n , 438, n , :50 log2 n;.

 
5. a. index 0 1

bot 1

top 10 4 1

mid 5 2 1

x Chia

b. index 0

bot 1 6 7

top 10 7 6

mid 5 8 6 7

x Max

7. a. The array has top – bot11 elements.
b. Proof: Suppose top and bot are particular but 

arbitrarily chosen positive integers such that 
top2bot11 is an odd number. Then, by definition 
of odd, there is an integer k such that

top2bot11 5 2k11.

Adding 2?bot21 to both sides gives

bot1 top 5 2?bot2112k11

5 2(bot1k).

Now bot1k is an integer. Hence, by definition of 
even, bot1 top is even.

8. n 27 13 6 3 1 0

9. For each positive integer n, n div 2 5 :ny2;. Thus when 
the algorithm segment is run for a particular n and the 
while loop has iterated one time, the input to the next 
iteration is :ny2;. It follows that the number of iterations 
of the loop for n is one more than the number of itera-
tions for :ny2;. That is, an 5 11a:ny2;. Also, a1 5 1.

10.  The recurrence relation and initial condition of a1, a2, 
a3, . . . derived in exercise 9 are the same as those for 
the sequence w1, w2, w3, . . . discussed in the worst-case 
analysis of the binary search algorithm. Thus the gen-
eral formulas for the two sequences are the same. That 
is, an 5 11 :log2 n;, for each integer n $ 1.

11.  In the analysis of the binary search algorithm, it was 
shown that 11 :log2 n; is Q(log2 n). Thus the given 
algorithm segment has order log2 n.

14. Hint: The formula is bn 5 11 :log3 n;.

20. 

1 2 3 4 5 6 7 8

5

6

3

9

12

4

2

7

9

11

9 10

22. 

R G

R

R

R

R

G

G

G

B

B U

B

B

B

G

U

U

U

U

R G B U

C F H G

B C F G G H R U

C

C

F

G

F

F

C

C

H

H

G

F

G

G

H

H

C F H G

Initial array:

Final array:

split

split split

split

merge

merge merge

merge

split split

split

merge merge

merge
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24. a.  Refer to Figure 11.5.3 and observe that when k is 
even, the subarray a[mid], a[mid11], . . . , a[top] 
has length k2 _k2 11+11 5

k
2 5 <k2=.  

25.  Hint: The following are the steps for part (a) in the case 
where k is odd and k11 is even:

mk11 5 m:(k11)y2;1m<(k11)y2=1 (k11)21

5 m(k11)y2 1m(k11)y2 1 (k11)21

by Theorem 4.6.2 and exercise 19 in 
Section 4.6 because k11 is even

5 2m(k11)y2 1k

$ 2?31

2
?S(k11)

2 Dlog2Sk11

2 D41k

by inductive hypothesis

$ Sk11

2 Dflog2 
(k11)2 log2 

2]1k

$
1

2
 (k11)[log2 

(k11)21]1k

$
1

2
 (k11)log2 

(k11)21Sk11

2 D1
2k

2

$
1

2
 (k11)log2 

(k11)1
k21

2

$
1

2
 (k11)log2 

(k11)    by algebra.

Section 12.1
1. a.  L1 5 {l, x, y, xx, yy, xxx, xyx, yxy, yyy, xxxx, xyyx,  

         yxxy, yyyy}
b. L2 5 {x, xx, xy, xxx, xxy, xyx, xyy}

3. a. (a1b)?(c1d)
b. Partial answer: 11* 5 1?1 5 1, 12* 5 1?2 5 2,  

21/ 5 2/1 5 2

4. L1L2 is the set of all strings of a’s and b’s that start with 
an a and contain an odd number of a’s.
L1 ø L2 is the set of all strings of a’s and b’s that contain 
an even number of a’s or that start with an a and contain 
only that one a. (Note that because 0 is an even number, 
both l and b are in L1 ø L2.)
(L1 ø L2)* is the set of all strings of a’s and b’s. The rea-
son is that a and b are both in L1 ø L2, and thus every 
string in a and b is in (L1 ø L2)*.

7. (a u  ((b*)b))((a*) u  (ab))

10. (ab* u  cb*)(ac u  bc)

13.  L(l uab) 5 L(l) ø L(ab) 5 {l} ø L(a)L(b)
 5 {l} ø {xy u  x [ L(a) and y [ L(b)}
 5 {l} ø {xy u  x [ {a} and y [ {b}}
 5 {l} ø {ab} 5 {l, ab}

16.  Here is a sample of five strings out of infinitely many: 
0101, 1, 01, 10000, and 011100.

19.  The language consists of all strings of a’s and b’s that 
contain exactly three a’s and end in an a.

22.  aaaba is in the language but baabb is not because if a 
string in the language contains a b to the right of the 
left-most a, then it must contain another a to the right of 
all the b’s.

25. One solution is 0*10*(0*10*10*)*.

28.  L((r   u   s)t) 5 L(r   u   s)L(t) 5 (L(r) ø L(s))L(t)
5 {xy   u    sx [ L(r) ø L(s)) and y [ L(t)}
5 {xy   u    (x [ L(r) or x [ L(s)) and y [ L(t)}
5 {xy   u   (x [ L(r) and y [ L(t)) or (x [ L(s) and y [ L(t))}
5 {xy u  xy [ L(rt) or xy [ L(st)}
5 L(rt) ø L(st) 5 L(rt u  st)

31. pre[a2 z]1

34. [a2 z]*(a u  e u  i u  o u  u)[a2 z]*

37. [029]{3}{[029]{2}{3[029]{2}6

39. ([1 2] u  l)[029]*( \ . u  l)[029]*

40.  Hint: Leap years from 1980 to 2079 are 1980, 1984, 
1988, 1992, 1996, 2000, 2004, and so forth. Note that 
the fourth digit is 0, 4, or 8 for the years whose third 
digit is even and that the fourth digit is 2 or 6 for the 
years whose third digit is odd. 

Section 12.2
1. a. $1 or more deposited

2. a. s0, s1, s2  b.  0, 1  c.  s0  d.  s2

e. Annotated next-state table:

Input
0 1

s0 s1 s0

State s1 s1 s2

s2 s2 s2

5. a. A, B, C, D, E, F b.  x, y c.  A d.  D, E
e. Annotated next-state table:

Input
x y

A C B
B F D

State C E F
D F D
E E F
F F F
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7. a. s0, s1, s2, s3 b.  0, 1 c.  s0 d.  s0, s2

e. Annotated next-state table:
Input

0 1
s0 s0 s1

State s1 s1 s2

s2 s2 s3

s3 s3 s0

8. a. s0, s1, s2 b.  0, 1 c.  s0 d.  s2

e. 
0

1 1

1

0

0
s0

s2

s1

10. a. N(s1, 1) 5 s2,  N(s0, 1) 5 s3

c. N*(s0, 10011) 5 s2,  N*(s1, 01001) 5 s2

11. a. N(s3, 0) 5 s4,  N(s2, 1) 5 s4

c. N*(s0, 010011) 5 s3,  N*(s3, 01101) 5 s4

Note that multiple correct answers exist for part (d) of exer-
cises 12 and 13, part (b) of exercises 14–19, and for exercises 
20–48.

12. a. (i) s2 (ii) s2 (iii) s1

b. those in (i) and (ii) but not (iii)
c. The language accepted by this automaton is the set 

of all strings of 0’s and 1’s that contain at least one 
0 followed (not necessarily immediately) by at least 
one 1.

d. 1*00*1(0 u  1)*

14. a.  The language accepted by this automaton is the set 
of all strings of 0’s and 1’s that end in 00.

b. (0 u  1)*00

15. a.  The language accepted by this automaton is the set 
of all strings of x’s and y’s of length at least two that 
consist either entirely of x’s or entirely of y’s.

b. xxx*
 u  yyy*

17. a.  The language accepted by this automaton is the 
set of all strings of 0’s and 1’s with the following 
property: If n is the number of 1’s in the string, then 
n mod 4 5 0 or n mod 4 5 2. This is equivalent to 
saying that n is even.

b. 0*
 u  (0*10*10*)*

18. a.  The language accepted by this automaton is the set 
of all strings of 0’s and 1’s that end in 1.

b. (0 u  1)*1

20. a.  Call the automaton being constructed A. Accep-
tance of a string by A depends on the values of 

three consecutive inputs. Thus A requires at least 
four states:

s0: initial state

s1: state indicating that the last input character was a 1

s2:  state indicating that the last two input characters 
were 1’s

s3:  state indicating that the last three input charac-
ters were 1’s, the acceptance state

If a 0 is input to A when it is in state s0, no progress 
is made toward achieving a string of three consecu-
tive 1’s. Hence A should remain in state s0. If a 1 is 
input to A when it is in state s0, it goes to state s1, 
which indicates that the last input character of the 
string is a 1. From state s1, A goes to state s2 if a 1 is 
input. This indicates that the last two characters of 
the string are 1’s. But if a 0 is input, A should return 
to s0 because the wait for a string of three consecu-
tive 1’s must start over again. When A is in state s2 
and a 1 is input, then a string of three consecutive 
1’s is achieved, so A should go to state s3. If a 0 is 
input when A is in state s2, then progress toward 
accumulating a sequence of three consecutive 1’s is 
lost, so A should return to s0. When A is in a state s3 
and a 1 is input, then the final three symbols of the 
input string are 1’s, and so A should stay in state s3. 
If a 0 is input when A is in state s3, then A should 
return to state s0 to await the input of more 1’s. Thus 
the transition diagram is as follows:

11 1
1

s1s0 s2 s3

0 0

0

0

b. (0 u  1)*111

21. a. 

s0 s1

s3

s2
0 1

0

10
1

0

1

b. 01(0 u  1)*

22.  Hint: Use five states: s0 (the initial state), s1 (the state 
indicating that the previous input symbol was an a), s2 
(the state indicating that the previous input symbol was 
a b), s3 (the state indicating that the previous two input 
symbols were a’s), and s4 (the state indicating that the 
previous two input symbols were b’s).
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25. a. 

0

1

0

0

1

1

s0 s1 s2

b. (0 u  1)*10

26. a. 

a a a, b
a

s0 s1 s3s2
b b b

b. a*ba*ba*

28. a. 

1 0
0, 1

s0 s1 s2 s3
0 1

1

0

b. (0 u  1)*010(0 u  1)*

29. 

0

1

0, 1

s0 s1

31. 

x

y

x

y

y
y

x

x

s1 s3s2

s4

s0

33. 

s0 s1 s2

s4

s3
1

1

1 1

0

0

0

0, 1

0

36. 
0

1

1

0

s0 s1

39.  Let P
⁄
 denote a list of all letters of a lowercase alphabet 

except p, R
⁄
 denote a list of all the letters of a lowercase 

alphabet except r, and E
⁄
 denote a list of all the letters of 

a lowercase alphabet except e.

s0 s1

s5

s2 s3 s4
p r [a–z]

[a–z]
e

P̂
R̂ Ê

42.  Let 6 denote a list of all the consonants in a lowercase 
alphabet.

s0 s1
a, e, i, o, u

6

[a–z]

45. 

s0 s1 s2 s3

s12

s4 s5

s11

[0–9] [0–9] [0–9]

[0–9]

–

– –

–
––

–
[0–9], –

[0–9]

s10 s9 s8 s7 s6
[0–9]

[0–9]
[0–9]

[0–9][0–9][0–9] –

– – –

51.  Hint: This proof is virtually identical to that of Exam-
ple 12.2.8. Just take p and q in that proof so that p . q. 
From the fact that A accepts apbp, you can deduce that 
A accepts aqbp. Since p . q, this string is not in L.

