
[image:]

Building Micro-Frontends

Second Edition

Distributed Systems for the Frontend

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Luca Mezzalira

Building Micro-Frontends

 by
 Luca
Mezzalira

Copyright © 2026 Luca Mezzalira. All rights reserved.

Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

	
Acquisitions Editor: Louise Corrigan

	
Development Editor: Angela Rufino

	
Production Editor:
 Gregory Hyman

	
Interior Designer:
 David Futato

	
Cover Designer:
 Karen Montgomery

	
Illustrator:
 Kate Dullea

	
November 2025:
 Second Edition

Revision History for the Early Release

	
2024-04-15:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098170783
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Building Micro-Frontends, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

978-1-098-17078-3

Brief Table of Contents (Not Yet Final)

Chapter 1: Micro-Frontends Principles (available)

Chapter 2: Micro-Frontend Architectures and Challenges (available)

Chapter 3: Micro-Frontends Blueprints (unavailable)

Chapter 4: Discovering Micro-Frontend Architectures (unavailable)

Chapter 5: Micro-Frontend Technical Implementation (unavailable)

Chapter 6: Micro-Frontends and Server Side Rendering (unavailable)

Chapter 7: Micro-Frontends for Mobile (unavailable)

Chapter 8: Build And Deploy Micro-Frontends (unavailable)

Chapter 9: Micro-Frontends Discoverability (unavailable)

Chapter 10: Automation Pipeline For Micro-Frontends: A Case Study (unavailable)

Chapter 11: Backend Patterns For Micro-Frontends (unavailable)

Chapter 12: Migration to Micro-Frontends (unavailable)

Chapter 13: Common Anti-Patterns in Micro-Frontends (unavailable)

Chapter 14: From Monolith To Micro-Frontends: A Case Study (unavailable)

Chapter 15: Introducing Micro-Frontends In Your Organization (unavailable)

Chapter 1. Micro-Frontends Principles

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

At the beginning of my career, I remember working on many software projects where small or medium-size teams were developing a monolithic application with all the functionalities of a platform available in a single artifact, the product produced during the development of a software, and deployed to a web server.

When we have a monolith, we write a lot of code that should harmoniously work together. In my experience, we tend to pre-optimize or even over-engineer our application logic more often than not. Abstracting reusable parts of our code can create a more complex codebase and sometimes the effort of maintaining a complex logic doesn’t pay off in the long run. Unfortunately, something that looked straightforward at the time could look very unwieldy a few months later.

In the past decades, public cloud providers like Amazon Web Services (AWS) or Google Cloud started to gain traction. Nowadays they are popular for delegating what is increasingly becoming a commodity, freeing up organizations to focus on what really matters in a business: the services offered to the final users.

While cloud systems offer easier scalability compared to on-premise infrastructure, monolithic architectures require us to scale either horizontally adding more containers or virtual machines or vertically increasing the configuration of the machine where our application is running.

Furthermore, working on a monolith codebase with distributed teams and co-located ones could be challenging as well. Particularly after reaching medium or large team sizes because of the communication overhead and centralized decisions where a few people decide for everyone.

In the long run, companies with large monoliths usually slow down all the operations needed to release any new feature, losing the great momentum they had at the beginning of a project where everything was easier and smaller with few complications and risks. Also, with monolithic applications, we have to test and deploy the entire codebase every single time, which comes with a higher chance of breaking the APIs in production, introducing new bugs, and making more mistakes, especially when the codebase is not rock solid or extensively tested.

Solving these and many other challenges its staff faces, a company might move from complex monolith codebases to multiple smaller codebases and scoped domains called microservices.

Nowadays microservices architecture is a well-known, established and popular pattern used by many organizations across the world.

Microservices split a unique codebase into smaller parts, each of them with a subset of functionalities compared to a monolith. This business logic is embraced by developers because the problem solved by a microservice is simpler than looking at thousands of lines of code. Moreover a developer can maintain a clear picture of the code base and related functionality implemented, considering the cognitive load is by far less than working on a monolithic system.

Another significant advantage is that we can scale part of the application and use the right approach for a microservice instead of a one-size-fits-all approach similar to a monolith.

There are also some pitfalls to working with microservices. The investment on automation, observability, and monitoring has to be completed to have a distributed system under control. Another pitfall is the wrong definition of a microservice’s boundary, for instance, having a microservice that is too small for completing an action inside a system relying on other microservices causing a strong coupling between services and forcing them to be deployed together every time. When this phenomenon is extended across multiple services we risk ending up with a big ball of mud or a system that is so complex that it is hard to extend.

Microservices bring many benefits to the table but could bring many cons as well. In particular, when we are embracing them in a project, the complexity of having a microservice architecture could become more painful than beneficial. Considering the options available in software architecture, we should pick microservices only when needed and not choose them recklessly just because it is the latest and greatest approach.

 Micro-frontends have gained more traction in the frontend community and enterprise organizations thanks to the great fit they have when aligned to other distributed architectures like microservices. Keep in mind, however, that just like how microservices aren’t a universal answer to all software decomposition, neither are micro-frontends. To understand where they fit in and what they are, let’s look at some of the forces that are pushing us in this direction.

Monolith to Distributed Systems

When we start a new project or even a new business offering a service online, the first iteration should be used to understand if our project or business could succeed or not.

Usually, we start by identifying a tech stack, a list of tech services used to build and run a single app, that is familiar to our team. By minimizing the bells and whistles around the system and concentrating on the bare minimum we’re able to quickly gather information about our business idea directly from our users. This is also called a minimum viable product (MVP).

Often we design our API layer as a unique codebase (monolith) so we need to set up a single continuous integration or continuous delivery pipeline for the project. Integrating observability in a monolith application is quite easy; we just need to run an agent per virtual machine or container to retrieve the health status of our application servers. The deployment process is trivial, considering we need to handle one automation strategy for the entire APIs layer, one deployment and release strategy and when the traffic starts to increase we can scale our machine horizontally, having as many application servers as needed to fulfill the users’ requests.

That’s also why monolithic architecture are often a good choice for new projects considering we can focus more on the business logic of an application instead of investing too much effort on other aspects such as automation for instance.

Where are we going to store our data? We have to decide which database better suits our project needs—a graph, a NoSQL, or a SQL database? Another decision that must be made is whether we want to host our database on a cloud service or on-premises. We should select the database that will fit our business case better.

Finally, we need to choose a technology for representing our data, such as within a desktop or mobile browser, or even a mobile application. We can pick the best-known JavaScript framework available or our favorite programming language; we can decide to use server-side rendering or a Single Page Application architecture; then we define our code conventions, linting, and CSS rules.

