

 [image: First Edition]

 PDF Explained

John Whitington

Editor
Simon St. Laurent

Copyright © 2011 John Whitington

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. PDF
 Explained, the image of a lesser anteater, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

The Portable Document Format (PDF) is the world’s leading page
 description language, and the first format equally useful for print and
 online use.
PDF documents are now almost ubiquitous in the printing industry, in
 document interchange, and in the online distribution of paginated content.
 They are, however, widely viewed as opaque and delicate and are poorly
 understood, even by those of a technical disposition.
This is partly due to a perplexing lack of documentation; the file
 format reference is freely available, but is of a size and complexity which
 requires a time investment unlikely to be plausible for the majority of
 those working with PDF.
This book aims to be an approachable introduction. It is suitable both
 for the technically-minded, and for
 those who just want to understand a little of the PDF format to give context
 to their work with tools which produce or process PDF documents.
Who Should Read This Book

We’ve tried to write a book which serves as a general introduction,
 with some optional technical interludes, giving you the chance to type in
 example PDF files and see how they display.
This book is suitable for:
	Adobe Acrobat users who want to understand the reasons behind
 the facilities it provides, rather than just how to use them. For
 example: encryption options, trim and crop boxes, and page
 labels.

	Power users who want to use command-line software to process PDF
 documents in batches by merging, splitting, and optimizing
 them.

	Programmers writing code to read, edit, or create PDF
 files.

	Industry professionals in search, electronic publishing, and
 printing who want to understand how to use PDF’s metadata and workflow
 features to build coherent systems.

Organization of Contents

	Chapter 1, Introduction
	In this chapter, we give a history of the PDF format and put
 it into context. We look at the advantages PDF has over similar
 technologies, introduce specialized kinds of PDF files such as PDF/X
 and PDF/A, and take a brief tour of the elements which comprise a
 typical PDF document. We conclude by looking at how PDF is used in
 industry.

	Chapter 2, Building a Simple PDF
	We begin in earnest, building a simple PDF file from scratch
 in a text editor. We show how to process this into a fully valid PDF
 and open it in a PDF viewer. We explain each component of the file,
 taking our first look at various parts of the PDF syntax.

	Chapter 3, File Structure
	In this chapter, we describe the layout and content of a PDF
 file, and the syntax of the objects from which it is built. We
 describe how a PDF document is read from a flat file into a
 structured format and, conversely, written from that structured
 format to a flat file.

	Chapter 4, Document Structure
	In this chapter, we leave behind the bits and bytes of the PDF
 file, and consider the logical structure of its objects, describing
 how pages and their resources are arranged into a document.

	Chapter 5, Graphics
	We describe how to create vector graphics and raster images in
 PDF, and how to deal with transparency, color spaces, and patterns.
 We illustrate with examples, showing the code and the result in a
 PDF viewer.

	Chapter 6, Text and Fonts
	In this chapter, we look at the PDF operators for building and
 showing text strings using different fonts and sizes, and how to
 build lines and paragraphs. We describe the different types of fonts
 and encodings in PDF documents, and how they are defined and used.
 We look at the process of text extraction from a PDF
 document.

	Chapter 7, Document Metadata and Navigation
	Here, we discuss topics not directly related to the visual
 appearance of the document, but to ancillary data: bookmarks,
 metadata, hyperlinks, annotations, and file attachments. For each,
 we describe how they are defined in PDF and give examples.

	Chapter 8, Encrypted Documents
	We look at how encryption and document permissions work in
 PDF, and see how to inspect encryption information in Adobe Reader.
 We describe how programs which process PDF files read, write, and
 edit encrypted documents.

	Chapter 9, Working with Pdftk
	In this chapter, we show how to use the popular pdftk program for the command-line
 processing of PDF files, looking at common usage scenarios. We
 describe what a program such as pdftk has to do internally to achieve
 certain tasks (for example, merging or splitting documents).

	Chapter 10, PDF Software and Documentation
	Here, we describe both Adobe and open-source software for
 viewing, converting, editing, and programming with PDF files. We
 give sources of further documentation and other resources such as
 support and discussion forums.

Acknowledgments

I should like to thank my editor, Simon St.Laurent, who was
 enthusiastic about this project from the beginning.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Caution
This icon indicates a warning or caution.

Obtaining Code Examples

All the PDF code examples in this book are available for download in
 a zip archive from the O’Reilly
 website. The text of the book contains enough information to
 reconstruct these examples (with the exception of encrypted documents,
 which are not suitable for typing in manually).
The examples include the PDF source for the figures in this
 book.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “PDF Explained by John Whitington (O’Reilly).
 Copyright 2012 John Whitington, 978-1-449-31002-8.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920021483

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Introduction

The Portable Document Format (PDF) is the world’s leading language for
 describing the printed page, and the first one equally suitable for paper
 and online use. In this chapter, we take a tour of its uses, features, and
 history. We look at some useful free software and resources, some of which
 we’ll use later in this book.
A Little History

Today we take the high fidelity exchange of documents for granted,
 knowing that a document sent here will appear the same there and vice
 versa, and that it may be displayed equally on screen and on paper. This
 was not always so.
Page Description Languages

We could pass documents between users, and from user to printer,
 as a series of bitmap pictures (e.g., TIFF or PNG), one for each page.
 However, this doesn’t allow for any structure to be retained, precludes
 scaling to different paper sizes or resolutions without loss of quality,
 involves huge file sizes, and so on.
A page description language like PDF is way
 of describing the contents (text and graphics) of a printed or onscreen
 page using highly structured data, often with extra metadata describing various
 aspects of the document (such as printing information or textual
 annotations or how it is to be viewed or printed). This way, decisions
 about how the document is rasterized (converted to pixels by a printer
 or on screen) can be left until the end of the production process. A PDF
 file can contain text and associated font definitions, vector and bitmap
 graphics, navigation (such as hyperlinks and bookmarks), and interactive
 forms.
PDF is used wherever the exact presentation of the content is
 important (for example for a print advertisement or book). It isn’t
 normally suitable when the content is to be layed out or reflowed at the
 last moment, such as in a variable width web page—languages like HTML
 and CSS which separate content from presentation are more suitable in
 those circumstances.
Other page description languages

Many page description languages were created when the printing
 of lines of text in fixed fonts began to be replaced by digital
 graphics printing. The printer would then process the language to
 generate a bitmap at the appropriate resolution. For example,
 PostScript (Adobe), PCL (Hewlett Packard), and KPDL (Kyocera). Simpler
 languages were used for vector plotters (for example, HPGL from
 Hewlett Packard).
These languages varied in complexity and functionality.
 PostScript files, for example, are full programs—the result of
 executing the program is the document’s visual representation. These
 languages often contain extra instructions to control aspects of the
 document other than the page content, for example which tray paper is
 drawn from or whether the output is to be duplexed.

Development of PDF

PDF began as an internal project at Adobe to create a
 platform-neutral method for document interchange. PostScript was already
 popular in the print community, but wasn’t practical for on screen use
 with the computers of the day—especially for random access (to render
 page 50 of a PostScript document, one must process pages 1–49 first).
 The idea was to use a subset of the PostScript graphics language
 together with ancillary data to create a structured language for
 standalone documents to be viewed on (or printed from) any
 computer.
PDF 1.0 was announced in 1993, with Acrobat Distiller (for
 creating and editing PDF files) and Acrobat Reader (for viewing only),
 both as paid-for programs. The US Tax Authorities started to ship tax
 forms as PDFs, purchasing a license to allow their users to download
 Acrobat Reader for free. Later on, Acrobat Reader was made available to
 everybody at no cost, leading to the widespread use of PDF for the
 exchange of documents online.
Over the next 10 years, after a slow start as prepress features
 were added, PDF overtook PostScript as the language of choice in the
 printing industry. Today, it is the only general page description
 language of note.

Some Advantages of PDF

When a number of formats compete to be the industry standard, the
 best contender is not always the victor—luck can intervene. In this
 case, though, PDF had a number of singular advantages. We look at some
 of them here.
Random access and linearization

Unlike PostScript, any object (page, graphic etc.) in a PDF
 document can be accessed at will, in constant time. This means it’s no
 harder to read page 150 than page 1.
 Linearization is the process of arranging the
 objects in the file such that all those needed for a given page are
 located in adjacent positions. This explains why you can quickly jump
 to any page in a PDF being viewed in Acrobat Reader in a web browser
 window—the viewer doesn’t need to load the whole file to begin with,
 it fetches from the server just the sections needed to display each
 new page.

Stream creation and incremental update

Stream creation is the ability inherent in
 the PDF format to allow files to be created in order, from beginning to end, even if
 the eventual file is larger than the memory available.
Incremental update means that, when editing a file, it’s
 possible to write the changes to the end of the file without modifying
 any existing part—this makes saving changed versions very fast, and
 can be used to provide an undo mechanism (since the previous version
 is still intact).

Embedded fonts

Fonts used in a PDF are embedded along with the document. This
 means that it should always be rendered correctly, regardless of which
 fonts are installed on a given computer. The program creating the PDF
 document will remove unnecessary data from the font (such as metrics
 and unused characters), so the file does not become unduly large. PDF
 supports all common font formats, such as TrueType and Type 1.

Searchable text

Most PDF files maintain the information to map the character
 shapes making up the text to Unicode character codes. This means that
 you can copy and paste text from a document, or search the text
 easily. More recent developments in PDF allow the logical order of the
 text in the document to be stored separately from the layout of the
 text on the page, preserving yet more structured information.

ISO Standardization

PDF was released as an open standard by the International
 Organization for Standardization (ISO) in 2008. The ISO-32000-1:2008
 document is largely the same as the PDF file format document previously
 released by Adobe.
This independence lends legitimacy and oversight to the PDF
 standard, which should encourage its further adoption. However, with no
 real tools for detecting whether a file meets the standard (Adobe Reader
 will happily load malformed files, so many tools create them), genuine
 rigor is some time away.
The PDF File Format Document
The PDF File Format Version 1.7 is documented in ISO
 32000-1:2008, which is available on CD or as a PDF for 380 Swiss
 Francs at the International
 Organization for Standardization.
The almost identical Adobe Document “Adobe PDF Reference,
 Sixth Edition, version 1.7” is available in PDF format at the
 Adobe PDF Technology
 Center. Adobe extensions, which do not yet form part of the
 ISO standard, are published at the same location.
Unfortunately, the PDF File Format is no longer available in
 print.

Specialized Kinds of PDF

There are several specialized variations on the PDF format—both
 standardized, and in development. These are subsets of the PDF format.
 Each file is a valid PDF document, but with restrictions on the
 facilities used or the content itself. Two of these, PDF/A and PDF/X,
 are now ISO standards.
PDF/A

The PDF/A Standard (ISO 19005-1:2005) defines a set of rules for
 documents intended for long-term archiving in libraries, national
 archives and bureaucracies. It also requires a “conforming
 reader” to act in certain ways, using the embedded fonts, using
 color management, and so forth. Briefly, the restrictions on PDF/A
 are:
	No encryption

	All fonts to be embedded

	Metadata is required

	JavaScript is disallowed

	Device-independent color spaces only

	No audio or video content

There are two levels of PDF/A compliance: PDF/A-1b (“level
 B compliance”) requires exact visual reproduction of the
 document. PDF/A-1a (“level A compliance”) requires that
 text can be mapped to Unicode, and that the order and structure of the
 text is documented, in addition to the requirement of exact visual
 reproduction.
The PDF/A Competence
 Center is an industry group representing PDF/A stakeholders. A
 second ISO version of PDF/A is in preparation.

PDF/X

The PDF/X Standard is a family of ISO standards for graphics
 exchange in the printing industry, the latest of which is PDF/X-5 (ISO
 15930-8:2010). It defines a number of restrictions:
	All fonts must be embedded

	All image data must be embedded

	Cannot contain sound, films or non-printable
 annotations

	No forms

	No JavaScript

	Limited compression algorithms

	No encryption

and a number of extra requirements:
	The file is marked as PDF/X with the subversion (e.g.,
 PDF/X-5)

	Bleed, trim and/or art boxes are required, in addition to
 the normal page size. These boxes define the size of the media,
 the printable area, the final cut size, and so on.

	A flag is set if the file has been
 trapped. Trapping is the process of
 creating small overlaps between graphical objects to mask
 registration problems in multiple color printing processes.

	The file must contain an output intent,
 containing a color profile describing how it is to be
 printed.

Version Summary

PDF is fully backward compatible (you can load a PDF version 1.0
 document into a program designed for PDF 1.7) and mostly forward
 compatible (programs written for PDF 1.0 can normally load PDF 1.7
 files). Forward compatibility is ensured because readers ignore content
 they don’t understand—it’s only when new compression methods or object
 storage mechanisms are introduced that this may be broken. Since PDF 1.5
 in 2003, such changes have been minimal. PDF versions and their features
 are summarized in Table 1-1.
Table 1-1. Functionality in PDF versions 1.0 to 1.7 Extension Level
 8
	PDF version	Acrobat Reader version	Launched	Summary of new features
	1.0	1.0	1993	First release.
	1.1	2.0	1996	Device independent color spaces, encryption (40-bit), article threads, named
 destinations, and hyperlinks.
	1.2	3.0	1996	AcroForms (interactive forms), films, and sounds, more
 compression methods, Unicode support.
	1.3	4.0	2000	More color spaces, embedded (attached) files, digital signatures, annotations,
 masked images, gradient fills, logical document structure,
 prepress support.
	1.4	5.0	2001	Transparency, 128-bit encryption, better form support,
 XML metadata streams, tagged PDF, JBIG2 compression.
	1.5	6.0	2003	Object streams and cross-reference streams for more
 compact files, JPEG 2000 support, XFA forms, public-key
 encryption, custom encryption methods, optional content
 groups.
	1.6	7.0	2004	OpenType fonts, 3D content, AES encryption, new color
 spaces.
	1.7 (later ISO 32000-1:2008)	8.0	2006	XFA 2.4, new kinds of string, extensions to public-key
 architecture.
	1.7 Extension Level 3	9.0	2008	256-bit AES encryption.
	1.7 Extension Level 5	9.1	2009	XFA 3.0.
	1.7 Extension Level 8	X	2011	Not yet known.

What’s in a PDF?

A typical PDF file contains many thousands of objects, multiple
 compression mechanisms, different font formats, and a mixture of vector
 and raster graphics together with a wide variety of metadata and ancillary
 content. We take a brief tour of these elements here, for context—they are
 covered more fully in later chapters.
Text and Fonts

A PDF file can contain text drawn from multiple fonts of all
 popular formats (Type1, TrueType, OpenType, legacy bitmap fonts etc).
 Font files are embedded in the document, so the character shapes are
 always available, meaning the file should render the same on any
 computer. A variety of character encodings are supported, including
 Unicode.
Text can be filled with any color, pattern, or transparency. A
 piece of text may be used as a shape to clip other content, allowing
 complicated graphical effects whilst text remains selectable and
 editable.
Typically, enough information is encoded in a PDF document to
 allow text extraction, though the process is not always
 straightforward.

Vector Images

Graphical content in PDF is based on the model first used in
 Adobe’s PostScript language. It consists of paths
 built from straight lines and curves. Each path may be filled,
 “stroked” to draw a line, or both. Lines can have varying
 thicknesses, join styles and dash patterns.
Paths may be filled in any color, with a repeating pattern defined
 by other objects, or with a smooth gradient between two colors. All
 these options apply also to the lines of stroked paths.
Paths can be rendered using a variety of plain or gradient
 transparencies, with several different blend modes
 defining how semitransparent objects interact. Objects may be grouped
 together for the purposes of transparency, so a single transparency can
 be applied to a whole group of objects at once.
Paths can be used to clip other objects, so that only sections of
 those objects overlapping with the clipping path are shown. These
 clipping regions may be nested within one another.
PDF has a mechanism which allows a graphic to be defined once and
 then used multiple times in different contexts. This can be used, for
 instance, for a recurring motif, even across more than one page.

Raster Images

PDF documents can include bitmap images between 1 and 16 bits per
 component, in several color spaces (for example,
 three-component RGB or four-component CMYK). Images can be compressed
 using a variety of lossless and lossy compression mechanisms.
Images may be placed at any scale or rotation, used to create a
 fill pattern, and may have a mask which defines
 how they use transparency to blend with the background they are placed
 on.

Color Spaces

PDF can use color spaces related to particular electronic or print
 devices (grayscale, RGB, CMYK) and ones related to human color
 perception. In addition, there are color spaces for the printing
 industry such as spot colors. Mechanisms exist for
 simpler PDF programs (like onscreen viewers) to fall back to basic color
 spaces if they do not support the more advanced ones.

Metadata

PDF documents have a set of standard metadata, such as
 title, author,
 keywords and so on. These are defined outside the
 graphical content and have no effect on the document when viewed. The
 creator (the program which created the content) and producer (the
 program that wrote the PDF file) are also recorded. Each document also
 has a set of unique identifiers, allowing them to be tracked through a
 workflow.
Since PDF 1.4, the metadata can be stored in an XML (eXtensible
 Markup Langauge) document embedded in the PDF using Adobe’s Extensible
 Metadata Platform (XMP). This defines a way to store metadata for
 objects in the PDF which can be extended by third parties to hold
 information relevant to their particular workflows or products.

Navigation

PDF documents have two methods of navigation, when viewed on
 screen:
	The document outline, commonly known as
 the document’s bookmarks, is a structured
 list of destinations within the document, shown alongside it.
 Clicking on one moves the view to that page or position.

	Hyperlinks within the text or graphics of a document allow the
 user to click to move elsewhere within the document, or to open an
 external URL.

Optional Content

Optional content groups in PDF allow parts of
 the content of a page to be grouped together and shown—or not
 shown—based on some other factor (user choice, whether the document is
 on screen or printed, the zoom factor). Relationships between groups can
 be defined, so that they depend upon one another. One use for this is to
 emulate the “layers” found in graphics packages. For
 example, Adobe Illustrator layers are preserved when a document it
 produces is read with a PDF viewer.

Multimedia

PDF documents can include various kinds of multimedia elements. A
 lot of this breaks the portability inherent in PDF, and is often not
 well supported outside of Adobe products.
	From PDF 1.2
	Sounds and movies can be embedded.

	From PDF 1.4
	Slide shows can be defined, to move automatically between
 pages with transition effects.

	From PDF 1.5
	A more general system for including arbitrary media types
 was introduced.

	From PDF 1.6
	3D Artwork can be embedded.

Interactive Forms

There are two incompatible forms architectures in PDF: AcroForms,
 which is an open standard, and the Adobe XML Forms Architecture (XFA),
 which is documented but requires commercial software from Adobe.
Forms allow users to fill in text fields, and use check boxes and
 radio buttons. When the data is complete, it may be saved into the
 document (if allowed) or submitted to a URL for further processing.
 Embedded JavaScript is often used in conjunction with forms to deal with
 verification of field values or similar tasks.

Logical Structure and Reflow

Logical structure facilities allow information about the
 structural content (chapters, sections, figures, tables, and footnotes)
 to be included alongside the graphical content. The particular elements
 are customizable by third parties.
A tagged PDF is one which has logical
 structure based on a set of Adobe-defined elements. Files following
 these conventions can be reflowed by a reader to
 display the same text in a different page size or text size, for example
 in an ebook reader.

Security

PDF documents can be encrypted for security, using RC4 or AES
 encryption methods. There are two passwords—the owner
 password and the user password. The
 owner password unlocks the file for all changes, the user password just
 allows a range of operations selected by the owner when the file was
 originally encrypted (for example, allowing or disallowing printing or
 text extraction). Frequently the user password is blank, so the file
 appears to open as normal, but functionality is restricted.
Starting with PDF 1.3, digital signatures can be used to
 authenticate the identity of a user or the contents of the
 document.

Compression

Images and other data streams in PDF can be compressed using a
 variety of lossless and lossy methods defined by third parties. By
 compressing only these streams (rather than the whole file), the
 structure of the PDF objects is always available without decompressing
 the whole file, and compressed sections can be processed only when
 needed. There are several groups of compression methods:
	Lossless compression for bi-level (e.g., black and white)
 images. PDF supports the standard fax encoding methods for bi-level
 images and, from PDF 1.4, the JBIG2 standard, which provides better
 compression for the same class of images.

	Lossy image filters such as JPEG and, from PDF 1.5,
 JPEG2000.

	Lossless compression mechanisms suitable for image data and
 general data compression, such as Flate (The zip algorithm),
 Lempel-Ziv-Welch (LZW) and run length encoding.

Who Uses PDF?

PDF is used in a wide variety of industries and professions. We
 describe some here, explaining why PDF is suitable for each.
The Printing Industry

PDF has support for the color spaces, page dimension information
 (such as media, crop, art and bleed boxes), trapping support, and
 resolution-independence required for commercial printing. Together with
 other technologies, PDF is the key part of the publishing-for-print
 workflow. The extensibility of PDF metadata allows various schemes for
 including extra data along with the document, and for keeping it with
 the document throughout the publishing process—parts of the workflow
 which don’t understand a particular piece of metadata will at least
 preserve it.

