

 [image: cover]

[image:]

DNSSEC Mastery

Securing the Domain Name System with BIND

by Michael W Lucas

Tilted Windmill Press

Praise for other books by Michael W Lucas

SSH Mastery

“…SSH Mastery is a title that Unix users and
system administrators like myself will want to keep within reach…”
— Peter Hansteen, author of The Book of PF

"This stripping-down of the usual tech-book
explanations gives it the immediacy of extended documentation on
the Internet. Not the multipage how-to articles used as vehicles
for advertising, but an in-depth presentation from someone who used
OpenSSH to do a number of things, and paid attention while doing
it." — DragonFlyBSD Digest

"one of those technical books that you wouldn’t
keep on your bookshelf. It’s one of the books that will have its
bindings bent, and many pages bookmarked sitting near the
keyboard." — Steven K Hicks

Network Flow Analysis

"Combining a great writing style with lots of
technical info, this book provides a learning experience that's
both fun and interesting. Not too many technical books can claim
that." — ;login: Magazine, October 2010

"This book is worth its weight in gold,
especially if you have to deal with a shoddy ISP who always blames
things on your network." — Utahcon.com

"The book is a comparatively quick read and will
come in handy when troubleshooting and analyzing network problems."
—Dr. Dobbs

"Network Flow Analysis is a pick for any library
strong in network administration and data management. It's the
first to show system administrators how to assess, analyze and
debut a network using flow analysis, and comes from one of the best
technical writers in the networking and security environments."
— Midwest Book Review

Absolute FreeBSD, 2nd
Edition

"I am happy to say that Michael Lucas is
probably the best system administration author I’ve read. I am
amazed that he can communicate top-notch content with a sense of
humor, while not offending the reader or sounding stupid. When was
the last time you could physically feel yourself getting smarter
while reading a book? If you are a beginning to average FreeBSD
user, Absolute FreeBSD 2nd Ed (AF2E) will deliver that sensation in
spades. Even more advanced users will find plenty to enjoy.” —
Richard Bejtlich, CSO, MANDIANT, and TaoSecurity blogger

“Master practitioner Lucas organizes features
and functions to make sense in the development environment, and so
provides aid and comfort to new users, novices, and those with
significant experience alike.” — SciTech Book News, Vol. 32,
No.1

“…reads well as the author has a very
conversational tone, while giving you more than enough information
on the topic at hand. He drops in jokes and honest truths, as if
you were talking to him in a bar.” — Technology and Me
Blog

Cisco Routers for the Desperate, 2nd
Edition

“If only Cisco Routers for the Desperate had
been on my bookshelf a few years ago! It would have definitely
saved me many hours of searching for configuration help on my Cisco
routers. . . . I would strongly recommend this book for both IT
Professionals looking to get started with Cisco routers, as well as
anyone who has to deal with a Cisco router from time to time but
doesn’t have the time or technological know-how to tackle a more
in-depth book on the subject.” — Blogcritics Magazine

"For me, reading this book was like having one
of the guys in my company who lives and breathes Cisco sitting down
with me for a day and explaining everything I need to know to
handle problems or issues likely to come my way. There may be many
additional things I could potentially learn about my Cisco
switches, but likely few I'm likely to encounter in my
environment." — IT World

"This really ought to be the book inside every
Cisco Router box for the very slim chance things go goofy and help
is needed 'right now.'" — MacCompanion

Absolute OpenBSD

"My current favorite is Absolute OpenBSD: Unix
for the Practical Paranoid by Michael W. Lucas from No Starch
Press. Anyone should be able to read this book, download OpenBSD,
and get it running as quickly as possible." —
Infoworld

"I recommend Absolute OpenBSD to all programmers
and administrators working with the OpenBSD operating system (OS),
or considering it." — UnixReview

“Absolute OpenBSD by Michael Lucas is a broad
and mostly gentle introduction into the world of the OpenBSD
operating system. It is sufficiently complete and deep to give
someone new to OpenBSD a solid footing for doing real work and the
mental tools for further exploration… The potentially boring topic
of systems administration is made very readable and even fun by the
light tone that Lucas uses.” — Chris Palmer, President, San
Francisco OpenBSD Users Group

PGP & GPG

"...The World's first user-friendly book on
email privacy...unless you're a cryptographer, or never use email,
you should read this book." — Len Sassaman, CodeCon
Founder

“An excellent book that shows the end-user in an
easy to read and often entertaining style just about everything
they need to know to effectively and properly use PGP and OpenPGP.”
— Slashdot

“PGP & GPG is another excellent book by
Michael Lucas. I thoroughly enjoyed his other books due to their
content and style. PGP & GPG continues in this fine tradition.
If you are trying to learn how to use PGP or GPG, or at least want
to ensure you are using them properly, read PGP & GPG.” —
TaoSecurity

Author: Michael W Lucas

Technical Review: Doug Barton

Copyediting: Aidan Julianna "AJ" Powell

Cover: Bradley K McDevitt

Print Layout: Jess McDevitt

Published by Tilted Windmill Press
(http://www.tiltedwindmillpress.com) in April 2013.

Smashwords edition.

For information on book distribution or
translations, please contact Tilted Windmill Press
(accounts@tiltedwindmillpress.com).

Copyright 2013 Michael W Lucas. All rights
reserved. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is provided on an
"As Is" basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor
Tilted Windmill Press shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in
it.

About the Author:
http://www.michaelwlucas.com/

Acknowledgments

A special thanks to my pre-publication
reviewers: Henrik Lund Kramshøj, Fredrik Ludl, Jan-Piet Mens, Scott
Murphy, Mike O'Connor, and Eivind Olsen. Notably, Alan Clegg and
Carsten Strotmann went above and beyond in reviewing this book.

Before even starting this book, I asked poor
Doug Barton of BlueCat Networks to be my lead technical reviewer.
Mutual friends tell me that he's stopped moaning "Oh, the pain,"
and should be able to speak coherently any day now. I do hope he's
learned his lesson.

Any errors in this book crept in despite the
efforts of these fine folks.

As an experiment, I published in-progress
versions of this manuscript on LeanPub (https://www.leanpub.com).
To my surprise, many people bought the incomplete book. To my
greater surprise, several people chose to overpay for it. I want to
thank everyone who purchased the in-progress book. While I won't
publically name and shame those who wanted to give me a tip, I will
say thanks to parts of their email addresses: sven, nawfal,
bonetruck, alejandro, olgamirth, axel, shori, marcus, cdjk and
dikshie.

Sadly, those early drafts included plain bad
advice caught by the technical reviewers. My best fans got ripped
off. I hope that they, too, have learned a valuable lesson.

This book is for the folks trying to keep their
name service intact despite all the miscellaneous scumbags trying
to break it. For all the folks on Twitter who encouraged @mwlauthor
to write it. And, of course, for She Who Must Be Obeyed.

Contents

Chapter 1: Introducing
DNSSEC

Chapter 2: Cryptography and
DNSSEC

Chapter 3: How DNSSEC changes
DNS

Chapter 4: DNSSEC Resolver

Chapter 5: dig and DNSSEC

Chapter 6: Securing Zone
Transfers

Chapter 7: KSKs and ZSKs

Chapter 8: Signing Zones

Chapter 9: Debugging DNSSEC

Chapter 10: Key Rollover

Chapter 11: Delegations and Islands of
Trust

Chapter 12: DNSSEC for Data
Distribution

Afterword

Chapter 1: Introducing DNSSEC

The Domain Name System (DNS) maps hostnames like
www.michaelwlucas.com to IP addresses, so
that computers can find Internet sites without people needing to
remember strings like 192.0.2.87 or 2001:db8::ab01. It also tells
devices where to find their configurations, phones where to find
their servers, and distributes lots of information. DNS has been
used for over 30 years, and is the most successful distributed
database in history. There's just one little problem:

DNS is gullible.

That's not its fault. DNS was
designed back when the fact that the Internet worked at all was a
technological miracle. Nobody really tried to break the network –
not even the young students who liked to poke into dusty corners
and access restricted systems. DNS was a vast improvement over the
centrally managed hosts file that preceded it.

But then the Internet became
mainstream. The hobbyists joined, then their families, then every
office worker and grandparent and bank and power plant and
hospital. People began conducting business over a network never
designed for it. DNS in particular was never intended for a network
with actively hostile users. And now that Grandma does her banking
on the Internet, those hostile users have a large financial
motivation to break DNS. Injecting invalid DNS information into a
network isn't as easy as it used to be, but when an intruder pulls
it off it's extremely effective.

Can an organization guard
against these attacks? Sure. But very few organizations have a
full-time DNS administrator. DNS support is usually rolled into
another team, such as network administration or server management.
You folks have switches to install. Desktops to image. Servers to
patch. Users to infuriate or pacify. Tasks that you think of as
"your real job," of which DNS support is just a tiny
inconsequential piece.

When DNS does outright fail,
it has a disproportionate impact. A nameserver daemon is a tiny
piece of software that can run in kilobytes of memory, but if it
dies every other device on the network loses its freaking mind.
People only care about DNS when it breaks, and they think of it in
binary terms. Does it work? Or not? A working but corrupted DNS
doesn't get any attention at all.

Attacks against your
company's DNS do impact your real job, however. If an attacker can
make the world think that the web site for your organization is on
a server he runs, he can intercept the incoming traffic. Users who
should come to your site will go to the intruder's instead. If the
intruder is savvy, he will silently record the user's data and send
the actual transaction on to your server for processing. You'll
realize what happened only when your customers tell you that the
day that they bought your widgets, someone stole their credit
cards.

Additionally, DNS attacks
against third parties can easily impact your organization. If an
intruder attacks the DNS of a bank, one of your suppliers, or a
major Internet site, the intruder can trick your users into handing
over personally identifying information, financial records,
confidential or secret data, or just about anything else.

But what about SSL
certificates on Web sites? A SSL certificate verifies the identity
of a web site, but it only works once the traffic reaches the
correct site. To reach that site, the client must have correct DNS
to point the browser to the right IP address. To make matters
worse, certificate authorities have repeatedly issued certificates
for large organizations to people utterly unrelated to the
organization. Certificate problems are (usually) quickly corrected,
but enforcing correct DNS data avoids a whole class of
problems.

Any of these can ruin your
day. You do not want to be in the meeting where the
accountant asks why an auction site used his company credit card to
buy authentic ceremonial head-bopping sticks from Farawayistan. Nor
in the meeting where your company president wants to know how the
plans for the firm's revolutionary low-lubricant propshaft went to
an unscrupulous competitor rather than the usual prototype shop up
the street.

The case for securing DNS
boils down to: you don't have time for all that crap.

Domain Name System Security
Extensions (DNSSEC) ensure the authenticity of DNS data.

What's the Problem?

What's wrong with the way DNS currently maps
addresses and hostnames?

It's not enough that the
various DNS servers have had a spotty security history – the
protocol itself is subject to abuses. Many smart people have worked
very hard to secure DNS, and have done pretty well, but successful
protocol security is never an afterthought. The problems go deeper
than issues with particular DNS server software suites – they exist
in the underlying protocol. Intruders successfully attack DNS at
the authoritative servers, the recursive servers, and the client
level. To understand how this works, let's look at the DNS data
set.

The basic unit of DNS
organization is the zone. Many people think of a zone as a
domain, such as michaelwlucas.com. A domain
is a zone, but zones also include parent domains like .com, or reverse DNS zones like 2.0.192.in-addr.arpa. Zones contain records about the
hosts, child zones, and major characteristics of the zone. The zone
for .com contains the nameserver (NS) records for the child zone
michaelwlucas.com. The root zone contains the nameserver records
for its child zone .com. Once you get down
to my domain, the zone contains A and AAAA records for my hosts, my
mail exchanger, and so on. Everything ties to the NS records in the
parent domain.

If an intruder can compromise
the authoritative servers for a zone, he can enter any data he
likes into the zone. Everyone will treat the information as valid –
after all, it comes from the authoritative server, the final
authority on the zone. This is the most effective way to compromise
DNS data, but it's also one of the most difficult if the target is
security conscious.

The recursive servers, such
as the client-facing nameservers in a typical organization, get
information by querying authoritative nameservers. These queries
might be hijacked as they cross the network, giving the recursive
server incorrect responses. An intruder might slip extra
information into an otherwise valid answer. The intruder has any
number of ways to taint the data in a recursive server, and people
keep finding more.

Finally, an attacker can
interpose themselves between the client and the recursive
nameserver to feed the client false information, or taint the
client's information directly on the client.

DNSSEC protects you from all
but the most determined and technologically savvy of these
attacks.

How DNSSEC protects you

DNSSEC retains the core design of DNS, but adds
cryptographic verification to prove that the information received
by a client is identical to the information transmitted by the
server. DNS information is largely public, so DNSSEC does nothing
to ensure data confidentiality. And DNSSEC doesn't secure the
underlying DNS servers – an intruder can break into a poorly
secured server despite DNSSEC protecting the nameserver data. But
DNSSEC provides a mechanism for a client to verify that the data
that arrives is the data that the system provided, and it also
helps clients to reject information signed by an intruder-created
key. These features ensure that the nameserver data used by the
client matches what the authoritative nameserver provided.

DNSSEC shares much in common
with other security protocols such as HTTPS and PGP, except the
precise encryption methods. If you're familiar with cryptographic
hashes and digital signatures, the principles behind DNSSEC won't
surprise you.