At the end, we should end up with what you can see in Figure 1-1:

[image: 3 tiers architecture composed by a presentation layer frontend an application layer APIs layer and a persistent layer database]
Figure 1-1. 3-tiers architecture composed by a presentation layer (frontend), an application layer (APIs layer) and a persistent layer (database)

Hopefully, the business ideas and goals behind our project will be validated and more users will subscribe to our online service or buy the products we sell.

Moving to Microservices

Now imagine that thanks to the success of our system, our business decides to scale up the tech team, hiring more engineers, QAs, scrum masters, and so on.

While monitoring our logs and dashboards, we realize not all our APIs are scaling organically. Some of them are highly cacheable, so the content delivery networks (CDNs) are serving the vast majority of the clients. Our

origin servers are under pressure only when our APIs are not cacheable. Luckily enough, they’re not all our APIs, just a small part of them.

Splitting our monolith starts to make more sense at this point, considering the internal growth and our better understanding of how the system works.

Embracing microservices also means reviewing our database strategy and, therefore, having multiple databases that are not shared across microservices; if needed, our data is partially replicated, so each microservice reduces the latency for returning the response.

Suddenly we are moving toward a decentralized ecosystem with many moving parts that are providing more agility and less risk than before.

Each team is responsible for its set of microservices. Team members can make decisions on the best database to choose, the best way to structure the schemas, how to cache some information for making the response even faster, and which programming language to pick for the job. Basically, we are moving to a world where each team is entitled to make decisions and be responsible for the services they are running in production, where a generic solution for the entire system is not needed besides the key decisions, like logging and monitoring, as we can see from Figure 1-2.

[image: Microservices with Single Page Application]
Figure 1-2. Microservices with Single Page Application

However, we are still missing something here. We are able to scale our APIs layer and our persistent layers with well-defined patterns and best practices, but what happens when our business is growing and we need to scale our frontend teams, too?

Introducing Micro-Frontends

So far on the frontend, we didn’t have many options for scaling our applications, for several reasons. Up to a few years ago, there wasn’t a strong need to do so because having a fat server, where all the business logic runs, and a thin client, for displaying the result of the computation made available by the servers, was the standard approach.

This has changed a lot in the past few years. Our users are looking for a better experience when they are navigating our web platforms, including more interactivity and better interactions.

Companies have arisen providing services with a subscription model, and many people are embracing those services. Now it’s normal to watch videos on demand instead of on a linear channel, to listen to our favorite music inside an application instead of buying CDs, to order food from a mobile app instead of calling a restaurant.

This shift of behaviors requires us to improve our users’ experience and provide a frictionless path to accomplish what a user wants without forgetting quality content or services.

In the past we would have approached those problems by dividing parts of our application in a shared components library, abstracting some business logic in other libraries so they could be reused across different parts of the application. In general, we would have tried to reuse as much code as possible.

I’m not advocating against solutions that are still valid and fit perfectly with many projects, but we might encounter quite a few challenges when embracing them.

For instance, when we have multiple development teams, all the rules applied to the codebase are often decided once, and we stick with them for months or even years because changing a single decision would require a lot of effort across the entire codebase and be a large investment for the organization without providing any value for the customers or the company.

Also, many decisions made during the development could result in trade-offs due to lack of time, ideal consistency, or simply laziness. We must consider that a business, like technology, evolves at a certain pace and it’s unavoidable.

Code abstraction is not a silver bullet either; prematurely abstracting code for reuse often causes more problems than benefits. I have frequently seen abstractions make code thousands of times more complicated than necessary to be reused just twice inside the same project. Many developers are prone to over-engineering some solutions, thinking they will reuse them tens of times, but in reality, they use them far fewer times. Using libraries across multiple projects and teams could end up producing more complexity than benefits such as making the codebase more complex or requiring more effort on manual testing or adding overhead in communications.

We also need to consider the monolith approach on the frontend. Such an approach won’t allow us to improve our architecture in the long run, particularly if we are working on platforms meant to be available for our users for many years or if we have distributed teams in different time zones.

Asking any business to extensively revise the tech it uses will cause a large investment upfront before it gets any results.

Now the question becomes quite obvious: Do we have the opportunity to use a well-known pattern or architecture that offers the possibility of adding new features quickly, evolving with the business, and delivering part of the application autonomously without big-bang releases?

I picture something like Figure 1-3:

[image: Micro architectures combined this is a high level diagram showing how Microservices and Micro frontends can live together]
Figure 1-3. Micro-architectures combined, this is a high-level diagram showing how Microservices and Micro-frontends can live together

The answer is YES!

We can definitely do it and it’s where micro-frontends come to the rescue.

This architecture makes more sense when we deal with mid-large companies and during the following chapters, we are going to explore how to successfully structure our micro-frontends architectures.

However, first we need to understand what the main principles are behind micro-frontends to leverage as guidance during the development of our projects.

Microservices Principles

At the beginning of my journey into micro-frontends in 2016, there wasn’t any guidance on how to structure such architecture, therefore I had to take a step back from the technical implementation and look at the principles behind other architectures for scaling a software project. Would those principles be applicable to the frontend too?

Microservices’ principles offer quite a few useful concepts. Sam Newman has highlighted these ideas in his book - Building Microservices (O’Reilly). I’ve summarized the theories in Figure 1-4:

[image: Microservices principles]
Figure 1-4. Microservices principles

Let’s discuss the above principles and see how they apply to the frontend.

Modeled Around Business Domains

Modeling around business domains is a key principle brought up by domain-driven design (DDD). It starts from the assumption that each piece of software should reflect what the organization does and that we should design our architectures based on domains and subdomains, leveraging ubiquitous languages shared across the business.

When working from a business point of view, this provides several benefits, including a better understanding of the system, an easier definition of a technical representation of a business domain, and clear boundaries on which a team should operate.

Culture of Automation

Considering that microservices are a multitude of services that should be autonomous, we need a robust culture of automating the deployment of independent units in different environments. In my experience, this is a key process for leveraging microservices architecture; having a strong automation culture allows us to move faster and provide a better feedback loop for developers that will relay to all the capabilities offered by the company in terms of security and performance guardrails that are part of the continuous integration process.

Hide Implementation Details

Hiding implementation details when releasing autonomously is crucial. If we are sharing a database between microservices, we won’t be able to change the database schema without affecting all the microservices relying on the original schema. DDD teaches us how to encapsulate services inside the same business domain, exposing only what is needed via APIs and hiding the rest of the implementation. This allows us to change internal logic at our own pace without impacting the rest of the system. Very often, we call this approach API-First. We begin by defining the APIs, which serve as the contract binding the producer and consumer(s) teams. This allows them to work in parallel, focusing on either producing or consuming the specified contract. By focusing on the API early in the development process, teams can enhance collaboration, scalability, and adaptability, making it easier to integrate and extend functionalities as the project evolves.