Ebooks and Publishing

This book was created using the DocBook
 system, which takes a structured document in XML format, typesets it,
 and produces a PDF complete with hyperlinks and bookmarks, together with
 a more traditional PDF suitable for printing.
PDF is one of the competing eBook formats. To support display on a
 wide range of screens, PDF documents may be tagged with reflow
 information, allowing lines of text to be displayed at differing widths
 on each device. This is at odds with the other uses of PDF, where fixed
 text layout is a requirement.

PDF Forms

PDF forms are especially useful when existing paper-based systems
 are being transitioned to electronic ones, or must exist alongside them.
 A PDF form (filled in online then printed out) looks the same as one
 filled in manually on paper, and may be processed by existing human and
 computer systems in the same way.
Automatic submission of forms from within the PDF viewer, the use
 of JavaScript to add intelligence (making sure figures add up in a tax
 form, for example), and the use of digital signatures to sign filled-in
 forms are all compelling reasons to use PDF for electronic forms.

Document Archiving

Through PDF/A, PDF is the ideal format for long-term archiving,
 combining accurate representations of scanned and electronic content,
 together with Unicode language support, and compression mechanisms for
 all sorts of data including the important CCITT Fax and JBIG2 methods
 for monochrome images. Being an ISO standard (and one which is
 near-ubiquitous) guarantees that these documents can be read long into
 the future.
PDF can be used for Optical Character Recognition (OCR), allowing
 searchable text to be created from the original, the exact visual
 representation being retained alongside the recognized text.

As a File Format

PDF is not, at first sight, suitable for use as an editable vector
 graphics format. For example, a circle won’t remain editable as a
 circle, since it will have been converted to a number of curves (there
 is no circle element in PDF).
However, if appropriate use is made of its extensibility to store
 auxiliary data, it makes a good solution. Adobe Illustrator, for
 example, now uses an extended form of PDF as its file format. The file
 can be viewed in any PDF viewer but Illustrator can make use of the
 extended data when it is loaded back into the program.

Useful Free Software

In this book, we use various pieces of software to help us with
 examples. Luckily, everything you need is freely available. You’ll need a
 PDF viewer:
	Acrobat
 Reader is Adobe’s own PDF viewer. It supports all
 versions and features of PDF and comes with a browser plug-in on most
 platforms. It’s available for Microsoft Windows, Mac OS X, Linux,
 Solaris, and Android.

	Preview is the pre-installed PDF viewer and
 browser plug-in for PDF documents on Mac OS X. It’s highly capable,
 and very fast, but doesn’t support everything that Acrobat Reader
 does. Many people stick with Preview as the default application for
 PDF files, but install Acrobat Reader as well.

	Xpdf is an open
 source PDF viewer for Unix. It supports a reasonable subset of
 PDF.

	gv
 is a PostScript and PDF viewer frontend for GhostScript (see below).
 It can render the textual and graphical content of almost all
 documents. However, it lacks most of the interactive features of other
 PDF viewers.

There are two key command-line tools:
	pdftk
 is a multiplatform command-line
 tool for processing PDF files in various ways. It can be downloaded in
 pre-built form for Microsoft Windows, Mac OS X, and Linux, as well as
 in source code form.

	Ghostscript
 is a set of tools including an interpreter for PostScript and PDF. It
 can be used to render PDF files, and to process them in various ways
 from the command line. It is available in binary form for Microsoft
 Windows, and in source code form for all platforms.

A full discussion of Adobe and open-source PDF software is in Chapter 10.

Chapter 2. Building a Simple PDF

In this chapter, we’ll build PDF content manually in a text editor.
 Then we’ll use the free pdftk program to
 turn it into a valid PDF file and look at the output in a PDF viewer.
This example, together with all the PDF files in this book, can be
 downloaded from the web page for this
 book.
We’ll be looking at a lot of new concepts all at once, so don’t worry
 if it seems overwhelming—we’ll come
 back to all of this in future chapters.
pdftk—The PDF Toolkit
pdftk is a free, open source
 command-line tool for Microsoft Windows, Mac OS X, and Unix. We’re going
 to use it in this chapter (and throughout this book) to turn PDF content
 we’ve written in a text editor into a valid PDF file. pdftk can also be used to:
	Merge and split PDF documents
	Rotate PDF pages
	Decrypt and encrypt
	Fill PDF forms with data
	Apply watermarks and stamps
	Print and change PDF metadata
	Attach files to PDF documents

Source and binary packages for pdftk can be found at PDF
 Labs.
The creator of pdftk, Sid
 Steward, is also the author of O’Reilly’s PDF
 Hacks—a selection of tools and tips for working with
 PDF.

Basic PDF Syntax

A PDF file contains at least three distinct languages:
	The document content, which is a number
 of objects with links between them forming a directed
 graph. These objects describe the structure of the document
 (pages, metadata, fonts, and resources).

	The page content, described using a
 series of operators for placing text and graphics on a single
 page.

	The file structure, consisting of a
 header, trailer, and
 cross-reference table helping programs to locate
 and read the file’s contents.

Document Content

The document content consists of objects built out of, amongst
 others, the following elements:
	Names, written as /Name.

	Integers, like 50.

	Strings, introduced with brackets, like (The Quick Brown Fox).

	References to other objects like 2 0
 R, a reference to object 2.

	Arrays (ordered collections) of objects, like [50 30 /Fred], an array of three items, in
 order: 50, 30, and /Fred.

	Dictionaries (unordered maps from names to objects), like
 << /Three 3 /Five 5
 >>, which maps /Three to 3 and /Five to 5.

	Streams, which consist of a dictionary and some binary data.
 These are used to store streams of PDF graphics operators, and other
 binary data such as images and fonts.

For example, here’s a page object, which is a
 dictionary containing a number of items, each associated with a
 name:
<< /Type /Page
 /MediaBox [0 0 612 792]
 /Resources 3 0 R
 /Parent 1 0 R
 /Contents [4 0 R]
>>
This dictionary contains five entries:
	/Type /Page
	The name /Page is
 associated with the dictionary key /Type.

	/MediaBox [0 0 612
 792]
	The array of four integers [0 0 612
 792] is associated with the dictionary key /MediaBox.

	/Resources 3 0 R
	Object number 3 is associated with the dictionary key
 /Resources.

	/Parent 1 0 R
	Object number 1 is associated with the dictionary key
 /Parent.

	/Contents [4 0 R]
	The one-element array of indirect references [4 0 R] is associated with the
 dictionary key /Contents.

Page Content

The page content is a list of operators, each of which is preceded
 by zero or more operands. Here’s a series of operators for selecting the
 /F0 font at 36 points and placing
 text at the current position:
/F0 36.0 Tf
(Hello, World!) Tj
Here, Tf and Tj are the operators, and /F0, 36.0,
 and (Hello, World!) are the operands.
 You can see that some syntactic elements (names and strings, for
 example) are shared across the languages used for both page content and
 document content.

File Structure

The file structure consists of:
	A header to distinguish the file as a
 PDF document.

	A cross-reference table listing the
 byte offsets of each object in the document—this allows the objects
 to be accessed arbitrarily, rather than having to be read in
 order.

	The trailer, which includes the byte
 offset of the cross-reference table, followed by an end-of-file
 marker.

When writing our example file, we’ll use incomplete values for a
 lot of the file structure, relying on pdftk to fill in the details. For example,
 it’s impractical for us to write the cross-reference table
 manually.

Document Structure

The example we’ll be building is just about the simplest meaningful
 PDF file. However, it needs a surprisingly large number of elements. In
 addition to the file structure we’ve described above, a minimal PDF
 document must have a number of basic sections present:
	The trailer dictionary, which provides
 information about how to read the rest of the objects in the
 file.

	The document catalog, which is the root
 of the object graph.

	The page tree, which enumerates the pages
 in the document.

	At least one page. Each page must
 have:
	Its resources, which include, for
 example, fonts.

	Its page content, which contains the
 instructions for drawing text and graphics on the page.

This arrangement is illustrated in Figure 2-1.
[image: Object graph for Hello, World! PDF, with object numbers in brackets from]

Figure 2-1. Object graph for Hello, World! PDF, with object numbers in
 brackets from Example 2-1

Building the Elements

We’ll type the PDF data into a text file. The line endings chosen by
 your text editor are unimportant (<CR> [Unix and Mac OS X] and
 <CR><LF> [Microsoft Windows] are both fine). We’re going to
 skip some information (the data that is hard to work out manually),
 relying on pdftk to fill it in
 afterward. We will:
	Use an abbreviated header.

	Miss out the length of the page content stream, so we don’t have
 to manually count the number of bytes.

	Omit almost all of the cross-reference table.

	Use 0 for the byte offset of
 the cross-reference table, again to avoid having to count it
 manually.

First, we’ll look at the sections of the file (in the order in which
 they appear) and then we’ll put them together and run pdftk to make a valid PDF file.
File Header

The file header usually consists of two lines. The first
 identifies the file as a PDF and gives its version number:
%PDF-1.0 PDF version 1.0 header
The second line is hard to type into a text editor since it
 contains nonprintable characters. We’ll have pdftk do this for us.

Main Objects

On to the main body of the file—the objects. The first is the
 page list, which is a dictionary linking to the
 page objects in the document.
1 0 obj Object 1
<< /Type /Pages It's a page list
 /Count 1 There is one page
 /Kids [2 0 R] List of object numbers of pages. Just object 2 here.
>>
endobj End of object 1
Next up is the page. Again, it’s a
 dictionary. It contains the paper size, an indirect reference back to
 the page list, and to the graphical content and
 resources.
2 0 obj
<< /Type /Page It's a page
 /MediaBox [0 0 612 792] Paper size is US Letter Portrait (612 points by 792 points)
 /Resources 3 0 R Reference to resources at object 3
 /Parent 1 0 R Reference back up to parent page list
 /Contents [4 0 R] Graphical content is in object 4
>>
endobj
Now, the resources. Here, there is just one
 entry, the font dictionary, which in our example
 contains a single font, which we’re going to use to write some text on
 the page.
3 0 obj
<< /Font The font dictionary
 << /F0 Just one font, called /F0
 << /Type /Font These three lines reference the built-in font Times Italic
 /BaseFont /Times-Italic
 /Subtype /Type1 >>
 >>
>>
endobj

Graphical Content

The page contents stream contains a sequence
 of operators for placing text and graphics on the page. It was linked to
 by the /Contents entry in the page
 dictionary.
A stream object consists of a dictionary followed by a raw data
 stream, containing a series of PDF operands and operators. Normally,
 this would be compressed to reduce file size, but we’re typing it in
 manually, so we don’t compress it. We must also specify the length of
 the stream in bytes—pdftk will add
 the required /Length entry to the
 stream dictionary for us.
4 0 obj The page contents stream
<< >>
stream Beginning of stream
1. 0. 0. 1. 50. 700. cm Position at (50, 700)
BT Begin text block
 /F0 36. Tf Select /F0 font at 36pt
 (Hello, World!) Tj Place the text string
ET End text block
endstream End of stream
endobj
The result of this stream of graphics operators on the page is
 shown in Figure 2-2.
[image: The result of our graphics operators on the page]

Figure 2-2. The result of our graphics operators on the page

Catalog, Cross-Reference Table, and Trailer

The last part of the file starts with the document
 catalog, which is the root object of the object graph. There
 follows the cross-reference table, which gives the
 byte offsets of each object in the file. We’ll have
 pdftk fill this in for us. There are two final
 lines: one gives the byte offset of the start of the cross-reference
 table (we write 0 and
 pdftk will replace it for us). Finally, the
 end-of-file marker %%EOF.
5 0 obj
<< /Type /Catalog The document catalog
 /Pages 1 0 R Reference to the page list
>>
endobj
xref Start of cross-reference table, which we have missed out
0 6
trailer
<< /Size 6 Number of lines in cross-reference table (number of objects plus one)
 /Root 5 0 R Reference to the document catalog
>>
startxref
0 Byte offset of start of xref table, which we have set to 0
%%EOF End of file marker
Now we’re ready to put these pieces together.

Putting it Together

The source for this file (Example 2-1) can
 be found in the online resources for this
 book, or you can type it in yourself. Save it as hello-broken.pdf.
Example 2-1. The invalid hello-broken.pdf PDF file suitable for manual
 creation
%PDF-1.0 File header
1 0 obj Main objects
<< /Type /Pages
 /Count 1
 /Kids [2 0 R]
>>
endobj
2 0 obj
<< /Type /Page
 /MediaBox [0 0 612 792]
 /Resources 3 0 R
 /Parent 1 0 R
 /Contents [4 0 R]
>>
endobj
3 0 obj
<< /Font
 << /F0
 << /Type /Font
 /BaseFont /Times-Italic
 /Subtype /Type1 >>
 >>
>>
endobj
4 0 obj Graphical content
<< >>
stream
1. 0. 0. 1. 50. 700. cm
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET
endstream
endobj
5 0 obj Catalog, cross-reference table, and trailer
<< /Type /Catalog
 /Pages 1 0 R
>>
endobj
xref
0 6
trailer
<< /Size 6
 /Root 5 0 R
>>startxref
0
%%EOF

As it stands, hello-broken.pdf is
 not a valid PDF file, and even Adobe Reader (which is fairly tolerant of
 malformed files) won’t cope with it.
We can use the free pdftk tool to
 fix up the hello-broken.pdf file with
 the missing details, writing the output to hello.pdf:
pdftk hello-broken.pdf output
 hello.pdf
pdftk reads the file and its
 objects, and calculates the correct data for the missing or incorrect
 sections we wrote, and produces the valid file shown in Example 2-2. Note that the spacing and formatting of some of
 the syntax has been altered—each PDF producer makes slightly different
 choices about this.
Example 2-2. The completed PDF file hello.pdf, fixed by pdftk
%PDF-1.0
%âãÏÓ [image: 1]
1 0 obj
<<
/Kids [2 0 R]
/Count 1
/Type /Pages
>>
endobj
2 0 obj
<<
/Rotate 0
/Parent 1 0 R
/Resources 3 0 R
/MediaBox [0 0 612 792]
/Contents [4 0 R]
/Type /Page
>>
endobj
3 0 obj
<<
/Font
<<
/F0
<<
/BaseFont /Times-Italic
/Subtype /Type1
/Type /Font
>>
>>
>>
endobj
4 0 obj
<<
/Length 65 [image: 2]
>>
stream
1. 0. 0. 1. 50. 700. cm
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET

endstream
endobj
5 0 obj
<<
/Pages 1 0 R
/Type /Catalog
>>
endobj xref
0 6 [image: 3]
0000000000 65535 f
0000000015 00000 n
0000000074 00000 n
0000000192 00000 n
0000000291 00000 n
0000000409 00000 n
trailer

<<
/Root 5 0 R
/Size 6
>>
startxref
459 [image: 4]
%%EOF
	[image: 1]
	Some nonprintable characters have been added to the PDF
 header—this ensures that the file is recognized as binary (rather
 than text) by, for example, file transfer programs such as
 FTP.

	[image: 2]
	The length in bytes of the stream has been filled in.

	[image: 3]
	The cross-reference table has been filled in with the byte
 offsets of each object in the file.

	[image: 4]
	The byte offset of the start of the cross-reference table has
 been filled in.

The file can now be loaded into a PDF viewer. The result in Acrobat
 Reader on Microsoft Windows is shown in Figure 2-3.
[image: Hello, World! PDF, viewed in the free Adobe Reader on Microsoft Windows]

Figure 2-3. Hello, World! PDF, viewed in the free Adobe Reader on Microsoft
 Windows

Remarks

We’ve seen how to build a simple PDF file from scratch, using
 pdftk to help us, and we’ve looked at
 some of the basic syntax that makes up a PDF document.
You can look at existing PDF files using your text editor too.
 However, some of the data (such as the graphics operators making up the
 page content) is likely to be compressed and thus unreadable. The pdftk command can be used to decompress these
 sections for easier reading—see Compression.
In future chapters, we’ll look at the parts of a typical PDF file in
 some detail and how programs read, write, and edit PDF files. At each
 stage, there will be the opportunity to build example files by altering
 and extending the example we built in this chapter.

Chapter 3. File Structure

In this chapter, we describe the layout and content of the PDF file’s
 four main sections, and the syntax of the objects which make up each one. We
 also outline the process of reading a PDF file into a high level data
 structure, and the converse operation of writing that structure to a PDF
 file.
File Layout

A simple valid PDF file has four parts, in order:
	The header, which gives the PDF version
 number.

	The body, containing the pages, graphical
 content, and much of the ancillary information, all encoded as a
 series of objects.

	The cross-reference table, which lists
 the position of each object within the file, to facilitate random
 access.

	The trailer including the
 trailer dictionary, which helps to locate each
 part of the file and lists various pieces of metadata which can be
 read without processing the whole file.

For reference, we reproduce the “Hello, World” PDF from
 Chapter 2 as Example 3-1. The
 first line of each of the four sections has been annotated.
Example 3-1. A small PDF file
%PDF-1.0 Header starts here
%âãÏÓ
1 0 obj Body starts here
<<
/Kids [2 0 R]
/Count 1
/Type /Pages
>>
endobj
2 0 obj
<<
/Rotate 0
/Parent 1 0 R
/Resources 3 0 R
/MediaBox [0 0 612 792]
/Contents [4 0 R]
/Type /Page
>>
endobj
3 0 obj
<<
/Font
<<
/F0
<<
/BaseFont /Times-Italic
/Subtype /Type1
/Type /Font
>>
>>
>>
endobj
4 0 obj
<<
/Length 65
>>
stream
1. 0. 0. 1. 50. 700. cm
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET
endstream
endobj
5 0 obj
<<
/Pages 1 0 R
/Type /Catalog
>>
endobj
xref Cross-reference table starts here
0 6
0000000000 65535 f
0000000015 00000 n
0000000074 00000 n
0000000192 00000 n
0000000291 00000 n
0000000409 00000 n
trailer Trailer starts here
<<
/Root 5 0 R
/Size 6
>>
startxref
459
%%EOF

Graphs
The collection of objects in a PDF file form a
 graph. This meaning of the word graph is nothing to
 do with pie charts or histograms, but refers to a collection of
 nodes connected together by
 links.
In our case, the nodes are PDF objects, and the links are indirect
 references. Reading a PDF document is the process of creating a graph of
 the PDF objects in the file. This graph is
 directed—links only go one way.
Figure 3-1 shows the object graph for the
 helloworld.pdf document in Example 3-1.

[image: The graph of objects in our example file]

Figure 3-1. The graph of objects in our example file

We now take a closer look at each of these four parts in turn, using
 Example 3-1 for reference.
Header

The first line of a PDF file gives the version number of the
 document. In our example, this is:
%PDF-1.0
This defines the file as PDF version 1.0. PDF is backward
 compatible, so a PDF 1.3 document should be readable by a program which
 knows about, for example, PDF 1.5. It is also, for the most part,
 forward compatible, so most PDF programs will attempt to read any file,
 no matter what the supposed version number is.
Since PDF files almost always contain binary data, they can become
 corrupted if line endings are changed (for example, if the file is
 transferred over FTP in text mode). To allow legacy file transfer
 programs to determine that the file is binary, it is usual to include
 some bytes with character codes higher than 127 in the header. For
 example:
%âãÏÓ
The percent sign indicates another header line, the other few
 bytes are arbitrary character codes in excess of 127. So, the whole
 header in our example is:
%PDF-1.0
%âãÏÓ

Body

The file body consists of a sequence of objects, each preceded by
 an object number, generation
 number, and the obj
 keyword on one line, and followed by the endobj keyword on another. For example:
1 0 obj
<<
/Kids [2 0 R]
/Count 1
/Type /Pages
>>
endobj
Here, the object number is 1, and the generation number is 0 (it
 almost always is). The content for object 1 is in between the two lines
 1 0 obj and endobj. In this case, it’s the dictionary
 <</Kids [2 0 R] /Count 1 /Type
 /Pages>>.

Cross-Reference Table

The cross-reference table lists the byte offset of each object in
 the file body. This allows random access to the objects, so that they do
 not have to be read in order, and an object which is never used is never
 read. This means, in particular, that simple operations like counting
 the number of pages in a PDF document can be fast, even on large
 files.
Every object in a PDF file has an object
 number and a generation number.
 Generation numbers are used when a cross reference table entry is
 reused—we don’t consider them here (they will always be zero).
For our purposes, we can consider the cross-reference table to
 consist of a header line indicating the number of entries, then a
 special entry, then one line for each object in the file body. In our
 file:
0 6 Six entries in table, starting at 0
0000000000 65535 f Special entry
0000000015 00000 n Object 1 is at byte offset 15
0000000074 00000 n Object 2 is at byte offset 74
0000000192 00000 n etc...
0000000291 00000 n
0000000409 00000 n Object 5 is at byte offset 409
Note that the byte offsets are stored with leading zeros to ensure
 each entry is the same length. Thus, we can read the cross-reference
 table with random access too.