53.  Hint: Suppose the automaton A has N states. Choose an 
integer m such that (m11)2 2m2 . N. Consider strings 
of a’s of lengths between m2 and (m11)2.
Since there are more strings than states, at least two 
strings must send A to the same state si:

(m + 1)2

aa . . . aaa . . . aaa . . . aaa . . . a

m2

after both of these
inputs, A is in state si

It follows (by removing the a’s shown in color) that the 
automaton must accept a string of the form ak, where 
m2 , k , (m11)2.

Section 12.3
1. a. 0-equivalence classes: {s0, s1, s3, s4}, {s2, s5}

1-equivalence classes: {s0, s3}, {s1, s4}, {s2, s5}

2-equivalence classes: {s0, s3}, {s1, s4}, {s2, s5}
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b. 1

01[s0] [s1] [s2]

0 1 0

4. a. 0-equivalence classes: {s0, s1, s2}, {s3, s4, s5}

1-equivalence classes: {s0, s1, s2}, {s3, s5}, {s4}

2-equivalence classes: {s0, s2}, {s1}, {s3, s5}, {s4}

3-equivalence classes: {s0, s2}, {s1}, {s3, s5}, {s4}

b. 

1

0

0

0

1

1

[s0]

[s1]

[s4][s3]
0, 1

6. a.  Hint: The 3-equivalence classes are {s0}, {s1}, {s2}, 
{s3}, {s4}, {s5}, and {s6}.

7. Yes. For A:

0-equivalence classes: {s0, s2}, {s1, s3}

1-equivalence classes: {s0}, {s2}, {s1, s3}

2-equivalence classes: {s0}, {s2}, {s1, s3}

Transition diagram for A:

[s2]

[s1]

0

[s0]

1
0

0

1

1

For A9:
0{equivalence classes: hs90, s91, s92j, hs93j
1{equivalence classes: hs90, s92j, hs91j, hs93j
2{equivalence classes: hs90, s92j, hs91j, hs93j

Transition diagram for A9:

[s'1]

[s'3]

0

[s'0]

1
0

0

1

1

Except for the labeling of the states, the transition dia-
grams for A and A9 are identical. Hence A and A9 ac-
cept the same language, and so, by Theorem 12.3.3, A 
and A9 also accept the same language. Thus A and A9 are 
equivalent automata.

9. For A:

0-equivalence classes: {s1, s2, s4, s5}, {s0, s3}

1-equivalence classes: {s1, s2}, {s4, s5}, {s0, s3}

2-equivalence classes: {s1}, {s2}, {s4, s5}, {s0, s3}

3-equivalence classes: {s1}, {s2}, {s4, s5}, {s0, s3}

Therefore, the states of A are the 3-equivalence classes 
of A.

For A9:

0{equivalence classes: hs92, s93, s94, s95j, hs90, s91j
1{equivalence classes: hs92, s93, s94, s95j, hs90, s91j

Therefore, the states of A9 are the 1-equivalence classes 
of A9.

According to the text, two automata are equivalent if, 
and only if, their quotient automata are isomorphic, pro-
vided inaccessible states have first been removed. Now A 
and A9 have no inaccessible states, and A has four states, 
whereas A9 has only two states. Therefore, A and A9 are 
not equivalent.

This result can also be obtained by noting, for example, 
that the string 11 is accepted by A9 but not by A.

11.  Partial answer: Suppose A is a finite-state automaton 
with set of states S and relation R* of *-equivalence of 
states. [To show that R* is an equivalence relation, we 
must show that R is reflexive, symmetric, and transitive.]

Proof that R* is symmetric:
[We must show that for all states s and t, if s R* t then t R* s.]  
Suppose that s and t are any states of A such that s R* t.  
[We must show that t R* s.] Since s R* t, then for every 
input string w,

3N *(s, w) is an

accepting state4 3 3N *(t, w) is an

accepting state4,

where N* is the eventual-state function on A. It follows 
from the symmetry of the 3 relation that for every input 
string w,

3N*(t, w) is an

accepting state4 3 3N *(s, w) is an

accepting state4.

Hence t R* s [as was to be shown], and so R*  
is symmetric.

12.  The proof is identical to the proof of property (12.3.1) 
given in the solution to exercise 11 provided every oc-
currence of “for each input string w” is replaced by “for 
each input string w of length less than or equal to k.”
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A-141  AppenDiX B SOLUTIONS AND HINTS TO SELECTED EXERCISES

13.  Proof: By property (12.3.2), for each integer k $ 0, 
k-equivalence is an equivalence relation. Now by 
Theorem 10.3.4, the distinct equivalence classes of 
an equivalence relation form a partition of the set on 
which the relation is defined. In this case, the relation is 
defined on the set of all states of the automaton. So the 
k-equivalence classes form a partition of the set of all 
states of the automaton.

15.  Hint 1: Suppose Ck is a particular but arbitrarily chosen 
k-equivalence class. You must show that there is a 
(k21)-equivalence class Ck21 such that Ck # Ck21.

Hint 2: If s is any element in Ck, then s is a state of 
the automaton. Now the (k21)-equivalence classes  

partition the set of all states of the automaton into a union  
of mutually disjoint subsets, so s [ Ck21 for some  
(k21)-equivalence class Ck21.

Hint 3: To show that Ck # Ck21, you must show that for 
any state t, if t [ Ck, then t [ Ck21.

17.  Hint: If m , k, then every input string of length less 
than or equal to m has length less than or equal to k.

19.  Hint: Suppose two states s and t are equivalent. 
You must show that for any input symbol m, the 
next-states N(s, m) and N(t, m) are equivalent. To do 
this, use the definition of equivalence and the fact 
that for any string w9, input symbol m, and state s, 
N *(N(s, m), w9) 5 N*(s, mw9).
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I-1

Abduction, 156
Absolute value

function, 765
triangle inequality and, 207–208

Absorption laws, 395, 417
Accepting state of machine (automaton), 842, 843, 845–847, 

852–853, 855
Ackermann, Wilhelm, 372
Ackermann function, 372–373
Acquaintance graph, 237
Aczel, Amir D., 180n
Addition, A–1

in binary notation, 96
computer, circuits for, 97–99
integers, in two’s complement form, 102–103

Addition rule, 589–599
Additive identity, of string length, 235
Additive inverse, 1, 4, A–1
Additive property, of string length, 370
Adjacency matrix, 699–700, 701
Adjacent edges, 25, 679, 682, 688
Adjacent to itself, 25
Adjacent vertices, 25, 679, 688
Adleman, Leonard, 525–526
Airline route scheduling, 742–747, 749
Aldous, David, 566
Algebra, Boolean, 414–418
Algebraic expressions

divisibility and, 191–192
parenthesis structures in, 365–366
representation of, 734–735

Algebraic proof
of binomial theorem, 648–650
of Pascal’s formula, 645
of set identities, 410–412

Algol language, 722
Algorithmic language

assignment statements in, 244
conditional statements in, 244–245
if-then-else statements and, 245
if-then statements and, 245
iterative statements in, 245–246
for-next loops in, 245–246
as pseudocode, 244
variables and expressions in, 244
while loops in, 245–247

Algorithm(s)
binary search, 813–825
to check whether one set is subset of another, 386–387
to convert from base 10 to base 2 using repeated division by 

2, 271–273
correctness of, 314–323
definition of, 244
Dijkstra’s shortest path, 751–757
division, 248–250, 319–321
efficiency analysis of, 760–827
elementary operations, 788–789
Euclidean, 250–254, 321–323, 531–533
everyday examples of, 244
insertion sort, 793–796
intractable, 824
Kruskal’s, 745–748
loop invariants and, 316–319
merge sort, 820–824
with nested loop, 790–791
notation for, 248
orders of, 789–791
origin of word, 248
polynomial-time, 824
pre-conditions and post-conditions, 315–316
Prim’s, 748–751
selection sort, 782
sequential search, 787–788
shortest path, 742–757
space efficiency of, 788, 825
time efficiency of, 788–789, 825
tractable, 824

Algorithm segments, computing order of, 790
Al-Kashi, Ghiyâth al-Dîn Jamshîd, 478
Al-Khowârizmî, Abu Ja’far Mohammed ibn Mûsâ, 248
Alphabet

Caesar cipher and, 524–525
input, 843
regular expressions over, 832
translating into strings, 483

Alternating sequences, 260
Ambiguous language, 136–137
Ambiguous premises, 72
American Standard Code for Information Interchange  

(ASCII), 483
Analytical Engine, 244, 769
Ancestor, 733

Index
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I-2  INDEX

AND-gate, 82
multiple-input, 86–87

And statements, 40, 41
negation of, 45–48

Annotated next-state table, 843, 844–845
Annual percentage yield (APY), 334
Antecedent, 54
Antisymmetry, 546–548
Any, misuse of, 177
Appel, Kenneth, 34
APY. See Annual percentage yield
Arc, 681
Archimedean principle, 143
Archimedean property for rational numbers, 313
Archimedes of Syracuse, 143
Area code string, 857
Arguing from examples, 176
Argument form

creating additional, 154–155
definition of, 66
invalid, 67, 72
rules of inference, 69–72
syllogism, 68–69
testing for validity, 67
valid, 66–67, 150

Argument(s)
converse/inverse errors and, 155–156
indirect, when to use, 231–232
indirect, with contradiction and contraposition, 218–225
logical form of, 37–38
with “no,” 153–154
with quantified statements, 146–156
sound, 74, 150
Tarski’s World, evaluating, 154–155
unsound, 74

Arguments, valid and invalid
contradictions and valid, 74–76
definition of, 66
determining, 67
diagrams for testing validity, 151–155
fallacies and, 72–74
invalid with true premise/conclusion, 74
modus ponens/modus tollens and, 68–69
proving validity, with quantified statements, 150
rules of inference and, 69–72
valid with false premise/conclusion, 74

Aristotle, 37, 229
Arithmetic

fundamental theorem of, 195–197
modular, 528–531
sequences, 342–343

Array(s)
input, 817
one-dimensional, 270, 569–570
search algorithms for, 813–825

Arrow diagrams
of functions, 426–427, 455
of relations, 18

Artificial intelligence, 29, 30, 37, 141, 156, 398
The Art of Computer Programming (Knuth), 787
ASCII (American Standard Code for Information  

Interchange), 483
Assertions, 37, 315–316
Assignment statements, 244
Associative laws, 394, 416, A–1

deriving generalized, 412
matrix multiplication and, 705–706

Assumptions, 66
At least, 623
At most, 623
Automaton/automata

See also Finite-state automata
equivalent, 859, 866–868
quotient, 859, 863–866

Average-case orders
for insertion sort, 795–796
for sequential search, 787–788

Axiom(s), 278
of extension, 7
field, A–1, A–2
least upper bound, A–3
order, A–2
power set, 386
probability, 655–660

Babbage, Charles, 244, 769
Bachmann, Paul, 769
Backus, John, 722
Backus-Naur notation, 722, 829
Backward chaining, 398
Barber puzzle, 419–420
Barwise, Jon, 117–118
Base 2 notation. See Binary notation
Base 10 notation. See Decimal notation
Base 16 notation. See Hexadecimal notation
Basis property, 317
Basis step, 278, 410
Bayes, Thomas, 666
Bayes’ theorem, 666–668
Beal, Andrew, 232
Beal conjecture, 232
Best-case orders