Decentralize All the Things

Decentralizing the governance empowers developers to make the right decision at the right stage to solve a problem. With a monolith, many key decisions are often made by the most experienced people in the organization. These decisions, however, frequently lead to trade-offs alongside the software lifecycle. Decentralizing these decisions could have a positive impact on the entire system by allowing a team to take a technical direction based on the problems they are facing, instead of creating compromises for the entire system. Bear in mind that in distributed systems a team has less cognitive load to carry, therefore each team member quickly becomes a domain expert in a portion of the system and can provide the best decision to evolve its own domain.

Deploy Independently

Independent deployment is key for microservices. With monoliths, we are used to deploying the entire system every time, with a greater risk of live issues and longer times for deploying and rolling back our artifacts. With microservices, however, we can deploy autonomously without increasing the possibility of breaking our entire API layer. Furthermore, we have solid techniques, like blue-green deployment or canary releases that allow us to release a new version of a microservice with even less risk, which clears the path for new or updated APIs.

Isolate Failure

Because we are splitting a monolith into tens, if not hundreds, of services, if one or more microservices becomes unreachable due to network issues or service failures, the rest of the system should be available for our users. There are several patterns for providing graceful failures with microservices and the fact that they are autonomous and independent just reinforces the concept of isolating failure.

Highly Observable

One reason that you would favor monolithic architecture in comparison to microservices is that it is easier to observe a single system than a system split in multiple services. Microservices provide a lot of freedom and flexibility, but this doesn’t come for free; we need to keep an eye on everything through logs, monitors, and so on. For example, we must be ready to follow a specific client request end to end inside our system. Keeping the system highly observable is one of the main challenges of microservices.

Embracing these principles in a microservices environment will require a shift in mindset not only for your software architecture but also for how your company is organized. It involves moving from a centralized to a decentralized paradigm, enabling cross-functional teams to own their business domains end to end. This can be a particularly huge change for medium to large organizations.

Applying Principles to Micro-frontends

Now that we’ve grasped the principles behind microservices, let’s find out how to apply them to a frontend application.

Modeled Around Business Domains

Modeling micro-frontends to follow DDD principles is not only possible but also very valuable. Investing time at the beginning of a project to identify the different business domains and how to divide the application will be very useful when you add new functionalities or depart from the initial project vision in the future. DDD can provide a clear direction for managing backend projects, but we can also apply some of these techniques on the frontend. Granting teams full ownership of their business domain can be very powerful, especially when product teams are empowered to work with technology teams. The primary difference between a micro-frontend and a component lies in their modularization approach. A micro-frontend completely owns a business domain, whereas a component focuses on addressing a technical challenge, often characterized by code duplication or the creation of complex, configurable components used across multiple domains. The component approach exposes an API that is frequently coupled with its container. Therefore, any modification made to the component is likely to impact its containers as well, creating an unwanted coupling that prevents it from reaching the principles behind distributed systems. With micro-frontends, we streamline the API surface to the essential minimum required for comprehending the user’s context. Typically, micro-frontends require little beyond accessing a session token and other pertinent information such as a product ID. This approach effectively diminishes the coupling between elements of the frontend application and enhances team autonomy by reducing the need for coordination across teams, owing to the infrequent changes in the minimal API exposed.

Culture of Automation

As for the microservices architecture, we cannot afford to have a poor automation culture inside our organization; otherwise any micro-frontends approach we are going to take will end up a pure nightmare for all our teams. Considering that every project contains tens or hundreds of different parts, we must ensure that our continuous integration and deployment pipelines are solid and have a fast feedback loop for embracing this architecture. Investing time in getting our automation right will result in the smooth adoption of micro-frontends and will solve common challenges like aligning shared libraries to a specific version, enforcing budget size per micro-frontend or forcing to update every micro-frontend to the latest design system version. Moreover, automation is not important only for generating technical artifacts, more importantly it provides a fast feedback loop for developers. Creating fast and helpful feedback loops for developers will foster the righs behaviors inside the teams enforcing important architecture characteristics across the distributed system.

Hide Implementation Details

Hiding implementation details and working with contracts are two essential practices, especially when parts of our application need to communicate with each other. It’s crucial to define upfront an API contract that is shared across the teams who need to interact with different micro-frontends. Also, strong encapsulation is required to avoid domain leaks in other parts of the application. In this way each team will be able to change the implementation details without impacting other teams unless there is an API contract change. These practices allow a team to focus on the internal implementation details without disrupting the work of other teams. Each team can work at its own pace, drastically reducing external dependencies and creating more effective collaboration.

Decentralization over Centralization

Decentralizing a team’s decisions finally moves us away from a one-size-fits-all approach that often ends up being the lowest common denominator. Instead, the team will use the right approach or tool for the job. As with microservices, the team is in the best position to make certain decisions when it becomes an expert in the business domain. This doesn’t mean each team should take its own direction but rather that the tech leadership (architects, principal engineers, CTOs) in conjunction with the developers and practices applied in the field, should provide guardrails between which teams can operate without needing to wait for a central decision. This leads to a sharing culture inside the organization becoming essential for introducing successful practices across teams.

Deploy Independently

Micro-frontends allow teams to deploy independent artifacts at their own speed. They don’t need to wait for external dependencies to be resolved before deploying. Achieving independence in micro-frontends means not reducing the user interface to mere components. We need to reduce the external dependencies for a team, in this way we optimize for a fast flow that will enable a team to run their operations independently.

When we combine this approach with microservices, a team can own a business domain end to end, with the ability to make technical decisions based on the challenges inside their business domain rather than finding a one-size-fits-all approach.

Isolate Failure

Isolating failure in SPAs, for instance, isn’t a huge problem due to their architecture, but it is with micro-frontends. In fact, micro-frontends require composing a user interface at runtime, which may result in network failures or 404 errors for one or more parts of the UI. To avoid impacting the user experience, we must provide alternative content or hide a specific part of the application. This might result in gracefully hiding non-essential micro-frontends from the interface if they fail or return a 500 error, in case the main micro-frontend of a page is not loaded.

Highly Observable

Frontend observability is becoming more prominent every day, with tools like Sentry, New Relic or LogRockets providing great visibility for every developer. Using these tools is essential to understanding where our application is failing and why. As Werner Vogels, Amazon’s CTO, used to say: “everything fails all the time”, therefore being able to resolve issues quickly is far more important than preventing problems. This moves us toward a paradigm where we can better invest our resources by remaining ready to address system failures rather than trying to prevent them completely. As with all microservices’ principles, this is applicable to the frontend, too.