Trailer

The first line of the trailer is just the trailer keyword. This is followed by the
 trailer dictionary, which contains at least the
 /Size entry (which gives the number
 of entries in the cross-reference table) and the /Root entry (which gives the object number of
 the document catalog, which is the root element
 of the graph of objects in the body).
There follows a line with just the startxref keyword, a line with a single number
 (the byte offset of the start of the cross-reference table within the
 file), and then the line %%EOF, which
 signals the end of the PDF file.
Here’s the trailer from Example 3-1:
trailer Trailer keyword
<< The trailer dictinonary
/Root 5 0 R
/Size 6
>>
startxref startxref keyword
459 Byte offset of cross-reference table
%%EOF End-of-file marker
The trailer is read from the end of the file backwards: the
 end-of-file marker is found, the byte offset of the cross-reference
 table extracted, and then the trailer dictionary parsed. The trailer keyword marks the upper extent of the
 trailer.

Lexical Conventions

A PDF file is a sequence of 8 bit bytes. Using the rules we describe
 in this chapter, these characters can be grouped into
 tokens (such as keywords and numbers), and the file
 parsed.
Some general rules apply to the main body of the file, and
 frequently to the various other languages in a PDF file. There are three
 kinds of characters: regular characters,
 whitespace characters, and
 delimiters. The whitespace characters are listed in
 Table 3-1. The delimiters are () < > [] { } / %, and are used to
 define arrays, dictionaries and so on. All other characters are regular
 characters, with no special meaning.
Table 3-1. Whitespace characters
	Character code	Meaning
	0	Null
	9	Tab
	10	Line feed
	12	Form feed
	13	Carriage return
	32	Space

PDF files can use <CR>, <LF>, or a <CR><LF>
 sequence to end a line. Note, however, that changing the line endings en
 masse (for example, in a text editor) will likely corrupt the file, since
 it will alter any line ending sequences that happen to occur in the midst
 of compressed binary data sections.

Objects

PDF supports five basic objects:
	Integers and real numbers, such as 42 and 3.1415.

	Strings, which are enclosed in brackets, and come in a variety
 of encodings. For example (The Quick Brown
 Fox).

	Names, which are used for keys in dictionaries, and innumerable
 other purposes. They are introduced with a /, for example /Blue.

	Boolean values, denoted by the keywords true and false.

	The null object, denoted by the keyword null.

and three compound objects:
	Arrays, which contain an ordered collection of other objects
 such as [1 0 0 0].

	Dictionaries, which consist of an unordered collection of pairs,
 mapping names to objects. For example, <</Contents 4 0 R /Resources 5 0
 R>>, which maps /Contents to the indirect reference 4 0 R and /Resources to the indirect reference
 5 0 R.

	Streams, which hold binary data, together with a dictionary
 describing attributes of the data such as its length and any
 compression parameters. Streams are used to store images, fonts and so
 on.

and a way of linking objects together:
	The indirect reference, which forms a link from one object to
 another.

A PDF file consists of a graph of objects, with indirect references
 forming the links between them. The object graph for Example 3-1 is shown in Figure 3-1.
Integers and Real Numbers

An integer is written as one or more of the decimal digits
 0..9 optionally preceded by a plus or
 minus sign:
0 +1 -1 63
A real number is written as one or more decimal digits optionally
 preceded by a plus or minus sign, and optionally having one decimal
 point, which may be leading, inside, or following:
0.0 0. .0 -0.004 65.4
Frequently, the specification allows a given object to be either
 an integer or a real number. Other times it must be an integer. In
 addition, the range and accuracy of integers and reals is defined by the
 PDF implementation, not the standard. In certain implementations, if an
 integer exceeds the range available, it is converted to a real
 number.
Caution
Exponential notation is not allowed. For example, you can’t
 write 4.5e-6.

Strings

Strings consist of a series of bytes, written between
 parentheses:
(Hello, World!)
The backslash \ character and
 the parenthesis characters () must
 be escaped by preceding them with a backslash. For example,
 writing:
(Some \\ escaped \(characters)
represents the string “Some \
 escaped (characters”. Balanced pairs of parentheses
 within the string need not be escaped. For example, (Red (Rouge)) represents the string
 “Red (Rouge)”.
A backslash can also be used to introduce other character codes
 for readability purposes (see Table 3-2).
Table 3-2. Escape sequences in strings
	Character sequence	Meaning
	\n	Line feed
	\r	Carriage return
	\t	Horizontal tab
	\b	Backspace
	\f	Form feed
	\
 ddd	Character code in three octal digits

After the string is read from the file, and the escaped characters
 resolved to yield the series of bytes forming the string proper, it may
 then be interpreted as described in Text Strings.
Hexadecimal strings

Strings can also be written as a sequence of hexadecimal digits
 between < and >, each pair representing a byte:
<4F6Eff00> Bytes 0x4F, 0x6E, 0xFF, and 0x00
When there is an odd number of digits, the last is assumed to be
 0. Hexadecimal strings are
 typically used to make binary data user-readable. It is functionally
 the same as describing strings in the usual way.

Names

Names are used throughout PDF, as keys for dictionaries and to
 define various multi-valued objects where using integers to enumerate
 them would be unintuitive. A name is introduced with the forward slash.
 For example:
/French
The / character is part of the
 name—in fact, / on its own is a valid
 name. The name may not contain whitespace or delimiters, but where a
 name needs to correspond to some external name which has these
 characters (for example, spaces), we can use a hash sign followed by two
 decimal digits:
/Websafe#20Dark#20Green
This represents the name /Websafe Dark
 Green since, in ASCII, hexadecimal 20 is the code for space.
 Names are case-sensitive (/French and
 /french are different).

Boolean Values

PDF allows the boolean values true and false. They are frequently used as flags in
 dictionary entries.

Arrays

An array represents an ordered collection of PDF objects,
 including other arrays. The objects need not all be of the same type.
 For example, the array:
[0 0 400 500]
contains four numbers in order: 0, 0,
 400, 500. The array:
[/Green /Blue [/Red /Yellow]]
contains three items: the name /Green, the name /Blue and the array of two names [/Red /Yellow].

Dictionaries

A dictionary represents an unordered collection of
 key-value pairs. The dictionary maps the keys to
 the values—provide a key, and the value is the result of looking it up
 in the dictionary. The keys are names, the values may be any PDF object.
 Dictionaries are written between << and >>. For example:
<</One 1 /Two 2 /Three 3>>
maps the name /One to the
 integer 1, the name /Two to the integer 2, and the name /Three to the integer 3. Dictionaries can, of course, contain other
 dictionaries. Nested dictionaries form the bulk of the non-graphical
 structured data in most PDF files.

Indirect References

In order to split the PDF content over separate objects (so data
 may be read only if required), we connect them together with
 indirect references. The indirect reference to
 object 6 is written as:
6 0 R
Here, 6 is the object number,
 0 is the generation number (which we
 don’t consider here), and R is the
 indirect reference keyword.
For example, here’s a typical dictionary using indirect
 references:
<< /Resources 10 0 R
 /Contents [4 0 R] >>
In this example, objects 10 and
 4 are being referenced in the values
 of a dictionary.

Streams and Filters

Streams are used to store binary data. They are formed of a
 dictionary followed by a chunk of binary data. The dictionary lists the
 length of the data, and optionally other parameters, according to the
 particular use to which the stream is put.
Syntactically, a stream consists of a dictionary, followed by the
 stream keyword, a newline (<LF>
 or <CR><LF>), zero or more bytes of data, another newline, and
 finally the endstream keyword. From our
 example file:
4 0 obj Object 4
<<
/Length 65 Length of the data
>>
stream Stream keyword
1. 0. 0. 1. 50. 700. cm 65 bytes of data, here a graphics stream
BT
 /F0 36. Tf
 (Hello, World!) Tj
ET
endstream endstream keyword
endobj end of object
Here, the dictionary just contains the /Length entry, which gives the length of the
 stream in bytes.
All streams must be indirect objects. Streams are almost always
 compressed, using a variety of mechanisms, which are listed in Table 3-3.
Table 3-3. PDF stream compression methods
	Method name	Description
	/ASCIIHexDecode	Produces one byte of uncompressed data for each pair of
 hexadecimal digits in the compressed data. > indicates end of data. Whitespace
 is ignored. This filter and
 /ASCII85Decode are intended to
 reduce data to 7 bits—/ASCII85Decode is more complicated,
 but more compact.
	/ASCII85Decode	This 7-bit encoding uses the printable characters ! through u and z. The sequence ~> indicates end of data.
	/LZWDecode	Implements Lempel-Ziv-Welch compression, as used by the
 TIFF image format.
	/FlateDecode	Flate compression, as used by the open source zlib library.
 Defined in RFC 1950. Both /LZWDecode and /FlateDecode can have
 predictors in the stream dictionary, which
 define postprocessing on the data to reverse preprocessing which
 was done when it was compressed.
	/RunLengthDecode	A simple byte-based run-length compressor.
	/CCITTFaxDecode	Implements Group 3 and Group 4 encoding, as used by fax
 machines. Works well on monochrome (1bpp) images, not for general
 data.
	/JBIG2Decode	A more modern, better compression mechanism for the kinds
 of data suitable for use with /CCITTFaxDecode, but also suitable
 for grayscale and color images and general data. Implements the
 JBIG2 compression method.
	/DCTDecode	JPEG lossy compression. Whole JPEG files can be put in
 here, complete with all the headers.
	/JPXDecode	JPEG2000 lossy and lossless compression. Limited to the JPX
 baseline set of features, with a few exceptions.

Here’s an example of a compressed stream:
796 0 obj
<</Length 275 /Filter /FlateDecode>>
stream
HTKO0÷ü And 268 more bytes...
endstream
endobj
Multiple filters can be used, by specifying an array instead of a
 name for the /Filter entry in the
 stream’s dictionary. For example, an image compressed with the JPEG method
 then ASCII85 encoded, might have the following filter entry:
/Filter [/ASCII85Decode /DCTDecode]
Filters which require external parameters (for example, defining
 compression parameters outside the
 data stream itself) store those in the stream dictionary too.

Incremental Update

Incremental update allows a file to be
 updated by appending modifications to the end of the file, so the whole
 file doesn’t need to be written again (which, for a large file, could take
 a long time). The update constitutes the new or changed objects, and an
 update to the cross-reference table. This means saving the changes takes
 less time, but the file may become bloated (because objects which are no
 longer needed cannot be deleted).
This updating process may happen several times. A side-effect is
 that files updated in this fashion may have those changes undone one or
 more levels, to retrieve earlier versions of the document.
When altering a digitally signed document, all updates must be made
 incrementally—otherwise, the digital signature would be invalidated. The
 recipient can undo the incremental updates to retrieve the original,
 certified document.
When a file is updated incrementally, a new trailer is added,
 containing all the entries from the previous trailer, together with a
 /Prev entry giving the byte offset of
 the previous cross-reference table. Thus, a file which has been
 incrementally updated will have multiple trailer dictionaries and
 end-of-file markers. In this way, a PDF application can read the
 cross-reference sections in reverse order to build up a list of the latest
 versions of each object in the file. Objects which have been replaced keep
 the same object number.

Object and Cross-Reference Streams

Starting with PDF 1.5, a new mechanism was introduced to further
 compress PDF files by allowing many objects to be put into a single
 object stream, the whole stream being compressed.
 In tandem, a new mechanism for referencing the objects in these streams
 was introduced—cross-reference streams.
A file will generally use several sets of object streams, grouping
 together objects which are needed at certain times, for example all the
 objects on page one, all the objects on page two, and so on. This retains
 the random access property of the document, which would be lost if all the
 objects in a file were to be put into a single object stream. Object
 streams can’t contain other streams.
Files compressed with these mechanisms are rather hard to read
 manually, so we can use the decompress
 operation in pdftk as usual, to rewrite them
 decompressed for inspection. This has the side effect of writing them
 without object and cross-reference streams. See Chapter 9
 for details.

Linearized PDF

When viewing a large PDF file in a network environment, especially
 when the data rate is low or the network latency high, the user does not
 want to wait for the whole file to download to view it. This is especially
 important when the document is being viewed inside a web browser.
We should like the first page to appear quickly, and for changing to
 another page (by clicking on a hyperlink or a bookmark) to be as fast as
 possible. In the case of individual pages being large (rather than just
 the whole document), we should like page content to appear incrementally,
 most-important content first. Network transport mechanisms such as HTTP
 (The HyperText Transfer Protocol, used for fetching web pages in a web
 browser) often allow an arbitrary chunk of data to be fetched. However,
 because of latency, we wish to fetch a single chunk with all the data for
 a page, rather than hundreds of little chunks, one for each object.
PDF 1.2 introduced such a mechanism, linearized
 PDF. This adds rules for how to order objects in a file and
 hint tables to indicate how such objects have been
 ordered. The system is backward compatible, so that a linearized PDF file
 is also a normal one, and may be read as such by a reader which does not
 understand linearized PDF.
A linearized PDF file can be recognized by the presence of a
 linearization dictionary at the top of the file,
 directly after the header. For example:
%PDF-1.4
%âãÏÓ
4 0 obj
<< /E 200967
 /H [667 140]
 /L 201431
 /Linearized 1
 /N 1
 /O 7
 /T 201230
>>
endobj
The pdfopt command line program
 shipped with GhostScript can linearize a file. For example:
pdfopt input.pdf output.pdf
This linearizes input.pdf and
 writes the result to output.pdf.

How a PDF File is Read

To read a PDF file, converting it from a flat series of bytes into a
 graph of objects in memory, the following steps might typically
 occur:
	Read the PDF header from the beginning of the file, checking
 that this is, indeed, a PDF document and retrieving its version
 number.

	The end-of-file marker is now found, by searching backward from
 the end of the file. The trailer dictionary can now be read, and the
 byte offset of the start of the cross-reference table
 retrieved.

	The cross-reference table can now be read. We now know where
 each object in the file is.

	At this stage, all the objects can be read and parsed, or we can
 leave this process until each object is actually needed, reading it on
 demand.

	We can now use the data, extracting the pages, parsing graphical
 content, extracting metadata, and so on.

This is not an exhaustive description, since there are many possible
 complications (encryption, linearization, objects, and cross-reference
 streams).
The following recursive data structure, given in psuedocode, can
 hold a PDF object.
pdfobject ::= Null
 | Boolean of bool
 | Integer of int
 | Real of real
 | String of string
 | Name of string
 | Array of pdfobject array
 | Dictionary of (string, pdfobject) array Array of (string, pdfobject) pairs
 | Stream of (pdfobject, bytes) Stream dictionary and stream data
 | Indirect of int
For example, the object << /Kids [2 0
 R] /Count 1 /Type /Pages >> might be represented
 as:
Dictionary
 ((Name (/Kids), Array (Indirect 2)),
 (Name (/Count), Integer (1)),
 (Name (/Type), Name (/Pages)))
Figure 3-1, shown earlier in the chapter, shows
 the object graph for the file in Example 3-1.

How a PDF File is Written

Writing a PDF document to a series of bytes in a file is much
 simpler than reading it—we don’t need to support all of the PDF format,
 just the subset we intend to use. Writing a PDF file is very fast, since
 it amounts to little more than flattening the object graph to a series of
 bytes.
	Output the header.

	Remove any objects which are not referenced by any other object
 in the PDF. This avoids writing objects which are no longer
 needed.

	Renumber the objects so they run from 1 to n
 where n is the number of objects in
 the file.

	Output the objects one by one, starting with object number one,
 recording the byte offset of each for the cross-reference
 table.

	Write the cross-reference table.

	Write the trailer, trailer dictionary, and end-of-file
 marker.

Chapter 4. Document Structure

In this chapter, we leave behind the bits and bytes of the PDF file,
 and consider the logical structure. We consider the trailer
 dictionary, document catalog, and
 page tree. We enumerate the required entries in each
 object. We then look at two common structures in PDF files: text
 strings and dates.
Figure 4-1 shows the logical structure
 of a typical document.
[image: Typical document structure for a two page PDF document]

Figure 4-1. Typical document structure for a two page PDF document

Trailer Dictionary

This dictionary, residing in the file’s trailer rather than the main
 body of the file, is one of the first things to be processed when a
 program wants to read a PDF document. It contains entries allowing the
 cross-reference table—and thus the file’s objects—to be read. Its
 important entries are summarized in Table 4-1.
Table 4-1. Entries in a trailer dictionary (*denotes required entry)
	Key	Value type	Value
	/Size*	Integer	Total number of entries in the file’s cross-reference table
 (usually equal to the number of objects in the file plus
 one).
	/Root*	Indirect reference to dictionary	The document catalog.
	/Info	Indirect reference to dictionary	The document’s document information
 dictionary.
	/ID	Array of two Strings	Uniquely identifies the file within a work flow. The first
 string is decided when the file is first created, the second
 modified by workflow systems when they modify the file.

Here’s an example trailer dictionary:
<<
 /Size 421
 /Root 377 0 R
 /Info 375 0 R
 /ID [<75ff22189ceac848dfa2afec93deee03> <057928614d9711db835e000d937095a2>]
>>
Once the trailer dictionary has been processed, we can go on to read
 the document information dictionary and the
 document catalog.

Document Information Dictionary

The document information dictionary contains
 the creation and modification dates of the file, together with some simple
 metadata (not to be confused with the more comprehensive XMP metadata
 discussed in XML Metadata).
Document information dictionary entries are described in Table 4-2. A typical document information dictionary is
 given in Example 4-1.
Table 4-2. Entries in a document information dictionary. The types “text
 string” and “date string” are explained later in this chapter.
	Key	Value type	Value
	/Title	text string	The document’s title. Note that this is nothing to do with
 any title displayed on the first page.
	/Subject	text string	The subject of the document. Again, this is just metadata
 with no particular rules about content.
	/Keywords	text string	Keywords associated with this document. No advice is given
 as to how to structure these.
	/Author	text string	The name of the author of the document.
	/CreationDate	date string	The date the document was created.
	/ModDate	date string	The date the document was last modified.
	/Creator	text string	The name of the program which originally created this
 document, if it started as another format (for example,
 “Microsoft Word”).
	/Producer	text string	The name of the program which converted this file to PDF,
 if it started as another format (for example, the format of a word
 processor).

Example 4-1. Typical document information dictionary
<<
 /ModDate (D:20060926213913+02'00')
 /CreationDate (D:20060926213913+02'00')
 /Title (catalogueproduit-UK.qxd)
 /Creator (QuarkXPress: pictwpstops filter 1.0)
 /Producer (Acrobat Distiller 6.0 for Macintosh)
 /Author (James Smith)
>>

The date string format (for /CreationDate and /ModDate) is discussed in the section Dates. The text string format (which
 describes how different encodings can be used within the string type) is
 described in Text Strings.

Document Catalog

The document catalog is the root object of the
 main object graph, from which all other objects may be reached through
 indirect references. In Table 4-3, we list the
 document catalog dictionary entries which are required, and some of the
 many optional ones, so as to introduce brief PDF topics we don’t cover
 elsewhere in these pages.
Table 4-3. The document catalog (*denotes required entry)
	Key	Value type	Value
	/Type*	name	Must be /Catalog.
	/Pages*	indirect reference to
 dictionary	The root node of the page tree. Page trees are discussed in
 Pages and Page Trees.
	/PageLabels	number tree	A number tree giving the page labels for this document.
 This mechanism allows for pages in a document to have more
 complicated numbering than just 1,2,3…. For example, the preface
 of a book may be numbered i,ii,iii..., whilst the main content
 starts again at 1,2,3….These page labels are displayed in PDF
 viewers—they have nothing to do with printed output.
	/Names	dictionary	The name dictionary. This contains various name
 trees, which map names to entities, to prevent having
 to use object numbers to reference them directly.
	/Dests	dictionary	A dictionary mapping names to destinations. A destination
 is a description of a place within a PDF document to which a
 hyperlink sends the user.
	/ViewerPreferences	dictionary	A viewer preferences dictionary, which
 allows flags to specify the behavior of a PDF viewer when the
 document is viewed on screen, such as the page it is opened on,
 the initial viewing scale and so on.
	/PageLayout	name	Specifies the page layout to be used by PDF viewers. Values
 are /SinglePage, /OneColumn, /TwoColumnLeft, /TwoColumnRight,
 /TwoPageLeft, /TwoPageRight.
 (Default: /SinglePage). Details are in Table
 28 of ISO 32000-1:2008.
	/PageMode	name	Specifies the page mode to be used by PDF viewers. Values
 are /UseNone, /UseOutlines, /UseThumbs, /FullScreen,
 /UseOC,
 /UseAttachments. (Default: /UseNone). Details are in Table 28
 of ISO 32000-1:2008.
	/Outlines	indirect reference to
 dictionary	The outline dictionary is the root of the
 document outline, commonly known as the
 bookmarks.
	/Metadata	indirect reference to
 stream	The document’s XMP metadata—see XML Metadata.