See also Average-case orders; Worst-case orders
for sequential search, 787–788

Biconditional
definition of, 60
in informal language, 62–63
only if and, 59–61
truth table of, 60

Big-omega notation, 769–783
Big-O notation, 769–783
Big-theta notation, 769–783
Bijection, 451–454
Binary integer representations, 307–308
Binary notation, 93–94

addition/subtraction in, 96
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conversions to and from, 95, 105–106, 271–273
for integers, 94–95
number of bits needed to represent integer in, 803–804

Binary relations, 487, 491
Binary search algorithm, 214, 813–825

efficiency of, 816–820
as logarithmic, 820
merge sort and, 820–824
tracing, 816

Binary search trees, 739–741
Binary trees, 734–739

existence of, determining, 736–738
full, 734
to represent algebraic expression, 734–735
theorems about, 735–738

Binomial coefficients, 270
Binomial probabilities, 672
Binomials, 646
Binomial theorem, 646–652

deriving combinatorial identity from, 651–652
proof of, 648–651
simplifying sum using, 652
substituting into, 651

Bioinformatics, 836
Bipartite graphs, 243

complete, 241
Birthday problem, 602
Birthdays (example), 605–606
Bits, 81

in binary representation, number of, 803–804
Bit strings, 13, 627–628
Black boxes, 81–83
Blockchain technology, 445, 542
Boole, George, 37, 415
Boolean algebra

definition and axioms for, 416
double complement law, 417–418
idempotent law, 418
properties of, 416–417
sets and, 414–418

Boolean expressions
circuits and, 84–87
recursive definition of, 365
rewriting using Sheffer stroke, 90

Boolean functions, 432–433, 828
Boolean variables, 84
Bound variables, scope and, 115–116
Brain research, 828
Branch vertex, 725
Bruner, Jerome S., 604
But, 39–40

C# language, 201
C11 language, 244
Caesar, Julius, 524
Caesar cipher, 524–525
Calculators, computing logarithms with base 2 on, 451
Calculus

predicate, 108
propositional, 108
statement, 108

Campanus of Novara, 277
Cancellation theorem for modular congruence, 539–540
Cantor, Georg, 6–7, 10, 377, 478, 480
Cantor diagonalization process, 477–482
Cardinality

computability and, 473–484
countable sets and, 475–477
infinite sets and, 474–475
properties of, 473–474
of set of all real numbers, 481–482
of set of functions, 483–484
uncountable sets and, 477–481

Cardinal numbers, 473
Cards

poker hand problems, 626–627
probabilities for deck of, 566–567

Carroll, Lewis, 66, 244, 505, 617
Carry, 97
Cartesian plane, 13, 760
Cartesian products, 10–13

functions defined on, 430
number of elements in, 576–577

Catalan, Eugene, 232, 327
Catalan numbers, 327
Cayley, Arthur, 723
Ceiling, 211–216
Central processing unit (CPU), 80, 842–843
Chaining, backward and forward, 398
Character classes, 836
Characteristic equation, of recurrence relation, 354–356
Characters

of strings, 13
as strings, 366

Child, 733, 734
Chomsky, Noam, 722, 828, 829, 854
Church, Alonzo, 828
Church-Turing thesis, 828
Ciphertext, 524
Circle relation, 17
Circuit-free graphs, 720
Circuits, 677–692, 730

background on, 79–81
black boxes and gates, 81–83
Boolean expressions and, 84–87
combinational, 82, 88–89, 841
for computer addition, 97–99
definition of, 679–680
digital logic, 79–90
equivalent, 89
Euler, 684–689
full-adder, 97–99
graphs and, 677–692
half-adder, 97, 99
Hamiltonian, 689–692
input/output table for, 83–84, 87–88
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I-4  index

Circuits (Continued )
sequential, 83, 841
simple, 679–680

Circular reasoning, 72
C language, 201, 244, 829n
Class(es)

character, 836
equivalence, 3, 510–520
NP, 824
P, 824

Clay Mathematics Institute, 180
Closed form, 281
Closed walk, 679
Code generators, 829
Coding theory, 394, 431
Co-domains, 16, 425
Coefficients

binomial, 270
polynomial functions with negative, 774–777

Coin toss, 668–672
Collatz, Luther, 374
Collision resolution, 444
Colmerauer, A., 141
Columns, multiplying, 703–704
Combinational circuits, 82, 841

simplifying, 88–89
Combinations, 270, 617–630

3-combinations, 617–618
r-, with repetition allowed, 634–639
relation between permutations and, 618–620
unordered selections, 618

Combinatorial proof
of binomial theorem, 650–651
of Pascal’s formula, 645–646

Common logarithms, 451
Commutative laws, 394, 416, A–1
Comparable elements, 553
Compilers, 829, 836
Complement laws, 394, 416

See also Double complement laws
Complements

of 0 and 1, 417
in Boolean algebra, 417–418
of event, probability of, 656
of sets, 381, 382
of universal/null sets, 395

Complete bipartite graphs, 241, 626
Complete enumeration, 618
Complete graphs, 240–241, 626
Composite numbers, 163–164
Composition of functions, 461–470

finite sets defining, 463
formulas defining, 462
with identity function, 463–464
with inverse functions, 464–466
one-to-one functions and, 466–468
onto functions and, 468–470

Compound interest, 333–334
with compounding several times a year, 334–335

Compound statements, 39–40
evaluating truth of, 42–43
logic of, 37–107
truth tables for, 42–43
truth values, 40–42

Computer addition, circuits for, 97–99
Computer languages

Algol, 722
Backus-Naur notation for, 722, 829
C, 201, 244, 829n
C#, 201
C11, 244
formal languages, 829–832
high-level, 828–829
identifiers, 509–510
Java, 201, 244, 836
.NET, 836
Prolog, 141–142
Python, 201, 244, 836
subroutines in, 248
variables in, 244

Computer programming
correctness and, 314–315
countability of set of, 482–483
sequences in, 270–271

Concatenation, 20
of strings, 370–372
of u and c, 366

Conclusions, 37, 53, 54, 62, 66
false, 74
invalid arguments with true, 74
jumping to, 72, 176
universal modus ponens for drawing, 148
universal modus tollens for drawing, 150

Conditional probability, 662–665
Bayes’ theorem and, 666–668
computing, 663
representing with tree diagram, 663–665

Conditional statements, 2, 53–65
in algorithmic language, 244–245
contrapositive of, 57–58
converse and inverse of, 58–59
definition of, 53–54
with false hypotheses, 54–55
if-then as or, 56
interpreting as biconditionals, 62–63
logical equivalences and, 55–56
necessary and sufficient conditions, 61–62
negation of, 56–57
only if and biconditional, 59–61
proof for, 402
universal, 3, 113–114, 124–125, 126–128
vacuously true, 54

Conditions, 245
Congruence, cancellation theorem for modular, 539–540
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Congruence modulo 2 relation, 488
Congruence modulo 3 relation, 500–501, 516–517
Congruence modulo n, 516–518, 526–528
Congruence relations, 516–518
Congruences, evaluating, 518
Conjecture, 179–180
Conjunctions, 41, 76
Connected components, 683

matrices and, 702–703
Connected graphs, 682–683
Connectedness, 682–683
Consecutive integers, 203
Consequent, 54
Constant function, 21
Constructive proofs of existence, 164
Context-free languages, 828–829, 854
Contradiction

definition of, 48
indirect argument by, 218–225
logical equivalence and, 49
method of proof by, 218–221
proof by, 223–224
rule, 74–75, 76
valid arguments and, 74–76

Contradictory statements, 48
Contraposition

indirect argument by, 218–225
method of proof by, 222–224

Contrapositive
of conditional statement, 57–58
of universal conditional statements, 127–128
writing, 58

Converse
of conditional statement, 58–59
of universal conditional statements, 127–128

Converse error, 72, 73, 153, 155–156
Corollary, 187
Correctness of post-condition, 317
Countable sets, 475–477
Counterexamples, 110

direct proof and I, 161–171
direct proof and II (writing advice), 173–180
direct proof and III (rational numbers), 183–187
direct proof and IV (divisibility), 190–197
direct proof and V (division into cases and the quotient-

remainder theorem), 200–208
direct proof and VI (floor and ceiling), 211–216
disproving universal statements by, 164–165
divisibility and, 194–195
for set identity, 407–409

Counting, 564–676
advice about, 629–630
double, 629–630
elements in Cartesian product, 576–577
elements in intersection, 597–599
elements of disjoint sets, 589–599
elements of general union, 596–597

elements of list, 568–570
input/output tables for circuit with two input signals, 577–578
integral solutions of equation, 638–639
Internet addresses, 594–595
iterations of loop, 637–638
iterations of nested loop, 578
number of integers divisible by 5, 589–590
Pascal’s formula and, 642–646
passwords, 592–593
permutations, 580–584
PINs, 575–576
PINs, with repeated symbols, 590–591
possibility trees and multiplication rule, 573–584
probability and, 564–570
Python identifiers, 593–594
subsets of a set, 617–630
triples, 637
walks of length N, 707–710

Critical Path Method (CPM), 558–560
Cross products, 519
Cryptographic hash functions, 445
Cryptography, 524–526

Caesar cipher, 524–525
definition of, 524
message authentication, 542–543
public-key, 525–526
RSA cipher, 525–526, 536–539
RSA cryptography, 540–543
uses of, 524

Databases, relational, 491–492
Data type, 244
Dates, regular expression for, 838
Da Vinci, Leonardo, 1
Davis, Philip J., 211
Day of week, computing, 202
Debate, 218
Decimal expansions, of fractions, 608–610
Decimal notation, 93

conversion of binary notation to and from, 95, 271–273
converting from hexadecimal notation to, 104–105

Decimals, repeating, 184
Decision trees, 721–722
Decoding functions, 431
Decreasing functions, 765–766
Decryption, 524–525
Decryption key, 537
Dedekind, Richard, 520
Deductive reasoning, 275

rules of inference and, 69–72
universal instantiation and, 146–147

Degree of vertex, 31–32
De Grey, Aubrey, 34
De Morgan, Augustus, 37, 46, 277
De Morgan’s laws, 45–46, 125, 395

applying, 46–47
Boolean algebra and, 416

94193_indx_ptg01.indd   5 12/11/18   6:27 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



I-6  index

De Morgan’s laws (Continued )
cautionary examples of, 47–48
definition of, 46
inequalities and, 47
for sets, proof of, 398–400

Descartes, René, 131, 760
Descendant, 733
Diaconis, Persi, 566
Diagrams

See also Arrow diagrams
Hasse, 550–553
testing for validity using, 151–155
transition, 843–844
tree, 663–665

Dice rolls, 567
Difference rule, 590–595
Differences of sets, 381, 382
Digital computers, 842–843
Digital logic circuits, 79–90

background on, 79–81
black boxes and gates, 81–83
Boolean expressions and, 84–87
combinational, simplifying, 88–89
equivalence classes of, 515–516
equivalence of, 509
equivalent, 89
input/output table for, 83–84, 87–88
NAND and NOR gates, 89–90

Digraphs, 29
Dijkstra, Edsger W., 314, 315, 377, 752
Dijkstra’s shortest path algorithm, 751–757
Dirac, P. A. M., 495
Directed edges, 29
Directed graphs, 29, 495

definition of, 29
matrices and, 699–701
of partial order relation, 552–553
of relation, 490–491