The exciting part of recognizing these principles on the frontend and backend is that, finally, we have a solution that will empower our development teams to own the entire range of a business domain, offering a simpler way to divide labor across the organization and iterate improvements swiftly into our system.

When we start this journey into the micro-world we need to be conscious of the level of complexity we are adding to a project, which may not be required for any other projects.

There are plenty of companies that prefer using a monolith over microservices because of the intrinsic complexity they bring to the table. For the same reason, we must understand when and how to use micro-frontends properly, as not all projects are suitable for them.

Micro-frontends are not a silver bullet

It’s very important that we use the right tool for the right job. I cannot stress this point enough. Too often I have seen projects failing or drastically delayed due to poor architectural decisions.

We need to remember that:

Note

Micro-frontends are not appropriate for every application because of their nature and the potential complexity they add at the technical and organizational levels.

Micro-frontends are a sensible option when we are working on software that requires an iterative approach and long-term maintenance, when we have projects that require a large development team, in multi-tenant applications, or when we want to replace a legacy project in an iterative way.

However, they are not suitable for all frontend applications, they are an additional available option of frontend architecture for our projects. Micro-frontends architecture has plenty of benefits but also has plenty of drawbacks and challenges. If the latter exceed the former, micro-frontends are not the right approach for a project. As Neal Ford and Mark Andrew Richards have described in their book Software Architecture, “Don’t try to find the best design in software architecture, instead, strive for the least worst combination of trade-offs.” This should be your mantra from now on!

Summary

In this chapter we introduced what micro-frontends are, what their principles are, and how those principles are linked to an architecture like microservices that was created for solving similar challenges.

Next, we will explore how to structure a micro-frontend project from an architectural point of view and the key technical challenges to understand when we design our frontend applications using them.

Chapter 2. Micro-Frontend Architectures and Challenges

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the second chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

A micro-frontend represents a business subdomain that is autonomous, independently deliverable, with same or different technology, with low degree of coupling and owned by a single team. We can summarize the key takeaways in this description with the following characteristics:

	
Business domain representation

	
Autonomous codebase

	
Independent deployment

	
Low coupling

	
Optimized for fast-flow

	
Single-team ownership

Micro-frontends offer many opportunities. Choosing the right one depends on the project requirements, the organization structure, and the developer’s experience.

In these architectures, we face some specific challenges to success bound by similar questions, such as how we want to communicate between micro-frontends, how we want to route the user from one view to another, and, most importantly, how we identify the size of a micro-frontend.

In this chapter, we will cover the key decisions to make when we initiate a project with a micro-frontends architecture. We’ll then discuss some of the companies using micro-frontends in production and their approaches.

Micro-frontends Decisions Framework

There are different approaches for architecting a micro-frontends application. To choose the best approach for our project, we need to understand the context we’ll be operating in.

Some architectural decisions will need to be made upfront because they will direct future decisions, like how to define a micro-frontend, how to orchestrate the different views, how to compose the final view for the user, and how micro-frontends will communicate and share data.

These types of decisions are called the micro-frontends decisions framework. It is composed of four key areas:

	
defining what a micro-frontend is in your architecture

	
composing micro-frontends

	
routing micro-frontends

	
communicating between micro-frontends

Define Micro-frontends

Let’s start with the first key decision, which will have a heavy impact on the rest. We need to identify how we consider a micro-frontend from a technical point of view.

We can decide to have multiple micro-frontends in the same view or having only one micro-frontend per view (Figure 2-1).

[image: Horizontal vs. vertical split]
Figure 2-1. Horizontal vs. vertical split

With the horizontal split, multiple micro-frontends will be on the same view. Multiple teams will be responsible for parts of the view and will need to coordinate their efforts. This approach provides greater flexibility considering we can even reuse some micro-frontends in different views, although it also requires more discipline and governance for not ending up with hundreds of micro-frontends in the same project. Very often, higher granularity would end up with higher coupling and the risk of creating a distributed monolith.

Distributed Monolith

A distributed monolith in software architecture refers to a system that, despite being distributed across multiple servers or nodes, exhibits characteristics commonly associated with a monolithic architecture. In this context, the term “monolith” implies a single, tightly-coupled unit with interconnected components that lack clear separation of concerns. The distributed nature of the system may introduce complexities in terms of communication between components spread across different locations, but the overall structure remains monolithic in its design and interdependencies. This can hinder the independent nature of micro-frontends, risking having several external dependencies that will nullify the effort of building such architecture.

In the vertical split scenario, each team is responsible for a business domain, like the authentication or the catalog experience. In this case, domain-driven design (DDD) comes to the rescue. It’s not often that we apply DDD principles on frontend architectures, but in this case, we have a good reason to explore it.

DDD is an approach to software development that centers the development on programming a domain model that has a rich understanding of the processes and rules of a domain.

Applying DDD to the frontend is slightly different from the approach taken on the backend. Certain concepts are not applicable, while others are fundamental for designing a successful micro-frontends architecture.

When examining the system holistically, you might wonder how to identify different areas that are independent. Various techniques exist, and one of my favorites by far is event storming (Figure 2-2). Event storming is a workshop that brings together individuals from the same company with different backgrounds, including product managers, testers, and developers. The focus of the workshop is on the business side, rather than the technical side.

By assembling people from various roles in the same room, you can create a timeline that describes the system end-to-end or, at least, a portion of it. This approach allows you to identify potential independent parts of the system by examining the vocabulary defined during the session.

[image: An example of Event Storming outcome for the on boarding experience of a subscription service]
Figure 2-2. An example of Event Storming outcome for the on-boarding experience of a subscription service

Thanks to this workshop, that works for a system end-to-end not only for the frontend side, you can visualize your system, having a better understanding, but more importantly recognising the different parts that compose it, or as DDD would call them: subdomains.

In the context of DDD, subdomains refer to distinct and isolated components within a larger business domain. Each subdomain represents a specialized area with its own unique set of responsibilities, business logic, and models. The purpose of identifying subdomains is to facilitate a modular and organized approach to software development, allowing teams to focus on specific aspects of the overall business functionality. Subdomains are delineated based on clear and cohesive boundaries, enabling more effective management, development, and maintenance of complex systems by addressing individual business concerns in a targeted manner.

Event Storming

It’s out of the scope of this book teaching you Event Storming, however I highly encouraging you to read the chapter on this subject from Learning Domain Driven Design book by O’reilly.

DDD provides three subdomain types, but I want to provide a concrete example for you to understand better what they refer to:

	
Core subdomains: These are the main reasons an application should exist. Core subdomains should be treated as a premium citizen in our organizations because they are the ones that deliver value above everything else. The video catalog would be a core subdomain for Netflix.