Pages and Page Trees

A page dictionary in a PDF document brings
 together instructions for drawing the graphical and textual content (which
 we consider in Chapter 5 and Chapter 6) with the resources (fonts, images, and other
 external data) which those instructions make use of. It also includes the
 page size, together with a number of other boxes
 defining cropping and so forth.
The entries in a page dictionary are summarized in Table 4-4.
Table 4-4. Entries in a page dictionary (*denotes required entry)
	Key	Value type	Value
	/Type*	name	Must be /Page.
	/Parent*	indirect reference to dictionary	The parent node of this node in the page tree.
	/Resources	dictionary	The page’s resources (fonts, images, and so on). If this
 entry is omitted entirely, the resources are inherited from the
 parent node in the page tree. If there are really no resources,
 include this entry but use an empty dictionary.
	/Contents	indirect reference to stream or array of such
 references	The graphical content of the page in one or more sections.
 If this entry is missing, the page is empty.
	/Rotate	integer	The viewing rotation of the page in degrees, clockwise from
 north. Value must be a multiple of 90. Default value: 0. This
 applies to both viewing and printing. If this entry is missing,
 its value is inherited from its parent node in the page
 tree.
	/MediaBox*	rectangle	The page’s media box (the size of its
 media, i.e., paper). For most purposes, the page size. If this
 entry is missing, it is inherited from its parent node in the page
 tree.
	/CropBox	rectangle	The page’s crop box. This defines the region of the page
 visible by default when a page is displayed or printed. If absent,
 its value is defined to be the same as the media box.

The rectangle data structure for the
 media box and the other boxes is an array of four
 numbers. These define the diagonally opposite corners of the rectangle—the
 first two elements of the array being the x and
 y coordinates of one corner, the latter two elements
 being those of the other. Normally, the lower-left and upper-right corners
 are given. So, for example:
/MediaBox [0 0 500 800]
/CropBox [100 100 400 700]
defines a 500 by 800 point page with a crop box removing 100 points
 on each side of the page.
The pages are linked together using a page
 tree, rather than a simple array. This tree structure makes it
 faster to find a given page in a document with hundreds or thousands of
 pages. Good PDF applications build a balanced tree
 (one with the minimum height for the number of nodes). This ensures that a
 particular page can be located quickly. The nodes with no children are the
 pages themselves. An example page tree structure for seven pages is shown
 in Figure 4-2.
This would be written in PDF objects as shown in Example 4-2. The entries in an intermediate or root
 page tree node (i.e., not a page itself) are summarized in Table 4-5.
[image: A page tree for seven pages. The exact shape of the tree is left to the individual PDF application. The PDF code for this tree is shown in .]

Figure 4-2. A page tree for seven pages. The exact shape of the tree is left
 to the individual PDF application. The PDF code for this tree is shown
 in Example 4-2.

Example 4-2. PDF objects used to build the page tree illustrated in Figure 4-2
1 0 obj Root node
<< /Type /Pages /Kids [2 0 R 3 0 R 4 0 R] /Count 7 >>
endobj
2 0 obj Intermediate node
<< /Type /Pages /Kids [5 0 R 6 0 R 7 0 R] /Parent 1 0 R /Count 3 >>
endobj
3 0 obj Intermediate node
<< /Type /Pages /Kids [8 0 R 9 0 R 10 0 R] /Parent 1 0 R /Count 3 >>
endobj
4 0 obj Page 7
<< /Type /Page /Parent 1 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
5 0 obj Page 1
<< /Type /Page /Parent 2 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
6 0 obj Page 2
<< /Type /Page /Parent 2 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
7 0 obj Page 3
<< /Type /Page /Parent 2 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
8 0 obj Page 4
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
9 0 obj Page 5
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj
10 0 obj Page 6
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 500 500] /Resources << >> >>
endobj

Table 4-5. Entries in an intermediate or root page tree node (*denotes a
 required entry)
	Key	Value type	Value
	/Type*	name	Must be /Pages.
	/Kids*	array of indirect references	The immediate child page-tree nodes of this node.
	/Count*	integer	The number of page nodes (not other page tree nodes) which
 are eventual children of this node.
	/Parent	indirect reference to page tree node	Reference to the parent of this node (the node of which
 this is a child). Must be present if not the root node of the page
 tree.

In this tree, any page can be found at most two indirect references
 away from the root node.

Text Strings

Strings outside of the actual textual content of a page (e.g.,
 bookmark names, document information etc.) are known as text
 strings. They are encoded using either
 PDFDocEncoding or (in more recent documents)
 Unicode. PDFDocEncoding is a based on the ISO Latin-1 Encoding. It is
 documented fully in Annex D of ISO Standard 32000-1:2008.
Text strings which are encoded as Unicode are distinguished by
 looking at the first two bytes: these will be 254 followed by 255. This is
 the Unicode byte-order marker U+FEFF, which indicates the UTF16BE
 encoding. This means a PDFDocEncoding string can’t begin with þ (254)
 followed by ÿ (255), but this is unlikely to occur in any reasonable
 circumstance.

Dates

The creation and modification dates /CreationDate and /ModDate in the document information dictionary
 are examples of the PDF date format, which encodes a date in a string,
 including information about the time zone.
A date string has the format:
(D:YYYYMMDDHHmmSSOHH'mm')
where the parentheses indicate a string as usual. The other parts of
 the date are summarised in Table 4-6.
Table 4-6. PDF date format constituents
	Portion	Meaning
	YYYY	The year, in four digits, e.g., 2008.
	MM	The month, in two digits from 01 to 12.
	DD	The day, in two digits from 01 to 31.
	HH	The hour, in two digits from 00 to 23.
	mm	The minute, in two digits from 00 to 59.
	SS	The second, in two digits from 00 to 59.
	O	The relationship of local time to Universal Time, either
 +, - or Z. +
 signifies local time is later than UT, - earlier, and Z equal to Universal Time.
	HH'	The absolute value of the offset from Universal Time in
 hours, in two digits from 00 to
 23.
	mm'	The absolute value of the offset from Universal Time in
 minutes, in two digits from 00
 to 59.

All parts of the date after the year are optional. For example,
 (D:1999) is perfectly valid. Plainly,
 though, if you omit one part, you must omit everything which follows,
 otherwise the result would be ambiguous. The default values for DD and MM
 is 01, for all other parts, the default is zeros.
For example:
(D:20060926213913+02'00')
represents September 26th 2006 at 9:39:13 p.m, in a time zone two
 hours ahead of Universal Time.

Putting it Together

This is a manually-created text, to be processed into a valid PDF
 file by pdftk using the method
 introduced in Chapter 2. It is a three page document,
 with document information dictionary and page tree. Figure 4-3 shows this document displayed in Acrobat
 Reader. Figure 4-4 is the corresponding object
 graph.
Example 4-3. A three page document with document information
 dictionary
%PDF-1.0 Header
1 0 obj Top-level of page tree: has two children—page one and an intermediate page tree node
<< /Kids [2 0 R 3 0 R] /Type /Pages /Count 3 >>
endobj
4 0 obj Contents stream for page one
<< >>
stream
1. 0.000000 0.000000 1. 50. 770. cm BT /F0 36. Tf (Page One) Tj ET
endstream
endobj
2 0 obj Page one
<<
 /Rotate 0
 /Parent 1 0 R
 /Resources
 << /Font << /F0 << /BaseFont /Times-Italic /Subtype /Type1 /Type /Font >> >> >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [4 0 R]
>>
endobj
5 0 obj Document catalog
<< /PageLayout /TwoColumnLeft /Pages 1 0 R /Type /Catalog >>
endobj
6 0 obj Page three
<<
 /Rotate 0
 /Parent 3 0 R
 /Resources
 << /Font << /F0 << /BaseFont /Times-Italic /Subtype /Type1 /Type /Font >> >> >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [7 0 R]
>>
endobj
3 0 obj Intermediate page tree node, linking to pages two and three
<< /Parent 1 0 R /Kids [8 0 R 6 0 R] /Count 2 /Type /Pages >>
endobj
8 0 obj Page two
<<
 /Rotate 270
 /Parent 3 0 R
 /Resources
 << /Font << /F0 << /BaseFont /Times-Italic /Subtype /Type1 /Type /Font >> >> >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [9 0 R]
>>
endobj
9 0 obj Content stream for page two
<< >>
stream
q 1. 0.000000 0.000000 1. 50. 770. cm BT /F0 36. Tf (Page Two) Tj ET Q
1. 0.000000 0.000000 1. 50. 750 cm BT /F0 16 Tf ((Rotated by 270 degrees)) Tj ET
endstream
endobj
7 0 obj Content stream for page three
<< >>
stream
1. 0.000000 0.000000 1. 50. 770. cm BT /F0 36. Tf (Page Three) Tj ET
endstream
endobj
10 0 obj Document information dictionary
<<
 /Title (PDF Explained Example)
 /Author (John Whitington)
 /Producer (Manually Created)
 /ModDate (D:20110313002346Z)
 /CreationDate (D:2011)
>>
endobj xref
0 11
trailer Trailer dictionary
<<
 /Info 10 0 R
 /Root 5 0 R
 /Size 11
 /ID [<75ff22189ceac848dfa2afec93deee03> <057928614d9711db835e000d937095a2>]
>>
startxref
0
%%EOF

[image: converted to a valid PDF with pdftk and displayed in Acrobat Reader]

Figure 4-3. Example 4-3 converted to a valid PDF
 with pdftk and displayed in Acrobat Reader

[image: Object graph for]

Figure 4-4. Object graph for Example 4-3

Chapter 5. Graphics

In this chapter, we’ll run through the main ways to build graphics in
 the content stream of a PDF page. All of the examples are based on the same
 PDF we created manually in Chapter 2 and processed into
 valid PDF documents with pdftk in the
 same fashion. All the examples are included in the online resources.
Looking at Content Streams

A PDF page is made up of one or more content
 streams, defined by the /Contents entry in the page object, together
 with a shared set of resources, defined by the /Resources entry. In all our examples, there
 will only be a single content stream. Multiple content streams are
 equivalent to a single stream containing their concatenated
 content.
Here’s an example page, with no resources and a single content
 stream:
3 0 obj
<<
 /Type /Page
 /Parent 1 0 R
 /Resources << >>
 /MediaBox [0 0 792 612]
 /Rotate 0
 /Contents [2 0 R]
>>
endobj
Here’s the associated content stream, consisting of the
 stream dictionary and the stream
 data.
2 0 obj
<< /Length 18 >> Stream dictionary
stream
200 150 m 600 450 l S Stream data
endstream
endobj
We’ll discover what the m,
 l and S operators do in a moment. The numbers are
 measurements in points—a point (or pt) is 1/72 inch.
 The result of loading this document into a PDF viewer (after processing
 with pdftk as per Chapter 2) is shown in Figure 5-1.
The full manually created file (before processing with pdftk) is shown in Example 5-1. We’re going to be using variations
 on this file for the rest of this chapter. For the most part we’ll just
 change the content stream for each example, but later on we’ll need to add
 one or more extra resources to the PDF. All of these files are found in
 the online resources for this book.
Example 5-1. Skeleton PDF listing for examples in this chapter
%PDF-1.0 PDF header
1 0 obj Page tree
<< /Kids [2 0 R]
 /Type /Pages
 /Count 1
>>
endobj
2 0 obj Page object
<< /Rotate 0
 /Parent 1 0 R
 /MediaBox [0 0 792 612]
 /Resources 3 0 R
 /Type /Page
 /Contents [4 0 R]
>>
endobj
3 0 obj Resources
<< >>
4 0 obj Page content stream
<< /Length 19 >>
stream
200 150 m 600 450 l S
endstream
endobj
5 0 obj Document catalog
<< /Pages 1 0 R
 /Type /Catalog
>>
endobj xref Skeleton cross-reference table
0 6
trailer Trailer dictionary
<< /Root 5 0 R
 /Size 6
>>
startxref
0
%%EOF End-of-file marker

Content streams are almost always compressed, so to inspect the
 content stream of an existing document, we can use the pdftk decompress operation. For example, the command:
pdftk input.pdf decompress output output.pdf
writes input.pdf to output.pdf with the streams uncompressed.
[image: Defining and stroking a single line]

Figure 5-1. Defining and stroking a single line

Operators and Graphics State

A content stream consists of a series of
 operators, each preceded by zero or more
 operands. Table 5-1 lists
 the 78 graphics operators in 6 groups. In this chapter, we’ll be looking
 at selected operators from the first four groups.
Table 5-1. PDF graphics operators
	Group	Used for	Operators
	Graphics state operators	Changing the graphics state (current color, stroke width
 etc).	w J j M d ri i gs q Q cm CS cs SC
 SCN sc scn G g RG rg K k
	Path construction operators	Building lines, curves and rectangles.	m l c v y h re
	Path painting operators	Stroke and fill paths, or use them to define clipping
 regions.	S s f F f* B B* b b* n W
 W*
	Other painting operators	Shading patterns and inline images.	sh BI ID EI Do
	Text operators	Select and show text in various fonts and ways.	Tc Tw Tz TL Tf Tr Ts Td TD Tm T*
 Tj TJ ' '' d0 d1
	Marked content and compatibility operators	Used to demarcate sections of the stream.	MP DP BMC BDC EMC BX
 EX

The page is rendered by considering each operator and its operands
 in turn. The graphics state is maintained
 throughout, altered by some operators, consulted by others. Operands are
 often numbers, but can be names, dictionaries, or arrays.
The part of the graphics state which would be needed to render our
 examples, as it may appear in a typical PDF implementation, is summarized
 in Table 5-2.
Table 5-2. Graphics state
	Entry	Type	Initial value
	Current transformation matrix	matrix	The matrix which transforms default user coordinates to
 device coordinates
	Fill color	color	Black
	Line color	color	Black
	Line width	real	1.0
	Path join style	integer	Mitered joins (0)
	Cap style	integer	Square butt caps (0)
	Line dash pattern	integer array	Solid line
	Current clipping path	path	The empty path
	Blend mode	name or array	Normal
	Soft mask	name or dictionary	None
	Alpha constant	real	1.0 (full opacity)
	Alpha source	boolean	false

Building and Painting Paths

We’re using a landscape US Letter page (width 11 inches or 792
 points; height 8.5 inches or 612 pts). The PDF coordinate system, by
 default, has the origin at the lower-left corner of the page, with
 x and y increasing rightward and
 upward, respectively.
Let’s use some path construction, stroking, and line attribute
 operators to build a simple graphics stream:
100 100 m 300 200 l 700 100 l Move to (100, 100), line to (300, 200), line to (700, 100)
S Stroke the line
8 w Change line width from the default (1.0) to 8.0
1 J Change line ending cap to rounded (code 1) from default square (code 0)
100 200 m 300 300 l 700 200 l Define new path, same shape but 100pts higher up the page
S Stroke the new line
[20] 0 d Change to 20pt dashes
100 300 m 300 400 l 700 300 l Define new path, same shape but another 100pts higher up the page
S Stroke the new line
The result is shown in Figure 5-2.
[image: Building lines with differing widths, end caps, join styles, and dash patterns]

Figure 5-2. Building lines with differing widths, end caps, join styles, and
 dash patterns

We’ve used the m operator to move
 to the start of the new path, and the l
 operator to form two lines. Note that at this point, nothing has been
 drawn—the page is only affected when we use the S operator to stroke the line. The S operator also clears the current path.
The w operator sets the line
 width in the graphics state to 8 points. The J operator sets the line endings to rounded
 caps. The dash pattern is set with the d operator, which takes two operands: an array
 (which is a repeating sequence of dash length, gap length, dash length
 etc, which are cycled through when stroking the line), and an initial
 offset (the phase) which moves the start of the
 pattern. In our example, there is just one entry, so dashes and gaps are
 both 20pt, and the phase is 0.
Line joins, dash patterns, and line caps are summarized in Table 5-3, Table 5-4, and Table 5-5, respectively.
Paths may be made from more than one subpath,
 each subpath starting with the m
 operator. This can be used to define a single path made from several
 discontiguous shapes.
Table 5-3. Line joins
	Join number	Meaning
	0	Mitered join
	1	Rounded join
	2	Beveled join

Table 5-4. Dash patterns
	Dash pattern specification	Meaning
	[] 0	Solid line
	[2] 0	2 on, 2 off, 2 on...
	[2] 1	1 on, 2 off, 2 on... (phase is set to 1)
	[2 3] 0	2 on, 3 off, 2 on...

Table 5-5. Line caps
	Cap number	Meaning
	0	Butt caps. Squared off at the end of the line.
	1	Round caps. Semicircles attached at the end of each
 line.
	2	Projecting square caps. Projects at end of line for half
 the width of the line, and is then squared off.

Bézier Curves

As well as straight lines, we can draw curves. There are many
 different possible schemes for defining curves, but the industry has
 settled on Bézier curves, named for the
 automobile engineer Pierre Bézier. They are easy and predictable to
 manipulate with the mouse onscreen, relatively easy to draw at any
 resolution or accuracy, and simple to define mathematically.
A curve is defined by four points—the start and end points, and
 two control points which define how the curve is
 shaped between start and end. The curve does not necessarily pass
 through the control points, but always sits fully inside the convex
 quadrilateral defined by its four points.
An example curve, showing the start and end points and the two
 control points (shown with dotted lines from the end points, as they may
 be represented in a graphics editor) can be seen in Figure 5-3. This was generated by using the c operator:
300 200 m 400 300 500 400 600 200 c S
We use the m operator to move
 the current point to the start of the curve. The c operator takes three more coordinates: the
 first control point, second control point, and end point.
For more information on Bézier curves, consult a graphics
 text—seePDF and Graphics Documentation.
[image: A Bézier curve]

Figure 5-3. A Bézier curve

Drawing circles with Bézier curves

Interestingly, it’s not possible to draw exact circles in PDF.
 But we can use several Bézier curves to approximate one closely. We’ll
 use four symmetric curves (the minimum number to get a good result),
 one for each quadrant. For a specimen quadrant of the unit circle
 centered at (1, 0), the coordinates are shown in Figure 5-4. The number k is about
 0.553.
[image: Approximating a circular arc with a Bézier curve]

Figure 5-4. Approximating a circular arc with a Bézier curve

Filled Shapes and Winding Rules

Paths may be filled as well as stroked, by substituting another
 operator from Table 5-6 for the S operation we used before (here, we used
 B to fill and stroke the path). Figure 5-5 shows a shape filled and stroked using the
 following code:
2.0 w
0.75 g Change fill color to light Gray
250 250 m Move to start of path
350 350 450 450 550 250 c First curve
450 250 350 200 y Second curve
h B Close and fill
We’ve used the g operator to
 set the fill color. This is explained in Colors and Color Spaces. For the second curve, we’ve used the
 y operator which is like c, except that the second control point and
 the end point are one and the same, so only four operands are
 needed.
[image: A filled shape]

Figure 5-5. A filled shape

There are two factors distinguishing fill operators from one
 another:
	Whether the path is automatically closed
 before filling. Closing involves adding a straight line segment from
 the current point to the starting point of the current subpath. The
 path may be manually closed with the h operator.

	The winding rule which determines the
 choices made when filling an object which is self-intersecting or
 made up of multiple subpaths which overlap. Figure 5-6 shows the effect of the two winding rules
 on both a self-intersecting object, and a path made from two
 overlapping rectangular subpaths.

The code for Figure 5-6 is:
100 350 200 200 re
120 370 160 160 re f Non-zero
400 350 200 200 re
420 370 160 160 re f* Even-odd

150 50 m 150 250 l 250 50 l 50 150 l 350 150 l h f
550 50 m 550 250 l 650 50 l 450 150 l 750 150 l h f*
Here, we’ve also used the re
 operator. This creates a rectangular, closed path given four arguments:
 minimum x, minimum y, width,
 and height.
Table 5-6. Operators for filling and stroking paths
	Operator	Function
	n	Ends the path with no visual effect. This is used to
 change the current clipping path (see Clipping).
	b	Close, fill and stroke the path (non-zero winding
 rule)
	b*	Close, fill and stroke the path (even-odd winding
 rule)
	B	Fill and stroke the path (non-zero winding rule)
	B*	Fill and stroke the path (even-odd winding rule)
	f or F	Fill the path (non-zero winding rule)
	f*	Fill the path (even-odd winding rule)
	S	Stroke the path
	s	Close and stroke the path

[image: Non-zero (L) and even-odd (R) winding rules]

Figure 5-6. Non-zero (L) and even-odd (R) winding rules

Colors and Color Spaces

To change the fill or stroke color in a PDF graphics stream, we need
 to change the current color space using one operator, and then change the
 color using another. Fill and stroke
 color spaces are separate—the current fill color space could be
 DeviceRGB and
 the stroke color space DeviceGray, for
 example.
In this section, we look at the basic
 DeviceGray, DeviceRGB, and
 DeviceCMYK color spaces (more complicated color
 spaces are covered in the PDF Standard):
	The DeviceGray color space has one additive
 component, which varies from 0.0 (Black) to 1.0 (White).

	The DeviceRGB color space has three
 additive components for Red, Green, and Blue. They each range from 0.0
 (e.g., no Red) to 1.0 (e.g., full Red).

	The DeviceCMYK color space has four
 subtractive components for Cyan, Magenta, Yellow, and Key (Black).
 They each range from 0.0 (no pigment) to 1.0 (full pigment).