Direct proof
counterexample I and, 161–171
counterexample II and (writing advice), 173–180
counterexample III and (rational numbers), 183–187
counterexample IV and (divisibility), 190–197
counterexample V and (division into cases and the quotient-

remainder theorem), 200–208
counterexample VI and (floor and ceiling), 211–216
method of, 167
of theorem, 168–170

Dirichlet, J. P. G. L., 604
Dirichlet, Lejeune, 426
Dirichlet box principle. See Pigeonhole principle
Discovery, 161
Discrete mathematics, 8
Disjoint events, 668–669
Disjoint sets, 384–385

counting elements of, 589–599
Disjunction, 41–42
Disjunctive normal form, 88

Disproof
of alleged property of floor, 213
of alleged set property, 407–409
by counterexample, 164–165
of existential statements, 179

Disquisitiones Arithmeticae (Gauss), 518
Distinct equivalence classes, 511–517
Distinct-roots theorem, 353–360
Distributive laws, 394, 416, A–1

general, 402–403
proof of, 395–398

div, 201–202
computing, 216

Divide-and-conquer strategy, 813–814
“Divides” relations

on set of positive integers, 548–549
testing for antisymmetry of, 547–548

Divisibility, 190–197
algebraic expressions and, 191–192
checking for nondivisibility, 192
checking proposed properties, 195
concept of, 190
counterexamples and, 194–195
by a prime, 302–303
by prime numbers, 194
prime numbers and, 192
properties of, 191
proving, with mathematical induction, 291–293
proving properties of, 192–194
transitivity of, 192–194
unique factorization of integers theorem and, 195–197

Division algorithm, 248–250
correctness of, 319–321

Division into cases, proof by, 204–205
Divisors

greatest common, 250–252, 253, 532–533
of one, 191
positive, of positive integer, 191
of zero, 190–191

Domains, 16, 425
Dot product, 703
Double complement laws, 394, 416

proof of, 417–418
Double counting, 629–630
Double negative property, 44–45
Dual identity, 417
Duality principle, of Boolean algebra, 417
Dummy variables, 266

in loop, 270–271

EBCDIC (Extended Binary-Coded Decimal Interchange Code), 
483

Edge-endpoint functions, 25
Edges, 24–25, 29, 681
Edinburgh Prolog, 141n
Edison, Thomas Alva, 352
8-bit two’s complements, 99–103
Einstein, Albert, 589
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Electrical engineering, 828
Electronic technology, 80–81
Element arguments, 391
Elementary operations, 788–789
Elements

in Cartesian products, 576–577
comparable, 553
of disjoint sets, counting, 589–590
of elements, 628–629
of general union, counting, 596–597
greatest, 554–555
in intersection, counting, 597–599
least, 308–309, 554–555
of list, counting, 568–570
maximal, 554–555
minimal, 554–555
noncomparable, 553
ordered selection of, 618
unordered selection of, 618

Elements of Geometry (Euclid), 229, 230
Elimination, 70, 76
Elkies, Noam, 180
Ellipsis, 7
Emacs, 836
Empty sets, 384, 401–403

proving set is, 402
as subset of every set, 401–402
uniqueness of, 401

Encoding functions, 431
Encryption, 524–525

See also Cryptography
Endpoints, 25, 29
Enumeration, complete, 618
Equality

of functions, 428
properties of, 498–499
proving, 284–285
set, 379–380
test for function, 428

Equally likely probability formula, 566
Equations, number of integral solutions of, 638–639
Equivalence, modular, 526–527
Equivalence classes

of congruence modulo 3, 516–517
definition of, 510
of digital logic circuits, 515–516
of equivalence relation, 510–516
of identifiers, 512
of identity relation, 512–515
rational numbers as, 519–520
of relation given set of ordered pairs, 511
of relation on set of subsets, 511–512
star *-equivalence classes, 863

Equivalence of states, 860
Equivalence relations, 505–520

congruence modulo n, 527–528
definition of, 508–510
digital logic circuits and, 509

equivalence classes of, 510–516
graph isomorphisms as, 715
partition inducing, 506–508, 514–515
on set of subsets, 508–509

Equivalent automata, 866–868
Equivalent circuits, 89
Equivalent forms, of universal and existential statements, 

114–115
Equivalent states, 859–863
Eratosthenes, 227
Escape characters, 833
Etchemendy, John, 117–118
Euclid, 196, 229, 230
Euclidean algorithm, 250–254

correctness of, 321–323
extending, 531–533

Euclid’s lemma, 539–540
Euler, Leonhard, 180, 677
Euler circuits, 684–689

definition of, 684
finding, 687–688
vs. Hamiltonian circuits, 690
showing graph does not have, 685–687

Euler trails, 688–689
Even integers, 161–163

Goldbach’s conjecture about, 180
properties of, 186–187

Even parity, 835
Event(s), 566

disjoint, 668–669
of events, 668–672
independent, 668–672
probability of complement of, 591, 656
probability of general union of two, 657–658

Eventual falsity of guard, 317
Eventual-state function, 846–847
Examples, arguing from, 176
Exclusive or, 42–43
Exhaustion, method of, 111, 166
Existence

constructive proofs of, 164
of graphs, 236–237
of identity elements, A–1
nonconstructive proof of, 164

Existential instantiation, 148, 168
Existential quantifiers, 111–112
Existential statements, 2

definition of, 111
disproving, 179
equivalent forms of, 114–115
proving, 164
truth and falsity of, 112
universal, 3–5

Existential universal statements
definition of, 4
rewriting, 5

Expanded form, changing between summation notation and, 
261–262
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Expected value, 658–660, 670
Expert systems, 156
Explicit formula

for Fibonacci sequence, 358–360
to fit given initial term, 260–261
for geometric sequence, 343
incorrect, 348–349
for method of iteration, 340–342
for sequences, 259–261
simplifying solutions obtained by iteration, 345–347
for Tower of Hanoi, 345–346

Exponential functions
with base b, 449–450
graphs of, 800–801
one-to-oneness of, 450–451
relations between logarithmic and, 449–451

Exponential notation, 93
Exponential orders, 806–811, 824
Exponents, law of, 449
Expressions

See also Regular expressions
in algorithmic language, 244
numerical, 341

Extended Binary-Coded Decimal Interchange Code  
(EBCDIC), 483

Extended Euclidean algorithm, 531–533
Extension, axiom of, 7

Factorial notation, 268–270
Factorials, computing with, 269–271
Factorization, unique factorization of integers theorem,  

195–197
Fallacies, 72–74
Fallacy of affirming the consequent, 73
Fallacy of denying the antecedent, 73–74
False hypotheses, conditional statements with, 54–55
False negatives, 667
False positives, 667
Fantasy rule for mathematical proof, 393
Fermat, Pierre de, 179–180, 190, 277, 568
Fermat primes, 232
Fermat’s last theorem, 232
Fermat’s little theorem, 540–541
Fibonacci (Leonardo of Pisa), 332
Fibonacci numbers, 332–333
Fibonacci sequence, 358–360
Field axioms, A–1, A–2
Final term, 259
Finite relations

inverse of, 489
testing for antisymmetry of, 547

Finite sequences, 270
Finite sets, 473

composition of functions defined by, 463
functions and relations on, 19–20
one-to-one functions defined on, 441
onto functions defined on, 446–447

pigeonhole principle and, 612–614
properties of relations on, 496–498

Finite-state automata, 836, 841–855
definition of, 843–845
designing, 847–849
digital computers, 842–843
equivalence states and, 859–863
eventual-state function and, 846–847
given by annotated next-state table, 844–845
given by transition diagram, 843–844
language accepted by, 845–846
nondeterministic, 853
regular expressions and, 851–853
simplifying, 858–868
software simulating, 849–851

First-order logic, language of, 141
Floor, 211–216
Floor function, 304–305, 762–763, 791–793
Floyd, Robert W., 315
Forests, 720
Formal language(s), 828, 829–832

examples of, 830
vs. informal, 112–113
translating informal to, 134–136

Formal logical notation, 139–141
Formulas

See also Explicit formula
checking correctness of, using mathematical induction, 347–348
composition of functions defined by, 462
computational, 620
deciding on, 639
Pascal’s formula, 642–646
for probability of complement of event, 591
proving, 275–286
summation of first n integers, 278–282

For-next loops, 245–246, 793–794
dummy variable in, 270–271
trace table for, 247–248

Forster, E. M., 79
Forward chaining, 398
Four-color theorem, 34
Four-function calculator, computing div and mod with,  

201–202
Fractional part, 213
Fractions, decimal expansions of, 608–610
Frege, F. L. G., 520
Frege, Gottlob, 110
Friedl, Jeffrey E. F., 851n
Frye, Roger, 180
Full-adders, 97–99
Full binary tree, 734
Fuller, R. Buckminster, 713
Function notation, 19
Functions, 425–486

See also Composition of functions; Exponential functions; 
Finite-state automata; Logarithmic functions

absolute value, 765
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Ackermann, 372–373
acting on sets, 434–435
arrow diagrams of, 426–427
Boolean, 432–433, 828
cardinality of, 483–484
Cartesian product defining, 430
composition of, 461–470
constant, 21
defined on sets of integers, graphing, 763
definition of, 425–426
domain, 425
edge-endpoint, 25
encoding/decoding, 431
equality of, 21, 428
eventual-state, 846–847
examples of, 429–432
exponential, 449–451, 800–801
on finite sets, 19–20
floor, 762–763, 791–793
formulas defining, 21
general sets defining, 425–435
Hamming distance, 431–432
hash, 443–445
identity, 463–464
identity, on X, 429
increasing and decreasing, 765–766
inverse, 440, 454–457, 464–466
language of, 18–20
logarithmic, 430–431, 449–451, 800, 801–803
machines, 20–21
McCarthy’s 91, 372
multiple of, graph of, 764
next-state, 843
noncomputable, 483
nonfunctions and, 427
not well-defined, 433–434
one-to-one, 439–445, 613–614
one-to-one correspondences and, 451–454
one-way, 445
onto, 445–449, 468–470, 613–614
polynomial, 773–783
power, 761–762, 773
power sets defining, 429–430
from power set to set of strings, 452
probability, 655
propositional, 108
range, 426
real-valued, of real variable, 760–766
recursive, 372–374
sequences and, 429
squaring, 21
string-reversing, 452–453
successor, 21
test for equality, 428
of two variables, 453–454
with union, 434–435
well-defined, 433–434

Fundamental theorem of arithmetic, 195–197
Galilei, Galileo, 473
Gambling, 659–660
Gates, 81–83
Gauss, Carl Friedrich, 173, 196, 201, 281, 518
gcd. See Greatest common divisor
General formula, for sequence, 259
Generalizations, 69–70, 76

from the generic particular, 166–167, 184–185
universal, 166

Generalized associative law, deriving, 412
Generalized distributive law, 402–403
General recursive definitions, 364–372
Generic particular, generalizing from, 166–167, 184–185
Geometric sequence, 344–345

explicit formula for, 343
sum of, 282–284, 285–286

Germain, Marie-Sophie, 232
Gibbs, Josiah Willard, 15
Gilbert, William S., 642
Gleick, James, 180
Gödel, Kurt, 420
Goldbach, Christian, 180
Goldbach conjecture, 180
Golden ratio, 360n, 364
Golomb, Solomon, 296
Grammar rules, 722–723
Grammars, 828
Graph(s), 677–720