	
Supporting subdomains: These subdomains are related to the core ones but are not key differentiators. They could support the core subdomains but aren’t essential for delivering real value to users. One example would be the voting system on Netflix’s videos.

	
Generic subdomains: These subdomains are used for completing the platform. Often companies decide to go with off-the-shelf software because they’re not strictly related to their domain. With Netflix, for instance, the payments management is not related to the core subdomain (the catalog), but it is a key part of the platform because it has access to the authenticated section.

Let’s break down Netflix into these categories (Table 2-1).

Table 2-1. Subdomains examples

	Subdomain type
	Example

	Core subdomain
	Catalog

	Supportive subdomain
	Voting system

	Generic subdomain
	Sign in or sign up

Why categorize subdomains, you may wonder? The answer is straightforward: you can apply different characteristics to each subdomain through this categorization.

For instance, a core domain is the essence behind your system’s functionality. Therefore, investing in developer seniority, code quality, and a fast feedback loop will likely yield the best outcomes.

On the contrary, a generic domain lacks a competitive advantage. In such cases, opting for an off-the-shelf solution with integration into your system may suffice for achieving its objectives, the changes on this part of the system won’t be as frequent as in other parts, and the complexity of the code to write might not be very high, therefore you can take another strategy for assembling a development team compared to other subdomains.

In essence, DDD offers more than just a rich vocabulary for system description. It introduces heuristics and techniques that guide organizations in the right direction concerning both technology and organizational structure for the first time.

Domain-Driven Design with Micro-Frontends

After identifying subdomains, DDD introduces another concept: the bounded context. It’s a logical boundary that hides the implementation details, exposing an application programming interface (API) contract to consume data from the model present in it.

Usually, the bounded context translates the business areas defined by domains and subdomains into logical areas where we define the model, our code structure, and potentially, our teams. Bounded context defines the way different contexts are communicating with each other by creating a contract between them, often represented by APIs. This allows teams to work simultaneously on different subdomains while respecting the contract defined upfront.

Often in a new project, subdomains overlap bounded context because we have the freedom to design our system in the best way possible. Therefore, we can assign a specific subdomain to a team for delivering a certain business value defining the contract. However, in legacy software, these lines might be more blurred due to lack of analysis during the project lifecycle.

Too often we identify early on a technical solution without gathering the architecture characteristics we have to optimize for.

Think about this scenario: three teams, distributed in three different locations, working on the same codebase.

These teams may go for a horizontal split using iframes or web components for their micro-frontends. After a while, they realize that micro-frontends in the same view must communicate somehow. One of those teams will then be responsible for aggregating the different parts inside the view. The team will spend more time aggregating different micro-frontends in the same view and debugging to ensure everything works properly.

Obviously, this is an oversimplification. It could be worse when taking into con‐ consideration the different time zones, cross-dependencies between teams, knowledge sharing, or distributed team structure for example.

All those challenges could escalate very easily to low morale and frustration on top of delivery delays. Therefore we need to be sure the path we are taking won’t let our teams down.

Approaching the project from a business point of view, however, allows you to create an independent micro-frontend with less need to communicate across multiple subdomains.

Let’s re-imagine our scenario. Instead of working with web components or iframes, we are working with single page applications (SPAs) and single pages.

This approach allows a full team to design all the APIs needed to compose a view and to create the infrastructure needed to scale the services according to the traffic. The combination of micro-architectures, microservices, and micro-frontends provides independent delivery without high risks for compromising the entire system for release in production.

The bounded context helps design our systems, but we need to have a good understanding of how the business works to identify the right boundaries inside our project.

Developers, tech leads or architects have to come closer to the product teams, investing enough time with them and understanding the customers’ needs so they can identify the different domains and subdomains, working collaboratively with the product teams. Once again, event storming could be a natural fit in these cases.

After defining all the bounded contexts, we will have a map of our system representing the different areas that our system is composed of. In Figure 2-3 we can see a representation of bounded context. In this example the bounded context contains the catalogue micro-frontends that consume APIs from a microservices architecture via a unique entry point, a backend for frontend, we will investigate more about the APIs integration in chapter 9.

In DDD, the frontend is not taken into consideration but when we work with micro-frontends with a vertical split we can easily map the frontend and the backend together inside the same bounded context.

[image: This is a representation of bounded context]
Figure 2-3. This is a representation of bounded context

I’ve often seen companies design systems based on their team’s structure (Conway’s Law states “organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizations.”). Instead, they needed their team structure to be flexible enough to adapt to the best possible solution for the organization in order to reduce friction and move faster toward the final goal: having a great product that satisfies customers (Inverse Conway’s Maneuver recommends evolving your team and organizational structure to promote your desired architecture.)!

Both approaches to structure your teams and design the system architecture are fine, as long as it becomes clear the coupling between the organization structure and software architecture. Very often a change in one of these two areas will affect the other indirectly.

How to define a bounded context

Premature optimization is always around the corner, which can lead to our subdomains decomposing where we split our bounded contexts to accommodate future integrations. Instead, we need to wait until we have enough information to make an educated decision.

Because our business evolves over time, we also need to review our decisions related to bounded contexts and subdomain type.

Sometimes we start with a larger bounded context. Over time the business evolves and eventually, the bounded context becomes unmanageable or too complex. So we decided to split it. Deciding to split a bounded context could result in a large code refactor but could also simplify the codebase drastically, speeding up new functionalities and development in the future.

To avoid premature decomposition, we will make the decision at the last possible moment. This way we have more information and clarity on which direction we need to follow. We must engage upfront with the product team or the domain experts inside our organization as we define the subdomains. They can provide you with the context of where the system operates. Always begin with data and metrics.

For instance, we can easily find out how our users are interacting with our application and what the user journey is when a user is authenticated and when they’re not. Data provides powerful clarity when identifying a subdomain and can help create an initial baseline, from where we can see if we are improving the system or not.

If there isn’t much observability inside our system, let’s invest time to create it. Doing so will pay off the moment we start identifying our micro-frontends.

Without dashboards and metrics, we are blind to how our users operate inside our applications.

Let’s assume we see a huge amount of traffic on the landing page, with 70% of those users moving to the authentication journey (sign in, sign up, payment, etc.). From here, only 40% of the traffic subscribes to a service or uses their credentials for accessing the service.

These are good indications about our users’ behaviors on our platform. Following DDD, we would start from our application’s domain model, identifying the subdomains and their related bounded context and using behavioral data to guide us on how to slice the frontend applications.

Allowing users to download only the code related to the landing page will give them a faster experience because they won’t have to download the entire application immediately, and the 40% of users who won’t move forward to the authentication area will have just enough code downloaded for understanding our service.