To change the stroke color space, we use the CS operator. To change the fill color space, use
 cs instead. The SC operator (with a number of operands equal to
 the number of components in the current color space) can then be used to
 set the stroke color, or sc to set the
 fill color. For example:
/DeviceRGB CS Set stroke color space
0.0 0.5 0.9 SC Set color to RGB (0.0, 0.5, 0.9)
There are shortcut operators for the device color spaces, which set
 the current stroke or fill color space and the current stroke or fill
 color in one operation. These are summarized in Table 5-7.
Table 5-7. Simple color and color space operators
	Operator	Operands	Function
	G	1	Change stroke color space to /DeviceGray and set color
	g	1	Change fill color space to /DeviceGray and set color
	RG	3 (R, G, B)	Change stroke color space to /DeviceRGB and set color
	rg	3 (R, G, B)	Change fill color space to /DeviceRGB and set color
	K	4 (C, M, Y, K)	Change stroke color space to /DeviceCMYK and set color
	k	4 (C, M, Y, K)	Change fill color space to /DeviceCMYK and set color

When a content stream begins, the default color space is /DeviceGray and the default color value is 0
 (fully black), so we can use the g
 operator straight away:
200 250 100 100 re f
0.25 g
300 250 100 100 re f
0.5 g
400 250 100 100 re f
0.75 g
500 250 100 100 re f
The result is shown in Figure 5-7.
[image: The DeviceGray color space]

Figure 5-7. The DeviceGray color space

Transformations

So far, we’ve seen operators that alter the graphics state of all
 the operators that follow them. In order to allow us to group together
 graphics objects with their attributes (such as color), we can bracket a
 group of operators with the q and
 Q operators. The q operator puts aside the current graphics
 state. The state may then be altered, objects painted, and so on— as
 usual. When the Q operator is invoked,
 the previous saved state is restored. The q/Q pairs may be nested, one pair inside
 another:
0.75 g Change to light Gray fill
250 250 100 100 re f
q Save the graphics state
0.25 g Change to dark Gray fill
350 250 100 100 re f
Q Retrieve the previous graphics state
450 250 100 100 re f Light Gray again
The q/Q operators in a stream
 must form balanced pairs (with the exception that, at the end of a
 graphics stream, any remaining Q
 operators may be omitted). The result is shown in Figure 5-8.
[image: Using q and Q operators to isolate color attributes]

Figure 5-8. Using q and Q operators to isolate color attributes

One of the most frequent uses of q/Q pairs is to isolate the effects of
 coordinate transforms. We can use the cm operator to change the transformation from
 user space coordinates to device
 space coordinates. This is known as the Current
 Transformation Matrix (CTM). It’s important that this change
 to the graphics state is isolated by a q/Q pair, because it’s complicated to
 undo.
The cm operator takes six
 arguments, representing a matrix to be composed with the CTM. Here are the
 basic transforms:
	Translation by (dx, dy) is specified by
 1, 0, 0, 1, dx, dy

	Scaling by (sx, sy) about (0,
 0) is specified by sx, 0, 0, sy, 0,
 0

	Rotating counterclockwise by x radians
 about (0, 0) is specified by cos x, sin
 x, -sin x, cos x, 0, 0

The cm operator appends the given
 transform to the CTM, rather than replacing it. To rotate or scale around
 an arbitrary point (rather than the origin), translate to the origin,
 rotate or scale, and translate back.
Any graphics text will have a full discussion of the mathematics of
 such transforms. See PDF and Graphics Documentation.
Consider the following, illustrated in Figure 5-9:
2.0 w
0.75 g
100 100 m 200 200 300 300 400 100 c (a) Untransformed shape
300 100 200 50 y h B
q
0.96 0.25 -0.25 0.96 0 0 cm (b) Rotate counterclockwise by 1/4 radian
100 100 m 200 200 300 300 400 100 c
300 100 200 50 y h B
Q
q
0.5 0 0 0.5 0 0 cm (c) Scale original shape by 0.5 about the origin
100 100 m 200 200 300 300 400 100 c
300 100 200 50 y h B
1 0 0 1 300 0 cm (d) Translate (c) by 300 units in the new space, i.e., 150 units in the original space
100 100 m 200 200 300 300 400 100 c
300 100 200 50 y h B
Q
Note the use of q and Q to isolate the effect of transforms.
[image: Translation, scaling and rotation with the cm operator]

Figure 5-9. Translation, scaling and rotation with the cm operator

Clipping

We can use a path, built in the usual way, to set the
 clipping path. From that point on, only content
 within the path’s area will be shown. This is done by using the W operator (for a non-zero path) or W* operator (for an even-odd path).
The operator intersects the path given with the existing clipping
 path, so it can only be used to make the clipping region smaller, not
 larger. The clipping path remains the current path, so it can be used to
 stroke the outline of the clipping region using, for example, the S operator. The W operator is a modifier to the painting
 operation, so if we don’t want to stroke the outline of the new clipping
 path, we must substitute the no-op path painting operator n. Here’s an example where we define a clipping
 path:
200 100 m 200 500 l 500 100 l h W S
Here we have defined a closed triangular path, set the clipping
 region using W and then stroked it
 using S. The result of setting this
 clipping path and then drawing the same scene as Figure 5-2 can be seen in Figure 5-10.
[image: Clipping to a path (the path is also shown)]

Figure 5-10. Clipping to a path (the path is also shown)

Transparency

PDF has a sophisticated but complicated transparency mechanism which
 works in multiple color spaces, allows different types of blending, and
 supports grouped transparencies. We only consider simple transparency
 here.
There are no specific transparency operators so we use the gs operator to load the fill transparency level
 from the /ca entry in the /ExtGState entry in the page’s resources. The
 /ExtGState entry is a dictionary of
 collections of external graphics state, which we can
 load in using the gs operator.
For our example, the resources consist of just the /ExtGState entry, with a single collection of state, called /gs1. It contains just the /ca entry for fill transparency:
<< /ExtGState
 << /gs1
 << /ca 0.5 >> Half transparent
 >>
>>
Here is the corresponding content stream:
2.0 w Select 2pt line width
/gs1 gs Select /gs1 from external graphics state
0.75 g Select light Gray
200 250 m 300 350 400 450 500 250 c
400 250 300 200 y h B
1 0 0 1 100 100 cm
200 250 m 300 350 400 450 500 250 c
400 250 300 200 y h B
The result is shown in Figure 5-11. The
 transparency is defined so that 0 means
 wholly transparent, and 1 wholly
 opaque. The stroke transparency may be altered with /CA in place of (or in addition to) /ca.
[image: Transparency in PDF]

Figure 5-11. Transparency in PDF

Shadings and Patterns

As well as plain colors, PDF allows various
 patterns to be used to fill and stroke
 objects:
	Tiling patterns, where a pattern
 cell is replicated over the page.

	Shading patterns, where a gradient between
 colors is used to fill an object. There are many types, with many
 options and settings:
	Function-based
	Axial
	Radial
	Free-form Gouraud-shaded triangle mesh
	Lattice-form Gouraud-shaded triangle mesh
	Coons patch mesh
	Tensor-product patch mesh

We consider just Axial and Radial shadings.
Patterns are invoked by changing to the /Pattern color space using the cs operator, then using the scn operator to select a named pattern. Patterns
 are listed by name in the /Pattern
 dictionary in the page’s resources. For example:
/Pattern
 <<
 /GradientShading Our name for the pattern
 <<
 /Type /Pattern
 /PatternType 2 A shading pattern
 /Shading
 <<
 /ColorSpace /DeviceGray
 /ShadingType 2 A linear shading
 /Function << /FunctionType 2 /N 1 /Domain [0 1] >>
 /Coords [150 200 450 500] Coordinates of start and end of gradient
 /Extend [true true]
 >>
 >>
 >>
This defines an axial shading pattern. We have named our pattern
 /GradientShading. The pattern type for
 shadings is 2. Our shading is defined
 by:
	The color space /DeviceGray

	The shading type 2 (Axial)

	The coordinates of the start and end of the shading: (150, 200)
 and (450, 500)

We don’t discuss the /Extend or
 /Function entries here. The pattern is
 now invoked, and a shape drawn:
/Pattern cs Choose pattern color space for fills
/GradientShading scn Choose our pattern as a color
250 300 m 350 400 450 500 550 300 c
450 300 350 250 y h f
The result is Figure 5-12.
[image: An axial shading pattern]

Figure 5-12. An axial shading pattern

If we change to a radial shading by changing the /ShadingType to 3, and change the /Coords entry to [400 400 0 400 400 200]—a radial shading with
 inner radius 0 and outer radius 200 both centered on (400, 400):
/Coords [400 400 0 400 400 200]
/ShadingType 3
The result is shown in Figure 5-13.
[image: A radial shading pattern]

Figure 5-13. A radial shading pattern

Form XObjects

In Transformations, we used the q and Q
 operators to display a single object using various transformations.
 However, we had to recite the operations for drawing the object each time.
 A Form XObject allows us to store a set of graphics
 instructions, and use them repeatedly (even on different pages), at
 differing scales and positions.
Warning
Form XObjects have nothing to do with PDF forms (the kind you fill
 in).

3 0 obj Resources of current page
<<
 /XObject << /X1 5 0 R >> Our XObject is called /X1
>>
endobj
5 0 obj The XObject itself
<< The XObject dictionary
 /Type /XObject
 /Subtype /Form
 /Length 69
 /BBox [0 0 792 612]
>>
stream The XObject content
2.0 w
0.5 g
250 300 m 350 400 450 500 500 300 c
450 300 350 250 y h B
endstream
endobj
Object 3 in the listing above is the page’s /Resources entry. Its /XObject entry is a dictionary listing the
 XObjects used in that page. We’ve named our XObject /X1. Object 5 is the XObject itself. It’s a
 stream, with the following entries in its dictionary:
	The /Type of this object is
 /XObject.

	The /Subtype of this XObject
 is /Form, distinguishing it as a
 form XObject.

	The /Length is the length in
 bytes of the stream, as usual.

	The /BBox entry gives a
 bounding box for the XObject, in this case the same as the page
 itself.

The stream contains the code for setting up the line and width, and
 the shape itself. Now, we can use the XObject from the main content
 stream, using the Do operator with the
 XObject’s name as the operand:
/X1 Do Invoke XObject /X1
0.5 0 0 0.5 0 0 cm Scale by 0.5 about the origin
/X1 Do Invoke the XObject again, at the new scale
The result is shown in Figure 5-14.
[image: Form XObject used at two scales]

Figure 5-14. Form XObject used at two scales

When the Do operator is
 encountered, the current graphics state is saved, the /Matrix entry (if any) from the XObject is
 concatenated with the CTM, the content is drawn (clipped by the XObject’s
 /BBox), and the current graphics state
 is restored.

Image XObjects

Images are specified using separate objects, again stored in the
 /XObject entry in the page’s resources
 dictionary. They are thus separate from the graphics content stream, and
 so may be reused multiple times, even across pages. To specify an image,
 we provide the image data (usually compressed using one of many mechanisms
 such as JPEG), its width and height, and some parameters which describe
 the conversion from the image data to values in its color space.
Here is a resources entry for an image XObject:
<< /XObject << /X2 5 0 R >> >>
This defines an image XObject called /X2 whose parameters are:
5 0 obj
<<
 /Type /XObject It's an XObject
 /Subtype /Image It's an image
 /ColorSpace /DeviceGray The color space of the image. Also determines how many components it has.
 /Length 8 The length of the stream in bytes, as usual
 /Width 8 Image width in pixels
 /Height 8 Image height in pixels
 /BitsPerComponent 1 Number of bits used for each component
>>
stream
@`pxxp`@ The image data
endstream
To make this possible to type in manually, we’ve defined a
 one-bit-per-pixel black and white image, containing just 64 bits of data.
 Typically, images would be hundreds or thousands of pixels in each
 direction and with up to 16 bits per component, with one, three, or four
 components.
Images always map to the square (0,0)...(1,1)
 in user space, so we use cm operators
 to scale the image to the appropriate size and position:
q
1 0 0 1 100 100 cm Translate
200 0 0 200 0 0 cm Scale
/X2 Do Invoke image XObject
Q
q
1 0 0 1 400 100 cm And again with a different position and scale
100 0 0 100 0 0 cm
/X2 Do
Q
The result is shown in Figure 5-15.
[image: Image XObject used at two scales]

Figure 5-15. Image XObject used at two scales

Chapter 6. Text and Fonts

In the previous chapter, we saw how a series of graphics operators can
 be used to draw content on a page, by reference to their operands and a
 stack-based graphics state.
In this chapter, we look at the operators and state for selecting
 characters from fonts and printing them on the page. Then, we see how fonts
 and their metrics are defined and embedded in PDF documents. Finally, we
 discuss the complex task of general-purpose text extraction from a
 document.
Text and Fonts in PDF

It would be possible to define a page description language where
 none of the text layout had been performed, and plain text was supplied
 along with boxes and columns to be filled on-the-fly, just like a desktop
 publishing package. Conversely, it would be possible to define a page
 description language without fonts or text as such at all, just relying on
 text being converted to outline shapes as the document is produced, having
 been layed out in, for example, a word-processor.
PDF adopts a middle ground—the ideas of a font and of small-scale
 text layout are retained, but the large-scale paragraph layout must be
 done in advance. This has the following advantages:
	Complete control over layout, because large-scale layout
 (paragraphs, line-breaks) are the job of the program producing the
 PDF. The document will look as it is supposed to.

	Predictable small-scale text layout such as strings with fixed
 character spacing is supported, so the position of each character need
 not be explicitly stated.

	Space saved by the use of fonts as libraries of character
 shapes, and the simple inclusion of existing font files minimizing
 compatibility and portability problems.

	Original characters and some layout elements are maintained, so
 copy-and-paste and text extraction are normally possible.

Text State

The text state parameters and the operators which modify them are
 summarized in Table 6-1.
Table 6-1. Text state parameters and their operators
	Parameter	Description	Operands	Operators	Initial value
	Tc	Character spacing	charSpace	Tc sets the character
 spacing to charSpace, expressed in unscaled
 text space units.	0
	Tw	Word spacing	wordSpace	Tw sets the word spacing
 to wordSpace, expressed in unscaled text
 units.	0
	Th	Horizontal spacing	scale	Tz sets the horizontal
 scaling to (scale / 100).	100 (normal
 spacing)
	Tl	Leading	leading	TL sets the text leading
 to leading, expressed in unscaled text space
 units.	0
	Tf,
 Tfs	Font, Font
 Size	font, size	Tf selects the font
 font at size size
 points.	None. Must be specified.
	Tmode	Rendering Mode	render	Tr sets the text
 rendering mode to render, an
 integer.	0
	Trise	Rise	rise	Ts sets the text rise to
 rise, expressed in unscaled text space
 units.	0

We discuss the phrase “unscaled text space units” in
 Text Space and Text Positioning. The text state is stored along with the
 graphics state, and manipulated using the operators above. The current
 text state is affected by the stack operators q and Q, just
 like the graphics state.

Printing Text

Printing text on the page requires:
	Selecting a font.

	Choosing position, size, and orientation.

	Choosing spacing, color, text rendering mode, and other
 parameters.

	Selecting characters from the font, and showing them on the
 page.

Text Sections

The operators BT (begin text)
 and ET (end text) form brackets
 around text sections. Operators for showing text
 in a page’s content stream may only appear between BT and ET.
 Operators for altering text state, however, are not restricted in this
 way. Text sections may also contain other operators altering the general
 graphics state.
As an example, we return to the “Hello, World!” file
 from Chapter 2:
1. 0. 0. 1. 50. 700. cm Position at (50, 700)
BT Begin text block
 /F0 36. Tf Select /F0 font at 36pt
 (Hello, World!) Tj Place the text string
ET End text block
Here, we’ve used the Tf
 operator with font name and size operators to select the font, and the
 Tj operator to show a text string. We
 have relied on the graphics operator cm to position the text. Now, we will discuss
 other methods of changing the text position.

Text Space and Text Positioning

Text space is the coordinate system in
 which text is defined. The transformation from this text space into user
 space (and then into device space, as usual) determines where text is
 placed on the page. The origin of the first glyph in the text string is
 placed at the origin of text space.
There are two matrices to consider:
	The text matrix, which defines the
 current transformation for the next glyph. It is altered by the text
 positioning and text showing operators.

	The text line matrix, which is the
 state of the text matrix at the beginning of the current line. Thus,
 lines of text may be aligned vertically by the use of an operator to
 move to the next line, without manually keeping track of the
 position of the start of the line.

These matrices do not persist from text section to text section,
 but are reset to the identity matrix at the beginning of each text
 section. Together with the font size, horizontal scaling, and text rise,
 these two matrices define the transformation from text space to user
 space.
The operators for modifying the text position are summarized in
 Table 6-2.
Table 6-2. Operators for positioning text
	Operands	Operator	Function
	x,y	Td	Move the text position to the next line, offset by
 (x,y). The parameters
 are expressed in unscaled text space units.
	x,y	TD	Move the text position to the next line, offset by
 (x,y). Sets the
 leading to -y. The parameters are expressed
 in unscaled text space units.
	-	T*	Move the text position to the next line. Equivalent to
 the sequence 0
 leading Td (where leading
 is the current text leading).
	a,b,c,d,e,f	Tm	Sets the text matrix and text line matrix to [a b 0 c d 0 e f 1]. Unlike the
 graphics matrix operator cm,
 the matrix replaces the current matrix, rather than being
 concatenated with it.

Showing Text

The Tj operator shows text at
 the current position. This, in combination with the text positioning
 operators we have already seen would suffice. However, for convenience
 and brevity, three additional operators (', '', and
 TJ) are provided. These are shortcuts
 for common combinations of text-showing and text-positioning. The text
 showing operators are summarized in Table 6-3.
Table 6-3. Operators for showing text
	Operands	Operator	Function
	string	Tj	Show string at the current
 position.
	string	'	Go to the next line, taking into account the leading and
 text matrices, and show string at the new
 position. The same as using T* followed by Tj.
	wordspace,
 charspace,
 string	''	Set the word spacing to wordspace
 and the character spacing to charspace. Go
 to the next line, taking into account the leading and text
 matrices, and show string at the new
 position. The same the sequence wordspace
 Tw
 charspace Tc string
 '.
	array	TJ	This operator allows a text string to be shown with
 adjustments for individual glyph positions (for example,
 kerning). The array contains strings and numbers, in any
 combination. String entries are shown as normal; number entries
 adjust the text matrix horizontally by subtracting that amount
 (expressed in thousandths of a unit of text space).

We will now go through some examples of showing text, using the
 standard font and the Latin-1 based PDFDocEncoding for simplicity. As
 always, these examples can be found in the online resources.
Character and word spacing

Here is our first example, where we show some lines of text
 using various operators. The result is illustrated in Figure 6-1:
BT
/F0 36 Tf
1 0 0 1 120 350 Tm
50 TL
(Character and Word Spacing) Tj T*
3 Tc
(Character and Word Spacing) Tj T*
10 Tw
(Character and Word Spacing) Tj
ET
In this example we have:
	Used Tf to select font
 /F0 at 36 points.

	Used Tm to set the text
 position to (120, 350).

	Used TL to set the
 leading to 50 points.

	Shown a string with Tj,
 and used T* to move to the next
 line.

	Set the character spacing to 3 points, and drawn the string
 again.

	Set the word spacing to 10 points, and drawn the string a
 third time.

[image: Character and word spacing]

Figure 6-1. Character and word spacing

Text transforms

In this example, we show how text transforms combine with
 graphics transforms to make sure that text positioning operations (for
 example, moving to the next line) work properly, even when the whole
 text section is transformed. The result is Figure 6-2:
0.96 0.25 -0.25 0.96 0 0 cm
BT
/F0 48 Tf
48 TL
1 0 0 1 270 240 Tm
(Text and graphics) Tj T*
(transforms combined) Tj T*
(with newlines) Tj
ET
Here, we have:
	Set up the graphics matrix to rotate anticlockwise around
 the origin with cm.

	Selected a font and set the leading with Tf and TL.

	Set the text matrix to offset the start by (270, 240) with
 Tm.

	Written three lines with Tj and T*.