See also Directed graphs; Tree(s)
of absolute value function, 765
acquaintance, 237
bipartite, 243
circuit-free, 720
circuits and, 677–692, 730
coloring maps with, 32–34
complete, 240–241, 626
complete bipartite, 241, 626
connected, 682–683
definition of, 25, 679–680
degree of vertices, 31–32
directed, 29, 699–701
directed, of relation, 490–491, 495
disconnected, 682–683
edges, 24–25
examples of, 28–34
existence of, determining, 236–237
of exponential functions, 800–801
of floor function, 762–763
forest, 720
of function f, 760–761
of functions defined on sets of integers, 763
isomorphisms of, 713–718
language of, 24–34
of logarithmic functions, 801–803
matrix representations of, 698–710
of multiple of a function, 764
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Graph(s) (Continued )
paths in, 677–692
pictorial representation of, 26–28
of power functions, 761–762
problem-solving using, 30–31
of real-valued functions of a real variable, 760–766
to represent knowledge, 29–30
to represent World Wide Web, 28–29
simple, 239–240, 717–718
subgraphs, 681–682
terminology, 25–26
total degree of, 235–236
trails and, 677–692
tree, 720, 727
uses of, 677
vertices, 24–25
vertices with odd degree, 238
walks in, 707–710
weighted, 745–748

Graph theory, origins of, 677–679
Greatest common divisor (gcd), 250–252, 253

writing as linear combination, 532–533
Greatest elements, 554–555
Green, Ben Joseph, 232
grep, 836
Gries, David, 315
Griggs, Jerrold, 394
Guard, 245, 316, 319
Guard condition, 320

eventual falsity of, 320, 322

Haken, Wolfgang, 34
Half-adders, 97, 99
Hall, Monty, 567
Halting problem, 420–421
Hamilton, Sir William, 689
Hamiltonian circuits, 689–692

definition of, 690
vs. Euler circuits, 690
showing graph does not have, 691–692
traveling salesman problem and, 692

Hamming, Richard W., 431–432
Hamming distance function, 431–432
Handshake theorem, 235–241
Hardy, G. H., 218, 258, 524, 543
Harmonic sums, 809–810
Hash functions, 443–445

computing values of, 444–445
cryptographic, 445

Hasse, Helmut, 551
Hasse diagrams, 550–553
Hausdorff, Felix, 10
Hersh, Reuben, 211
Hexadecimal notation, 103–104

bination notation converting from/to, 105–106
decimal notation converted from, 104–105

High-level computer languages, 828–829
Hilbert, David, 414, 843

Hofstadter, Douglas, 364, 367, 391, 393
Horizontal axes, 760
Hydrocarbon molecules, structure of, 723–724
Hypertext transfer protocols (HTTPs), 28
Hypothesis, 53, 54, 62, 66

false, 54–55

Idempotent laws, 394
proof of, 418

Identifiers
equivalence classes of, 512
Python, counting, 593–594
relation on set of, 510

Identities, set, 394–400
Identity elements, A–1
Identity function, 463–464
Identity function on X, 429
Identity laws, 394, 416
Identity matrices, 706–707
Identity relations, equivalence classes of, 512–515
If, 162

misuse of, 177–178
If-then-else statements, 204, 245, 793–794
If-then statements

converting necessary condition to, 62
converting only if to, 59–60
converting sufficient condition to, 61
execution of, 245
negation of, 57
representation as or, 56

Implicit quantification, 116–117
Inclusion/exclusion rule, 595–599
Increasing functions, 765–766
Independent events, 668–672

disjoint events and, 668–669
probability and, 669–670
three events, 671

Index, 259
Indirect argument

contradiction and contraposition, 218–225
famous theorems, 228–233

Indirect proof, when to use, 231–232
Induction, 275

See also Mathematical induction
structural, 364, 367–372

Inductive hypothesis, 279
Inductive property, 317
Inductive step, 278, 410
Inequalities

De Morgan’s laws and, 47
notation for, 40
proving, with mathematical induction, 293–295
triangle, 207–208

Inference, rules of, 69–72, 76
Infinite relations, inverse of, 490
Infinite sequences, 259
Infinite sets, 473, 612

Cantor diagonalization process and, 477–482
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cardinality and, 474–475
countability of, 475–477
one-to-one functions on, 441–443
onto functions on, 447–449
properties of relations on, 498–501
uncountable, 476

Infinitude of prime numbers, 230–231
Infix notation, 831
Informal language

vs. formal, 112–113
translating to formal, 134–136

Initial conditions, for recurrence relations, 325
Initial state, 843
Initial term(s), 259

finding explicit formula to fit, 260–261
Injective (one-to-one) functions, 440–443
Input alphabet, 843
Input arrays, length of, 817
Input/output table(s), 81

for circuit, 83–84, 87–88
for circuit with two input signals, 577–578

Input signals, 81
Insertion sort algorithm, 793–796
Instantiation

existential, 148, 168
universal, 146–147, 150

Integers, 8
addition/subtraction in two’s complement form, 102–103
binary notation for, 94–95
binary representation of, 307–308
composite, 163–164
computer representation of, 99–101
consecutive, 203
divisibility of, 195–197
divisible by 5, counting number of, 589–590
even, 161–163, 186–187
graphing functions defined on sets of, 763
linear combination of, 532
mod 4, 204–205
odd, 161–163, 186–187
odd minus even, 178–179
pairwise relatively prime, 534
parity of, 203–204
positive divisor of positive, 191
prime, 163–164
properties of, 186–187
property of the set of, 368–369
quotient-remainder theorem and, 205
relatively prime, 534–535
representation of, 203–208
selecting pair of, with certain sum, 607–608
smallest positive, 135
square of, 222–223
square of odd, 205–207
in standard factored form, 196
unique factorization of integers theorem, 195–197
well-ordering principle for, 258, 308–310

Integral solutions of equation, 638–639

Intel 4004, 80
Internal vertex, 725–727
Internet Protocol (IP) addresses, 594–595
Intersection

counting elements of, 597–599
of sets, 381, 382, 383–384
with subset, 400

Interval notation, 382–383
Intervals, 382–383
Intractable problems, 824
Invalid arguments. See Arguments, valid and invalid
Invalidity, using diagrams to show, 152–153
Invariant for graph isomorphism, 716
Inverse

of conditional statement, 58–59
of relation, 488–490
of universal conditional statements, 127–128

Inverse error, 72, 73–74, 153, 155–156
Inverse functions, 440, 454–457, 464–466
Inverse modulo n, 534–536
Inverter, 82
Irrational numbers

determining rational numbers vs., 183–184
irrationality of square root of two, 228–230
sum or rational and, 220–221

Isbell, John, 34
Isolated vertex, 25
Isomers, 723
Isomorphic invariants, 716
Isomorphic structures, 867–868
Isomorphisms

definition of, 713
of graphs, 713–718
for simple graphs, 717–718

Iterations
counting, of loop, 578, 637–638
formulas to simplify solutions obtained by, 345–347
method of, 340–345
number of, depending on floor function, 791–793
solving recurrence relations by, 340–349

Iterative statements, 245–246

Java language, 201, 244, 836
Job scheduling problem, 558–560
Jumping to conclusions, 72

Kant, Immanuel, 37, 742
k-equivalence of states, 860–863
Keys, binary search trees, 739
Killian, Charles, 394
Kirchhoff, Gustav, 723
Kleene, Stephen C., 828, 851
Kleene closure of L, 832
Kleene closure of r, 832
Kleene closure of o, 830
Kleene’s theorem, 851–853
Knuth, Donald, 169, 769, 787
Kolmogorov, Andrei Nikolaevich, 655
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Königsberg bridges puzzle, 677–679
Kronecker, Leopold, 706
Kruskal, Joseph, 745
Kruskal’s algorithm, 745–748
Kuratowski, Kazimierz, 10

The Language of First-Order Logic (Barwise and Etchemendy), 
117–118

Language(s)
See also Computer languages; Formal language; Informal 

language
accepted by automaton, 845–846
ambiguous, 136–137
context-free, 828–829, 854
of first-order logic, 141
formal vs. informal, 112–113
new, from old, 832
nonregular, 854–855
regular, 854–855
regular expression defining, 832–836
translating from informal to formal, 134–136

Laplace, Pierre-Simon, 568, 655, 662
Law of exponents, 449
lcm. See Least common multiple
Leaf, 725–727
Least common multiple (lcm), 256
Least elements, 554–555

finding, 308–309
Least nonnegative residues modulo n, 527
Least upper bound axiom, A–3
Left child, 734
Leibniz, Gottfried Wilhelm, 37, 151
Lemma, 207

Euclid’s, 539–540
Length

of string, 369–370
of walk, 707–710

“Less than or equal to” relations, 549
Less-than relations, 487, 499
Lexicographic order, 549–553
Linear combinations

of relatively prime integers, 535
writing greatest common divisor as, 532–533

Linear probe, 444
Linguistics, 723, 828
Lists, counting elements of, 568–570
Lobachevsky, Nicolai Ivanovitch, 546
Local call string, 857
Logarithmic functions, 800

with base b, 430–431
graphs of, 801–803
orders involving, 807–808
relations between exponential and, 449–451

Logarithmic orders, 806–811
Logarithms

common, 451
computing, with base 2 on calculator, 451
natural, 451

of numbers between two consecutive powers of 2, 802–803
properties of, 450
recurrence relations solved with, 804–806

Logic, 828
of compound statements, 37–107
De Morgan’s laws of, 45–48
digital logic circuits, 79–90
form of argument, 37–38
language of first-order, 141
of quantified statements, 108–152
symbolic, 37

Logical equivalence, 43–48
conditional statements and, 55–56, 62
contradictions, 49
De Morgan’s laws and, 45–48
double negative property and, 44–45
nonequivalence and, 45
for quantified statements, 122–123, 125–126
set properties and, 414–415
statements/statement forms and, 43–44, 50
summary of, 49–50
tautologies, 49

Logical form, of arguments, 37–38
Logical operators, order of operations for, 60
Loop invariants, 316–319
Loop invariant theorem, 317
Loops, 25

correctness of, to compute product, 318–319
counting iterations of, 637–638
dummy variable in, 270–271
nested, 578, 790–791
for-next, 245–248, 270–271, 793–794
number of iterations of, 578
pre-conditions and post-conditions, 316–317, 319
while, 245–247, 316, 793–794

Lottery, expected value of, 658–659
Lovelace, Ada Augusta, Countess of, 244, 813
Lucas, Édouard, 328
Lukasiewicz, Jan, 831
Lynch, John, 180n

Mach, Ernst, 487
Main diagonal, of matrix, 698–699
Major premise, 68
Manin, I., 275
Maps, coloring, using graphs, 32–34
Mastering Regular Expressions (Friedl), 851n
Mathematical Analysis of Logic, The (Boole), 415
Mathematical Experience, The (Davis and Hersh), 211
Mathematical induction, 258, 275–297

See also Well-ordering principle
additional formals, deducing, 285–286
applications, 289–297
checking correctness of formula by, 347–348
definition of, 275–277
divisibility property proven with, 291–293
equality proven with, 284–285
finding mistakes using, 349
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geometric sequences, formula for, 282–284, 285–286
inequality proven with, 293–295
method of proof by, 278
principle of, 277–278
property of a sequence proven with, 295–296
proving formulas, 275–286
strong, 301–308
summation of first n integers, formula for, 278–282
trominoes and, 296–297