DNSSEC secures authoritative
zone data by cryptographically signing zones, so that an intruder
who wants to insert bogus data into a zone must compromise the
private key as well as the authoritative server. Keeping the
private key off-line, or signing the zones on a separate server and
copying the zone files to the DNS server, makes compromising DNS
information nearly impossible. Similarly, DNSSEC uses digital
signatures to verify the integrity of a recursive server's queries.
A DNSSEC-validating recursive client verifies DNS data provided by
the server, and rejects answers with incorrect signatures. An
intruder could still attack the desktop – after all, if you control
the desktop you control the user experience – but DNSSEC eliminates
one broad path of attack.

Why This Book?

DNSSEC, and the software to support it, has
evolved quickly over the last ten years. If you search for
tutorials on implementing DNSSEC, you'll find painfully complicated
instructions from a decade ago, using obsolete software. Those
instructions probably still work, sort of, but will cause you much
unnecessary work. Articles and blog posts cover edge cases that
don't apply any longer, or describe complicated procedures that
software now handles transparently. My goal is to remove all that
clutter and make DNSSEC as simple as possible. DNSSEC is still not
trivial – but it's not horrible, either.

This book is a one-stop-shop
to help you deploy DNSSEC, using current software and best
practices. You can skip sifting the Internet for relevant
documentation, and instead get back to your real job. To help keep
this book short, I assume that you can resolve edge cases involving
your operating system or network. Please plan time to play with
your problems. DNSSEC isn't as hard as the reams of obsolete
instructions make it seem, but it's not trivial.

Mind you, my recommendations
come from sources such as my technical reviewers, the bind-users
mailing list, and the BIND Administrator Reference Manual. Guidance
on key length and algorithms comes from the National Institute of
Standards and Technology's (NIST) Special Publication 800-81r1, the
Secure Domain Name System (DNS) Deployment Guide, available
freely on their web site. Updates from these sources supersede
anything I say in this book – no, actually, they supersede anything
I say anywhere.

Why Not This Book?

This book is not a complete in-depth DNSSEC
tutorial. The global DNS has thousands of edges, some blunt, some
sharp. If you hit an edge because your zone has one hundred fifteen
views where most people have one or two, you'll need to do
additional research. I'm covering the most common use cases for
DNSSEC, which will suffice for 95 percent of the DNS administrators
out there.

Sysadmin Background

This book is for Domain Name System
administrators who want to incorporate DNSSEC into their services,
and for application administrators and protocol designers who want
to use DNS to reliably distribute information. I will fling around
words like "zone" and "reverse DNS" and expect you to understand. I
won't explain basics like A, PTR, NS, MX, and SOA resource
records.

I assume you know how to
install specific software on your preferred platform. Maybe you
don't know how to compile BIND from source, but you can install
packaged software on your operating system. Every Unix-like
operating system has recent BIND packages. My reference platforms
are FreeBSD and OpenBSD, but BIND behaves identically across almost
all platforms. (How your operating system packages BIND might
differ, however.)

The DNSSEC theory, best
practices, and diagnostic guidance herein applies to all DNS server
software. I use the Internet Systems Consortium's (ISC) BIND 9.9,
available since January of 2012, and many of the processes in this
book will not work on older versions of BIND. BIND 9.9 makes DNSSEC
manageable by normal overworked sysadmins. If you want to tweet or
email me to ask if this stuff works on BIND 9.8, the answer is: no.
It doesn't. If your operating system doesn't yet include a BIND 9.9
package, you must build the software yourself or use a different
operating system.

DNSSEC works equally well
with IPv4 and IPv6. I mostly (not always) use IPv4 examples, mainly
because they're shorter, but everything applies equally to
IPv6.

This book is not intended as
a comprehensive DNSSEC grimoire. I cover the common cases of
securing the information in your forward and reverse zones, as well
as a couple of case studies of ways DNS can be extended when DNSSEC
is in place. I recommend best practices as per the various Internet
standards. If you want to play games with cryptographic keys, if
you want to smuggle SSH over DNS despite the security extensions,
or if you want to study the intimate details of DNSSEC, this isn't
the book for you. My goal is to help you upgrade your skills to
basic DNSSEC competence, and point you in the direction to learn
more.

DNS is traditionally fairly
forgiving. Very few implementations adhere strictly to the
protocol. This has made it easy to get DNS up and working. I've
seen sites with fifteen year old nameservers, where the root zone
file hadn't been updated since the server was installed, and DNS
still worked. I've seen zone files with all kinds of weird
shortcuts and abuses, but they parsed and loaded and worked. People
have made up subdomains without delegating nameservers to each
level of subdomain, and it worked. Some bad practices have become
institutionalized because they worked.

You should know that DNSSEC
is not forgiving. If the data doesn't adhere fairly closely to the
DNS specifications, it won't validate. No nameserver for your
subdomains? It won't validate. If you're not certain about your DNS
skills, test first. Spin up a nameserver and a test domain, and try
there before deploying DNSSEC out at your organization. Don't let
DNSSEC scare you away, but do have a certain amount of respect for
it.

Server Prerequisites

Configuring your DNS server platform properly
before configuring DNSSEC reduces deployment problems. Install your
server as per the operating system vendor recommendations and your
local security standards. Install all operating system patches the
vendor recommends, and configure your system to deploy updates and
patches automatically if possible. In almost twenty years of
systems administration I've never had an operating system update
make BIND refuse to run. While it's possible that an OS update will
give the nameserver trouble, it's much more likely that a failure
to update will permit a security breach.

A DNSSEC-validating recursive
nameserver makes additional DNS queries to gather all the necessary
information, and it uses additional processor time to verify zone
signatures. A DNSSEC authoritative server uses additional processor
power to compute signatures and process keys when signing the zone.
DNSSEC increases the amount of memory and bandwidth needed just
because the zones contain more information. Without DNSSEC, you can
serve thousands of clients on 20-year-old hardware. DNSSEC demands
greater computing resources. It's still not much; my recursive
nameservers usually have about 256MB of RAM and a single slow CPU.
Basically, you need cutting-edge 10-year-old hardware instead of
the 20-year-old hardware you could use before.

DNSSEC increases the size of
your zone files. Signing a small zone increases a zone file roughly
ten times, while large zones expand only two to three times. Even
signed zone files are pretty small, though, especially compared to
the size of modern disks. If your nameserver already uses a
substantial amount of disk space for zone files, you'll need more
space.

Disable all unnecessary
services on the machine. Use a program like netstat(1), sockstat(1), or
lsof(8) to see which programs are listening
to the network. Identify all of them. Turn off and disable anything
not necessary to running a DNS server.

Restrict command-line access
to a short list of management IP addresses, and require public key
authentication for your SSH services. If you don't know how to do
that, permit me to suggest my book SSH Mastery (Tilted
Windmill Press, 2012). Nobody except systems administrators should
have command-line access to the server.

Have the system correct its
time at boot, and use network time protocol (ntpd) to maintain correct time. DNSSEC signatures have
timestamps. If your server time is incorrect by more than a couple
seconds, your server might fail to validate good DNSSEC data. An
incorrect clock will cause DNS outages. I strongly encourage you to
use your monitoring system to make sure that the system clock
doesn't start losing time, especially on a virtual machine.

After making these changes,
reboot your server. Verify that any changes remain in place after a
reboot. Yes, all this is kind of tedious and annoying. DNS failures
are exciting, however. I like boring, and recommend it for
everyone.

DNSSEC and your Network

Traditional DNS queries use UDP port 53, because
queries and simple query responses alike can fit inside a single
UDP packet. In the late 1990s, Extended DNS (EDNS) let DNS queries
use multiple packets. If your server can't use multiple packets to
deliver a DNS reply, the query might fall back to TCP port 53.

Many protocols routinely use
multiple UDP packets. Why wouldn't DNS do that easily? Some
firewall administrators believe that DNS only uses UDP, and block
TCP port 53. Worse, some firewall products have filters intended to
permit only DNS transactions over port 53, preventing people from
tunneling other protocols over that port. Some of these products
work by assuming that all DNS queries are 512 bytes or smaller, and
dropping anything larger. Others drop all UDP fragments, rather
than reassembling them. Cable and DSL modem/firewall products are
notorious for this behavior. Some host-based firewalls (including
PF on various BSDs and iptables from Linux) commonly drop UDP
fragments. If your firewall has a naïve DNS filter, you will get
spotty results from your DNSSEC-aware resolver.

How do you know if your
environment has one of these limits? The DNS Operations Analysis
and Research Center (OARC) offers a test. Check your network
infrastructure with the OARC DNS Reply Size Test Server at
https://www.dns-oarc.net/oarc/services/replysizetest, or by running
the DNS diagnostic tool dig against a large
zone. A command like dig paypal.com any
should generate a sufficiently large response. You can force a TCP
response by adding the +tcp flag
(dig +tcp paypal.com). If you get good
answers from the OARC test and can use DNS over TCP, you're
probably fine.

If the test indicates that
your nameserver suffers from improper packet filtering, stop your
deployment. DNSSEC will not work until you resolve the network
issues. You might even have to break out a packet sniffer like
dnscap, tcpdump, or Wireshark to discover which part of your
network abuses your packets.

BIND Configuration

To follow this book's examples, you'll need BIND
on your DNS servers. Many operating systems come with a BIND
install, but it's frequently version 9.8 or older. This book uses
BIND version 9.9 or newer, because BIND 9.9 vastly simplifies
running DNSSEC. Check your version of BIND by running named –v.

If your operating system
splits the BIND server software and its related utilities (such as
dig and host) into
separate packages, install them all. Also verify that your server
only has one version of BIND installed. The various utilities
included in one version of BIND don't always work correctly with
another version – for example, named-compilezone changed between 9.8 and 9.9, and the
older version can't compile dynamic zone files from the newer
BIND.

BIND usually runs in a
chroot, with the configuration directory linked to /etc/namedb on BSD and many Linux systems. My examples
use this configuration, but if yours differs just change the path
in the examples to match your system. If your BIND doesn't run in a
chroot, I highly recommend configuring one.

I also assume that you can
configure rndc. If you've never configured
rndc before, run rndc-confgen -a and restart named. You should be able to run rndc
status and get a response from your server. I assume that
you use rndc to control your nameserver,
but generically, shutting down and restarting the whole server does
trigger configuration updates.

Finally, if you expect to
have named automatically maintain your
signatures and keys, the user running named
must have write access to your zone file directory and your key
directory. I'll cover how to configure these in the appropriate
chapters.

Recursive and Authoritative Servers

Historically, many DNS attacks relied on a
nameserver performing both authoritative and recursive services.
The purpose of a recursive server is to accept data from the public
Internet, while the purpose of an authoritative server is to
provide data for the public Internet. An intruder who wants to feed
bogus data into a nameserver via DNS needs the nameserver to accept
data. Authoritative servers that refuse to accept data eliminate
that entire class of attacks. Additionally, authoritative servers
never return DNSSEC-secured answers for the zones they are
authoritative for. If you want to secure your own domain with
DNSSEC, and you want the clients to get DNSSEC-secured data, the
clients cannot ask the authoritative servers directly.

I recommend configuring one
set of nameservers to serve your clients' DNS needs. These
nameservers should not be authoritative for any of your public
zones. (Modern recursive servers should be authoritative for
private address space, to avoid flooding the root servers with
irrelevant queries.) Configure a second set of nameservers as
authoritative for your domains, and entirely disable recursion on
them. Back when every server required dedicated hardware this was
expensive, but with virtualization it's almost trivial.

What Is In This Book?

Chapter 1 is this introduction. Every tech book
has one, but this one is mine.

Chapter 2, Cryptography
and DNSSEC, explains the cryptography essential to
understanding DNSSEC. If you're already familiar with public key
and symmetric cryptography, you'll at least want to read the parts
on how DNSSEC uses cryptography and the types of keys DNSSEC
uses.

Chapter 3, How DNSSEC changes
DNS, explains some of the resource records you must understand to
implement and troubleshoot DNSSEC. I also cover how the Chain of
Trust works, protecting your private keys, and interacting with
your registrar.

Chapter 4, DNSSEC
Resolvers, takes you through configuring a BIND server to ask
for and validate DNSSEC information, and provide DNSSEC to clients
that request it. We consider client operating systems and see what
they do with DNSSEC.

Chapter 5, Dig and DNSSEC, uses the
basic DNS diagnostic tool dig to recognize
and examine DNSSEC issues.

Chapter 6, Securing Zone
Transfers, covers securely copying zones between DNS servers
with transaction signatures.

Chapter 7, KSKs and
ZSKs, covers creating DNSSEC keys, the related files, and how
to extract the necessary records from those keys.

Chapter 8, Signing
Zones, uses the keys from Chapter 7 to actually sign and
secure your zones.

Chapter 9, Debugging
DNSSEC, covers how and why DNSSEC fails. I address useful
troubleshooting tools and some of the on-line resources for
debugging your DNSSEC environment.

Chapter 10, Key Rollover, covers key
lifecycles and how to change your keys when needed. For such a
short description, it's a fairly long chapter.

Chapter 11, Delegations
and Islands of Trust, covers securing subdomains with DNSSEC
and implementing DNSSEC on networks using private address
space.

Chapter 12, DNSSEC for
Data Distribution, shows how to provide information other than
hostnames and IP addresses via DNS. We'll put SSH host keys, web
site SSL certificates, and IPSec certificates in DNS, using DNSSEC
to ensure that clients receive this information correctly.

Now let's dive into
crypto.

Chapter 2: Cryptography and DNSSEC

DNS Security Extensions cryptographically verify
that the information received by a client matches what the server
intended to transmit. If the authoritative DNS server's records
show that the host www.michaelwlucas.com is
at the IP address 192.150.247.34, this should be the address that
clients get. If someone forges DNS response packets or poisons a
DNS server's cache, the DNSSEC-validating recursive nameserver
recognizes the contamination and rejects the bogus data. But what
does it mean to "cryptographically verify" something?