[image: Text transforms]

Figure 6-2. Text transforms

Text rise

The Ts operator can be used
 to adjust the vertical position of text:
BT
/F0 72 Tf
1 0 0 1 140 290 Tm
(Text) Tj
20 Ts
(Up) Tj
0 Ts
(and) Tj
-20 Ts
(Down) Tj
ET
The result is shown in Figure 6-3. This is the
 first time we’ve used multiple Tj
 operators without starting a new line. Note that the Tj operator, having shown the text, sets the
 text position to the end of the string which was just drawn.
[image: Superscripting and subscripting with the text rise operator]

Figure 6-3. Superscripting and subscripting with the text rise
 operator

Kerning and glyph adjustment

The TJ operator is an
 alternative to Tj for drawing a
 string with horizontal glyph adjustments. These typically occur when
 text is layed out in a word-processor or typesetter, especially if the
 content is fully justified. The TJ
 operator is a convenient way to encode this information without using
 dozens of operators for each line of text:
BT
/F0 72 Tf
90 TL
1 0 0 1 240 330 Tm
[(PJ WAYNE)] TJ T*
[(P)150(J)(W)150(A)80(YN)20(E)] TJ
ET
We have used TJ twice here;
 once to show the text as normal, and a second time including manual
 kerns in the array passed to TJ.
 The result is illustrated in Figure 6-4.
[image: Kerned text]

Figure 6-4. Kerned text

Text rendering modes

There are seven rendering modes for text, set with the Tr operator. Four of them are for setting up
 text as a clipping path, and one is for writing invisible text. We
 don’t consider those here. The other three (modes 0, 1, and 2) are
 used for filling, stroking, and filling-followed-by-stroking
 respectively. The colors set in the same way as for shape
 drawing:
0.5 g
BT
/F0 72 Tf
1 0 0 1 160 380 Tm
90 TL
(Text Mode Zero) Tj T*
1 Tr
(Text Mode One) Tj T*
2 Tr
(Text Mode Two) Tj
ET
The result is illustrated in Figure 6-5.
[image: The simple text rendering modes]

Figure 6-5. The simple text rendering modes

Defining and Embedding Fonts

A font is a collection of
 glyphs (character shapes) for a particular
 character set. In PDF, a font is composed of a
 font dictionary which defines the metrics,
 character set, and encoding (mapping of character codes in text strings to
 characters in the font), together with the font
 program (which is the actual font file), in a variety of
 formats (Type 1, TrueType etc).
Font Types in PDF

PDF allows the use of the major popular font formats, together
 with Type 3 fonts which allow the encoding of any
 other font type (for example, legacy bitmap fonts) by defining the
 character shapes directly using a collection of PDF graphics
 operators.
	Type 1 fonts
	Introduced with font type /Type1 in the font dictionary. Type 1 is
 an Adobe font format originally for use with PostScript. The
 standard 14 fonts are defined as Type 1 fonts. Multiple Master
 Type 1 fonts (/MMType1) are an
 extension of Type 1 allowing the automatic generation of many font
 styles from a one set of outlines.

	TrueType fonts
	Introduced with font type /TrueType in the font dictionary. Based
 on Apple’s TrueType font format (also frequently used in Microsoft
 Windows).

	Type 3 fonts
	Introduced with font type /Type3. These are fonts composed of
 streams of PDF graphics operators. This means they can include
 colors and shadings, so are more flexible, but have no hinting
 mechanisms for clear display at small sizes. Often used to emulate
 other font formats (for example, bitmap fonts).

	CID fonts
	These are composite fonts, intended
 to support multibyte character sets (where a font has a huge
 number of glyphs, such as Chinese). They are not discussed in this
 text.

Type 1 Fonts

We will use Type 1 fonts as an example. Table 6-4 summarizes the entries in a Type 1 font
 dictionary.
Table 6-4. Type 1 font dictionary (*denotes required entry, **denotes
 required except for the standard 14 fonts)
	Key	Value type	Value
	/Type*	name	Must be /Font.
	/Subtype*	name	Must be /Type1.
	/BaseFont*	name	The PostScript name for the font.
	/FirstChar**	integer	The first code in the /Widths array.
	/LastChar**	integer	The last code in the /Widths array.
	/Widths**	array of integers	Array of length (/LastChar - /FirstChar + 1), giving the glyph
 width for those characters in thousandths of text space
 units.
	/FontDescriptor**	indirect reference
 to dictionary	A font descriptor dictionary giving
 the font’s metrics (other than the glyph widths).
	/Encoding	name or dictionary	The font’s character encoding, for example /MacRomanEncoding or /WinAnsiEncoding. More complicated
 ones are described by dictionaries.
	/ToUnicode	stream	A stream containing instructions for the extraction of
 text content. See Extracting Text from a Document.

There are 14 standard Type 1 fonts in PDF. These are fonts where
 the metrics and outlines (or suitable substitution fonts) must be
 available in any PDF application. Nowadays, however, Adobe recommends
 that all fonts are fully embedded, even these. The standard fonts
 are:
	Times-Roman
	Times-Bold
	Times-Italic
	Times-BoldItalic
	Helvetica
	Helvetica-Bold
	Helvetica-Oblique
	Helvetica-BoldOblique
	Courier
	Courier-Bold
	Courier-Oblique
	Courier-BoldOblique
	Symbol
	ZapfDingbats

For example, here is a simple Type 1 font:
1 0 obj
<< /Type /Font
 /Subtype /Type1
 /BaseFont /Times-Roman
 /FirstChar 0
 /LastChar 255
 /Widths [255 255 255 255 ... 744 268 380 380 380 380 380 380 380 380 380 380]
 /FontDescriptor 2 0 R
 /Encoding /WinAnsiEncoding
>>
The ellipsis ... is content we
 have omitted, not part of the PDF language. We discuss the /FontDescriptor and /Encoding entries later. The /Widths array gives the widths in thousandths
 of a text space unit for each of the 256 characters in this font.

Font Encodings

The font encoding describes the mapping
 between character codes (characters in the strings used in content
 streams) and glyph descriptions in the font. Font programs have their
 own built-in encodings, but the PDF font can alter the encoding to use a
 Macintosh font with a Microsoft Windows encoding, or to use a
 single-byte encoding to select up to 256 characters from a font with
 more than 256 glyphs (e.g., variations on characters or
 ligatures).
The simplest /Encoding entry is
 just the name of one of the standard encodings, which are defined in the
 PDF Standard, Appendix D. More complicated encodings are defined by
 using a dictionary instead of a name for the encoding. The entries in
 this dictionary are summarized in Table 6-5.
Table 6-5. Entries in an encoding dictionary
	Key	Value type	Value
	/Type	name	Must be /Encoding
	/BaseEncoding	name	The base encoding, from which the
 /Differences entry defines
 differences. This is one of the predefined encodings /MacRomanEncoding, /MacExpertEncoding, or /WinAnsiEncoding.
 If this entry is absent, the differences are from the font
 file’s built-in encoding.
	/Differences	array of integers
 and names	Defines the differences from the base encoding. Contains
 zero or more sections each beginning with a number
 n followed by glyph names for character
 n, n+1, n+2 etc. For example [6 /endash
 /emdash 34 /space] maps 6 to /endash, 7 to /emdash, and 34 to /space.

In Example 6-1, the font has an encoding that
 defines a difference from the built-in font encoding by replacing
 character 1 by the character /bullet
 (the bullet point). This means that the PDF viewer can cut and paste the
 text properly, because it now knows that character code 1 is a bullet
 point (names like /bullet are
 predefined in the Adobe Glyph List). It makes no
 difference to the display of the PDF.
Example 6-1. A font encoding for a font with the bullet point added
25 0 obj
<< /Type /Font
 /Subtype /Type1
 /Encoding 23 0 R Reference to the encoding dictionary.
 /BaseFont /Symbol
 /ToUnicode 24 0 R Instructions for conversion to Unicode.
>>
endobj

23 0 obj Encoding dictionary
<< /Type /Encoding
 /BaseEncoding /WinAnsiEncoding The base encoding.
 /Differences [1 /bullet] The differences
>>
endobj

Embedding a Font

When creating a PDF file, the fonts must be
 embedded, so that the glyph descriptions and
 encodings are available to the program showing the PDF or processing it
 in other ways. To embed a font:
	Various details from the font file are extracted—a process
 that varies depending upon the font format in question. These
 details (metrics, encodings etc.) are used to fill out a font
 dictionary, the font metrics, and the font encoding
 dictionary.

	These details can now be stripped from the font file in
 question, if that is allowed by the font format, leaving just the
 glyph descriptions—all this information is now in the font
 dictionary. This reduces the size of the embedded font.

	The font may be subsetted, removing whole
 glyph descriptions, reducing the font file to one which holds only
 the characters which are actually used. For example, a font only
 used for the title of a document may only actually use ten
 characters. Depending on the font format, the encoding may have to
 be altered to place all these characters in the first few character
 positions in the font so they are numbered 1,2,3…. Subset fonts may
 be identified by a prefix formed of six uppercase letters followed
 by a +, such as RTFGRF+. This unique code is generated
 when the subset is created to allow different subsets to be
 distinguished from one another.

An example of an embedded font is given in Example 6-2.
Example 6-2. An embedded font, including encoding and font
 descriptor
9 0 obj
<</Type /Font
 /Subtype /TrueType It's a TrueType font
 /BaseFont /GCCBBY+TT8Et00 Font is TT8Et00. GCCBBY+ prefix identifies as a subset font.
 /FontDescriptor 8 0 R
 /FirstChar 1 There are 41 characters in this font.
 /LastChar 41
 /Widths
 [603 603 603 603 603 603 603 603 603 603 603 603 603 603 The widths. It's a fixed-width font.
 603 603 603 603 603 603 603 603 603 603 603 603 603 603
 603 603 603 603 603 603 603 603 603 603 603 603 603]
 /Encoding 14 0 R
>>

14 0 obj The font encoding.
<< /Type /Encoding
 /BaseEncoding /WinAnsiEncoding The base encoding
 /Differences The changes. In this case, it's a subset font with the characters at position 1 onward.
 [1 /w /i /d /g /e /t /s /T /h /space /r /u /l /a /x /bracketleft
 /underscore /J /o /n /S /m /quotesingle /A /p /c /bracketright
 /one /colon /braceleft /b /k /braceright /v /period /parenleft
 /two /parenright /asterisk /y /P]
>>
endobj

8 0 obj The font descriptor, giving the remaining metrics.
<< /Type /FontDescriptor
 /FontName /GCCBBY+TT8Et00
 /FontBBox [0 -205 602 770]
 /Flags 4
 /Ascent 770
 /CapHeight 770
 /Descent -205
 /ItalicAngle 0
 /StemV 90
 /MissingWidth 602
 /FontFile2 12 0 R The actual font file, here in TrueType format.
>>
endobj

The details of the actual font formats (Type1, TrueType etc.) are
 not discussed here—in fact, they are not discussed in the PDF Standard
 either, but by external documents from the providers of those font
 formats.

Extracting Text from a Document

It is customary to include enough information in a file’s font
 dictionaries to allow the actual character identities (rather than just
 the glyphs) to be retrieved. This is important to allow users to search
 and copy text from PDF viewing applications like Adobe Reader. In can also
 be used, in a more limited capacity, to allow edits to be made to the
 textual content of a document.
There are two mechanisms for this: the /Encoding entry in the font (which maps
 character codes to Adobe Glyph List entries like /bullet), and a more modern mechanism, the
 /ToUnicode entry which provides a
 program in a language defined by Adobe which maps character codes directly
 to Unicode entities. Here is an example of a /ToUnicode program:
23 0 obj
<< /Length 317 >>
stream
/CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo <<
/Registry (Symbol+0) /Ordering (T1UV) /Supplement 0 >> def
/CMapName /Symbol+0 def
1 begincodespacerange <01> <01> endcodespacerange
1 beginbfrange
<01> <01> <2022> Maps character code 1 to Unicode U+2022, the bullet point
endbfrange
endcmap CMapName currentdict /CMap defineresource pop end end
endstream
endobj
Another hardship in the extraction of text is reconstructing the
 text operators within the content stream. Operators may split up the text
 for kerning or justification, and hyphenation at the end of lines can
 interrupt the stream of characters. Indeed, it is even possible that the
 text operators may be out of order. Usually, though, a good reconstruction
 of text may be produced from most modern files.

Resources

As well as the PDF Standard, there are a number of other documents
 which provide further detail on the topics discussed in this
 chapter:
	Unicode is described fully in The Unicode Standard, Version 5.0,
 published by The Unicode Consortium. A more digestible introduction is
 O’Reilly’s own Unicode
 Explained by Jukka K. Korpela.

	Fonts and Encodings by
 Yannis Haralambous (O’Reilly) explains the various font
 formats used by PDF.

	 The
 Adobe Font and Type Technology Center is a collection of
 historic and current documents for the various font formats and
 encoding systems, including pre-Unicode methods for encoding foreign
 languages.

Chapter 7. Document Metadata and Navigation

In this chapter, we discuss four topics related not to the visual
 appearance of a PDF document, but to the ancillary data which may also be
 included for interactive, onscreen use of documents, and the metadata used
 to carry extra information with a document for use by programs in a PDF
 workflow.
	Destinations
	Data structures defining a position within a file. They can be
 used to specify where a bookmark or
 hyperlink points to. Bookmarks (properly called
 the document outline) are used as a table of
 contents for the document.

	XML Metadata
	A stream containing an XML file in a specified format,
 containing some of the same metadata as the document information
 dictionary, together with additional fields.

	File Attachments
	Allow whole files to be encapsulated in a document, much like an
 email attachment.

	Annotations
	Allow text and graphics to be applied on top of a PDF page,
 separate from the main page content, for display by onscreen readers.
 One particular kind of annotation is the
 hyperlink, which allows a user to click
 somewhere on a page and be redirected to a destination elsewhere in
 the file.

Bookmarks and Destinations

A document’s bookmarks (properly called the
 document outline) are a tree of entries (typically
 titles of chapters, sections, paragraphs etc.) which can be clicked on in
 a PDF viewer to move around the document. Each entry has some text and a
 destination describing where it links to.
Destinations

A destination defines a place in a PDF file, consisting of the
 page number, position within that page, and magnification to use when
 viewing that page. Destinations may be defined explicitly (as we will do
 for simplicity) or referenced by a name and looked up in a document-wide
 name tree listing all destinations. The bookmarks
 are typically displayed alongside the document in a PDF viewer.
Destinations are defined using an array object, with the contents
 depending upon the kind of destination. Destination syntax is summarized
 in Table 7-1.
Table 7-1. Syntax for destinations. “page” is an indirect reference to a
 page object. Destinations use the crop box (or media box if there is
 no crop box) unless otherwise specified.
	Array	Description
	[page /Fit]	Display the page at a scale which just fits the whole
 page in the window both horizontally and vertically.
	[page /FitH top]	Display the page with the vertical coordinate
 top at the top edge of the window, and the
 magnification set to fit the document horizontally.
	[page /FitV
 left]	Display the page with the horizontal coordinate
 left at the left edge of the window, and
 the magnification set to fit the document vertically.
	[page /XYZ left
 top zoom]	Display the page with (left,
 top) at the upper-left corner of the window
 and the page magnified by factor zoom. A
 null value for any parameter indicates no change.
	[page /FitR left
 bottom right
 top]	Display the page zoomed to show the rectangle specified
 by left, bottom,
 right, and
 top.
	[page /FitB]	Display the page like /Fit, but use the bounding box of the
 page’s contents, rather than the crop box.
	[page /FitBH
 top]	Display the page like /FitH, but use the bounding box of the
 page’s contents, rather than the crop box.
	[page /FitBV
 left]	Display the page like /FitV, but use the bounding box of the
 page’s contents, rather than the crop box.

The Document Outline (Bookmarks)

The document outline consists of a tree of outline entries defined
 by an outline dictionary and a number of
 outline item dictionaries. The outline dictionary
 is pointed to by the /Outlines entry
 in the document catalog. The subentries (children) for an entry may be
 shown by default (open) or concealed by default
 and only revealed by clicking (closed). The
 outline dictionaries are summarized in Tables 7-2 and 7-3.
Table 7-2. Entries in an outline dictionary
	Key	Value type	Value
	/Type	name	If present, must be /Outlines.
	/First	indirect reference to dictionary	An outline item dictionary for the first top-level item
 in the document outline. Required if any document outline
 entries present.
	/Last	indirect reference to dictionary	An outline item dictionary for the last top-level item in
 the document outline. Required if any document outline entries
 present.
	/Count	integer	The total number of open outline entries in all parts of
 the outline. May be omitted if no open entries.

Table 7-3. Entries in an outline item dictionary *denotes a required
 entry
	Key	Value type	Value
	/Title*	text string	Text to be displayed for this entry.
	/Parent*	indirect reference to
 dictionary	Pointer to the parent of this item in the outline tree.
 Either another outline item dictionary or the top-level outline
 dictionary.
	/Prev	indirect reference to
 dictionary	Pointer to the previous item at this level, if there is
 one.
	/Next	indirect reference to dictionary	Pointer to the next item at this level, if there is
 one.
	/First	indirect reference to dictionary	Pointer to the first child item of this entry, if it has
 one.
	/Last	indirect reference to dictionary	Pointer to the last child item of this entry, if it has
 one.
	/Count	integer	The number of open entries below this one, if this entry
 is open. If closed, a negative integer whose absolute value is
 the number of descendants which would be revealed if this item
 were to be opened by the user.
	/Dest	name, string or array	The destination. Arrays are destinations, names are
 references to entries in the /Dests entry in the document catalog,
 strings are references to entries in the /Dests entry in the document’s name
 dictionary.

Building an example

Consider a file with three pages. We wish to build the following
 hierarchy:
	Part 1 (points
 to page one)

		Part 1A
 (points to page two)

	Part 1B
 (points to page three)

The resultant code is shown in Example 7-1. The page objects in this document have
 object numbers 3, 5, and 7 for pages one, two and three respectively.
 Object 12 is the document catalog. Object 11 is the document outline
 dictionary, and objects 8, 9, and 10 are document outline item
 dictionaries.
Example 7-1. An example document outline
8 0 obj
<< /Parent 10 0 R /Title (Part 1B) /Dest [7 0 R /Fit] /Prev 9 0 R >>
endobj
9 0 obj
<< /Parent 10 0 R /Title (Part 1A) /Dest [5 0 R /Fit] /Next 8 0 R >>
endobj
10 0 obj
<< /Parent 11 0 R /First 9 0 R /Dest [3 0 R /Fit] /Title (Part 1) /Last 8 0 R >>
endobj
11 0 obj
<< /First 10 0 R /Last 10 0 R >>
endobj
12 0 obj
<< /Outlines 11 0 R /Pages 1 0 R /Type /Catalog >>

Adobe Reader displays the document and its outline as shown in
 Figure 7-1.
[image: Example PDF with bookmarks in Adobe Reader]

Figure 7-1. Example PDF with bookmarks in Adobe Reader

XML Metadata

Starting with PDF 1.4, metadata streams can
 be used to attach XML metadata to the whole document, or to individual
 elements within it. Document level metadata streams extend and supersede
 the document information dictionary (which is almost always included for
 compatibility with older PDF programs).
The metadata is stored uncompressed and (typically) unencrypted, and
 in such a way that external tools which don’t know about PDF can find it
 within a PDF file easily.
The XML uses markup defined by the Extensible Metadata Platform
 (XMP) which is described in Adobe’s XMP: Extensible Metadata
 Platform. This format includes a method of embedding the
 metadata in other formats (e.g., PDF) in a platform-independent way so that programs which
 cannot understand the enclosing format can still extract the XMP data.
 Full details of the XMP Format are on Adobe’s website.
Example XMP metadata is shown in Example 7-2.
 You can see some of the familiar entries from the document information
 dictionary. Note also the sequence /Type
 /Metadata /Subtype /XML which identifies this stream as XMP
 metadata. A metadata stream is added to a document by using the /Metadata entry in the document catalog.
Example 7-2. XML Metadata for the ISO PDF Format reference manual PDF. The ↵
 symbol is used to indicate a line which continues without a carriage
 return. The ␣ symbol is used to represent a space character.
4884␣0␣obj<</Length␣3508/Type/Metadata/Subtype/XML>>stream
<?xpacket␣begin='ï»¿'␣id='W5M0MpCehiHzreSzNTczkc9d'?>
<?adobe-xap-filters␣esc="CRLF"?>
<x:xmpmeta␣xmlns:x='adobe:ns:meta/'␣x:xmptk='XMP␣toolkit␣2.9.1-14,␣framework␣1.6'>
<rdf:RDF␣xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'↵
xmlns:iX='http://ns.adobe.com/iX/1.0/'>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:pdf='http://ns.adobe.com/pdf/1.3/'↵
␣pdf:Producer='Acrobat␣Distiller␣6.0.1␣for␣Macintosh'>↵
</rdf:Description>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:xap='http://ns.adobe.com/xap/1.0/'↵
␣xap:CreateDate='2004-11-14T08:41:16Z'↵
␣xap:ModifyDate='2004-11-14T16:38:50-08:00'↵
␣xap:CreatorTool='FrameMaker␣7.0'↵
␣xap:MetadataDate='2004-11-14T16:38:50-08:00'>↵
</rdf:Description>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/'↵
␣xapMM:DocumentID='uuid:919b9378-369c-11d9-a2b5-000393c97fd8'/>
<rdf:Description␣rdf:about='uuid:b8659d3a-369e-11d9-b951-000393c97fd8'↵
␣xmlns:dc='http://purl.org/dc/elements/1.1/'↵
␣dc:format='application/pdf'>↵
<dc:description><rdf:Alt>↵
<rdf:li␣xml:lang='x-default'>␣Adobe␣Portable␣Document␣Format␣(PDF)␣</rdf:li>↵
</rdf:Alt></dc:description>↵
<dc:creator>␣<rdf:Seq>␣<rdf:li>↵
Adobe␣Systems␣Incorporated␣</rdf:li>␣</rdf:Seq>␣</dc:creator>↵
<dc:title>␣<rdf:Alt>↵
<rdf:li␣xml:lang='x-default'>PDF␣Reference,␣version␣1.6␣</rdf:li>␣</rdf:Alt>↵
</dc:title></rdf:Description>↵
</rdf:RDF>
</x:xmpmeta>
␣␣␣
(Many more lines of padding)
<?xpacket␣end='w'?>
endstream
endobj

Annotations and Hyperlinks

Annotations are used in PDF to add comments or interactive elements
 outside of the page content itself. Each viewer application (for example
 Adobe Reader or Mac OS X Preview) may display these annotations in a
 different way, even changing between software versions, so the exact
 visual effect cannot be relied upon. The annotations do not affect the
 printed output.
One or more annotations may be associated with each page using an
 array under the entry /Annots in the
 page dictionary. Each annotation is a dictionary. The more important
 entries are described in Table 7-4. Each
 type of annotation has additional entries in this dictionary.
Table 7-4. Entries in an annotation dictionary (*denotes required
 entry)
	Key	Value type	Value
	/Type	name	If present, must be /Annot.
	/Subtype*	name	The type of this annotation.
	/Rect*	rectangle	The location and size of the annotation in default user
 space units.
	/Contents	text string	The textual content of this annotation, or if none, an
 alternate human-readable description.