Mathematical structures, 867–868
Matrix(ces)

2 x 2, 705–706
adjacency, 699–700, 701
connected components and, 702–703
definition of, 698
directed graphs and, 699–701
graph representations of, 698–710
identity, 706–707
main diagonal of, 698–699
multiplication, 703–707
powers of, 707
products of, 704–705
square, 698
symmetric, 701–702
terminology, 699
undirected graphs and, 701–702

Maurolico, Francesco, 277
Maximal elements, 554–555
McCarthy, John, 372
McCarthy’s 91 function, 372
McCulloch, Warren S., 828
Memory dump, reading, 106
Merge sort algorithm, 214, 820–824
Mersenne, Marin, 232
Mersenne primes, 232
Message authentication, 542–543
Method

collision resolution, 444
complete enumeration, 618
of direct proof, 167
of exhaustion, 111, 166
of generalizing from the generic particular, 166–167, 184–185
of iteration, 340–345
of proof by contradiction, 218–221
of proof by contraposition, 222–224
of proof by mathematical induction, 278

Microprocessor, 80
Milhailescu, Preda, 232
Mill, John Stuart, 146
Minimal elements, 554–555
Minimum spanning trees, 744–751
Minor premise, 68
mod/modulo, 201–205

computing, 216
congruence modulo 2 relation, 488
congruence modulo 3 relation, 500–501, 516–517
congruence modulo n, 516–518
inverse modulo n, 534–536

Modular arithmetic, 528–531
computing product modulo n, 530
getting started with, 529

Modular equivalence, 526–527
Modus ponens, 68–69, 76

universal instantiation and, 147–149
Modus tollens, 68–69, 76

universal, 149–150
Monty Hall problem, 567–568
Multigraphs, 681
Multiple

of function, 764
least common, 256

Multiple-input AND-gate, 86–87
Multiple-input OR-gate, 86
Multiplication, A–1

matrix, 703–707
Multiplication rule, 574–584

difficult or impossible to apply, 578–579
subtle use of, 579

Multiplicative identity, 235, 706
Mutually disjoint sets, 385

NAND-gates, 89–90
Napier, John, 801
n-ary relations, 487, 491–492
National Security Agency, 524
Natural logarithms, 451
Natural numbers, 7–8
Naur, Peter, 722
“n choose r” notation, 269–270
Necessary conditions, 61–62, 128–129

converting to if-then form, 62
interpreting, 61

Negation, 40
of and and or, 45–46
of conditional statement, 56–57
De Morgan’s laws, 45–48
double negative property and, 44–45
of if-then statements, 57
of quantified statements, 122–124
of statements with more than one quantifier,  

137–138
of universal conditional statements, 124–125
of universal statements, 122

Negative numbers, A–3
Neither-nor, 39–40
Nelson, Edward, 34
Nested loops

algorithm with, 790–791
number of iterations of, 578

.NET computer language, 836
Neurons, 828
Newton, Isaac, 151
Next-state function, 843
Next-state tables, 842, 843, 844–845
n! factorial
Node, 681
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Noncomparable elements, 553
Noncomputable functions, 483
Nonconstructive proof of existence, 164
Nondeterministic finite-state automata, 853
Nondivisibility, checking for, 192
Nonequivalence, showing, 45
Nonfunctions, 427
Nonisomorphic trees, 727–729
Nonoverlapping sets, 385
Nonregular languages, 854–855
Non-trees, 721
NOR-gates, 89–90
Notation

for algorithms, 248
Backus-Naur, 722, 829
big-O, big-omega, and big-theta, 769–783
binary, 93–96
decimal, 93
exponential, 93
factorial, 268–270
formal logical, 139–141
function, 19
hexadecimal, 103–106
inequalities, 40
infix, 831
interval, 382–383
“n choose r,” 269–270
octal, 107
Polish, 831–832
postfix, 831
prefix, 831
product, 264
set-builder, 8–9
set-roster, 7–8
summation, 261–267
for walks, 680

NOT-gate, 82
NP-complete problems, 824
n-tuples, 432, 492

ordered, 11–12
Null set, 384
Null strings, 13, 366
Numbers. See Integers; Rational numbers; Real numbers, 

natural, 7–8
Number systems, 93–96
Number theory, 190

cryptography and, 543
divisibility, 190–197
Euclid’s lemma and, 539–540
floor and ceiling, 211–216
open questions in, 232–233
properties of integers, 186–187
properties of rational numbers, 185–186
quotient-remainder theorem, 201–205

Numerical expressions, 341

Octal notation, 107
Odd integers, 161–163

properties of, 186–187
square of, 205–207

Of order at least g, 769, 771, 773
Of order at most g, 770, 771, 773
Of order g, 770, 771, 773
Of order g(n), 789
Omega-notation, 769–783

description of, 769–771
polynomial function orders and, 773–774
for polynomial with negative coefficients, 774–777
reciprocal relationship between O-notation and, 782
translating to, 772

One-dimensional arrays, 270
counting elements of, 569–570

One-to-one correspondences, 451–454, 473
One-to-one functions, 439–445

composition of, 466–468
finite sets and, 613–614
finite sets defining, 441
on infinite sets, 441–443
proving or disproving, 442–443

One-way functions, 445
Only-if, 162
Only if statements, 128–129

and the biconditional, 59–61
converting to if-then, 59–60

O-notation, 769–783
caution about, 778–779
description of, 769–771
polynomial function orders and, 773–774
for polynomial with negative coefficients, 774–777
reciprocal relationship between omega-notation and, 782
showing one function is not big-O of other function, 779–780
translating to, 772

Onto functions, 445–449
composition of, 468–470
finite sets and, 613–614
finite sets defining, 446–447
incorrect proof, 470
on infinite sets, 447–449
proving or disproving, 447–449

Open sentences, 108
Operations

order of, 39, 55, 60
on sets, 381–384

Order, of quantifiers, 138–139
Order axioms, A–2
Ordered n-tuples, 11–12
Ordered pairs, 10–11, 760

equivalence clases of relation given as set of, 511
Ordered selections, 618
Ordered triples, 11
Order of operations, 39, 55

for logical operators, 60
Order of precedence, 833
Ordinal numbers, 473
OR-gate, 82

multiple-input, 86
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Origin, 8, 760
Or statements, 40, 41

ambiguity and, 41
negation of, 45–48

Output signals, 81

Pairwise disjoint sets, 385
Pairwise relatively prime integers, 534
Palindrome, 830
Parallel, switches in, 80
Parallel adders, 99
Parallel edges, 25
Parent, 733, 734
Parentheses, 733

property of the set of, 369
recursive definition of, 365–366

Parity, of integers, 203–204
Parse trees, 722–723
Partially ordered sets, 553–555
Partial order relations, 546–560

applications, 557–560
definition of, 548
Hasse diagrams for, 550–553
lexicographic order, 549–553
partially and totally ordered sets, 553–555
PERT and CPM for, 558–560
subset of, 548
topological sorting, 555–557

Partitions
relation induced by, 506–508, 514–515
of sets, 384–386

Pascal, Blaise, 183, 277, 568, 643
Pascal’s formula, 642–646

new formula derivation from, 646
Pascal’s triangle, 644–645
Passwords, with 3-5 letters, 592–593
Paths, 677–692
Peano, Giuseppe, 382, 520
Peirce, Charles Sanders, 16, 89, 110
Peirce arrow, 89–90
Permutations, 580–584

definition of, 580
of letters in word, 580–581
of objects around circle, 581
relation between combinations and, 618–620
r-permutations, 581–583
of selected letters of word, 583–584
of selected objects, 581–584
with sets of indistinguishable objects, 629
of set with repeated elements, 628–629

Personal identification numbers (PINs)
counting, 575–576
with repeated symbols, counting, 590–591

PERT (Program Evaluation and Review Technique),  
558–560

Piaget, Jean, 53
Pigeonhole principle, 604–614

applications of, 605–612

generalized principle of, 610–612
proof of, 612–614

PINs. See Personal identification numbers
Pitts, Walter, 828
Plaintext, 524
Poker hand problems, 626–627
Polish notation, 831–832
Polyá, George, 6
Polynomial functions

big-theta for, 777–778
with negative coefficients, 774–777
orders of, 773–783

Polynomial-time algorithms, 824
Polyomino, 296
Positive closure of o, 830
Positive integers, “divides” relation on set of, 548–549
Positive real numbers, A–2
Possibility trees, 573–584
Post, Emil, 828
Post-conditions

algorithm, 315–316
correctness of, 317, 319, 320–321, 322–323
loop, 316–317

Postfix notation, 831
Power functions, 761–762

orders of, 773
Powers

of adjacency matrix, 699–700
of matrix, 707

Power set axiom, 386
Power sets, 386

function defined on, 429–430
function from, to set of strings, 452
number of elements in, 369
relations on, 488

Pre-conditions
algorithm, 315–316
loop, 316–317

Predicate calculus, 108
Predicates

definition of, 108–109
finding truth values of, 109
quantified statements and, 108–129

Prefix notation, 831
Premises, 37, 66

ambiguous, 72
false, 74
major, 68
minor, 68
truth set of, 109

Prime integers, 163–164
Prime numbers, 163–164

divisibility and, 192
divisibility by, 194, 302–303
Fermat, 232
infinite number of, 230–231
Mersenne, 232
twin primes conjecture, 232
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Prim’s algorithm, 748–751
Principle of mathematical induction, 277–278
Probability

Bayes’ theorem and, 666–668
binomial, 672
of complement of event, 656
of complement of event, formula for, 591
conditional, 662–665
counting and, 564–570
for deck of cards, 566–567
dice roll, 567
equally likely probability formula, 566
expected value and, 658–660
of general union of two events, 657–658
independent events and, 668–672
introduction to, 564–570
Monty Hall problem, 567–568
pigeonhole principle and, 604–614
possibility trees and multiplication rule, 573–584

Probability axioms, 655–660
Probability function, 655
Problems for the Quickening of the Mind, 36
Problem solving

with recursion, 328
strategy, 409
using proof, 224–225

Processors, 842–843
Productions, 722
Product modulo n, 530
Product notation, 264
Products, A–1

Cartesian, 10–13, 430, 576–577
computing, 264, 305
correctness of loop to compute, 318–319
dot, 703
of matrix, 704–705
properties of, 265
recursive definition of, 335–336
scalar, 703

Program Evaluation and Review Technique (PERT), 558–560
Programming languages. See Computer languages
Prolog, 141–142
Proof(s)

See also Algebraic proof; Direct proof; Disproof
algebraic, of set identities, 410–412
of binomial theorem, 648–651
common mistakes, 175–178
for conditional statements, 402
conjecture and, 179–180
by contradiction, 218–221, 223–224
by contraposition, 222–224
defining, 160–161
from definitions, 186
of De Morrgan’s law for sets, 398–400
of distributive law, 395–398
of divisibility, 291–293, 302–303
by division into cases, 71, 76, 204–205
of double complement law, 417–418

of equality, 284–285
of existential statements, 164
identifying mistakes in, 179
indirect, when to use, 231–232
of inequality, 293–295
by mathematical induction, 278
method of exhaustion, 166
of number of multiplications needed to multiply n numbers, 