Obviously, mobile devices with slow connections only benefit from this approach for multiple reasons: less data is downloaded, less memory is used, less JavaScript is parsed and executed, resulting in a faster first interaction of the page.

It’s important to remember that not all user sessions contain all the URLs exposed by our platform. Therefore a bit of research upfront will help us provide a better user experience.

Usually, the decision to pick a horizontal split instead of vertical split depends on the type of project we have to build. In the next chapter, we will deep dive into this topic. Bear in mind, they are not mutually exclusive. You might have part of the application where a vertical split is more appropriate than a horizontal and vice versa.

Another thing to consider is the skills set of our teams, usually, a vertical split suits better teams that are new to micro-frontends, instead, the horizontal split requires an investment upfront for creating a solid and fast development experience to test their part as well as trying inside the overall view.

Testing your micro-frontend boundaries

Often, I’ve conducted meetings with teams that have implemented a micro-frontends architecture but treated a micro-frontend as if it were a component loaded at runtime. I have developed a mental model that can assist you in determining whether your boundaries are well-established.

	
To enhance the robustness of your architecture, consider reducing the API surface exposed to the containers. When you expose too many properties of a micro-frontend, the risk of coupling increases significantly. This is because you allow the container of the micro-frontend to own the context instead of the micro-frontend itself. This leads to accidental complexity that becomes evident when deploying a micro-frontend and constant coordination efforts across teams.

	
Micro-frontends are inherently context-aware. Typically, a micro-frontend requires a minimal amount of information to function properly. They are designed with awareness of the context. For example, passing a product ID or enabling the retrieval of a session token to consume an API are common characteristics of the horizontal split approach. More common properties shared from the micro-frontend container should lead you to question the implementation and revisit the API contract or the micro-frontends boundaries.

	
In contrast to components, micro-frontends are less extensible. In designing a component, the focus is on high reusability and code abstraction. Micro-frontends, however, are designed for independence and minimal external dependencies. Due to their context-aware nature, they are less likely to be extensible or composed with each other. A sign of wrong boundaries is a proliferation of micro-frontends per view or deep nesting between micro-frontends.

	
Furthermore, micro-frontends are more coarse-grained than components. While a classic component, such as a button, are small and highly flexible to be composed with other components, micro-frontends are highly specialized in their functionality. This specialization limits their reusability, and they are unlikely to be extensible for creating “larger micro-frontends”. It is recommended to avoid fine-grained micro-frontends, as they tend to result in a higher degree of coupling, external dependencies, and context leakage towards their containers.

Having gained a comprehensive understanding of micro-frontends and their identification, let’s now delve into the robust mental models widely embraced within the frontend community – the Micro-Frontends Decisions Framework.

Micro-frontends composition

There are different approaches for composing a micro-frontends application (Figure 2-4).

[image: Micro frontends composition diagram]
Figure 2-4. Micro-frontends composition diagram

In this diagram we can see three different ways to compose a micro-frontends architecture:

	
Client-side composition

	
Edge-side composition

	
Server-side composition

Starting from the left of our diagram, we have a client-side composition, where an application shell loads multiple micro-frontends directly from a content delivery network (CDN), or from the origin if the micro-frontend is not yet cached at the CDN level. This composition is beneficial either for horizontal or vertical split micro-frontends. In the middle of the diagram, we compose the final view at the CDN level, retrieving our micro-frontends from the origin and delivering the final result to the client. The right side of the diagram shows a micro-frontends composition at the origin level where our micro-frontends are composed inside a view, cached at the CDN level, and finally served to the client. For edge-side and server-side composition, we mainly use a horizontal split approach.

Let’s now observe how we can technically implement this architecture.

Client-Side Composition

In the client-side composition case, where an application shell loads micro-frontends inside itself, the micro-frontends should have a JavaScript or HTML file as an entry point so the application shell can dynamically append the document object model (DOM) nodes in the case of an HTML file or initializing the JavaScript application with a JavaScript file or an EcmaScript module.

In the beginning, we also used a combination of iframes to load different micro-frontends, or a transclusion mechanism on the client side via a technique called client-side include. Client-side include lazy-loads components, substituting empty placeholder tags with complex components. For example, a library called h-include uses placeholder tags that will create an AJAX request to a URL and replace the inner HTML of the element with the response of the request.

This approach gives us many options, but using client side includes has a different effect than using iframes. From 2019 onwards, more micro-frontends solutions started to gain traction for building a successful client-side composition such as Module Federation or Single SPA. In the next chapters we will explore this part in detail.

Note

According to Wikipedia, in computer science, transclusion is the inclusion of part or all of an electronic document into one or more other documents by hypertext reference. Transclusion is usually performed when the referencing document is displayed and is normally automatic and transparent to the end user. The result of transclusion is a single integrated document made of parts assembled dynamically from separate sources, possibly stored on different computers in disparate places.

An example of transclusion is the placement of images in HTML. The server asks the client to load a resource at a particular location and insert it into a particular part of the DOM.

Edge-Side Composition

With edge-side composition, we assemble the view at the CDN level. Many CDN providers give us the option of using an XML-based markup language called Edge Side Include (ESI). ESI is not a new language; it was proposed as a standard by Akamai and Oracle, among others, in 2001. ESI allows a web infrastructure to be scaled in order to exploit the large number of points of presence around the world provided by a CDN network, compared to the limited amount of data center capacity on which most software is normally hosted. One drawback to ESI is that it’s not implemented in the same way by each CDN provider; therefore, a multi-CDN strategy, as well as porting our code from one provider to another, could result in a lot of refactors and potentially new logic to implement. It’s important to highlight that this practice is not embraced massively by organizations world-wide. The recommendation is to use mainly client-side or server-side composition.

Server-Side Composition

The last possibility we have is the server-side composition. In this case, the origin server is composing the view by retrieving all the different micro-frontends and assembling the final page. If the page is highly cacheable, the CDN will then serve it with a long time-to-live policy. However, if the page is personalized per user, serious consideration will be required regarding the scalability of the eventual solution, when there are many requests coming from different clients. When we decide to use server-side composition we must deeply analyze the use cases we have in our application. If we decide to have a runtime composition, we must have a clear scalability strategy for our servers in order to avoid downtime for our users.

From these possibilities, we need to choose the technique that is most suitable for our project and the teams’ knowledge. As we will learn later on in this journey, we also have the opportunity to deploy an architecture that exploits both client-side and server-side composition—that’s absolutely fine as long we understand how to structure our project.

Routing micro-frontends

The next important choice we have is how to route the application views.

This decision is strictly linked to the micro-frontends composition mechanism we intend to use for the project.