Most people think of
cryptography as a way to transform readable "plaintext" into
unreadable "ciphertext" and back. Only someone who knows the secret
key and the encryption method can perform either transformation.
This is the stuff of spy novels and thriller films, but while
cryptography started as secret messages, it now includes all sorts
of related tools and techniques. This book isn't a complete crypto
tutorial; if you want details on cryptography, you'll need a
different book. I cover practical cryptographic techniques in my
book PGP & GPG (No Starch Press, 2006). One of the
techniques DNSSEC uses is the cryptographic hash.

Cryptographic Hashes

A cryptographic hash is a mathematical
algorithm that takes a chunk of text and computes a fixed-length
string from it. Different algorithms produce hashes of different
length, but the length of any hash produced by a specific algorithm
never changes. For example, all hashes produced by the SHA-1
algorithm are 40 characters long, all MD5 hashes are 32 characters
long, and so on.

The interesting thing about a
hash is that minor changes in the original text dramatically change
the hash generated from the text. Here's the MD5 hash of the text
This is an important message:

393f37098965afbcf3bb5a14683b18f2

I change this text to
This is an unimportant message, completely
changing the meaning in only two characters. The MD5 hash
becomes:

f168f399300404e1148580a6444d3b97

These two strings are wildly
different. Even the most casual observer can see that the hash does
not match.

It is possible that two
chunks of text, or messages, will have the same hash. A message
might contain thousands or millions of characters, but even the
SHA512 hash algorithm has only 128 characters. Logically,
innumerable files will have a given hash. The trick is, it's almost
impossible to create a file that has a given hash value. I might
know that a file has a hash value of
f168f399300404e1148580a6444d3b97, but for a secure cryptographic
hash function there's no realistic way to create another file that
has that exact same hash. If I could find another message that had
the same hash, it would almost certainly bear no resemblance to the
original message. You might be able to replace This is a secure message with a string of binary
garbage, but your human brain will recognize it as corrupt
data.

As computers get faster,
older hash algorithms become easier to break. The MD5 algorithm is
no longer considered secure, because it's possible to create a file
to match a specific hash value. (I used MD5 for my example only
because the hash is short enough to fit nicely on the page.) New
algorithms are created continually as older algorithms become
vulnerable. Today's most widely recommended algorithm is
SHA-256.

One way to extend a hashing
algorithm's life is through using a salt. A salt is a
value that is added to the original text before the hash is
computed. Suppose I want to use the salt GiveLucasYourGelato with my original text of
This is an important message. I would
compute the hash based on the string This is an
important messageGiveLucasYourGelato. I use a different salt
for every piece of plaintext. The salt is generally known – for
example, when DNSSEC uses a salt in its algorithms, the actual salt
appears in a DNS record. When a salted password hash appears in a
Unix-like system's password file, the salt appears right next to
the salted password.

Why are salts important? If I
hash the same text four times with the same algorithm, the
resulting hashes will be identical. If I generate four hashes of
the same plaintext, but if I use different salts for each, the
resulting hashes will differ wildly. An intruder won't realize that
these four hashes all represent the same plaintext.

Applications can use
cryptographic hashes to verify that the contents of a message have
not changed since creation. If a server sends a message (such as a
response to a DNS query) and includes a hash for the message
contents, the recipient can use the hash to verify the original
message. The problem is, of course, that an intruder who has access
to change the data could also tamper with the hash as he tampers
with the message. Here, we use public key cryptography to make any
tampering self-evident.

Public Key Cryptography

Symmetric encryption algorithms use a secret key
(or just a key) to transform plaintext to and from ciphertext. Most
algorithms use the same key to encrypt and decrypt text. If you
have the key and know the algorithm, you can decipher the message.
The secrecy of messages exchanged with these algorithms relies on
the secret key remaining known only by authorized parties. This is
the traditional encryption algorithm used throughout history.

Some algorithms use different
keys for encryption and decryption. A message encrypted with one
key can only be decrypted with the other key. These
asymmetric algorithms work because the keys are very large
numbers, and very large numbers behave strangely when multiplied
together. Someone with one key can encrypt messages that only
someone with the other key can decrypt, or can decrypt messages
encrypted with the other key. If the bad guys have only one key,
the bad guys can encrypt messages readable only by the owner of the
other key and can read messages encrypted with the other key – but
they cannot decrypt messages encrypted with the key they have.

Having two different keys
that only work in concert creates interesting possibilities. You
can make one key public and keep the other private. Any message
encrypted by the private key can be read by the whole world. Does
this keep the message secret? No. But it does prove that the person
who encrypted the message has access to the private key. If only
one person has the private key, the recipient can assume that the
message actually comes from the private key owner. This concept
underlies public key cryptography. A set of private and
public keys is called a key pair.

DNSSEC uses public key
cryptography and hashes to digitally sign DNS data.

Digital Signatures and DNSSEC

Combining hashes with public key encryption
leads to digital signatures. The goal of a digital
signature is to ensure that a message is authentic – it
comes from the source it claims to have signed it, and a third
party hasn't changed the message.

You digitally sign a message
by generating a hash of the message, encrypting it with a private
key, and attaching it to the message. Anyone with access to the
public key (e.g., everyone in the world) can compute the hash for
the message and compare it to the decrypted hash. Only the private
key holder can encrypt the hash such that this particular public
key can decrypt it, so the digital signature demonstrates that the
private key holder signed the message.

If the received message has a
different hash than the one in the digital signature, the digital
signature is considered invalid. The message was changed
after transmission. If a DNSSEC-aware program determines that the
signature on a record is invalid, it discards the entire
message.

Fortunately, you don't need
to compute all these checksums yourself. DNSSEC-aware software
checks for the presence of DNSSEC signatures in DNS transactions,
and validates them if present. BIND includes several tools for
creating, validating, and examining the cryptographic aspects of
DNSSEC data, such as dnssec-keygen,
dnssec-verify, dnssec-signzone, and dig.

DNSSEC Key Types

An intruder might try to get your private key
without stealing it from the server by reverse-engineering it from
publicly available information. A cryptographically savvy attacker
can use high-powered computers to reverse-engineer the signatures
on your DNS entries and computationally grind out your public key.
One thing that helps cryptographic attackers is having a large
number of encrypted samples with known plaintext, which is exactly
what digital signatures provide. If you have a zone with many
entries, a prospective intruder will get many different samples of
encrypted text with known text. To mitigate this risk, DNSSEC can
use different types of keys (Key Signing Keys and Zone Signing
Keys) and lets you change your keys on a regular basis as covered
in Chapter 10.

A DNSKEY record is a DNS
record that contains all the keys for a zone. We'll cover DNSKEY
records, along with other DNSSEC-related key records, in Chapter
3.

The Zone Signing Key (ZSK) is
used to sign a zone. Every zone has its own ZSK. You can change the
ZSK whenever you desire.

The Key Signing Key (KSK) is
a key only used to sign the Resource Record set containing all the
DNSKEYs for the zone, including KSKs and ZSK. Every zone has its
own KSK. Changing a KSK requires coordination with outside parties,
such as a domain registrar or IP address registry. A KSK is
sometimes called a Secure Entry Point (SEP), because you can
configure a nameserver to completely trust a KSK.

Essentially, your zones are
double-signed. Your DNS data is signed with the ZSK, and the ZSK is
signed with the KSK. An attacker who wants to computationally
reverse-engineer your private key has a very small sample size;
only one signature. This is extremely difficult – essentially
impossible with modern computing equipment. When brute force
computation approaches the point where the 2048-bit RSASHA1 keys
commonly used today might be vulnerable, you'll need to upgrade
your KSK and ZSK to the next recommended algorithm and bit
length.

To further complicate an
attacker's job, you can limit the lifetime of a key. Keys do not
expire. (Digital signatures do expire, but named automatically renews those signatures.) You can
assign an inactivation and deletion date to your keys and
periodically replace (or rollover) your keys to new keys.
Key rollover is not absolutely required to make DNSSEC work, but is
highly advisable. I cover key rollover at length in Chapter 11.

Now that you understand
something about encryption, let's see how DNSSEC extends DNS.

Chapter 3: How DNSSEC Changes DNS

Rather than creating an entirely new protocol,
DNSSEC secures the domain name system by extending DNS itself. DNS
already supports many resource record types, for many different
services. DNSSEC works by adding new record types and performing
additional computations to validate data. DNSSEC uses these records
to create a Chain of Trust to validate any given resource
record.

DNSSEC Record Types

Resource records are DNS data types. You've
certainly seen resource records such as A (address), CNAME
(canonical name), PTR (pointer), MX (mail exchanger), and so on.
DNSSEC introduces new resource records that contain the encryption
information and hashes necessary to perform DNSSEC validation. The
five record types are DNSKEY, DS, DLV, RRSIG, and NSEC/NSEC3.

It's not necessary that you
memorize all the details of these resource record types. You do
need to be familiar with what they look like, so you can recognize
when you have a problem. You'll need to dive in more deeply if your
DNSSEC deployment fails.

RRset

A Resource Record Set, or RRset, is a
collection of records of the same domain name, record class (IN),
and record type. Resolvers return entire RRsets when answering
queries. If you make a DNS query for the host www.michaelwlucas.com, you'll get a single A record
because that zone only has one A record for that host. That's a
complete RRset. If you ask for the host www.google.com, however, you'll get six A records back.
Those six records are a single Resource Record Set. Google
obviously has more resources than yours truly.

Resource Record Sets are
fairly standard DNS stuff. Why do I bring it up? DNSSEC does not
sign individual DNS records. DNSSEC signs complete RRSets. We'll
see how this works in the RRSIG section later this chapter.

DNSKEY

The DNSKEY resource records contain a zone's
public keys. When you view the record with dig it will look something like this.

isc.org. 3600 IN DNSKEY 257 3 5
AwEAAce/lMDzNxn…

The first string
(isc.org) is the domain, and the second
(3600) is the time-to-live in seconds for this data. The IN DNSKEY
string shows that this is an DNSKEY record in the Internet class.
The next field is for the key flags. DNSKEY records use only two
flags: a 256 means that this record is a ZSK, while 257 means it's
a KSK. Next is the protocol, which should always be 3 – if the
protocol is not 3, this record is not for DNSSEC. (Just because a
protocol isn't standard doesn't mean that someone won't wedge it
into their DNS.) Finally there's the algorithm. The older RSASHA1
algorithm is number 5, the only algorithm DNSSEC implementations
must support. NIST recommends new zones use RSASHA256 or algorithm
8. The root zone is signed with RSASHA256, so in practice every
DNSSEC-aware server supports RSASHA256. Finally, there's the actual
public key.

The DNSKEY record appears in
the zone it supports; I get the DNSKEY record for michaelwlucas.com by querying the authoritative
nameserver for michaelwlucas.com.

You cannot store arbitrary
public keys in a DNSKEY record, only public keys used by the DNS
system itself. You can use other record types for storing public
keys, as we'll see in Chapter 11.

DS

The DS (Delegation Signer) resource record
contains a hash of the zone's active KSK, as well as information
about the algorithm used and the associated key tag. DS records
look like this.

michaelwlucas.com. 86400 IN DS 12088
5 2 BF258808…

The first string is the
domain, and the second is the time-to-live in seconds for this
data. The IN DS labels this as an Internet DS record. The fifth
field (12088) is the key tag. A tag is unique for any zone at any
given time, but isn't unique between zones. The next field (5) is
the algorithm, which again is RSASHA1. The next field (2) is the
digest type field, or the algorithm used to compute this hash. 1 is
SHA1, 2 is SHA256. The actual hash of the public key appears
last.

A DS record appears in the
parent zone of its zone. To get the DS record for michaelwlucas.com, you must query the .com nameservers. Yes, the .com
nameservers should have DS records for every single domain that
uses DNSSEC.

DS records are based on a
zone's Key Signing Key.

DLV

A DLV (DNS Lookaside Validation) resource record
is almost exactly like a DS record, but it's only provided by the
DNS Lookaside Validation registry. We haven't covered the DLV yet,
so for now just nod and smile as we go over this record type.

michaelwlucas.com.dlv.isc.org. 2644
IN DLV 31650 7 2 229C4…

michaelwlucas.com.dlv.isc.org. 2644
IN DLV 31650 7 1 E2BB2…

The first field is the domain
name this key is distributed under. Zones anchored to the Chain of
Trust by the DLV appear as subdomains under dlv.isc.org, so the domain michaelwlucas.com appears in the DLV as michaelwlucas.com.dlv.isc.org.

The second field is the
time-to-live. This record will remain cached for another 2,644
seconds.

The third and fourth records
(IN DLV) identify this as an Internet DLV record.

The fifth field is the key ID
(31650).

The next field (7) is the
algorithm, which in this case is NSEC3RSASHA1. The next field (2)
is the digest type field. The actual public key hash appears
last.

The DLV was originally
intended for testing DNSSEC before the root zone was signed. Today,
the DLV is a temporary workaround for registrars who do not support
DNSSEC. If you need a DLV record, you need to push your registrar
to join the 21st century.

RRSIG

The RRSIG (Resource Record Signature) record
gives the digital signature of a set of resource records. If a
DNSSEC-secured zone has an RRset for www.michaelwlucas.com, that RRset includes a RRSIG
record. A RRSIG record looks like this:

www.michaelwlucas.com. 3600 IN RRSIG
A 5 3 3600 20130225054537 20130126052421 39543 michaelwlucas.com.
fh+6N+tfnkw97oE…

The first field is the name
of the RRset that this data applies to. The second is the
time-to-live in seconds for this data. The third and fourth field
(IN RRSIG) identify this as an Internet RRSIG record. The fifth
field (A) tells you what kind of DNS resource this signature
applies to. This can be an A, a SOA, an NS, a MX, or any other sort
of DNS record that appears in your zone or that DNSSEC adds to your
zone (e.g., NSEC).