305–308
of pigeonhole principle, 612–614
as problem-solving tool, 224–225
for properties of divisibility, 192–194
of properties of rational numbers, 185–186
of property of floor, 213–216
of property of sequence, 295–296, 303–304
of reflexivity, 500
of square of odd integer, 205–207
starting, 170–171
of transitivity, 501
of universal statements, 165–170, 173–175
use of universal modus ponens in, 148–149
variations among, 175
writing advice, 173–180

Proper subsets, 9, 378
Propositional calculus, 108
Propositional forms, 42
Propositional functions, 108
Propositions, 222–223
Pseudocode, 244
Public key, 537
Public-key cryptography, 525–526
Pythagoras, 228
Pythagoren theorem, 228
Python language, 201, 244, 593–594, 836

QED, 836
Quantified statements, 108–152

arguments with, 146–156
formal vs. informal language and, 112–113
implicit, 116–117
logical equivalence for, 122–123, 125–126
negations of, 122–124
predicates and, 108–129
proving validity of arguments with, 150

Quantifiers
bound variables and scope, 115–116
definition of, 109–110
existential, 111–112
order of, 138–139
statements with multiple, 131–142
trailing, 113
universal, 109–111

Quaternary relations, 491
Quine, Willard Van Orman, 55
Quotient automaton, 859, 863–866
Quotient-remainder theorem, 200–201, 203, 204–205, 215,  

271, 527
well-ordering principle and, 309–310
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Ralston, Anthony, 289
Random process, 565
Range, 426
Rational numbers

definition for, 519–520
definition of, 183
determining irrational numbers vs., 183–184
direct proof and counterexample with, 183–187
double of, 187
as equivalence classes, 519–520
properties of, 185–186
set of all positive, 477–478
sum of irrational and, 220–221
sum or rationals is rational, 185–186

r-combinations, with repetition allowed, 634–639
Real numbers

cardinality of set of all, 481–482
floor and ceiling of, 211–216
less-than relations for, 487
negative, A–3
no smallest positive, 135
positive, A–2
properties of, A–1, A–2, A–3
set of, as uncountable, 478–480

Real-valued functions of real variable, 760–766
Reasoning, circular, 72
Reciprocals, A–1
Recognizer, 85
Recurrence relations, 325

characteristic equation of, 354–356
for sequence, 817–820
initial conditions for, 325
iterations solving, 340–349
logarithms solving, 804–806
second-order linear homogeneous, with constant coeffi-

cients, 352–362
sequences satisfying, 326–327
solution to, 340
using mathematical induction to verify correctness of solu-

tion to, 347–348
writing in more than one way, 326

Recursion
compound interest and, 333–335
computing number of edges of K

n
 using, 346–347

Fibonacci numbers and, 332–333
recursively defined sequences, 325–337
Tower of Hanoi and, 328–331

Recursive definition
of Boolean expressions, 365
general, 364–372
of parenthesis structures, 365–366
of product, 335–336
of sets, 365–372
of sets, structural inductions, 367–368
for sets of strings, 366–367
of sum, 335–336

Recursive functions, 372–374
Recursive leap of faith, 328

Recursive paradigm, 328
Reductio ad absurdum, 218
Reductio ad impossible, 218
Reflexive property of cardinality, 473
Reflexivity, 495–502

proof of, 500
Regular expressions, 829

for date, 838
definition of, 832
finite-state automata and, 851–853
language defined by, 832–836
order of precedence for operations in, 833
practical uses of, 836–838
symbols in, 833

Regular languages, 828–829, 854–855
Relational databases, 491–492
Relations

See also “Divides” relations; Equivalence relations;  
Recurrence relations

antisymmetry property of, 546–548
arrow diagram of, 18
binary, 487, 491
circle, 17
congruence modulo 2, 488
congruence modulo 3, 500–501, 516–517
congruence modulo n, 516–518
directed graph of, 490–491, 495
of equality, 498–499
equivalence, 505–520
finite, 489, 547
on finite sets, 19–20
finite sets and, properties of, 496–498
identity, equivalence classes of, 512–515
infinite, 490
infinite sets and, properties of, 498–501
inverse of, 488–490
language of, 15–18
less-than, 499
less than, for real numbers, 487
“less than or equal to,” 549
n-ary, 487, 491–492
partial order, 546–560
partition inducing, 506–508, 514–515
on power set, 488
quaternary, 491
recurrence, 804–806
reflexivity, symmetry, and transitivity and, 495–502
on set of identifiers, 510
on set of subsets, 511–512
on sets, 487–492
as subsets, 16–17
ternary, 491
total order, 553
transitive closure of, 502

Relative complement, 381
Relatively prime integers, 534–535
Repeating decimals, 184
Repetition, r-combinations with, 634–639
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Residues modulo n, 527
Reverse Polish notation, 831
Ribet, Kenneth, 180
Right child, 734
Right subtree, 734
Ritchie, Dennis, 829n
Rivest, Ronald, 525–526
Rooted trees, 732–741
Roussel, P., 141
Rows, multiplying, 703–704
r-permutations, 581–583
RSA cipher, 525–526
RSA cryptography, 536–543
Rules of inference, 69–72, 76
Russell, Bertrand, 301, 340, 419, 800
Russell’s paradox, 419–420

Sample space, 565–566
Saturated hydrocarbon molecules, 723–724
Savage, Carla, 394
Sawyer, W. W., 677
Scalar product, 703
Schroeder-Bernstein theorem, 486
Scope, bound variables and, 115–116
Search algorithm

binary, 214, 813–825
sequential, 787–788

Second-order linear homogeneous recurrence relations, with 
constant coefficients, 352–362

Semantics, 723
Sequences, 258–273

See also Recursion
alternating, 260
arithmetic, 342–343
of Catalan numbers, 327
in computer programming, 270–271
defining recursively, 325–337
definition of, 259
definition of limit of, 135–136
explicit formula for, 259–261
factorial notation and, 268–270
Fibonacci, 358–360
finite, 270
floor function and, 304–305
functions and relations on, 429
general formula for, 259
geometric, 282–284, 285–286, 343–345
infinite, 259
product notation and, 264
proving properties of, 295–296, 303–304
recurrence relation for, 817–820
summation notation and, 261–267
terms in, 259
Tower of Hanoi, 328–331, 345–346
Venn diagrams and, 380–381

Sequential circuits, 83, 841
Sequential search algorithm, 787–788
Set difference law, 395

Set difference property, deriving, 411
Set identities, 394–400

algebraic proofs of, 410–412
counterexample for, 407–409
deriving, 411–412

Set notation
describing language defined by regular expression,  

833–834
set-builder notation, 8–9
set-roster notation, 7–8

Set(s)
algorithm for checking for subsets of, 386–387
axiom of extension, 7
Boolean algebra and, 414–418
Cartesian products and, 10–13
complements of, 381, 382
countable, 475–477
definitions, procedural versions, 392
De Morgan’s law for, 398–400
differences of, 381, 382
disjoint, 384–385
disjoint, counting elements of, 589–599
disproving alleged property, 407–409
distributive law for, 395–398
empty, 384, 401–403
equality, 379–380
finite, 473, 612–614
finite, composition of functions defined on, 463
finite, functions and relations on, 19–20, 441, 446–447
finite, properties of relations on, 496–498
functions acting on, 434–435
functions defined on general, 425–435
of identifiers, 510
inclusion/exclusion rule, 595–599
indexed collection of, 383
infinite, 473, 474–475, 612
infinite, one-to-one functions on, 441–443
infinite, onto functions on, 447–449
infinite, properties of relations on, 498–501
of integers, 368–369
of integers, graphing functions defined on, 763
intersection of, 381, 382, 383–384
language of, 6–15
mutually disjoint, 385
nonoverlapping, 385
null, 384
of numbers, relations among, 381
operations on, 381–384
ordered pairs and, 10–11
pairwise disjoint, 385
of parentheses, 369
partially and totally ordered, 553–555
partitions of, 384–386, 506–508
power, 386
power sets of, 386
properties of, 367–372, 391–403
recursively defined, 365–372
relations and, 15–20, 487–492
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Russell’s paradox and, 419–420
of strings, 452
of strings, functions and relations on, 20
subsets, 9–10, 378–379, 617–630
subsets of, number of, 409–410
uncountable, 477–481
union of, 381, 382, 383–384
universal, 381
Venn diagrams and, 394

Set theory, 377–424
Seven Bridges of Königsberg, 677–678
Shakespeare, William, 122
Shamir, Adi, 525–526
Shannon, Claude, 79, 828
Sheffer, H. M., 89
Sheffer stroke, 89–90
Shortest path algorithm, 742–757
Sieve of Eratosthenes, 227
Sigma, 829–830
Signed integers, computer representation of, 99–101
Simple circuit, 679–680
Simple graphs, 239–240

isomorphisms of, 717–718
Simple vending machine, 841–842
Singh, Simon, 180n
Single-root theorem, 360–362
Smullyan, Raymond, 75
Software, simulating finite-state automaton using, 849–851
Solution, to recurrence relation, 340
Sorting

insertion algorithm for, 793–796
merge sort algorithm for, 214, 820–824
topological, 555–557

Sound arguments, 74, 150
Space efficiency of algorithm, 788, 825
Spanning trees, 742–757

definition of, 743
Dijkstra’s shortest path algorithm and, 751–757
Kruskal’s algorithm and, 745–748
minimum, 744–751
Prim’s algorithm and, 748–751

Specializations, 70, 76
Square, of odd integer, 205–207
Square matrix, 698
Square roots, irrationality of square root of two, 228–230
Squaring function, 21
Standard factored form, 196
Star *-equivalence classes, 863
Statement calculus, 108
Statement forms, 42
Statements. See also specific statements

combinations of, 3–5
conditional, 2
definition of, 38–39
existential, 2
formal logical notation and, 139–141
logically equivalent, 44
with multiple quantifiers, 131–142

negation of, with more than one quantifier, 137–138
translating from informal to formal language, 134–136
types of, 2
universal, 2, 110
vacuously true, 126

States, 843
(state-) transition diagram, 843–844
Stevin, Simon, 478
String-reversing function, 452–453
Strings, 13

additive property of length, 370
area code, 857
bit, 13
characters as, 366
characters of, 13
concatenation, 20, 366, 370–372
in language defined by regular expressions, 834–835
length of, 369–370
local call, 857
null, 13, 366
properties of, 367
recursive definition of sets of, 366–367
set of, function from power set to, 452
sets of, functions and relations on, 20
testing for lexicographic order, 550

Strong mathematical induction, 301–308
applying, 302–308
computation of products with, 305
divisibility by a prime proven by, 302–303
number of multiplications needed to multiply n numbers 

proven with, 305–308
principle of, 301–302
property of a sequence proven with, 303–304

Structural induction, 364, 367–372
Subgraphs, 681–682
Sublist, counting elements of, 569
Subroutines, 248
Subscript, 259
“Subset” relation, 548
Subsets, 9–10

algorithm for checking for, 386–387
chain of, 554
counting, 617–630
intersection of, 400
number of, of set, 409–410
proof and disproof, 378–379
proper, 9, 378
proving relations, 392–394
relations, 378–379, 391–394
relations as, 16–17
testing, 378
union of, 400

Subtraction
in binary notation, 96
integers, in two’s complement form, 102–103
odd minus even integer, 178–179

Subtrees, 734
Successor function, 21
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Sufficient conditions, 61–62, 128–129
converting to if-then form, 61
interpreting, 61

Sum
harmonic, 809–810
of rational and irrational number, 220–221
of rational numbers is rational, 185–186
recursive definition of, 335–336
simplifying, using binomial theorem, 652
telescoping, 264