We can decide to route the page requests in the origin, on the edge, or at client-side (Figure 2-5).

[image: Micro frontends routing diagram]
Figure 2-5. - Micro-frontends routing diagram

When we decide to compose micro-frontends at the origin, see the server-side composition on the right of Figure 2-5, we are forced to route the requests at origin considering the entire application logic lives in the application servers.

However, we need to consider that scaling an infrastructure could be nontrivial, especially when we have to manage burst traffic with many requests per second (RPS). Our servers need to be able to keep up with all the requests and scale horizontally very rapidly. Each application server then must be able to retrieve the micro-frontends for the composing page to be served.

We can mitigate this problem with the help of a CDN. The main downside is that when we have dynamic or personalized data, we won’t be able to rely extensively on the CDN serving our pages because the data would be outdated or not personalized.

When we decide to use edge-side composition in our architecture, the routing is based on the page URL and the CDN serves the page requested by assembling the micro-frontends via transclusion at edge level.

In this case, we won’t have much room for creating smart routing—something to remember when we pick this architecture.

The final option is to use client-side routing. In this instance, we will load our micro-frontends according to the user state, such as loading the authenticated area of the application when the user is already authenticated or loading just a landing page if the user is accessing our application for the first time.

If we use an application shell that loads a micro-frontend, the application shell is responsible for owning the routing logic, which means the application shell retrieves the routing configuration first and then decides which micro-frontend to load.

This is a perfect approach when we have complex routing, such as when our micro-frontends are based on authentication, geo-localization, or any other sophisticated logic. When we are using a multipage website, micro-frontends may be loaded via client-side transclusion. There is almost no routing logic that applies to this kind of architecture because the client relies completely on the URL typed by the user in the browser or the hyperlink chosen on another page, similar to what we have when we use edge-side include approach. We won’t have any scalability issues in either case.

Those routing approaches are not mutually exclusive, either. As we will see later in this book, we can combine those approaches using CDN and origin or client-side and CDN together.

The important thing is determining how we want to route our application. This fundamental decision will affect how we develop our micro-frontends application.

Micro-frontends communication

When we have multiple micro-frontends on the same page, the complexity of managing a consistent, coherent user interface for our users may not be trivial. This is also true when we want communication between micro-frontends owned by different teams. Bear in mind that each micro-frontend should be decoupled from the others on the same page, otherwise we are breaking the principle of independent deployment.

New teams approaching this paradigm might be tempted to use a “global state manager” for sharing the state across micro-frontends, however this is considered an anti-pattern in distributed systems. We will deep dive into this and other anti-patterns later in the book.

In this case, we have a few options for notifying other micro-frontends that an event occurred. In general, we have to maintain the micro-frontends decoupled from each other, avoiding sharing a global state across them. We can inject an eventbus, a mechanism that allows decouple components to communicate with each other via events sent via a bus, in each micro-frontend and notify the event to every micro-frontend. If some of them are interested in the event dispatched, they can listen and react to it (Figure 2-6).

[image: Event emitter and custom events diagram]
Figure 2-6. Event emitter and custom events diagram

To inject the eventbus, we need a micro-frontend container to instantiate the eventbus and inject it inside all of the page’s micro-frontends, alternatively is having the application shell applying this logic and injecting or exposing the event bus to every micro-frontend.

Another solution is to use Custom Events. These are normal events but with a custom body, in this way, we can define the string that identifies the event and an optional object custom for the event. Here’s an example:

new CustomEvent('myCustomEvent', {
detail: {
 someData: 12345
 }
});

The custom events should be dispatched via an object available to all the micro-frontends, such as the window object, the representation of a window in a browser. If you decide to implement your micro-frontends with iframes, using an eventbus would allow you to avoid challenges like which window object to use from inside the iframe, because each iframe has its own window object. No matter whether we have a horizontal or a vertical split of our micro-frontends, we need to decide how to pass data between views. Moreover, a custom event propagates to the window object traversing the elements tree expressed in the DOM. Imagine if a team accidentally stops the propagation of the custom event before reaching the DOM. This might cause more than a headache, so the recommendation is using an event emitter as the first choice.

Now, imagine we have one micro-frontend for signing in a user and another for authenticating the user on our platform. After being successfully authenticated, the sign-in micro-frontend has to pass a token to the authenticated area of our platform. How can we pass the token from one micro-frontend to another? We have several options.

We can use a web-storage-like session, local storage, or cookies (Figure 2-7). In this situation, we might use the local storage for storing and retrieving the token independently. The micro-frontend is loaded because the web storage is always available and accessible, as long as the micro-frontends live in the same subdomain.

[image: Sharing data between micro frontends in different views]
Figure 2-7. Sharing data between micro-frontends in different views

For ephemeral data however, you could pass some them via query strings - for example, www.acme.com/products/details?id=123 the text after the question mark represents the query string, in this case the ID 123 of a specific product selected by the user - and retrieves the full details to display via an API (Figure 2-8). Remember, using query strings is not the most secure way to pass sensitive data, such as passwords and user IDs, however.

[image: Micro frontends communication via query strings or URL]
Figure 2-8. Micro-frontends communication via query strings or URL

To summarize, the micro-frontends decisions framework is composed of four key decisions: identifying, composing, routing, and communicating.

In Table 2-2 you can find all the combinations available based on how you identify a micro-frontend.

Table 2-2. Micro-frontends decisions framework summary

	Micro-frontends definition
	Composition
	Routing
	Communication

	Horizontal
	Client side
 Server side
 Edge side
	Client side
 Server side
 Edge side
	Event emitter
 Custom events
 Web storage
 Query strings

	Vertical
	Client side
 Server side
	Client side
 Server side
 Edge side
	Web storage
 Query strings

Micro-Frontends in Practice

Although micro-frontends are a fairly new approach in the frontend architecture ecosystem, they have been used for a few years at medium and large organizations. and many well-known companies have made micro-frontends their main system for scaling their business to the next level.

Zalando

The first one worth mentioning is Zalando, a European fashion and e-commerce company. I attended a conference presentation made by their technical leads, and I have to admit I was very impressed by what they have created and released open source, considering it was still early days and not many companies were talking about microapps.

More recently, Zalando has replaced the well-known OSS project called Tailor.js with Interface Framework. Interface Framework is based on concepts similar to Tailor.js but is more focused on components and GraphQL than on Fragments.

Dunelm

Dunelm is a well-known e-commerce company in the United Kingdom. They have embraced micro-frontends to allow multiple teams working together in a server-side rendering composition. They started with Next.js, but they are moving towards a simpler implementation with React.js due to the realization that Next.js was used mainly for routing and not much for all the features offered by the framework.