The sixth field (5) gives the
algorithm used to generate this key. Algorithm 5 is RSASHA1.
Chapter 7 covers key algorithms.

The seventh field (3) gives
the number of labels in the resource set. For example, www.michaelwlucas.com has 3 labels, while michaelwlucas.com has 2. This helps DNSSEC validation
by letting the client determine if this RRset includes wildcard DNS
entries.

The eighth field (3600) gives
the original time-to-live in seconds for this data, without any
subtractions made by any intermediate caching nameservers.
Validating a DNSSEC signature requires the original time-to-live
number.

The next two fields give the
date the signature expires, and the date the signature becomes
valid. These datestamps are another reason that time
synchronization is so important on DNSSEC-aware nameservers. This
signature is not valid before the creation date or after the
expiration date. BIND 9.9 can renew signatures automatically, as
we'll see in Chapter 9.

The eleventh field (39543)
gives the key tag (or key id) of the DNSKEY record that signed this
signature.

The twelfth field is the
signer's name. This should be the zone the record is part of, where
the DNSKEY can be found. In this example, the signature on the
RRset for the host www.michaelwlucas.com is
signed by a DNSKEY in the michaelwlucas.com
zone, exactly as you would expect it to be.

The record ends with several
lengthy strings comprising the actual digital signature.

The signature is generated by
signing the zone data with the ZSK. The DNSKEY RRset containing the
ZSK and the KSK is in turn signed with the KSK.

NSEC/NSEC3

The "next secure" resource record offers proof
of nonexistence of a record. If you try to find a record that does
not appear in DNS, you want a statement from the authoritative DNS
server that the record does not exist. Proving freeporn.michaelwlucas.com doesn't exist is just as
important as proof that it does exist. Perhaps even more
important.

NSEC records have an
interesting side effect in that they can be used to enumerate the
entries in a zone. An attacker can use them to list all the hosts
in your zone by asking for the NSEC records for known hosts. NSEC3
records hash the names of the existing hosts, so that all attackers
can learn is that there's another host. I cover creating NSEC3
records in Chapter 8.

Why is this important? When a
client asks for a hostname, a zone with NSEC says that the closest
surrounding host names are X and Y. For example, if you ask for the
host support.michaelwlucas.com, an NSEC
response would tell you that the closest hosts to that are
mail.michaelwlucas.com and www.michaelwlucas.com. The client would know two valid
hostnames in the zone. If the client came back and asked for the
host www0.michaelwlucas.com, he'd get a
response telling him that the closest hosts are www.michaelwlucas.com and zyzygy.michaelwlucas.com. You can ask a server for the
first NSEC record in the zone, and then request the next. An
intruder can easily get every NSEC record in the zone, which is
roughly equivalent to letting everyone in the world perform a zone
transfer.

For some zones, notably
reverses, this doesn't matter. Everybody knows that 3.2.0.192.in-addr.arpa follows 2.2.0.192.in-addr.arpa, and can perform exactly this
same sort of zone reconnaissance without performing a zone
transfer. Forward zones contain more information than reverses,
however: aliases, mail exchangers, service records, and so on. Some
of this information might be sensitive to your organization.

Let's look at the specifics
behind NSEC and NSEC3 records.

NSEC Records

An NSEC record looks like this.

pestilence.michaelwlucas.com. 900 IN
NSEC www.michaelwlucas.com. A TXT AAAA RRSIG NSEC DNSKEY

The first field is the name
of a valid host in the zone. The second field (900) is the
time-to-live for this resource record. The third and fourth field
identify this as an Internet NSEC record. The fifth field is the
name of the next valid host in the zone. There are no hosts between
pestilence.michaelwlucas.com and
www.michaelwlucas.com. We then have a list
of the types of records associated with the host at the beginning
of the entry. The host pestilence.michaelwlucas.com has associated A, TXT,
AAAA, RRSIG, NSEC, and DNSKEY records. The TYPE field is used to
validate "no data" responses.

NSEC3 Records

An NSEC3 record looks like this.

DRVR6JA3E4VO5UIPOFAO5OEEVV2U4T1K.michaelwlucas.com. 3600 IN NSEC3 1
0 10 03F92714 GJPS66MS4J1N6TIIJ4CL58TS9GQ2KRJ0 A RRSIG

The first field is a hash of
a valid hostname in the zone. The second field (3600) is the
time-to-live for this resource record, while the third and fourth
field identify this as an Internet NSEC3 record.

The fifth field (1) is the
algorithm used to generate the hash.

The sixth field (0) are for
NSEC3 flags.

The seventh field is the
number of times the hostname is passed through the hashing
algorithm, and the eighth is the hexadecimal salt used for that
calculation.

The ninth field is the hashed
hostname of the next host in the zone.

Finally, we have a list of
valid resource records associated with this host. The host in our
example has A and RRSIG records in the zone.

A zone using NSEC3 also
includes an NSEC3PARAM record, which defines various cryptographic
characteristics the client uses to dissect NSEC3 records. You don't
really need to know the innards of NSEC3PARAM records, but you
should know that they exist and are necessary for the proper
working of NSEC3.

Now that you know what kind
of records appear in DNSSEC zones, let's see how those records are
used to build the chain of trust.

The Chain of Trust

A trust anchor is a "known good" public
key used to sign DNS records. Trust anchors are the root of the
DNSSEC system. Validating nameservers trust information provided by
the trust anchor server and signed by the trust anchor key. BIND
9.8 and newer ship with the public keys for the root zone and for
the DNS Lookaside Validation (DLV) service included. When you build
BIND, those public keys are compiled into the software. Trust
anchors are trusted for specific parts of the DNS namespace,
although you can override them in the configuration file.

DNSSEC uses these trusted
keys as the first link of the Chain of Trust used to
develop trust for other domains, in the same manner as a recursive
DNS lookup. Without DNSSEC, a nameserver looking for the IP address
of a host – say, www.michaelwlucas.com –
asks the root server for information. The root server responds with
a message basically saying "I don't know that host, but here are
the nameservers for .com, go ask them." The
recursive server asks a .com nameserver,
which directs the client to the michaelwlucas.com nameservers, which finally returns an
answer.

DNSSEC uses a similar process
to build trust in answers from your server, but in reverse. Trust
is built from the bottom up. The client nameserver sees a signature
on an RRset, and looks for a key that can validate that signature.
If that key isn't trusted, it looks for a key to validate that key
in turn.

So, suppose your resolver
sees a signature on the www.michaelwlucas.com RRset. The resolver gets the
DNSKEY record for the zone. To validate the signature, the resolver
needs to find a signature for this record, made by a trusted key.
The resolver checks the parent zone for a trusted key. The
.com zone doesn't have a trusted key in it,
but it has signed the KSK for michaelwlucas.com with a key. So your resolver checks
for a trusted key in the parent zone for .com. The root zone has a trusted key, which validates
the key on .com, which validates the key on
michaelwlucas.com, which validates the
signature on www.michaelwlucas.com.

You trust the root, so you
trust everyone the root tells you to trust. DNSSEC lets you verify
that trust at every link in the chain. If the cryptographic
signature on any response fails validation, the response is
discarded. Your nameserver will tell a desktop client that there's
no such host. See Chapter 9 for details on debugging DNSSEC
validation failures and some pretty diagrams on how everything
breaks – er, works.

DNS Lookaside Validation

Some top-level domains are not signed; these
include ones you'd expect signatures on, such as the top-level
domains for many countries. If your top-level domain is not signed,
your zone's digital signature can't be verified by a DS record in
your parent zone. The chain of trust from your domain to the root
breaks. The DNSSEC Lookaside Validation Registrar (DLV) provides a
trust anchor for domains not linked to the root zone trust anchor.
While anybody could theoretically open a DLV, the Internet Software
Consortium runs the only popular one and everybody (including the
ISC) hopes it will go away soon.

When a nameserver is looking
for DNSSEC validation on a domain, but the normal recursive search
shows a break in the chain of trust, the nameserver can check ISC's
DNS Lookaside Validation servers for a DLV record. If the domain
has a DLV record signed by the DLV key, your nameserver accepts
that as a valid anchor for the Chain of Trust.

The DLV was originally
created as a tool for testing DNSSEC. You can manually add trusted
keys for specific domains to your nameserver, but that doesn't
scale to the Internet. The DLV was a trust anchor for early DNSSEC
adopters. The original plan was that when the signed root zone went
public in January 2010, the DLV could be shut down. Theoretically,
all of the domain registrars could support DS records and
immediately make DNSSEC globally available. Sadly, many registrars
do not yet support DS records for their clients. If you use a
registrar that doesn't support DS records, the registrar doesn't
support DNSSEC. You're stuck using the DLV.

The DLV presents trust
issues, however. The root zone keys have careful access controls
and advanced hardware protection. Using those keys requires
multiple activation cards and different PIN codes and generally
resembling the procedure for launching nuclear missiles. The DLV
keys are controlled by some well-meaning folks at ISC. Some
organizations, including some governments, specifically forbid
trusting the DLV. If you rely on the DLV, you trust ISC and you
trust those who trust ISC.

Today, I use the DLV. If your
organization requires very strong security, however, you shouldn't.
The DLV will become irrelevant, but that day isn't quite here
yet.

I strongly recommend only
using domain registrars that support DS records. If your registrar
doesn't support DS records, ask them when they will. If they have
no plans to support DS records, change registrars and tell them
why. Domain registration is too important to leave with an
organization unwilling to keep up with standards. A mob with
torches and pitchforks is impractical these days, but should you
have the urge to organize one, an obsolete registrar merits it.

Root Private Key Security

So, if BIND ships with two vital public keys in
the source code, and those keys are compiled into the binaries,
what happens if someone steals the private key? The private keys
for the trust anchors are very well protected (see the "DNSSEC
Practice Statement for the Root Zone KSK Operator" document at
https://www.iana.org/dnssec/icann-dps.txt), but admittedly, nothing
is utterly secure. There are hundreds of root servers scattered
around the Internet, but none of them have the root zone private
key. They have a copy of the root zone that is signed by the root
zone private key. That actual private key is kept in a hardware
security module, in two redundant off-line facilities managed by
ICANN. ICANN periodically signs new ZSKs, which Verisign uses daily
to sign the actual root zone. Verisign then sends the root zone to
the root servers. The actual private key to the root zone KSK is
protected by an air gap.

There's a mechanism for
automatically updating the trust anchor key, documented in RFC5011.
You don't need to be familiar with the innards of this mechanism,
but it resembles the key rotation methods discussed in Chapter 11.
In a worst-case situation, you can manually configure trust anchors
and their keys, but if that's necessary it'll be widely
publicized.

Don't worry too much about
the root zone's private key. Worry about your own.

Managing Your Private Keys

Just how tightly will you protect your keys?
Greater key protection requires more ongoing work. You need to
decide how much work you're willing to do in exchange for what
level of security.

It's common these days to
have hosts keep their private keys on the local server. Many server
software suites, such as OpenSSH, Apache, and various VPN products,
must have their private keys available when they start. That's what
these programs do, after all – they use their private key to do
useful work. You could copy the private key to these servers to
start the service, and remove the private key when the services are
running, but that's a lot of work. System administrators habitually
store private keys on the server, accepting the risk that an
intruder could steal the key in exchange for the ability to
conveniently restart the services. It's a tradeoff.

Forged DNS data presents a
different threat level. An intruder who steals your web server's
private SSL key can build a machine that can pretend to be your web
site. An intruder who steals your DNSSEC private key can direct
people to her rogue web server and publish an SSL
certificate via DNSSEC, eliminating any need to steal the web
server's private key. With DNSSEC control she can publish a rogue
VPN SSL certificate via DNSSEC, and lead people into thinking that
they're connecting to you when they're actually connecting to her
site. She can publish fake SSH host keys for your servers via
DNSSEC. By stealing your DNSSEC private keys, she can pretend to be
anything on your network.

Admittedly, not all of these
attacks are useful yet. Web browsers do not yet support
DNSSEC-stapled SSL certificates. SSH clients other than OpenSSH do
not support checking host keys via DNSSEC, and even OpenSSH doesn't
do it by default. But free SSL certificates managed entirely within
an organization are a powerful business case for DNSSEC, and once
that happens, you'll see DNSSEC use skyrocket. Once DNSSEC is
widely deployed, you'll see clients using all of these functions
and more. From the start, treat your DNSSEC private keys as the
precious resources they will become in the next few years.

There are three common
approaches to protecting private keys.

Stealth Master

One approach to key protection is the stealth
master. The master server is tightly secured, behind a firewall,
perhaps in private address space. The public cannot access the
master server for any service.

All nameservers that offer
public services are slaves of the stealth master, and those public
nameservers have no access to the master beyond DNS. These servers
do not need the private key for the zones that they serve, as they
only have zone files. If a public nameserver is compromised, the
private key is safe.

Hardware Security Module

Another approach is to not store the private key
as a file. A hardware security module plugs into the
server hardware. Private keys can be stored on the HSM, or deleted
from it, but not copied from it. When using a HSM on your master
nameserver, you generate the private key directly on the HSM.
There's never a file for an intruder to steal. And if an intruder
can steal the hardware security module, the multiple security cards
needed to power it on, and the multiple PIN codes needed to
activate it, then the security of your private keys is the least of
your worries.