Summands, 182
Summations

change of variable and, 266–267
in closed form, 281
computing, 261
evaluating, 263
expanded form of, 261–262
of first n integers, formula for, 278–282
geometric sequences, formula for, 282–284, 285–286
notation of, 261–267
properties of, 265
telescoping sums, 264
upper limit of, 261, 267

Sum-of-products form, 88
Surjective (onto) functions, 445–449
Swift, Jonathan, 325
Switches

in parallel, 80
in series, 80

Syllogisms, 68–69
Symbolic logic, 37
Symmetric matrix, 701–702
Symmetric property of cardinality, 473
Symmetry, 495–502
Syntactic derivation trees, 722–723
Syntax, 723
Syntax errors, 314

Tables
input/output, 81, 87–88
next-state, 842, 843, 844–845
trace, 246–247
truth, 41–43

Taniyama-Shimura conjecture, 180
Tao, Terence Chi-Shen, 232
Tarski, Alfred, 118
Tarski’s World, 117–118, 132–133

evaluating argument for, 154–155
formalizing statements in, 139–140
negating statements in, 137–138
quantifier order in, 139

Tautological statements, 48–49
Tautologies

definition of, 48
logical equivalence and, 49

Taylor, Richard, 180
Teams

calculating number of, 620

with members of two types, 623–625
that contain both or neither, 620–621
that do not contain both, 621–623

Telescoping sums, 264
Terminal vertex, 725
Terms, in sequences, 259
Ternary relations, 491
Theorem. See also specific theorems

definition of, 169
direct proof of, 168–170

There exists statement, 125
Theta-notation, 769–783

deducing, 772
description of, 769–771
for polynomial function, 777–778
polynomial orders and, 780
reflexive, symmetric, and transitive properties of, 782
translating to, 771–772

Thinking Machines Corporation, 180
Thompson, Kenneth, 829n
Thoreau, Henry David, 858
3n 1 1 problem, 374
3x 1 1 problem, 374
Time efficiency, of algorithm, 788–789, 825
Topological sorting, 555–557
Totally ordered sets, 553–555
Total weight, 745
Tournament play, possibilities for, 573–574
Tower of Hanoi, 328–331, 345–346, 824
Trace tables, 246–248

for division algorithm, 249–250
for insertion sort, 793–794

Tractable problems, 824
Trailing quantifiers, 113
Trails, 679–681

Euler, 688–689
Transition diagrams, 843–844
Transitive closure, of relation, 502
Transitive law, A–3
Transitive property of cardinality, 474
Transitivity, 71, 76

of divisibility, 192–194
proof of, 501
relations and, 495–502

Traveling salesman problem, 692
Tree(s), 720–759

binary, 734–739
binary search, 739–741
characterizing, 724–730
conditional probabilities represented with, 663–665
decision, 721–722
Dijkstra’s shortest path algorithm and, 751–757
examples of, 720–724
graph, 720, 727
Kruskal’s algorithm and, 745–748
nonisomorphic, 727–729
non-trees and, 721
parse, 722–723
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Prim’s algorithm and, 748–751
rooted, 732–741
satisfying given conditions, 727
spanning, 742–757
subtrees, 734
syntactic derivation, 722–723
theorems about, 725–727, 729–730
vertices and, 724–727

Trefethen, Lloyd, 566
Trefethen, Nick, 566
Triangle inequality, 207–208
Trichotomy law, A–3
Triples, counting, 637
Trominoes, 296–297
True by default, 126
Truth set, of predicates, 109
Truth tables

for biconditional, 60
for compound statements, 42–43
for conditional statements, 55
for conjunction, 41
for disjunction, 42
for exclusive or, 42–43
for negation, 40–41

Truth values, 40–42
of predicates, 109

Tucker, Alan, 634
Tukey, John W., 80–81
Turing, Alan M., 420, 787, 828, 843
Turing machine, 828
Twin primes conjecture, 232
Two-dimensional Cartesian coordinate system, 760
Two’s complements

8-bit, 99–103
addition/subtraction with integers and, 102–103
computer representation of signed integers and, 99–101
finding, 100–101
finding number with given, 101
for negative integer, 100

Uncountable sets, 477–481
Undirected graphs, matrices and, 701–702
Union

counting elements of general, 596–597
interaction of function with, 434–435
of mutually disjoint subsets, 385
of sets, 381, 382, 383–384
with subset, 400
of two events, probability of, 657–658

Unique factorization of integers theorem, 195–197, 251
Euclid’s lemma and, 539–540

Uniqueness of the complement law, 417
Universal bound laws, 395, 416
Universal conditional statements, 113–114

contrapositive, converse, and inverse of, 127–128
definition of, 3
necessary and sufficient conditions and, 128
negations of, 124–125

only if and, 128–129
rewriting, 3
variants of, 126–128
writing informally/formally, 113–114

Universal existential statements
definition of, 3–4
rewriting, 4

Universal generalization, 166
Universal instantiation, 146–147, 150
Universal modus ponens, 147

drawing conclusions using, 148
recognizing, 147–148
use of, in a proof, 148–149

Universal modus tollens, 149
drawing conclusions using, 150
recognizing, 149

Universal quantifiers, 109–111
Universal set, 381
Universal statements, 2

definition of, 110
disproving by counterexample, 164–165
equivalent forms of, 114–115
existential, 3–5
negation of, 122
proofs of, 173–175
proving, 165–170
truth and falsity of, 110–111
vacuous truth of, 126

Universe of discourse, 381
UNIX, 829, 836
Unordered selections, 618
Unsound arguments, 74

Vacuously true statements, 54, 126
Valid arguments. See Arguments, valid and invalid
Validity, using diagrams to test for, 151–155
Vandermonde, Alexander, 654
Vandermonde convolution, 654
Variables

in algorithmic language, 244
Boolean, 84
bound, 115–116
change of, 265–267
in computer languages, 244
data type of, 244
dummy, 266, 270–271
function of two, 453–454
global, 176
uses of, 1–2
writing sentences using, 2

Vending machines, 841–842
Venn, John, 380
Venn diagrams, 380–381, 394
Vertex (vertices), 24–25, 681

adjacent, 25
branch, 725
degree of, 31–32
internal, 725–727
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Vertex (vertices) (Continued )
isolated, 25
terminal, 725

Vertical axes, 760
Volterra, Vito, 425

Walks, 680–681
definition of, 679–680
of length N, counting, 707–710
notation for, 680

Weighted graphs, 745–748
Well-defined functions, 433–434
Well-ordering principle, 258, 277

for integers, 308–310
Weyl, Hermann, 720
Wheeler, Anna Pell, 200, 439, 573

While loops, 245–246, 316, 793–794
guard of, 320
tracing execution of, 246–247

Whitehead, Alfred North, 24, 461, 732
Wiener, Norbert, 10, 841
Wiles, Andrew, 180
World Wide Web, 28–29
Worst-case orders, 824

for sequential search, 787–788

XML, 829

Zero, divisors of, 190–191
Zero factorial (0!), 269
Zero product property, 184
Zhang, Yitang, 232

94193_indx_ptg01.indd   22 12/11/18   6:27 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203


	Title Page
	Copyright Page
	Contents
	Preface
	Chapter 01: Speaking Mathematically
	1.1: Variables
	1.2: The Language of Sets
	1.3: The Language of relations and functions
	1.4: The Language of Graphs

	Chapter 02: The Logic of Compound statements
	2.1: Logical Form and Logical Equivalence
	2.2: Conditional Statements
	2.3: Valid and Invalid Arguments
	2.4: Application: Digital Logic Circuits
	2.5: Application: Number Systems and Circuits for Addition

	Chapter 03: The Logic of Quantified Statements
	3.1: Predicates and Quantified Statements I
	3.2: Predicates and Quantified Statements II
	3.3: Statements with Multiple Quantifiers
	3.4: Arguments with Quantified Statements

	Chapter 04: Elementary Number theory and Methods of Proof
	4.1: Direct Proof and Counterexample I: Introduction
	4.2: Direct Proof and Counterexample II: writing Advice
	4.3: Direct Proof and Counterexample III: Rational Numbers
	4.4: Direct Proof and Counterexample IV: Divisibility
	4.5: Direct Proof and Counterexample V: Division into Cases and the Quotient-Remainder Theorem
	4.6: Direct Proof and Counterexample VI: Floor and Ceiling
	4.7: Indirect argument: Contradiction and Contraposition
	4.8: Indirect Argument: Two Famous Theorems
	4.9: Application: The Handshake Theorem
	4.10: Application: Algorithms

	Chapter 05: Sequences, Mathematical induction, and recursion
	5.1: Sequences
	5.2: Mathematical Induction I: proving Formulas
	5.3: Mathematical Induction II: Applications
	5.4: Strong Mathematical Induction and the Well-Ordering principle for the Integers
	5.5: Application: Correctness of Algorithms
	5.6: Defining Sequences Recursively
	5.7: Solving Recurrence Relations by Iteration
	5.8: Second-Order Linear Homogeneous Recurrence Relations with Constant Coefficients
	5.9: General Recursive Definitions and Structural Induction

	Chapter 06: Set Theory
	6.1: Set Theory: Definitions and the Element Method of Proof
	6.2: Properties of Sets
	6.3: Disproofs and Algebraic Proofs
	6.4: Boolean Algebras, Russell?s Paradox, and the Halting Problem

	Chapter 07 Properties of Functions
	7.1: Functions Defined on General Sets
	7.2: One-to-One, Onto, and Inverse Functions
	7.3: Composition of functions
	7.4: Cardinality with Applications to Computability

	Chapter 08:  Properties of Relations
	8.1: Relations on Sets
	8.2: Reflexivity, Symmetry, and Transitivity
	8.3: Equivalence Relations
	8.4: Modular Arithmetic with Applications to Cryptography
	8.5: Partial Order relations

	Chapter 09: Counting and Probability
	9.1: introduction to Probability
	9.2: Possibility Trees and the Multiplication rule
	9.3: Counting elements of Disjoint Sets: The Addition rule
	9.4: The Pigeonhole Principle
	9.5: Counting Subsets of a Set: Combinations
	9.6: r-Combinations with repetition Allowed
	9.7: Pascal?s Formula and the Binomial Theorem
	9.8: Probability Axioms and expected Value
	9.9: Conditional Probability, Bayes? Formula, and independent events

	Chapter 10: Theory of graphs and Trees
	10.1: Trails, Paths, and Circuits
	10.2: Matrix Representations of Graphs
	10.3: isomorphisms of Graphs
	10.4: Trees: Examples and Basic Properties
	10.5: Rooted Trees
	10.6: Spanning Trees and a Shortest Path Algorithm

	Chapter 11: Analysis of Algorithm Efficiency
	11.1: Real-Valued Functions of a Real Variable and Their Graphs
	11.2: Big-O, Big-Omega, and Big-Theta Notations
	11.3: Application: Analysis of Algorithm Efficiency I
	11.4: Exponential and Logarithmic Functions: Graphs and Orders
	11.5: Application: Analysis of Algorithm Efficiency II

	Chapter 12: Regular Expressions and Finite-State Automata
	12.1: Formal Languages and Regular Expressions
	12.2: Finite-State Automata
	12.3: Simplifying Finite-State Automata

	Appendix
	Appendix A: Properties of the real Numbersp
	Appendix B: Solutions and Hints to Selected Exercises

	Index