We’ll look at two kinds of annotations: text
 annotations which can be used to add comments, and
 link annotations which are used to make hyperlinks
 within a document. There are many other types for drawing on the document,
 highlighting text and adding printer’s marks. In File Attachments, we use file attachment
 annotations to add attachments to individual pages.
First, a text annotation. Here, the /Subtype is /Text. The code is shown in Example 7-3. We set the extra annotation dictionary entry
 /Open to true to indicate the note will be visible when
 the document is opened. The background color is set to White with the
 /C entry.
Example 7-3. A Text annotation
6 0 obj
<<
 /Subtype /Text
 /Open true
 /Contents (An example text annotation)
 /Type /Annot
 /Rect [400 100 500 200]
 /C [1 1 1] RGB (1, 1, 1) i.e., White
>>

/Annots [6 0 R] Extra entry in page dictionary

The result in Adobe Reader is shown in Figure 7-2. Note that Adobe Reader ignores the
 /Rect entry here—other viewers may use
 it.
[image: Example PDF with text annotation on page 1 in Adobe Reader]

Figure 7-2. Example PDF with text annotation on page 1 in Adobe
 Reader

Now, let’s try a link annotation, to build a hyperlink from page one
 to page three. A link annotation has subtype /Link and a /Dest entry giving the destination (described in
 Destinations). The /Rect entry defines the area of the
 hyperlink.
The code is shown in Example 7-4.
Example 7-4. A link annotation
6 0 obj
<<
 /Subtype /Link
 /Dest [4 0 R /Fit]
 /Type /Annot
 /Rect [45 760 260 800]
>>

/Annots [6 0 R] Extra entry in page dictionary

The result in Adobe Reader is shown in Figure 7-3.
[image: Example PDF with a link annotation on page 1 in Adobe Reader]

Figure 7-3. Example PDF with a link annotation on page 1 in Adobe
 Reader

File Attachments

An attachment is a way of including one or more files (of any type)
 within a PDF document. Files may be attached to the document as a whole,
 or to individual pages. Typically, the PDF viewer will display a list of
 any attachments, allowing the user to open or save them. This facility
 could be used, for example, to bundle example resources along with a PDF
 of a slide-show presentation.
The embedded file itself is simply included in a stream object, with
 /Type /EmbeddedFile as an additional
 entry in the stream dictionary. The code for a sample embedded file is
 shown in Example 7-5.
Example 7-5. An embedded file
8 0 obj
<< /Type /EmbeddedFile /Length 35 >>
stream
This is a text file attachment...

endstream
endobj

The embedded file stream is referenced in two quite different ways:
 one for attachments to the whole document, another for attachments to
 particular pages.
To attach to the whole document, an /EmbeddedFiles entry is included in the name
 dictionary referenced by the /Names
 entry in the document catalog. The code is shown in Example 7-6.
Example 7-6. PDF Code for an attachment at the document level. The embedded
 file is object 8 (see Example 7-5).
9 0 obj
<< /Names
 << /EmbeddedFiles
 << /Names
 [(attachment.txt) << /EF << /F 8 0 R >> /F (attachment.txt) /Type /F >>] >>
 >>
 /Pages 1 0 R
 /Type /Catalog >>
endobj

To attach to a single page, a special kind of annotation is used,
 listed as usual in the /Annots dictionary in the page dictionary.
 The code is shown in Example 7-7.
Example 7-7. PDF code for an attachment to a particular page. The embedded
 file is object 8 (see Example 7-5).
9 0 obj
<<
 /Type /Page

 (Other dictionary entries as usual)

 /Annots
 [<< /FS << /EF << /F 8 0 R >> /F (attachment.txt) /Type /F >>
 /Subtype /FileAttachment
 /Contents (attachment.txt)
 /Rect [18 796.88976378 45 823.88976378]
 >>]
>>
endobj

Adobe Reader’s display of the attachment in a sidebar is shown in
 Figure 7-4.
[image: Example PDF with attachment on page three in Adobe Reader]

Figure 7-4. Example PDF with attachment on page three in Adobe Reader

Chapter 8. Encrypted Documents

PDF documents can be encrypted using a variety of industry-standard
 schemes which have increased in complexity and security over the years,
 starting with PDF version 1.1. The PDF standard provides, in addition, a
 general mechanism for encapsulating third-party encryption and security
 policies.
Encryption applies, with a few exceptions, to streams and strings in
 the file, but does not encrypt numbers or other PDF data types, nor does it
 encrypt the file as a whole. Thus, the document’s object structure remains
 visible to applications without the need for decryption, but the substantive
 content of the document is safeguarded.
The more modern PDF encryption methods allow the file’s XMP metadata
 stream (XML Metadata) to be left unencrypted so it may be
 extracted and read by programs which don’t know how to open encrypted PDF
 files, or if the password is not known.
Introduction

Due to the complexity of encrypted documents, it isn’t possible to
 manually build an example (as we have in other chapters), but we can use
 pdftk to process our standard hello.pdf file into an encrypted one, encypted.pdf:
pdftk hello.pdf output encrypted.pdf encrypt_40bit owner_pw fred
This creates the output file encrypted.pdf using the 40-bit RC4 method with
 an owner password of “fred”. The owner
 password is the master password for the file. Someone who has
 it can do anything with the file, including re-encrypting it or changing
 the security settings. The user password allows the
 user to perform certain actions (view the document, print the document
 etc.) defined by the owner when the file was encrypted.
In our example, we’re using a blank user password, which is very
 common. This means the file opens right away in a PDF viewer, without any
 password being entered. We’ve banned the user from doing anything other
 than viewing the file (see Encryption and Decryption for details
 of the pdftk syntax for permissions and
 different encryption types).
When the file is opened in Adobe Reader, the only noticeable change
 is that (SECURED) is appended to the
 window’s title bar. By opening the File...Properties window, and choosing the
 Security tab, the security properties
 can be viewed—see Figure 8-1. A more
 technically-minded display is obtained by clicking on the Show Details... button to bring up the window
 shown in Figure 8-2.
[image: Security properties display in Adobe Reader for encrypted.pdf]

Figure 8-1. Security properties display in Adobe Reader for
 encrypted.pdf

[image: Security properties further detail display in Adobe Reader for encrypted.pdf]

Figure 8-2. Security properties further detail display in Adobe Reader for
 encrypted.pdf

If using a program which can edit PDF files, such as Adobe Acrobat,
 the user will the prompted for the owner password upon attempting any
 editing operation not allowed by the permissions, as shown in Figure 8-3.
[image: Entering the owner password in a program capable of PDF editing (here, Adobe Acrobat)]

Figure 8-3. Entering the owner password in a program capable of PDF editing
 (here, Adobe Acrobat)

A similar dialog is presented upon opening the file if the document
 has a non-blank user password, as shown in Figure 8-4. If the password is not known, the
 file cannot be opened, even for viewing.
[image: Opening a file with a non-blank user password in Adobe Reader]

Figure 8-4. Opening a file with a non-blank user password in Adobe
 Reader

Example 8-1 shows the content of our new
 file. See if you can spot the differences from the standard hello.pdf file in Example 2-2.
Example 8-1. An encrypted file
%PDF-1.1
%âãÏÓ
1 0 obj
<< /Kids [2 0 R] /Type /Pages /Count 1 >>
endobj
3 0 obj
<< /Length 72 >>
stream
(72 bytes of encrypted data)
endstream
endobj
2 0 obj
<<
 /Rotate 0
 /Parent 1 0 R
 /Resources
 <<
 /Font
 <<
 /F0
 <<
 /BaseFont /Times-Italic
 /Subtype /Type1
 /Type /Font
 >>
 >>
 >>
 /MediaBox [0.000000 0.000000 595.275590551 841.88976378]
 /Type /Page
 /Contents [3 0 R]
>>
endobj
4 0 obj
<< /Pages 1 0 R /Type /Catalog >>
endobj
5 0 obj The encryption dictionary
<<
 /R 2
 /P -64
 /O (ífff÷ÚÉMº]Òq)È¢ÏºA»fgygy^ÏynÔZ¾gtëÙ)
 /Filter /Standard
 /V 1
 /U (gdË^Wîg:lÆr({M8®qµG9Tæ$YTscåGùLÂÐþ¬)
>>
endobj xref
0 6
0000000000 65535 f
0000000015 00000 n
0000000199 00000 n
0000000074 00000 n
0000000427 00000 n
0000000478 00000 n
trailer
<<
 /Encrypt 5 0 R Reference to encryption dictionary at object 5
 /Root 4 0 R
 /Size 6
 /ID [<a7d625071f5b223d97922e9e6c3fff23><e546c20487a77c4156083bf56f69bb4d>]
>>
startxref
617
%%EOF

The Encryption Dictionary

Look again at Example 8-1. An encryption
 dictionary has been included (object 5) and referenced by the /Encrypt entry in the trailer dictionary. This
 encryption dictionary contains, in this instance:
	The /R and /V entries which, together, define which
 encryption algorithms are to be used.

	The /P entry, which is a
 bitfield indicating the permissions (view, print etc.) which are
 attached to the use of the user password.

	The /O and /U entries which are used to verify the
 owner and user passwords respectively.

	The /Filter entry which is
 /Standard for Adobe security
 methods.

Standard encryption methods provided are:
	40-bit RC4 (PDF 1.1)
	128-bit RC4 (PDF 1.4)
	128-bit AES Encryption (PDF 1.5)
	256-bit AES Encryption (PDF 1.7 ExtensionLevel 3)

The permissions bitfield for 40-bit RC4 (the first method to be
 introduced) allows for a /P entry
 allowing a combination of printing, modification of the document,
 extraction of text and graphics, and annotation. The 128-bit RC4 and later
 methods allow more permission options.
The permissions are described in prose by the ISO standard and so
 the consistency of their implementation by different PDF processing
 programs cannot be relied upon.

Reading Encrypted Documents

Any encrypted file may be read as usual, and parsed into an object
 graph, without regard to its encryption. We can then inspect it for
 encryption by checking for the existence of an /Encrypt entry in the trailer dictionary. Then,
 we try to decrypt the file using the blank user password:
	The contents of the encryption dictionary are read, and the
 encryption type determined.

	The user password is authenticated (it is processed using a
 one-way algorithm, and compared with the /U entry in the encryption
 dictionary).

	Using a further algorithm, an encryption key is
 calculated.

	This key is used to decrypt each stream and string in the file.
 This can be done all at once or, more efficiently, only when an object
 is actually needed.

	The permissions are read, and enforced in any further operations
 done on the file.

The actual algorithm used for each step depends upon the kind of
 encryption in use. The same process is used if the user password is
 non-blank, using the password entered by the user instead.
To decrypt using the owner password, a similar process is followed,
 except that the permissions need not be applied. If the file is opened
 with the user password and later, the owner password is entered, the
 permissions may be relaxed.

Writing Encrypted Documents

To write a parsed PDF to a file with encryption:
	The /U and /O entries are calculated based a one-way
 algorithm combining the owner and user passwords.

	The rest of the entries in the encryption dictionary are built,
 including the permissions, and the encryption dictionary is added to
 the trailer dictionary.

	Each string and stream in the file is encrypted using a key
 calculated from the encryption dictionary.

	The PDF object graph is flattened to a file in the usual
 fashion.

Again, the actual algorithms involved at each stage vary with the
 encryption method in use.

Editing Encrypted Documents

If the permissions on a file allow it to be edited with just the
 user password, we must be able to write the modified file, still encrypted
 with the same owner and user password. However, the algorithms given above
 would require the owner password to be known to encrypt the file again for
 writing.
To solve this problem, the encryption parameters from the original
 reading of the file are retained, even though the encryption dictionary
 itself must be removed once the file is decrypted. The encryption
 dictionary (including the /O and
 /U entries) may therefore be
 reconstructed.

Chapter 9. Working with Pdftk

Pdftk is a multiplatform
 command-line tool built on the iText library (which
 is described in iText for Java and C#). It has facilities for merging,
 splitting, and stamping documents, and for setting and reading
 metadata.
Obtaining Pdftk
Pdftk is an open source program,
 licensed under the GPL. Binary packages for Microsoft Windows and Mac OS
 X, and source code for all platforms can be found at PDF
 Labs.
The creator of pdftk, Sid
 Steward, is also the author of O’Reilly’s PDF
 Hacks—a collection of tools and tips for working with
 PDF.

Command Line Syntax

Pdftk has a somewhat unusual
 command-line interface, where elements often have to appear in a
 particular order. We can split them into four groups, in the order they
 are specified:
	The input file or files, and possible input passwords.

	The operation and any arguments it
 requires.

	The output and any output passwords and permissions.

	Sundry output and other options.

The full details can be found in the manual for pdftk—in this chapter, we give only the subset
 needed for our examples.

Merging Documents

To merge documents, we use the cat operation. This is the default operation, so
 we don’t actually need to specify the cat keyword. For example, to merge the pages of
 three files into one, in order, we need:
pdftk file1.pdf file1.pdf file3.pdf output output.pdf
This writes a new file to output.pdf containing all the pages of
 file1.pdf, file2.pdf, and file3.pdf, in order. The output file may not be
 the same as any of the input files.
Pdftk allows us to choose which
 pages are taken from each document, and what the viewing rotation of each
 output page is. Such page ranges are used by listing
 them in order after the inputs. For example:
pdftk file1.pdf file2.pdf 1-5 even output out.pdf
takes pages one to five inclusive from file1.pdf and pages two, four, six… from
 file2.pdf.
Page ranges in pdftk
A page range contains up to five parts:
	The input PDF handle, e.g., B. This is discussed below.

	The beginning page number.

	Optionally a dash, followed by the ending page number.

	An optional qualifier (even
 or odd), which modifies the page
 range already given.

	The page rotation:
	N (set rotation to
 0°)

	E (set rotation to
 90°)

	S (set rotation to
 180°)

	W (set rotation to
 270°)

	L (rotate by
 -90°)

	R (rotate by
 +90°)

	D (rotate by
 +180°)

Either page number can be end
 to refer to the last page of a document. The beginning page number can
 be larger than the ending page number (the pages will be taken in
 reverse order).
For example:
	3 (page three only)

	1-6 (pages one to six
 only)

	1,4,5-end (page one, page
 four, and all pages from page five onwards)

	end-1 (all pages in reverse
 order)

To include pages from a file at two or more distinct points in the
 output, we can associate handles with each file by
 writing, for example A=input.pdf, and
 refer to those handles when giving the page ranges.
	A1 A B The first page of
 document A (duplicated as a cover
 page), then the whole of documents A and B.

	A4-50oddD Odd pages of file
 labeled A between 4 and 50, rotated
 by 180°.

For example:
pdftk A=file.pdf B=file2.pdf A1 A B output out.pdf
What Happens when Files are Merged

To perform a simple merge of PDF files in the manner of pdftk, the following steps might be
 performed:
	Read each file into memory and create a graph of PDF objects,
 possibly lazily (i.e., parsing objects on demand, since not all of
 them will be needed if only certain pages are included).

	Renumber the objects in the object graphs so they are mutually
 exclusive i.e., 1...p, p+1...q, q+1...r etc.

	Put all these PDF objects into a new object graph.

	Create a new page tree, containing the required combination of
 page objects from the original files.

	Create a new trailer dictionary and root object, linking to
 the new page tree.

	Write the new document to a file.

A fully functioning merge would also need to:
	Trim references to pages no longer in the document due to the
 use of a page range. Were this not done, a single reference to a
 page which is not in the output can result in the inclusion of all
 of the objects from that page, bloating the output.

	Remove duplicate font definitions. Often, files to be merged
 come from the same source, and share content like fonts. These can
 be deduplicated to save space.

	Combine the other parts of the file—bookmarks, destinations,
 forms and so on. Generally speaking, data which is strictly per-page
 survives automatically, but document-wide data needs specific
 merging support.

	Making decisions on where to take metadata and PDF version
 numbers from (for example, using the highest PDF version number
 amongst the inputs and taking the metadata from the first given
 file).

Splitting Documents

To take a selection of pages from a document, we use the same syntax
 as for merging, because our operation is equivalent to merging just one
 file with a page range:
pdftk file1.pdf 2-20 output out.pdf
This writes pages 2-20 inclusive to the output file. Pdftk has a separate facility for splitting a
 file into individual pages and writing them all to disk at once, using the
 burst operation.
pdftk input.pdf burst
By default, this writes the pages to pg_0001.pdf, pdf_0002.pdf etc. To write them with
 differently-formatted names, an output string in the style of the built-in
 C function printf may be provided. For
 example:
pdftk input.pdf burst output page%03d.pdf
would create page001.pdf,
 page002.pdf etc.
The burst operation also writes the document’s metadata to the file
 doc-data.txt. We consider this
 functionality in Extracting and Setting Metadata.
What Happens when Files are Split

In order to split a PDF into several parts of one or more pages
 each, a program such as pdftk would
 take the following steps:
	Load and parse the input document into an object graph,
 possibly lazily (so that pages which aren’t going to appear in any
 of the output don’t have to be processed).

	Create a new, empty PDF data structure for each new document.
 Create a new page tree for each page range, using the same object
 numbers as the existing document.

	Copy all the objects from the input PDF into each output
 PDF.

	Remove all objects not required in each PDF (i.e., ones which
 are no longer referenced).

To perform the last step correctly, it is important to process
 bookmarks, destinations, and other cross-page objects to remove
 references to pages which no longer appear in a given output file, since
 a single errant reference could result in a source file’s whole object
 graph being included, even though none of it is required.

Stamps and Watermarks

A stamp is a PDF page placed over another so
 that the page contents are combined. A watermark
 (which pdftk calls a
 background) is the same, but the stamp is placed
 under the existing page contents. This doesn’t work well if the pages of
 the input PDF have a colored background, since the watermark often won’t
 show through.
With pdftk, this is achieved
 using the stamp and watermark operations, which place the stamp on
 (or under) all the pages in the given range. If the page sizes differ, the
 stamp is scaled to fit and centered.
For example:
pdftk file.pdf stamp stamp.pdf output output.pdf
How a Stamp is Added

When a program like pdftk adds
 a stamp to an input PDF, the following steps must be taken:
	Load and parse both files into PDF object graphs.

	Rectify the object numbers in both PDFs so that they are
 mutually exclusive. The objects from the stamp PDF may now be added
 to the input PDF.

	The page data for the stamp is appropriately scaled and
 centered with relation to the page size of each page in the source
 PDF.

	The page data for the stamp is appended to the page data for
 source PDF on each page. Resources like fonts and images must all be
 renamed so as not to clash. Any unmatched stack operators (q/Q)
 must be matched up prior to adding the new data.

	The PDF can now be written to the output file.