Nothing

Storing your private key on your server, without
any special protection, is certainly an option. It might even be a
popular option. But it's not a secure option. If you choose to keep
your private keys on your master nameserver, then anyone who breaks
into your server can steal it. Even if nobody has ever broken into
one of your servers, that doesn't mean that they can't or
won't.

At the very least, become
well-acquainted with the key rollover procedure in Chapter 11.
Practice rolling over your keys. When someone steals your private
keys, start replacing them immediately. I'll explain how to do
this, but it's better to avoid the situation in the first
place.

Publishing Public Keys

Before anyone can verify your signatures, you
must make your public key available in the appropriate parent zone.
This isn't terribly different from registering your nameservers
with your registrar; you go to a web form, enter the information,
and wait for the updates to propagate. Some registrars have APIs
where you can submit updates via software.

DNS uses Delegation Signer
(DS) records to publish hashes of KSKs. Your parent zones need the
DS records for your domains. We'll look at creating the keys and
extracting the DS records from them in Chapter 8, but before you
get that far, verify that you know how to get your DS records into
the public eye. There's three ways to do this: at your registrar,
the DNSSEC Lookaside Validation (DLV) Registry, and your address
space provider. You don't have to publish the key yet – in fact, you specifically
must not publish public keys before signing your zone –
but you do need to know which path you will follow. We'll consider
each separately.

At the Registrar

The best way to publish your DS record is
through the registrar where you registered your domain name. The
catch is, not all registrars support DNSSEC. How can you tell if
yours does? Search the registrar's documentation for "DS records"
and then "DNSSEC." If your registrar doesn't appear to support
DNSSEC, ask their support team. Some registrars support DNSSEC only
through manual intervention, such as emailed requests. Familiarize
yourself with your registrar's process for updating your DS
records.

If the registrar really
doesn't support DNSSEC, then you must either use the DLV or change
registrars. The registrar I've personally used for ten years does
not support either DNSSEC or IPv6, so I use the DLV for my personal
domains. As my domains come up for renewal, however, I am moving
them to a registrar that supports both DNSSEC and IPv6. (I don't
say where I'm moving to because I don't want to appear to endorse
any one company over another; many registrars provide excellent
service.) I've been happy with my registrar's service, but they
aren't keeping up with the times. I encourage you to follow my
example.

Some registrars support
DNSSEC, but only permit one DS key at a time. A registrar should
permit two DS keys to support rollovers.

Many registrars need about 24
hours to get updates into the public nameservers. Some are much
faster – those using Extensible Provisioning Protocol (EPP) can do
nearly real-time updates. You have a better idea how fast your
registrar propagates changes than I do.

At the DLV

If your parent domain is not signed or your
registrar does not support DNSSEC, your domain's digital signature
can't be verified by the root zone's signature, breaking the Chain
of Trust. The DNSSEC Lookaside Validation Registrar (DLV) provides
a trust anchor for domains whose registrars can't get their DS
records into parent domains like .com.

Go to the DLV site at
https://dlv.isc.org and create an account. You'll get the usual
email for verification. Once you have that account, you can enter
DS or DNSKEY records for a zone in the web interface.

When you enter a DS or DNSKEY
record for a zone at the DLV, the web form presents you with a
"cookie" TXT record to enter into the zone. The DLV will not
activate your entry until its automated check sees this TXT record
in the zone. The first check usually takes place in 5-10 minutes,
but subsequent checks take longer. I recommend creating your DLV
entry when it's convenient to add the TXT record to the zone. Once
the DLV activates your keys, remove the DLV TXT record from the
zone.

Address Space Provider

To enter DS records for your reverse DNS, you
need to have the DS record inserted into your parent zone for your
addresses. This is most easily done at Regional Internet Registries
(RIRs), the entities that issue IP addresses. These organizations
include ARIN (North America), RIPE (Europe), APNIC (Asia-Pacific),
and so on. The RIRs all support managing DS records from web
interfaces.

If you get your address space
from a reseller, however, you need to ask them if they support DS
records. If they do not yet support DNSSEC, they can't support the
Chain of Trust internally, but that doesn't prevent them
registering a DS record for you at their RIR. If you have a /24
network or larger, they can enter a DS record on your behalf at the
RIR. Whether they will or not is a separate matter.

If your ISP cannot support
your DNSSEC initiative, you're stuck with the DLV. Encourage your
ISP to join the 21st century. You are also entitled to feel
technologically superior to your ISP. Enjoy.

Now that you have a basic
understanding of how DNSSEC works, and what outside support you
need to fully implement it, let's get a nameserver to validate
DNSSEC.

Chapter 4: DNSSEC Resolver

Start your DNSSEC adventure by configuring your
recursive nameservers to validate DNSSEC on domains that offer it.
This easy step is probably the biggest security improvement you can
make in thirty minutes or less.

To enable DNSSEC, you need to
have a place for named to store key files
and a few entries in named.conf.

Key Management Directory

To manage and update a record of public keys,
named needs a place to put files. If you
don't specify a location, named will try to
put the files in its own root directory – usually /etc/namedb. Most operating systems run named as an unprivileged user who deliberately doesn't
have write privileges to this directory. (Allowing a daemon to
overwrite its own configuration files is a security risk.) In
named.conf, specify a directory for
named to store keys.

If your server is strictly a
recursive server, and is not authoritative for any domains, define
a working directory. The named daemon will
use this directory for all of its temporary and dynamic files, as
well as any debugging output or logs.

options {

…

directory
"/etc/namedb/working";

};

If your nameserver is both an
authoritative and a recursive server – that is, serving as a master
or a slave for a domain and helping clients – then define a
directory specifically for managed keys. (Again, I recommend
separating your recursive and authoritative servers, but you're
free to ignore my advice on the matter.)

options {

…

directory
"/etc/namedb/working";

managed-keys-directory
"managed-keys";

};

A directory shown by its full
path (as in the first example) is in the location shown. A
directory name without a leading slash (as in the second example)
is relative to named's working directory.
My working directory is /etc/namedb/working, so the second example gives a
managed keys directory of /etc/namedb/working/managed-keys.

In either case, the user
running named must have write access to
that directory. My servers run named as the
user bind, but your system might have a
different unprivileged user. Create the directory if it doesn't
already exist, set it to be owned by the user running named, and set the directory permissions so the owner
can write to it, like so.

mkdir
/etc/namedb/managed-keys

chown bind:bind
/etc/namedb/managed-keys

chmod 755
/etc/namedb/managed-keys

Verify your work by running
named-checkconf(8). It should return
silently; any messages it displays indicate a configuration
problem. You can use echo $? immediately
afterwards to get the return value, which should be 0.

This is a great time to
double-check your system time with date(1).
DNS forgives inaccurate clocks; DNSSEC does not.

Activate DNSSEC Resolution

Now that named can write
its key files, activate DNSSEC resolution in /etc/named.conf. For the widest range of valid DNSSEC,
trust both the root zone and the DLV server.

options {

…

dnssec-enable yes;

dnssec-lookaside auto;

dnssec-validation auto;

};

Restart named. You're done. Really.

You now validate DNSSEC data,
using the public keys hard-coded into the BIND source tree. If you
look in your managed keys directory, you'll see a file containing
the managed keys and the dynamic journal for key updates.

Testing DNSSEC Validation

How can you tell it works? Fire up dig and run some queries. Here we have a
platypus-and-egg problem: you need a DNSSEC-validating resolver to
play with dig, and you need dig to verify your supposedly
validating resolver really validates DNSSEC. I cover dig in Chapter
5.

I recommend querying
isc.org; they wrote BIND, and they're
really pushing hard for DNSSEC, so we can realistically expect
their DNSSEC to be working. Remember that dig uses the resolvers configured in /etc/resolv.conf, so if you want to test a specific
nameserver you must specify it on the command line.

$ dig +dnssec www.isc.org

You should see RRSIG and
DNSKEY records. Additionally, dig displays
the ad flag (for authenticated data) if the
recursive server can validate the response.

To test your DLV functions
you need to find a domain that uses DNSSEC via the DLV. Many of my
own domains do so, but as I gleefully destroy my own environment in
the pursuit of knowledge, using it as a test probably isn't wise.
Use the domain that the DNS-OARC established for just this
purpose.

$ dig +dnssec
nsec3.dlvtest.dns-oarc.net

Both of these dig queries should return RRSIG records and have the
ad flag set.

If you don't care about the
DNSSEC-specific records, but want to know if a zone validates, use
the +ad option.

$ dig +ad
paypal.com

In the next chapter, we'll
delve deep into dig and DNSSEC.

Clients and DNSSEC

Most desktop systems have a stub
resolver – they send DNS queries to a recursive nameserver,
but don't actually process the responses any further. They do not
validate DNSSEC responses on their own. If the recursive nameserver
claims that a DNS response is signed, that's good enough for the
client.

If an attacker is on the
network between the recursive nameserver and the client, it's
possible that they could spoof responses from the recursive server.
The "proper" solution to this is to have stub resolvers validate
DNSSEC, but that's in the future.

As of Windows 7, Microsoft
clients are aware of DNSSEC. They cannot independently validate
DNSSEC queries, instead relying on the local DNS server to perform
this validation. Microsoft recommends securing this traffic by
deploying an IPSec VPN between the client and server. Check
Microsoft's site for information on setting up DNSSEC with DNS
servers.

If you want a Unix-like
workstation to validate DNSSEC, enable named on the machine. Configure such a nameserver to
only accept queries from the local host and to perform its own
recursive queries. Such a configuration uses only a tiny amount of
resources. You can't just forward queries to another nameservers,
as forwarders do not perform their own DNSSEC validation.

If you're looking for an
application to perform client-side DNSSEC validation, I recommend
Unbound (www.unbound.net) or Unbound with DNSSEC-trigger
(https://www.nlnetlabs.nl/projects/dnssec-trigger/). The TLSA
Firefox plugin discussed in Chapter 12 uses these tools, as do
various other client-side DNSSEC validators.

Testing DNSSEC at the Client

Even though DNSSEC validation at the client is
currently the weak part of the Chain of Trust, enabling DNSSEC
changes client behavior. Configure a client to use only
DNSSEC-validating nameservers. Open a Web browser, and go to one of
the DNSSEC testing sites. A search engine will show several, but my
favorite is http://dnssec.vs.uni-due.de – it's very responsive and
unambiguously tells you if you resolve DNSSEC or not. Any web site
maintained as an aside by busy sysadmins might be down at any given
time, of course, so try several until you find one that works well
for you.

In the next chapter, we'll
see how to make more sophisticated debugging queries.

Chapter 5: dig and DNSSEC

The dig(1) program is
the standard DNS diagnostic tool. It lets you perform recursive and
iterative searches using chosen nameservers, gather detailed
information from a nameserver's cache, and scrutinize exactly how a
specific nameserver behaves. Your BIND install should include
dig; if it doesn't, go look for an
operating system package. Microsoft users should install the BIND
package from ISC's BIND site – it's fast, small, integrates with
Windows, and doesn't spam your system with unrelated junk. If you
don't want BIND, use Cygwin.

Do not try to debug DNSSEC
with nslookup. The nslookup program has been deprecated for years.
I admit, I used nslookup far beyond when I should have stopped.
When you enter DNSSEC-land nslookup is not merely not useful – in
some cases it gives incorrect, incomplete, or harmful answers. The
nslookup command does not display the response codes vital in
DNSSEC debugging. Skip nslookup.

When used without options,
dig queries the system's nameserver for a
host's IP address.

$ dig
www.michaelwlucas.com

; <<>> DiG 9.9.2
<<>> www.michaelwlucas.com 

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode:
QUERY, status: NOERROR, id: 36382 

;; flags: qr aa rd; QUERY: 1, ANSWER:
1, AUTHORITY: 3, ADDITIONAL: 5 

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp:
4096

;; QUESTION SECTION:

;www.michaelwlucas.com. IN A


;; ANSWER SECTION:

www.michaelwlucas.com. 7200 IN A
192.150.247.34 

Here I asked dig for the IP address of my web server, and it
returned 192.150.247.34. But let's look more closely at the output.
At  you'll see the version of
dig used. Most utilities use BIND's version
number, so this is the dig that shipped
with BIND 9.9.2.

The header line at
 declares what sort of operation this is,
and if the DNS server returned an error. This particular
dig request is a QUERY, and the status of
NOERROR means that the server queried has an answer for you, either
from the cache or from the authoritative server.

The  flags give more detail about the query. Flags
provide vital clues when debugging DNSSEC issues – or general DNS
issues. The flags you'll see are:

	
qr (query response) –
this message is the response to a query. This is always present in
a response.

	
aa (authoritative answer)
– this message is an authoritative answer. This flag should always
appear when you query a domain's authoritative nameserver about
that domain, and only then.

	
rd (recursion desired) –
the client asked the nameserver to find an answer, even if the
nameserver had to perform a recursive search for it.

	
ra (recursion available)
– the nameserver is willing to perform recursive searches.

Additionally, you can see the
following flags when working with DNSSEC.

	
ad (authenticated data) –
the nameserver has validated this data's digital signature.

	
cd (checking disabled) –
the client has requested that the nameserver not perform DNSSEC
validation on the data.

You'll see the  query echoed in the output, followed by the
nameserver's  response. Most people skip
directly to this response, but everything before it is
important.

A couple lines after the
flags, you'll see the Extended DNS (EDNS) section. There's a flag
field here. Only one flag is defined now, do, for DNSSEC OK. The client has specifically
requested DNSSEC validation, and the server can perform that
validation for the client.