They worked on their implementation using a serverless approach fully in AWS, I highly encourage you to hear more about their story on this episode of “Micro-frontends in the trenches”.

Netflix

In the Revenue and Growth department of Netflix, the engineers decided to embark in a micro-frontends approach creating an internal framework called Lattice.

They discovered prevalent design patterns and architectures dispersed among different tools, with potential duplicating efforts among teams. Their goal was to streamline these tools in a manner that aligns with the scalability of the supported teams. The solution needed to embody the flexibility of a micro-frontend and the adaptability of a framework, enabling the stakeholders to enhance our tools effectively. They used Module Federation as well and this helped them to solve many challenges like dependencies management and runtime load of micro-frontends.

PayPal

If you are a PayPal user and you log into the web application, you are interacting with a micro-frontends architecture. Thanks to this approach, they have shifted their mindset on how to build their web application. Moreover, they have started to share their approaches at scale. We have to remember that to build the web interface, multiple teams work together to generate one of the best payment experiences out there. Finally, PayPal team members started to contribute to the community by sharing what they had learned while building their application. I recommend watching this fantastic talk on micro-frontends communication.

BMW

BMW implemented a B2B portal that collects several applications under the same umbrella. The main rationale was reducing the cognitive load of their users when they have to perform an action across multiple portals.

Their approach is heavily based on maximum flexibility with a few constraints. In fact, any framework or JavaScript library can be loaded inside their Angular shell that uses Module Federation to manage the runtime loading of micro-frontends and the external dependencies. Here is a great demo made by one of their engineers

SAP

Another company that is using iframes for its applications is SAP. SAP released luigi framework, a micro-frontends framework used for creating an enterprise application that interacts with SAP. Luigi works with Angular, React, Vue, and SAPUI—basically the most modern and well-adopted frontend frameworks, plus a well-known one, like SAPUI, for delivering applications interacting with SAP. Since enterprise applications are B2B solutions, where SEO and bandwidth are not a problem, having the ability to choose the hardware and software specifications where an application runs makes iframes adoption easy. If we think of the memory management provided by the iframes is out of the box, the decision to use them makes a lot of sense for that specific context.

OpenTable

Another interesting approach is OpenTable’s Open Components project, embraced by Skyscanner and other large organizations and released open source.

Open Components uses a really interesting approach to micro-frontends: a registry similar to the Docker registry gathers all the available components encapsulating the data and UI, exposing an HTML fragment that can then be encapsulated in any HTML template.

A project using this technique receives many benefits, such as the team’s independence, the rapid composition of multiple pages by reusing components built by other teams, and the option of rendering a component on the server or on the client.

When I have spoken with people who work at OpenTable, they told me that this project allowed them to scale their teams around the world without creating a large communication overhead. For instance, using micro-frontends allowed them to smooth the process by repurposing parts developed in the United States for use in Australia—definitely a huge competitive advantage.

DAZN

Last but not least is DAZN, a live and video-on-demand sports platform that uses a combination of SPAs and components orchestrated by a client-side agent called boot‐strap.

DAZN’s approach focuses on targeting not only the web but also multiple smart TVs, set-top boxes, and consoles.

Its approach is fully client side, with an orchestrator always available during the navigation of the video platform to load different SPAs at runtime when there is a change of business domain. Max Gallo, a distinguished engineer at DAZN, who followed the creation of the platform from day 1, shares his insights and the reason to embrace this approach in an episode of “Micro-Frontends in the trenches”.

These are just some of the possibilities micro-frontends offer for scaling up our co-located and/or distributed teams. More and more companies are embracing this paradigm, including New Relic, Starbucks, Amazon, and Microsoft.

Summary

In this chapter, we discovered the different high-level architectures for designing micro-frontends applications. We dove deep into the key decisions to make: define, compose, orchestrate, and communicate.

We also defined a heuristic to test micro-frontends boundaries after defining them.

Finally, we discovered that many organizations are already embracing this architecture in production, with successful software not merely available inside the browsers but also in other end uses, like desktop applications, consoles, and smart TVs.

It’s fascinating how quickly this architecture has spread across the globe. In the next chapter, I will discuss how to technically develop micro-frontends, providing real examples you can use within your own projects.

OEBPS/assets/untitled_549425_01.png
HEADER (Team C)

PRODUCT PRODUCTS
DETAILS CAROUSEL
(Team A) (Team B)

FOOTER (Team C)

leam A

leam B

HEADER HEADER
VIDEO PLAYER
PRODUCT PRODUCTS
DETALLS CAROUSEL
CATALOG
FOOTER FOOTER

HORIZONTAL SPLIT

VERTICAL SPLIT

OEBPS/assets/untitled_549425_02.png
Fxample.

Gift Code bounded context

OEBPS/assets/untitled_549425_03.png
Personalised
microservice

Trending

microservice

o

Images
microservice

Catalogue API Search API
€
Backend For
Frontend
A
Catalogue Frontend
g
~

Catalogue Subdomain

OEBPS/assets/untitled_549425_04.png
Ol JOO JOO

OEBPS/assets/untitled_549425_05.png
- OO0 OO0 WK

e T 5
- OO0 pilie 68

A G

Client \‘;’ Qg Qg

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/untitled_549425_07.png
Shell Application

Authentication
micro-frontend

1
storing token
Y

Web
Storage

Shell Application

Catalog

storfng token retrieving-token
, b ,

retrieving token
1

OEBPS/assets/untitled_549425_06.png
o=

{ L Events Emitter, PubSub
\ _ s+ orCustom Events

=
] [
N
Component B
or iframe
-=r
1 (B}
N
Component A
or iframe -—-r
] [
N
Component C
or iframe

OEBPS/assets/untitled_549425_08.png
Backend API

Shell Application Shell Application

A
1
1
1
1
1
1
1
1

request to API
for article details
1

Y

/catalog catalog/article/:id

OEBPS/assets/untitled_403192_01.png
Persistent layer

APIs Iayeri

backend backend
monolith L monolith
backend
\ monolith

Frontend layer

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/untitled_403192_02.png
APIs layer:
with microservices:

Frontend layer

\ Single Page Application

OEBPS/DejaVuSerif.otf

OEBPS/assets/untitled_403192_03.png
APIs layer:
with microservices:

Frontend layer

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/untitled_403192_04.png
Culture of

automation Hide
implementations
details
Modelled around
business domains
Principles of
M|croserv|Ces Decentralise
all the things
Highly
observable
Deploy
independently
Isolate

failure

OEBPS/assets/cover.png
OREILLY"
Building
Micro-Frontends

Distributed Systems for the Frontend

Early
Release

RAW &
UNEDITED

Luca Mezzalira