Extracting and Setting Metadata

Pdftk can extract a document’s
 metadata (author, title etc.) to a text file, either in ASCII format (with
 non-ASCII characters encoded as XML-style numerical entities) or as
 Unicode UTF8. This is achieved with the dump_data or dump_data_utf8 keywords. For example:
pdftk input.pdf dump_data output data.txt
writes the data in Example 9-1 to data.txt.
Example 9-1. Example output of pdftk dump_data operation (ellipses indicate
 where we have truncated the output for brevity)
InfoKey: Creator
InfoValue: XSL Formatter V4.3 R1 (4,3,2008,0424) for Linux
InfoKey: Title
InfoValue: PDF Explained
InfoKey: Producer
InfoValue: Antenna House PDF Output Library 2.6.0 (Linux)
InfoKey: ModDate
InfoValue: D:20110713115225-05'00'
InfoKey: CreationDate
InfoValue: D:20110713115225-05'00'
PdfID0: 57f4673abea4ca58a27e19bf1871dfa
PdfID1: 57f4673abea4ca58a27e19bf1871dfa
NumberOfPages: 90
...
BookmarkTitle: Table of Contents
BookmarkLevel: 1
BookmarkPageNumber: 5
BookmarkTitle: Preface
BookmarkLevel: 1
BookmarkPageNumber: 9
BookmarkTitle: Why Read This Book?
BookmarkLevel: 2
BookmarkPageNumber: 9
BookmarkTitle: Audience
BookmarkLevel: 2
BookmarkPageNumber: 9
...
PageLabelNewIndex: 1
PageLabelStart: 1
PageLabelNumStyle: DecimalArabicNumerals
PageLabelNewIndex: 5
PageLabelStart: 5
PageLabelNumStyle: LowercaseRomanNumerals
PageLabelNewIndex: 13
PageLabelStart: 1
PageLabelNumStyle: DecimalArabicNumerals

This data lists:
	Values and keys from the document information
 dictionary

	The number of pages in the document

	The bookmark titles, levels, and destination pages

	The page labels

The update_info operation can be
 used to perform the reverse: to set the information listed above. There is
 also a corresponding update_info_utf8
 operation. For example, we can modify the data.txt file we created and then use update_info:
pdftk input.pdf update_info data.txt output output.pdf

File Attachments

PDF files can have attachments added at the document or page level.
 The technical foundations of PDF attachments are discussed in Chapter 7. To add an attachment at the file
 level:
pdftk input.pdf attach_files file1.xls file2.xls output output.pdf
The attachment is added to the end of the list of file-level
 attachments. To add an attachment at the page level, use the to_page keyword:
pdftk input.pdf attach_files file1.xls to_page 4 output output.pdf
To extract the attachments from a document, writing them to a given
 directory, we can use the unpack_files
 keyword:
pdftk input.pdf unpack_files output outputs/
This writes the attachments, under their original filenames, in the
 outputs directory.

Encryption and Decryption

Pdftk has facilities for reading
 encrypted files, and for encrypting the output file.
Decrypting Input Files

The input_pw keyword can be
 used to specify owner passwords for the input file(s). The passwords are
 associated with the inputs by using handles, as with page ranges. If no
 handles are given, the passwords are assumed to be given in the same
 order as the input files. If the user password is given instead, most
 pdftk features will not be available,
 because the PDF security model would prevent it.
For example, to merge two files which are encrypted, the passwords
 can be provided thus:
pdftk file1.pdf file2.pdf input_pw fred charles output out.pdf
Here, “fred” is
 the password for file1.pdf,
 “charles” the password
 for file2.pdf.

Encrypting the Output

Pdftk can encrypt the output
 using the 40-bit or 128-bit RC4 encryption methods using the encrypt_40bit and encrypt_128bit keywords. We can specify the
 owner and user passwords using the owner_pw and user_pw keywords. For example, to encrypt a
 file with 128-bit encryption using an owner password, but the blank user
 password:
pdftk input.pdf output output.pdf encrypt_128bit owner_pw fred
Notice we leave out the user_pw
 keyword to indicate a blank user password.
We have not yet specified the operations to be allowed when the
 user password is entered. This can be done by using the allow keyword with one or more of the
 permissions (corresponding to those enumerated in Chapter 8):
	Printing
	DegradedPrinting
	ModifyContents
	Assembly
	CopyContents
	ScreenReaders
	ModifyAnnotations
	FillIn
	AllFeatures (all of the
 above, plus top quality printing)

For example, to allow form filling, but nothing else:
pdftk input.pdf output output.pdf encrypt_128bit allow FillIn owner_pw fred

Compression

In order to view or edit page-level content like streams of graphics
 operators, it is necessary first to remove the compression used for the
 data stream. This can be achieved with the pdftk uncompress modifier:
pdftk compressed.pdf output uncompressed.pdf uncompress
The process can be reversed (following manual editing, for example)
 by using compress
 instead:
pdftk uncompressed.pdf output compressed.pdf compress

Chapter 10. PDF Software and Documentation

In this chapter we list and describe software for viewing, converting,
 editing, and programming with PDF files. We consider both open source
 software, and zero-cost commercial software where it is provided by Adobe or
 operating system manufacturers. There is a large variety of commercial
 software from third parties, which we do not discuss here.
We also list sources of further documentation and information.
PDF Viewers

The job of a PDF viewer is to:
	Display the graphical and textual content of the
 document.

	Allow the user to interact with the document using bookmarks and
 hyperlinks.

	Enable searching of the textual content, and extraction of text
 via cut and paste.

Not every viewer has all of these features. Due to the huge
 complexity of the PDF format and the formats it encapsulates (for example,
 fonts and images), performance can vary significantly—especially on files
 using more modern PDF features.
Adobe Reader

Adobe Reader is Adobe’s own, free PDF viewer and the only one
 guaranteed to support the various proprietary extensions Adobe has made
 to PDF (for example, the more modern kinds of forms and annotations). It
 comes with a PDF plug-in for common web browsers, and is available for
 Microsoft Windows, Mac OS X, Linux, Solaris, and Android. It allows
 forms to be filled in and submitted electronically.
Adobe Reader can be found at Adobe’s website.

Preview

Many Mac OS X users prefer the fast, simple PDF viewer Preview,
 provided with the operating system. It launches more quickly, and is
 smoother in use than Adobe Reader, with good support for searching and
 extracting text. Quick launching is especially important when the PDF
 viewer is loaded within a web browser window as a plug-in. Typically,
 Acrobat Reader is also installed for the occasions when Preview doesn’t
 support a file (for example, a fillable form with JavaScript for a tax
 return).
In addition, Preview has limited (but increasing) editing
 capabilities, described in Editing with Preview on Mac OS X.

Xpdf

Xpdf is a small, fast, open source PDF viewer, running on
 virtually any Unix-like computer where The X Window System is available.
 Support for advanced PDF facilities is limited, but it is a highly
 reliable program for files within its capabilities.
Xpdf can be found at Foo
 Labs’ website.

GSview

GSview is an open source PDF and PostScript viewer for Microsoft
 Windows and Unix. It is based on the venerable and highly reliable
 GhostScript PDF and PostScript interpreter.
GSview and GhostScript (which is required by GSview) can be
 downloaded from the
 GhostScript website.

Software Libraries

Adobe provides its own expensive, commercially-licensed library for
 PDF manipulation, based on the same code as Acrobat itself. In this
 section, we consider popular open source alternatives.
In general, it’s much easier to build libraries to write PDF files
 than to read them. To write a file, one need only understand the small
 subset of PDF required for a particular application (i.e., one compression
 mechanism, one font type etc.) and no complicated parsing mechanisms. To
 read a file, one must implement the whole standard.
iText for Java and C#

iText is a mature open source library for reading and writing PDF
 documents, and for making textual reports using high-level building
 blocks such as paragraphs, lists, tables, and images. It also has
 support for building bookmarks, hyperlinks, annotations, and JavaScript
 actions. Fillable forms can be constructed, and encrypted files are
 supported.
iText can be downloaded from the
 iText Software website.

TCPDF for PHP

TCPDF is a pure PHP library for the generation of PDF reports,
 including text layout, tables, conversion of HTML, annotations,
 hyperlinks, and images. Web services can use TCPDF to build a document
 dynamically and serve it to a PDF viewer running within a web browser,
 or send it by email.
TCPDF can be downloaded, together with a wide range of examples
 from its website.

Processing PDF with Perl

There are a large number of PDF libraries for reading, writing,
 and editing PDF files in Perl, some of which are highly mature, others
 less so. Documentation is often sparse, belying the extensive
 capabilities available.
As with all free Perl modules, the Comprehensive Perl Archive Network
 holds both source code and documentation.

PDF on Mac OS X

Apple’s PDFKit provides a number of classes for use with Apple’s
 supported programming languages (such as Objective C). These
 include:
	PDFView, an onscreen view on a PDF document.

	PDFDocument and PDFPage for document and page-level
 manipulation.

	PDFAnnotation, PDFAction, PDFOutline, and PDFSelection for
 interactive facilities.

Apple’s built-in PDF viewer, Preview, is built on these libraries.
 The PDF Kit Libraries are documented in Apple’s Mac OS X Developer
 Library.

Converting Formats

Format conversions come in three categories:
	Converting to or from a similar, scalable vector format (e.g.,
 PostScript or SVG). In this case, structural information is often
 preserved well.

	Converting from a PDF to a raster image, such as a PNG or
 TIFF.

	Converting from a raster image to a PDF, which often just
 involves simple encapsulation, especially in the case of formats PDF
 knows about, like JPEG.

PDF to PostScript and Back Again

The pdf2ps and ps2pdf command-line programs which ship with
 GhostScript can convert between PDF and PostScript. Sometimes this
 involves quite complicated and slow processing which may lead to larger
 file sizes or the loss of some constructs (for example, text being
 converted to outlines). PDF and PostScript are, after all, very
 different—despite a shared heritage.
ps2pdf and pdf2ps are available from the GhostScript home
 page.

Rasterizing PDF to an Image

The gs program which comes with
 GhostScript can be used to render a PDF page to a raster image at a
 given resolution, suitable for printing or for onscreen use. This is the
 facility used by GSView to display PDF pages. This is achieved by
 specifying one of several special output devices which correspond to
 image file formats, such as PNG and TIFF.
gs is part of the GhostScript
 system, available from the
 GhostScript home page.

Printing Files to PDF

Most modern word-processors have the facility to export as PDF,
 maintaining hyperlinks and building bookmarks for the table of contents.
 However, it is often necessary to produce PDF output from programs which
 do not have the facility to convert their native format to PDF. This can
 be achieved by the use of a printer driver which writes the PDF to a
 file, instead of printing it.
Mac OS X provides this facility natively, through the “Save
 as PDF” option in the print dialog.
On Unix platforms, this facility is provided by the open source
 CUPS-PDF backend to the CUPS printing
 system.
On Microsoft Windows, the open source PDFCreator printer
 driver achieves the same job. It uses GhostScript
 internally.

PDF Editors

PDFs were not originally intended to be edited significantly, but as
 a scalable, structured end-format for publishing. Thus, most editing
 software has restricted and specific editing functions such as merging files,
 adding annotations, filling in forms, or making small edits to page
 content.
In Chapter 9 we looked at pdftk, an open source program for command-line
 manipulation of PDF files. In this section, we list other ways of editing
 existing PDF files.
Adobe Acrobat

Adobe’s own PDF editor, Acrobat (which costs several hundred
 dollars) has a wide range of functionality, over and above that of the
 free Adobe Reader. This includes:
	Printing to PDF, and conversion from PostScript to PDF.

	Conversion to and from Microsoft Word and Excel.

	Optical Character Recognition (OCR), producing a PDF file
 which looks exactly like the scanned document, but has searchable,
 editable text.

	Reordering, rotating, and editing pages and contents.

	Preflight and print publishing tools.

	Building PDF forms.

	Creating and validating PDF/A and PDF/X.

	Adding encryption and digital signatures.

There are many commercial third party plug-ins available for Adobe
 Acrobat, providing extra functionality.

Editing with Preview on Mac OS X

Preview, the standard PDF Viewing program on Mac OS X, also has
 editing facilites, which tend to be underused since they are not
 prominent in the interface.
Preview can annotate PDF documents, highlight and strike through
 text, crop pages, add text, add hyperlinks, delete and rearrange pages,
 and merge PDFs.
Preview deals with a wide range of documents, and manages to
 preserve functionality it doesn’t understand when editing other aspects
 of the file.

PDF and Graphics Documentation

This book was written to fill a conspicuous gap in PDF literature.
 Here, we list other sources of information and documentation.
ISO 32000 and the PDF File Format

The PDF Reference Manual was published as a
 book until PDF version 1.6. Now, alas (but perhaps fittingly, given its
 subject matter), it is only available as a PDF document.
PDF version 1.7 was ratified as an ISO Standard in 2008 (Standard
 number ISO 32000-1:2008). The ISO charges almost 500 US Dollars for a
 PDF copy (by download, or on CD-ROM). Luckily, Adobe continues to
 provide the PDF Version 1.7 Reference electronically. This is an
 approved copy of ISO 32000-1:2008. In particular, the chapter, section,
 and subsection numbers are identical.
More recent Adobe extensions to PDF 1.7 are documented in
 ExtensionLevel documents, which do not form part of
 the ISO Standard, but would be expected to form part of a later, updated
 one.
Both Adobe’s copy of ISO 32000-1:2008 and the ExtensionLevel
 documents can be downloaded from the Adobe Developer
 Connection Website.

PDF Hacks

O’Reilly’s other PDF title, PDF
 Hacks by Sid Steward, emphasizes practical
 solutions to a wide range of PDF problems. It includes 100 separate
 hacks to:
	Customize PDF viewers to make reading PDFs more
 comfortable.

	“Refry” huge PDF files into much smaller
 files.

	Create PDF files with a variety of tools on a number of
 platforms.

	Edit PDF text from the gVim text editor.

	Use familiar software to create PDFs with advanced navigation
 features.

	Build PDFs with sophisticated navigation and interactive
 features.

	Generate PDFs on the fly.

	Integrate PDF files with websites beyond a simple
 hyperlink.

	Collect data on a website with PDF forms.

	Index and compare PDF files.

	Convert incoming faxes to PDF.

	Write scripts that control Adobe Acrobat.

Related Topics

The PDF standard and this book make reference to (and sometimes
 assume knowledge of) the general area of computer graphics. The standard
 reference for these topics is Computer Graphics Principles and
 Practice (Foley et al., Addison-Wesley 1990). This book
 contains all the background on Bézier curves, transparency, affine
 transformations, and other topics needed to understand how to write PDF
 graphics streams.
A good reference for understanding the dictionaries, trees, and
 other data structures in PDF and why they were chosen is
 Algorithms (Cormen et al., MIT Press, 1990). Any
 similar book on algorithms should suffice.

Forums and Discussion

There are a number of places to discuss technical PDF
 topics:
	The Planet PDF
 Forums are a popular venue for all sorts of technical and
 nontechnical PDF discussions.

	Adobe’s Adobe
 Reader Forums for technical support and discussion for Adobe
 Reader.

	The comp.text.pdf usenet
 newsgroup is a low traffic place for more technical discussions.

Adobe’s Website Resources

There are two relevant sections of the Adobe website for those
 interested in the technical aspects of PDF:
	The PDF
 Technology Center contains PDF reference documents.

	The Acrobat Developer
 Center has resources and documentation for writing Acrobat
 plug-ins, the FDF forms format, and a developer knowledge
 base.

About the Author
John Whitington is the author of one of the few complete PDF implementations, CamlPDF, which implements the PDF file format from the bit level up. After graduating from the University of Cambridge, he founded Coherent Graphics Ltd, developers of command line PDF tools for Windows, Mac OS X, and Unix, and the Proview PDF Editor for Mac OS X.

OEBPS/httpatomoreillycomsourceoreillyimages952087.png
(I-k 1) (1,1)

0.6 m

(0, 0)

OEBPS/httpatomoreillycomsourceoreillyimages952107.png

OEBPS/httpatomoreillycomsourceoreillyimages952127.png
File Edit View Window Help

ReBs8[:|

[=

Comment

Share

Name: attachment ot
Modified: Unknown
Sizer1 KB
Compressed size: 1 KB.

Location in document: Page 3

Hello, World!

OEBPS/httpatomoreillycomsourceoreillyimages952093.png

OEBPS/callouts/8.png

OEBPS/callouts/9.png

OEBPS/callouts/6.png

OEBPS/callouts/7.png

OEBPS/httpatomoreillycomsourceoreillyimages952123.png
File Edit View Window Help

8 @ B[]z (][] conmen | sue

Hello, World!

e-

An example text annotation

OEBPS/httpatomoreillycomsourceoreillyimages952119.png
Text Mode Zero
Text Mode One
Text Mode Two

OEBPS/callouts/1.png

OEBPS/callouts/4.png

OEBPS/callouts/5.png

OEBPS/callouts/2.png

OEBPS/callouts/3.png

OEBPS/httpatomoreillycomsourceoreillyimages952115.png
TextUPand Down

OEBPS/orm_front_cover.jpg
R RRRRERREESSEEEEERRRRRRRDDERRRRR
The ISO Standard for Document Exchange

Explained

O'REILLY® Jobn Whitington

OEBPS/httpatomoreillycomsourceoreillyimages952113.png

OEBPS/httpatomoreillycomsourceoreillyimages952125.png
o eader
Fie Edit View Window Help

BRBS |[2]a][==]]]] « comment

Share

L]
Go Jo Page 3

OEBPS/httpatomoreillycomsourceoreillyimages952065.png
Trailer Dictionary

PageTree (1)

Resources (3) Page Content (4)

OEBPS/httpatomoreillycomsourceoreillyimages952103.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages952121.png
File Edit View Window Help

Rapall:

| [] © Comment

Share

E{P part1
r
I part 18

Hello, World! Page Two

OEBPS/httpatomoreillycomsourceoreillyimages952095.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages952075.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages952091.png

OEBPS/httpatomoreillycomsourceoreillyimages952097.png

OEBPS/httpatomoreillycomsourceoreillyimages952079.png
Page Tree

Object 6
Page
7 Y

Trailer Dictionary

/Info

Object 10
Dictionary

/Parent
Object3
Page Tree Node

/Parent

Object5
Document Catalog

/Parent

/Pages

A 4

Object 1 Object 8
Page Tree Node Page

7'
/Parent

Object2
Page

Object9
Stream

Object4
Stream

OEBPS/callouts/13.png

OEBPS/callouts/14.png

OEBPS/callouts/15.png

OEBPS/httpatomoreillycomsourceoreillyimages952105.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages952083.png

OEBPS/httpatomoreillycomsourceoreillyimages952069.png
File Edit View Window Help

8 @E [+ (5[] |] comment | shre

Hello, World!

OEBPS/httpatomoreillycomsourceoreillyimages952111.png
Character and Word Spacing
Character and Word Spacing
Character and Word Spacing

OEBPS/httpatomoreillycomsourceoreillyimages952131.png
Security Method:

Document Open Password:
Permisions Pasaword:
Printing:

Changing the Document:
Commenting:

Form FieldFllinor Signing:
Document Assembly:
Content Copying:

Content Accessblty Enabled:
Page Braction:

Encryption Level:

None

Not Allowed

Not Allowed

Not Allowed

Not Allowed

Not Allowed

Not Allowed

Not Allowed

40-bit RCA.

OEBPS/httpatomoreillycomsourceoreillyimages952071.png
Trailer Dictionary

/Root

N

Object5
Document Catalog

/Pages

A

Object 1
Page Tree Node

iy

Object2

/Parent
v

Object4
Stream

Object 3
Dictionary

OEBPS/httpatomoreillycomsourceoreillyimages952081.png

OEBPS/httpatomoreillycomsourceoreillyimages952101.png

OEBPS/httpatomoreillycomsourceoreillyimages952067.png
Hello, World!

OEBPS/httpatomoreillycomsourceoreillyimages952089.png

OEBPS/httpatomoreillycomsourceoreillyimages952129.png
Description | Security [Fonts_| Custom | Advanced
Document Securty

‘The document's Security Method restrcts what can be done to the document.
Security Method: Password Security

Can be Opened by: Acrobat 30 and later

All contents of the document are encrypted and search engines cannot access the document's
metadata.

Document Restrictions Summary
Printing:

Document Assembly:

Content Copying:

Content Copying for Accessblty:
Page Braction:

Commenting:

Filing of form fieds:

Signing:

Creation of Template Pages:

OEBPS/httpatomoreillycomsourceoreillyimages952085.png

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages952135.png
W8 Adobe Resder
File Edt View Window Help

Rapes|ldr-

SEr=]

5 Comment | Share

“encrypted-owner pdf is protected. Please enter a Document Open Password.

Enter Password: ||

£ attached_to_documentpat

& open..

OEBPS/callouts/11.png

OEBPS/callouts/12.png

OEBPS/httpatomoreillycomsourceoreillyimages952073.png
Trailer Dictionary

Document Catalog Document Information
Dictionary

\ 4 4
| Page Tree | Document Outline
| 2 A | (Bookmarks)

Page 1 Contents | |Page1Resources| | Page 2 Contents | |PageZResources|

OEBPS/httpatomoreillycomsourceoreillyimages952109.png

OEBPS/httpatomoreillycomsourceoreillyimages952117.png
PJ WAYNE
PJ] WAYNE

OEBPS/httpatomoreillycomsourceoreillyimages952099.png

OEBPS/httpatomoreillycomsourceoreillyimages952077.png
T hello.pdf - Adobe Reader (=8 =m =)
x

File Edit View Window Help

B8a8] 3 []]] = comment = share

OEBPS/httpatomoreillycomsourceoreillyimages952133.png
File Edit View Window Help

T encrypted.pdf (SECURED) - Adobe Acrobat Pro EEi=]

Bewe- |BE S

Lo NG |©

Hello, World!

» Action Wizard

> ize Text

- omEEReEERt e s

T EnterPosswors: |
e Y o

I

[E4)

&

)

£ Fedacton Properies
£ Seoch & Remove Text

Hidden Information

B