DNS Errors

Note the status field in
our previous example shows noerror. That
means that everything worked. Maybe we got an answer. Maybe we
didn't. But the DNS client went out, got some data, and returned it
to us.

When something goes wrong,
you might see a status of SERVFAIL. This means that DNSSEC
validation failed, or the authoritative server isn't, or any number
of other things. The Domain Name System has failed to fetch an
authoritative response to this query.

If the record you're looking
for doesn't exist, you'll get a NXDOMAIN error. For example, there
is no host www2.michaelwlucas.com. If you
query for that, you'll get an NXDOMAIN.

You might also get an
authoritative answer with no results, or no data. After the flags
field you'll find an ANSWER section. If this is 0, the information
you're looking for doesn't exist. For example, the DNS record for
www.michaelwlucas.com includes A and AAAA
records. If I request the NS record for that host, I get no data.
Answers exist, just not the type of answers we're looking for.

Digging DNSSEC

To view DNSSEC information on a zone, add the
+dnssec option. For my examples, I'm also
adding +multi to make the output easier to
read. I'm examining the DNSSEC records on www.isc.org with my validating resolver. As those folks
are DNSSEC gurus, I expect their main web site to always have fully
functional DNSSEC.

$ dig www.isc.org +dnssec
+multi

…

;; ->>HEADER<<- opcode:
QUERY, status: NOERROR, id: 56342

;; flags: qr rd ra
ad; QUERY: 1, ANSWER: 2, AUTHORITY: 5, ADDITIONAL:
13

Note the ad flag in the result. This data is authenticated by
DNSSEC. How does that authentication appear in DNS? Look further
down in the response for the answer.

…

;; ANSWER SECTION:

www.isc.org. 600 IN A
149.20.64.42

isc.org. 7200 IN RRSIG NS 5 2 7200
(

20130413181154 20130314181154
50012 isc.org.

C+/FFrY6RF5DjdXk+e8mVwxNO27d+FIQUf5saqVjvQ5V

…

The RRSIG record is the
actual signature on the RRset. It's part of what our recursive
nameserver used to validate the DNSSEC data, and is probably the
part of the answer we're most interested in.

If a validating resolver
cannot validate the DNSSEC signature on data, it gives a SERVFAIL
error. To end users, this appears as if the host has vanished from
the Internet. I show assorted failures, and how to diagnose them,
in Chapter 9.

A non-validating resolver
will show a zone's DNSSEC records if you request them. But it won't
verify the signatures on the zones. That's what makes a
non-validating resolver non-validating. Non-validating resolvers
always return any data the authoritative server has for the zone,
even if the signature is invalid. Or, if you prefer, non-validating
resolvers behave exactly like they always have.

digging Authoritative Servers

Try asking ISC's authoritative servers about
www.isc.org, and you'll see something
surprising.

$ dig www.isc.org +dnssec
@199.6.1.30

…

;; flags: qr aa rd;
QUERY: 1, ANSWER: 2, AUTHORITY: 5, ADDITIONAL: 13

The authoritative nameserver
for the domain, when queried, does not display the ad flag. This data is not authenticated. The
aa flag states that the response is
authoritative, however. Reading further shows that the answer has
RRSIG records, so the answers are signed. Shouldn't a response
directly from the master nameserver be cryptographically
secured?

An answer received directly
from an authoritative nameserver never appears
cryptographically secured. The authoritative server doesn't
validate its own answers. The authoritative server considers itself
correct, just like any other authority in any other field of
knowledge, from network administration to brewing absinthe. Only a
validating resolver not authoritative for the domain will validate
those signatures.

digging the DLV

Domains using the DLV trust anchor can also be
diagnosed with dig if you remember two
things. First, your domain is shown as a subdomain of dlv.isc.org. Second, you must query the nameservers for
the zone dlv.isc.org, not the server
dlv.isc.org itself. Rather than looking up
the nameservers directly, you can use the dlv modifier to dig. Here I
search for the DLV record for absolutenetbsd.com.

$ dig
absolutenetbsd.com.dlv.isc.org dlv

…

;; flags: qr rd ra
ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL:
7

…

;; ANSWER SECTION:

absolutenetbsd.com.dlv.isc.org. 3438
IN DLV 13558 5 2 D853B57CD6639CAB7…

absolutenetbsd.com.dlv.isc.org. 3438
IN DLV 13558 5 1 45DF2C727B563BB14…

The ad flag is set, indicating that your nameserver has
authenticated this data. And the DS records let validating
resolvers build the Chain of Trust for the domain absolutenetbsd.com.

Disabling Validation

Remember that when DNS data fails DNSSEC
validation, the nameserver rejects the data and additionally
provides a SERVFAIL response to the client. One way to
differentiate between a DNSSEC failure and a generic DNS failure is
disabling DNSSEC validation. Use the +cd
option for this.

$ dig www.michaelwlucas.com
+cd

If a DNSSEC-enabled request
results in a SERVFAIL error, but you get a response with DNSSEC
checks disabled, then your DNS server cannot validate the DNSSEC
signatures on the data. Chapter 9 will walk you through figuring
out why a signature does not validate.

External Checks

Sometimes you need to test your DNS
configuration against a nameserver that has no special knowledge of
your network, so you can verify that your zones are configured the
way you need. In my case, I set up a recursive server that isn't
attached to my DNS infrastructure. You can also use the OARC's open
DNSSEC resolvers, documented at
https://www.dns-oarc.net/oarc/services/odvr.

$ dig michaelwlucas.com
@149.20.64.20 +dnssec

The nameserver 149.20.64.20
is not related to my domain in any way. If this shows the
ad flag for this query, I know that my
DNSSEC setup is correct. If it doesn't show the ad flag, it might
be a problem with my zone or the resolver – nothing says that the
fine folks who run OARC cannot have a time problem on one of these
servers. Try a few unrelated validating resolvers before concluding
that your zone is broken.

We'll dig much more through this book, but this will get you
started.

Chapter 6: Securing Zone Transfers

Having your master server digitally sign zones
is nice, but if an intruder can attack your zone data as it travels
between your master and slave servers then the digital signature
isn't helpful. Before deploying full-on DNSSEC on your zones, you
really should secure zone transfers between a master and its
slaves. BIND uses Transaction Signatures (TSIG) to guarantee data
integrity. While DNS transactions include dynamic updates, NOTIFY
messages, and dig queries, TSIG is most
commonly deployed to protect zone transfers.

Purists will note that TSIG
is not strictly part of DNSSEC. If you're going to the trouble of
securing your zone data on your authoritative servers, however, you
should certainly secure that data as it goes between authoritative
servers. And you should do it before deploying DNSSEC, or: now.

TSIG works via symmetric
encryption. The server and the client share a key. Any bad actor
with the secret key could extract a zone transfer from a master or
update a dynamic zone protected by these keys, but BIND lets you
restrict a TSIG key so that it's only usable by a specific IP
address. While not perfect, this is a significant
improvement over purely IP-based access control. (I leave
perfection up to other people.)

Also note that TSIG doesn't
encrypt the data in transit. Its digital signature preserves the
integrity of master-slave communications, not confidentiality. If
you want confidentiality between your masters and slaves, set up a
VPN.

Create a separate shared
secret key for every slave server. If an intruder compromises a
slave server, you only need to replace the keys stored on that
host. If an intruder breaks into your master nameserver, replace
all keys for all secure protocols on that host – SSH, HTTPS,
DNSSEC, LDAP, and anything else.

TSIG Configuration

To configure TSIG you must create TSIG keys for
each pair of hosts, tell named about the
key, and assign the key to a specific server. We'll cover these in
order.

Key Creation

Create TSIG keys with dnssec-keygen(8). You must know the algorithm, the
number of bits in the key, and the name of the key.

TSIG keys can use several
different algorithms, but the current NIST recommendation is
HMAC-SHA256. Strictly speaking, an organization can use any
algorithm implemented on the masters and all slaves. You could use
a different algorithm for each, but for most cases that would be
silly. Upgrade your older nameservers.

The number of bits in the key
varies by algorithm, but HMAC-SHA256 can use between 1 and 256
bits, with 112 being the NIST recommendation. 112 bits is a
minimum, but longer keys are more secure. They also take more
computing power, but if you control both your masters and slaves,
you might want to use them. You copy-and-paste the secret into
named.conf, so you never have to type 512
bits of secret key. I recommend using the NIST standard, 112
bits.

dnssec-keygen -a
HMAC-SHA256 -b 112 -n HOST key-name.

The only part of this command
you need to change is the key name. Use the hostnames involved in
the key name, so you can easily identify the file later. It's
traditional to end the key name in a period. Below I create a file
to secure transactions between two machines, bewilderbeast and pestilence. I
abbreviate the hostnames in the key name, because I'm not that much
of a masochist.

dnssec-keygen -a
HMAC-SHA256 -b 112 -n HOST bwb-pst.

Kbwb-pst.+157+13738

This creates two files,
Kbwb-pst.+157+13738.key and Kbwb-pst.+157+13738.private. Here we see a weird detail
of dnssec-keygen's behavior, in that it
always generates two files. TSIG uses a symmetric key. Both files
contain the same secret key.

Look at the file ending in
.private. You'll see a line much like
this:

Key: L2kf18Hz+ODr519beRA=

The text after the
Key: is the shared secret key. You'll
copy that string into named.conf next.

Add the Key to named.conf

Add a key statement to
named.conf on both the master and the
slave. You need the key name and the secret key.

…

key keyname {

algorithm hmac-sha256;

secret
"secret-from-private-file";

};

…

For example, to add my
bwb-pst. key to this nameserver, I would
add this entry to named.conf.

key bwb-pst. {

algorithm hmac-sha256;

secret L2kf18Hz+ODr519beRA=

};

Now that named knows about the key, tell it to use this key for
a specific server.

Assign Key To Server

BIND lets you configure settings for each server
it communicates with. This named.conf entry
on the master server specifies the IP address of a slave and the
name of the key.

server 192.0.2.34 {

keys {bwb-pst. ;};

};

The slave server needs a
similar entry, using the master server's IP address.

Reload the nameservers, and
they will have the ability to use TSIG between them. They won't use
TSIG until you activate it, however.

Let Keys Transfer Zones

The allow-transfer
option in named.conf permits a specific
host to copy the zone. It's normally used on master servers to
allow a slave to get a copy of the zone. You can specify the key
name in the option. Here I tell named to let the key bwb-pst. transfer a zone.

allow-transfer {127.0.0.1; key
bwb-pst. ;};

Any host that identifies
itself with this TSIG key can copy this zone. The master server
will sign the zone with the secret key to guarantee data integrity.
And remember that you can include allow-transfer in specific zones as well as in the
global nameserver configuration, so you can prevent random slave
servers from arbitrarily downloading all of your zones.

Does TSIG Work?

The easy way to tell if TSIG works is to update
the zone and see if the slaves pick up the changes. Masters notify
their slaves when the zone is updated, so the slaves should attempt
to transfer the zone immediately. You can also run rndc retransfer zonename on the
slave to force an attempt to transfer the zone.

If TSIG is correctly
configured, you'll see confirmation in your debugging log.

client 192.0.2.34#15519/key bwb-pst
(michaelwlucas.com): transfer of ' michaelwlucas.com /IN': AXFR
started: TSIG bwb-pst

client 192.0.2.34#15519/key bwb-pst
(michaelwlucas.com): transfer of michaelwlucas.com /IN': AXFR
ended

If the transfer doesn't work,
you'll get "denied" messages instead. Check your configuration. The
most common errors I have in new TSIG installations is that I
incorrectly type something in named.conf.
The key name must be identical everywhere it's used, and tied the
key to the server's correct IP.

If TSIG fails on a new
server, check the clocks on both the master and the slave server.
TSIG, like much of DNSSEC, requires synchronized time. When the
clocks differ, the log shows a BADTIME
error.

Once TSIG works, you can
delete the key files unless you need them for dig.

dig Versus TSIG

I frequently use dig to
test zone transfers between machines. When using TSIG, you need to
tell dig about the TSIG key file with the
–k argument.

dig -k
/etc/namedb/tsig/Kbwb-pst.+157+13738.key michaelwlucas.com
@192.0.2.34 axfr

I usually allow zone
transfers from the host 127.0.0.1, in addition to key-secured
transfers to other hosts. This lets dig do
a zone transfer without using a key. Sometimes using dig to view a zone on the local machine helps me figure
out what I screwed up, and there's no security risk in transferring
a zone on the local machine.

Now that you can secure zone
transfers, let's create some DNSSEC keys.

Chapter 7: KSKs and ZSKs

Every zone needs its own Key Signing Key (KSK)
and Zone Signing Key (ZSK). These keys create the Chain of Trust,
as discussed back in Chapter 2.

All keys must be readable by
the user running named. If your permissions
are wrong, you'll get an error when trying to use them.

Single Key Zones

It is possible to sign a zone with a single key,
rather than two. If both the parent zone and the child zone are
managed by a single entity, you can use a common signing key (CSK)
for both levels. Examples include the various parent domains under
.uk. A CSK shows up as type 256 in a DNSKEY record, just like a
ZSK.

The most common environments
need two keys. If you run a top level domain like .uk, and are just
starting to deploy DNSSEC, you might investigate using a CSK. Lots
of documentation exists in the form of conference slides and random
mailing list postings. In the absence of a compelling reason to use
a CSK, I recommend sticking with the standard dual key system.

Key Algorithms

DNSSEC keys have used several algorithms over
the years, and algorithm choice impacts what your DNSSEC
installation will support. The three algorithms commonly used for
zone keys today are RSA/SHA-1 (algorithm 5), RSA/SHA1-NSEC3-SHA1
(algorithm 7), and RSA/SHA-256 (algorithm 8). Which you use depends
on your environment.

RSA/SHA-1 is the only
algorithm that DNSSEC implementations must support, according to
the DNSSEC specification. It's older, and not as strong as
algorithms like RSA/SHA-256.

RSA/SHA1-NSEC3-SHA1 is
exactly the same as RSA/SHA-1. The only difference is the algorithm
number. Why is that? The different algorithm number serves as a
flag that this zone includes NSEC3 records. A resolver that doesn't
recognize algorithm 7 will understand that it cannot validate this
zone.

RSA/SHA-256 is much stronger
than RSA/SHA-1. Interoperability is important, and all clients must
be able to use the same encryption algorithms. RSA/SHA-256 is not
defined as a required algorithm by the DNSSEC specifications. The
root zone is signed with this algorithm, however, so any nameserver
performing DNSSEC validation in practice can handle
RSA/SHA-256.

Which should you use?
RSA/SHA-256, unless you're a government agency. The only algorithm
approved for use within the US government is RSA/SHA1. This is
widely expected to increase to RSA/SHA-256 when the government gets
around to it. If you are forced to work within government
regulations, see if you can use RSA/SHA-256 anyway. Otherwise,
you're stuck with RSA/SHA-1.

RSA/SHA-1 and
RSA/SHA1-NSEC3-SHA1 are mostly used by older installations. If
possible, migrate these to RSA/SHA-256. Changing algorithms means
performing a key rollover, as covered in Chapter 10.

Algorithm choices change over
time. While RSA/SHA-1 was once considered sufficient, RSA/SHA-256
has largely supplanted it. By 2015, NIST expects to start
recommending elliptic-curve-cryptography-based algorithms instead.
The Internet Engineering Task Force (IETF) constantly develops new
ways to use DNSSEC and new key algorithms to support those uses.
You can get a complete list of DNSSEC key algorithms at
http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xml.
Each algorithm has a related RFC standard describing the uses,
purpose, strengths, and weaknesses of each hash method.

For the most part, though,
you only have to worry about what algorithms your installation
supports. Algorithms 5 and 7-11 are in real-world use, and BIND 9.9
supports them. The full list of algorithms and standards will be
more useful in the future, when you're troubleshooting and discover
a new algorithm in the wild. Even then, your probable solution will
be "upgrade BIND."

Bit Lengths

Keys can be any bit length from 1 to 4096 bits.
The longer your keys, the more computation others must do to
validate your signatures. As such, using 4096-bit keys everywhere
tells others that you're either something of a jerk or ignorant.
The NIST recommends 1024 bits for ZSKs, and 2048 bits for KSKs.

You might have a reason for
using longer keys, however. If you're a consultant setting up
DNSSEC, and you just know that the client is going to
ignore your advice and never rotate their keys, you might use
longer keys. A key length of 4096 bits does make the zone bigger,
but that increase is just noise next to the RRSIG records.

Key Files

Each keypair created by dnssec-keygen, regardless of algorithm or role, has two
files. Key files start with a K, then the
zone name, followed by the algorithm, followed by a key ID. One
file ends in .private, one in .key. A key for the zone michaelwlucas.com might include these files:

Kmichaelwlucas.com.+008+13957.key

Kmichaelwlucas.com.+008+13957.private

The 008 is the key algorithm.
These are RSA/SHA-256 keys. The 13957 is the key ID number. Each
key has a five-digit key ID number. These numbers are not
universally unique, but the key ID helps differentiate one key from
another. Key IDs are unique for a zone at any given time. If you
run DNSSEC long enough and frequently rollover your keys you'll
eventually get the same key ID again, but the first key with that
ID will be long deleted (see Chapter 10).

The .private file contains the private key and related
information for this keypair. The .key file
contains the public key in DNSKEY format, along with timing
information and the key's role.

Each zone needs a pair of key
files for the KSK and another pair for the ZSK, for a total of four
files. Back up the keys when you create them.

About five minutes after you
create the keys, you'll forget which files go with the KSK and
which the ZSK. The easiest way to differentiate ZSK from KSK files
is to look at the .key files. Lines
beginning with a semicolon are comments, and the first comment
identifies the key type.

; This is a zone-signing key, keyid
48252, for michaelwlucas.com.

; Created: 20130130031526 (Tue Jan 29
22:15:26 2013)

; Publish: 20130130031526 (Tue Jan 29
22:15:26 2013)

; Activate: 20130130031526 (Tue Jan
29 22:15:26 2013)

michaelwlucas.com. IN DNSKEY 256 3 8
AwEAAdW…

The first line identifies the
type of key, the key ID number, and the zone the key belongs to.
The next three lines are for timing data, used in key rotation (see
Chapter 10). The last line is the actual DNSKEY record for the
zone.

Creating Keys

Up until now we've talked about keys, looked at
keys, and generally poked at them. Now let's actually generate some
KSKs and ZSKs with dnssec-keygen. You must
specify an algorithm by either name or number, the number of bits,
and the zone name. If you're creating a key signing key, you must
add the flag for that.

By default, dnssec-keygen creates RSA/SHA-1 keys with 1024-bit ZSKs
and 2048-bit KSKs. For all other algorithms, you must specify the
number of bits. Get into the habit of including the algorithm and
bits on the command line or in your scripts. That way, changing
defaults over the years won't surprise you.

To create a key signing key,
use the –f ksk option. Specify the
algorithm with –a, and the number of bits
with –b. You can use the algorithm name
instead of the number, removing all punctuation from the name
(i.e., RSASHA1 or RSASHA256). For RSA/SHA1-NSEC3-SHA1 keys, add the
-3 flag instead of the algorithm name. I prefer using the number
rather than typing the whole name. Give the name of the zone as the
final argument.

$ dnssec-keygen –f KSK –a 8 –b
2048 zonename

For example, to create a KSK
for the zone michaelwlucas.com, I would
run:

$ dnssec-keygen -f KSK -a 8
-b 2048 michaelwlucas.com

Generating key
pair.................................+++
............................+++

Kmichaelwlucas.com.+008+48082

This generates two files in
the current directory, Kmichaelwlucas.com.+008+48082.key and Kmichaelwlucas.com.+008+48082.private.

Generate your ZSK similarly,
but reduce the number of bits and remove the KSK flag.

dnssec-keygen –a 8 –b
1024 zonename

This generates a 1024-bit
RSA/SHA-256 ZSK.

Remember that the user
running named must have read access to these files, so make that
user the owner of these files. Do not make the key files
world-readable.

DS Record

Validating clients look for a DS record in your
parent domain to build the Chain of Trust. Remember, a DS record is
a secure cryptographic hash of the actual public key. Run
dnssec-dsfromkey(8) on your KSK. You can
drop the .public and .private from the key file name.

$ dnssec-dsfromkey
Kmichaelwlucas.com.+008+48082

michaelwlucas.com. IN DS 48082 8 1
C1C2450…

michaelwlucas.com. IN DS 48082 8 2
1DB8186…

These two lines are your DS
records that need insertion into the parent domain. Keep them
handy. Once your zone is signed, you must send these to your
registrar, RIR, or the DLV as per Chapter 3.

Dig and Keys

It's hard to pick out the DNSKEY record from the
complete zone. The easiest way to get a DNSKEY record is by
querying the zone it belongs to. We won't add the key to the zone
until the next chapter, but for now just follow along. To look at a
zone's DNSKEY records, request them with dig.

$ dig isc.org
dnskey

…

;; ANSWER SECTION:

isc.org. 6863 IN DNSKEY 256 3 5
BQEA…

isc.org. 6863 IN DNSKEY 257 3 5
BEAA…

See Chapter 3 to learn how to
understand a DNSKEY record. You can see here that ISC is still
using algorithm 5, or RSA/SHA-1. You can start out using a newer
and stronger algorithm than them.

Now that you have keys, let's
sign a zone.

Chapter 8: Signing Zones

Now that you have a Key Signing Key and a Zone
Signing Key for your first zone, you can actually sign your zone. I
assume that you will let named maintain
your signatures. BIND 9.9 lets you have named automatically sign zones for dynamic zones and
zones backed by static zone files.

Key files accumulate quickly,
and if you store them with your zone files they can easily
overwhelm all other files. Some people recommend using a directory
for each zone, storing all files for that zone in that directory. I
prefer to use a directory for my zone files and a separate
directory for my key files. It doesn't matter what you do so long
as you're consistent. In my examples I put zone key files in
per-domain directories.

Signature Methods

BIND includes zone-signing commands, letting the
sysadmin hand-tweak exactly how the zones are signed. While there's
nothing wrong with doing so, manually signing zones is too much
work for most systems administrators, especially if you have a lot
of zones to maintain. BIND 9.9 can automatically sign zones, and
refresh the signatures on those zones. Older versions of BIND
cannot. The manual commands remain for the convenience of those who
implemented DNSSEC in the early days, and while you're welcome to
use them for new DNSSEC deployments, there's really no reason to.
If this is your first DNSSEC deployment, then I reiterate: install
BIND 9.9.

Organizations that use static
zone files have a completely different workflow than organizations
using dynamic DNS. Nobody wants to change they way they work to
accommodate DNSSEC. If an organization maintains static zone files
with some kind of provisioning or version control system, they
won't blithely switch to dynamic updates just to implement DNSSEC.
Plus, those of us who have manually edited zone files by hand for
decades have a deep-seated horror at the thought of letting BIND
change our zone files. Those people who use dynamic zones don't
like to muck with static zone files. We'll consider each case
separately. In both cases, though, the easiest way to implement
DNSSEC is by letting named maintain the
keys and signatures.

auto-dnssec maintain;

BIND's auto-dnssec
maintain feature tells named to look
for keys for a zone and use those keys to sign the zone. We'll use
this option to automatically sign a zone.

We saw in Chapter 3 that
DNSSEC signatures – the RRSIG record – have an expiration date.
With auto-dnssec maintain, named
automatically renews those signatures as they expire and removes
expired signatures from the zone. In my experience, lapsed
signatures are a common cause of DNSSEC-related DNS failures.
(Other people's DNSSEC-related failures, that is; me, I let
named do all the work.)

We'll start by using
auto-dnssec maintain on dynamic zones. Even
if you use static zones, follow the discussion on dynamic zones.
The way auto-dnssec handles dynamic zones
is highly relevant for static zones.

Signing Dynamic Zones

Dynamic zones can be updated by clients. Most
consumer operating systems attempt to update their local zones with
their hostname and IP address. With auto-dnssec
maintain, named automatically reads
the key files and signs the entries in a dynamic zone.

Your zone is dynamic if its
named.conf entry looks like this:

zone "blackhelicopters.org" {

type master;

file
"dynamic/blackhelicopters.org";

update-policy local;

};

Your zone might use an
update-policy statement instead of
allow-update.

Create a KSK and ZSK for your
zone as per Chapter 7, then configure named.conf to use them like so.

zone "blackhelicopters.org" {

type master;

file
"dynamic/blackhelicopters.org";

allow-update { 127.0.0.1;
};

key-directory
"dynamic/keys/blackhelicopters.org ";

auto-dnssec maintain;

};

The key-directory statement gives a directory under the
working directory where named can find the
keys for the zone. You will have many keys for your zones, and a
separate directory for each will help you manage them. The
auto-dnssec maintain statement tells
named to automatically sign the zone and
renew the signatures on the zone as they expire. Now run
rndc reload zonename, and
named will automatically sign and update
that zone.

With auto-dnssec, named adds the
DNSSEC resource records for the zone to the zone journal and
increments the serial number. When you freeze or sync the zone for
editing, named adds the current DNSSEC
records to the zone just like any other dynamic changes. When you
thaw the zone again, named updates those
DNSSEC records to match your changes. Use dig to verify that the zone has DNSSEC records.

Signing Static Zones

Static zones are maintained via a zone file
rather than through dynamic tools. They have a named.conf entry much like this.

zone "blackhelicopters.org" {

type master;

file
"master/blackhelicopters.org";

};

One of the major points of a
static zone file is that named can't update
it. But signing a zone requires inserting DNSSEC signatures into
the zone. How can named update a zone if it
can't write to the zone file?

With a feature called inline
signing, named does a little trickery. The
named program copies the contents of the
static zone into a dynamic zone, then signs and serves the dynamic
zone. It never touches the original static zone file.

One consequence of inline
signing is that the serial number served to the world will not be
exactly the same as the serial number in your zone file. The inline
signing process requires incrementing the serial number when
changing signatures. You still must increment the serial number in
your zone file for named to recognize
changes, however. From the administrator perspective, nothing
changes.

To create the files needed
for a dynamic zone, the user running named
must have write permissions on the directory containing the zone
file. The user does not need write permissions on the zone file
itself.

To enable DNSSEC on a static
zone, create a KSK and a ZSK as I covered in Chapter 7, then edit
the zone's named.conf entry.

zone "blackhelicopters.org" {

type master;

file
"master/blackhelicopters.org";

inline-signing yes;

key-directory
"keys/blackhelicopters.org";

auto-dnssec maintain;

};

This looks much like the
configuration for the dynamic zone, except for the inline-signing
option. Configure the zone and run rndc
reload zonename. You should suddenly see five files
for your zone in the zone file directory.

	
filename is the
original text zone file, unmolested by named

	
filename.jnl is
the journal for the named-created dynamic
zone

	
filename.jbk is
a temporary file for the dynamic zone

	
filename.signed
is the signed zone

	

filename.signed.jnl is the journal for the signed dynamic
zone.

These files are the first
indicator that auto-dnssec is working.
Again, use dig to verify that DNSSEC
signatures appear in your zone.

Publish DS Records

Now that your zone is signed, it's time to
publish your DS records. I covered generating DS records from a
zone's Key Signing Key in Chapter 7, and Chapter 3 discusses the
three places where you can publish them (the domain registrar, the
RIR, and the DLV). Go to your account at the appropriate registrar,
paste your DS keys into the web form, and submit your work.

Most DS record updates
propagate to the higher-level DNS servers in 24 hours or less. Once
that change happens, use dig to verify that
third-party validating nameservers see and validate your
signatures, as discussed in Chapter 5.

Congratulations! You now have
DNSSEC running correctly on one zone. Now go sign the rest of
them.

NSEC3 Signatures

By default, BIND generates NSEC signatures. If
you want NSEC3 on a zone, the zone must use an NSEC3-capable
signing algorithm such as RSA/SHA-256 and you must tell
named to use NSEC3 for this zone. Upgrading
a zone's signatures to NSEC3 is a one-time operation that has a
negligible ongoing performance impact.

NSEC3 computes signatures
with a salted hash. A salt is a value added to a plaintext
value before the hash is computed, to increase the difficulty of
finding a collision useful to an attacker. Provide a salt of up to
eight hexadecimal digits and the name of the zone. You don't need
to remember the salt, as

Use rndc to change signatures to NSEC3. You'll have to
include a few values that tell named how to
create the hash. The –nsec3param argument
tells rndc that the following values are
for computing NSEC3 hashes. The next three flags represent the
NSEC3 hash algorithm, special flags used for the hash, and how many
times the hash should be computed. Always use 1 0
10 for these flags, as fewer aren't secure enough and more
aren't any more secure. Then you provide a salt and the name of the
zone. Remember, the salt is up to eight hexadecimal digits.

$ rndc signing –nsec3param 1
0 10 salt zonename

For example, to implement
NSEC3 records for michaelwlucas.com, using
a salt of BADCODE1, I would run:

$ rndc signing -nsec3param 1 0 10
BADC0DE1 michaelwlucas.com.

request queued

Also use rndc to verify that the zone has NSEC3 records.

$ rndc signing -list
michaelwlucas.com

Done
signing with key 23085/RSASHA256

Done
signing with key 48082/RSASHA256

The contents of your zone are
now more difficult for intruders to discover. Take a moment. Bask
in your success.

The NSEC3 salt is public
information – you can get the salt from the NSEC3 record itself.
This means that an intruder can eventually compute the contents of
your obscured zone. Change your salt every time you rotate your
ZSK.

Now let's see what to do when
DNSSEC doesn't work.

Chapter 9: Debugging DNSSEC

If you configure everything correctly, clients
will be able to validate your DNSSEC. If you do something wrong and
your DNSSEC doesn't validate, your domain will disappear from the
Internet. This will make you popular. ("Popular" is the word they
use when everybody wants to talk to you, isn't it?) Start debugging
DNSSEC by determining if it's really a DNSSEC issue.

Check Your Network

First, your network might be broken in such a
way that it won't pass DNSSEC packets. This would reveal itself as
a broad DNSSEC failure, rather than a failure on a specific site.
As mentioned in Chapter 1, this is probably because a naïve packet
filter or firewall has decided that DNS transactions must only use
UDP, impose a maximum size on a DNS exchange, or impose some other
limit that complies with DNS protocol standards set in RFC 1035 in
1987, but no longer applies after the RFC 2671 updates in 1999.

Double-check your network's
ability to pass modern DNS traffic. Use the OARC DNS Reply Size
Test Server at
https://www.dns-oarc.net/oarc/services/replysizetest. You could
also run dig against a large zone and ask
for lots of information (dig paypal.com
any). Force a TCP response by adding the +tcp flag (dig +tcp paypal.com
any). Use these tests from various spots on your network
until you identify the problem.

If the test indicates that
your nameserver suffers from improper packet filtering, stop
everything. DNSSEC will not work until your underlying network
supports it. Harsh? Yep. But that's life.

I'm going to assume that your
validating resolver works, and that you get DNSSEC-secured
responses on zones like isc.org and
paypal.com. You're troubleshooting a
specific DNSSEC issue, not a broad DNSSEC failure. If you can't get
valid DNSSEC on any domain from your DNSSEC resolver, go back to
Chapter 4 and try again.

DNSSEC States

If your network works, but specific DNSSEC
queries fail, then you have a DNSSEC-specific problem. DNSSEC
responses have three possible states: secure, insecure, and bogus.
Each of these has separate causes and symptoms.

Secure zones have
working DNSSEC. A random DNSSEC-aware resolver can validate it.

Insecure zones do
not have working DNSSEC. Old-fashioned DNS data is insecure. So is
signed data not part of the Chain of Trust. The resolver will
return an answer to the client, but won't label it as
authentic.

Bogus zones are
signed, but the signatures are not valid. The resolver checks the
signatures and determines they're invalid, so the resolver reports
a SERVFAIL error. Maybe there's DS records in the parent, but the
zone isn't signed with a matching key or isn't signed at all. Maybe
the signatures have expired. Bogus hosts and zones disappear from
the Internet for all clients of validating resolvers.

Is It DNS or DNSSEC?

Always remember that you can only have a DNSSEC
issue when trying to resolve a DNSSEC-protected zone with a
DNSSEC-aware resolver. If either the target zone or the resolver
doesn't do DNSSEC, it's not a DNSSEC problem. It's a good
old-fashioned DNS problem.

Many issues can remove DNS
entries from the Internet, from typographic errors in zone files to
server configuration problems. A DNSSEC error can be easily
differentiated from these more familiar DNS errors by checking to
see if the problem disappears when you disable DNSSEC validation.
For example, one of my test domains has disappeared from the
Internet. Running dig against a
DNSSEC-validating resolver seems to bear this out.

$ dig absolutebsd.com
@dns1.michaelwlucas.com

…

;; ->>HEADER<<- opcode:
QUERY, status: SERVFAIL, id: 42730

…

;; QUESTION SECTION:

;absolutebsd.com. IN A

The important thing here is
the SERVFAIL error. You've asked your recursive server for an
answer, and the recursive server tells you that the authoritative
server cannot give one. The dig output
includes your question, but there's no data in the answer
section.

I could scurry around
checking error logs and directly querying the authoritative
servers, but let's first verify this is a DNSSEC error. Repeat the
same query, against the same recursive server, but add the
+cd option to disable DNSSEC checking.

$ dig absolutebsd.com @dns1
+cd

…

;; ->>HEADER<<- opcode:
QUERY, status: NOERROR, id: 5938

…

;; QUESTION SECTION:

;absolutebsd.com. IN A

;; ANSWER SECTION:

absolutebsd.com. 3317 IN A
192.150.247.34

We quickly got an answer this
time. If the query fails with DNSSEC enabled, but succeeds without
DNSSEC, your DNSSEC data is bogus. This is not an error on the
protocol's part – if your DNSSEC keys are wrong, or your signatures
have expired, or any number of other problems have happened, then
the resolver is supposed to reject the data as bad. That's the
purpose of DNSSEC.

More insidious is a signed
zone where there's no path between the Chain of Trust and the zone
KSK. The data is insecure – the ad flag is
not set in the response, so there's no security protection. The
resolver still returns an answer, however.

If your zone is either
insecure or bogus, you need to fix your DNSSEC. Let's look at a few
different tools that identify the problem.

Web Tools

My first stop when debugging DNSSEC issues is
Sandia National Laboratories' DNSViz, at http://dnsviz.net. This is
a fantastic web-based DNSSEC diagnostic tool. Enter your troubled
domain name and hit "Analyze." After a couple of minutes, you'll
get a diagram of the Chain of Trust, composed of a series of
circles and arrows with a paragraph on each one. At the top you'll
see circles representing the root KSK and ZSK, with an arrow
leading from one to the other. Mouse over either circle and you'll
get a pop-up box giving details about the key. The last line in
this pop-up is either secure or bogus. The root
KSK signs the ZSK, which in turn signs the DS record for the
.com zone.

DNSViz walks through all of
the zones above yours, with an arrow leading from one key or record
to the next. Follow them down. If your zone is secured by a DS
record in its parent zone – that is, if you entered your DS record
at your registrar – then these arrows should lead down to your
domain at the bottom.

If your domain is secured via
the DLV, you can expect the Chain of Trust from the root to end in
a NSEC3 record in your parent domain that proves that DS records
for your domain do not exist. Next to the root zone Chain of Trust,
you'll see the trust anchor for the DLV. If your zone is signed by
the DLV, you'll see a second Chain of Trust above your domain.

How can you tell where the
break is? A red arrow between circles indicates a non-matching
signature. Red circles around zone entries or keys indicate that
those records are invalid. Look for the red arrow, and look around
it for the problem.

In this particular instance,
the DLV said that the KSK for this zone was key ID 27600. The KSK
on my server was key ID 56976. The DNSSEC validation system caught
that mismatch and threw away the data.

The easiest way to learn what
you're looking at is to try DNSViz with a known good domain and a
known bad domain. Go to the web site and enter a domain that has
good DNSSEC, such as isc.org. See how the
Chain of Trust works. Mouse over some of the circles, and you'll
see each key involved in the chain. The ISC is interesting in that
they keep DS records in both their parent zone and in the DLV.

[image:]

Figure 9-1: DNSVis on
isc.org

Now use DNSViz to look at the
domain dnssec-failed.org.

[image:]

Figure 9-2: DNSViz on
dnssec-failed.org

This zone is deliberately
broken – the DS record in the .org zone
does not match the DNSKEY record in the zone. You can see the
trailing dotted line for the invalid key, and the KSK actually on
the authoritative server sits off to the side, separated from the
Chain of Trust. DNSViz gives a clear graphical representation of
the problem.

For an alternate view of
DNSSEC successes and failures, look at http://dnssec-debugger.verisignlabs.com. This Verisign
site presents a text-based report on every step of the
DNSSEC validation cycle. Successful steps in DNSSEC validation get
green checks, while problems get a red X. Unfortunately, as of this
writing the Verisign debugger does not check the DLV, which limits
its usefulness for now.

Debugging with dig

Who wants to debug a crypto problem with a
friendly web site wizard? Web-based debugging tools are for DNS
administrators less awesome than you. Real DNSSEC
debugging needs only dig and date(1).

Remember, a successful DNSSEC
dig result shows the ad flag.

$ dig
www.michaelwlucas.com

…

;; flags: qr rd ra
ad; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:
5

My resolver validates the
DNSSEC on this zone.

Digging a hostname or an IP
address returns a brief answer, usually only the IP or hostname. To
debug DNSSEC, you need to see the RRSIG records related to the
response. The only way you can determine if the signature is
expired, not in the Chain of Trust, or just plain wrong, is if you
find the record and read it yourself. Add +dnssec to your dig command to
display those records. If bogus data prevents your resolver from
displaying the result, add the +cd flag to
show the bogus data.

$ dig www.michaelwlucas.com
+dnssec +cd

…

;; flags: qr rd ra ad; QUERY: 1,
ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 7

…

;; ANSWER SECTION:

www.michaelwlucas.com. 6918 IN A
192.150.247.34

www.michaelwlucas.com. 6918 IN RRSIG
A 7 3 7200 20130306202645 20130204193721 18764 michaelwlucas.com.
b1EidXqS3M7Z2YRTC…

I've greatly trimmed this for
brevity. You'll also get the nameservers for this zone, and their
RRSIG record, and the IP addresses for those nameservers with their
RRSIG record. If any of these signatures are wrong, DNSSEC
validation fails.

If you want to follow the
chain of DNS records from the root zone down, use the +trace option. I'm not going to demonstrate that here
because it would take up several pages for things you've already
seen before, but try it on your own. You'll get responses from the
root servers, the domain's top-level servers, all the way down to
the client, and can peruse it at your leisure.

Now let's look at the two
failure modes and their most common causes.

Insecure Zone

If your signed zone does not validate, but the
resolver still returns an answer, you almost certainly have a DS
record mismatch. The DS record in your parent zone does not match
the KSK in the zone. You can verify this with dig or DNSViz.

Key Verification

Get the key ID for the troubled zone from the
RRSIG record.

www.michaelwlucas.com. 6918 IN RRSIG
A 7 3 7200 20130306202645 20130204193721 18764
michaelwlucas.com. b1EidXqS3M7Z2YRTC…

The bolded value, after the
dates, is the key ID. This signature was created with key 18764.
Now let's look at the keys actually in the zone.

Request the DNSKEY record for
the troubled zone, and add the +multi
option so that dig will decode more of the
records for you. (The +multi option also
breaks the record up into multiple lines, to make presentation
easier, so don't be surprised when the output looks different.)

$ dig michaelwlucas.com +cd
+multi dnskey

…

michaelwlucas.com. 7200 IN DNSKEY 257
3 7 (

AwEAAaI+UG4TzleOPpoN57cklShnK3SbN5fRYGRUG5j3

…

) ; 
KSK; alg = NSEC3RSASHA1;  key id =
31650

michaelwlucas.com. 7200 IN DNSKEY 256
3 7 (

AwEAAdq5cgFrK8lQVmbVXL/d6IF6RZJFeUBVt4YFU1rA

…

) ; 
ZSK; alg = NSEC3RSASHA1;  key id =
18764

The second DNSKEY record is
the  zone signing key, and has
 key ID 18764. That matches the RRSIG on
the record. The first DNSKEY record is the  key signing key,  key ID
31650.

Now verify that the KSK
matches the next link up in the Chain of Trust. How you do this
depends on if your key is registered with the parent zone (either
at a RIR or a domain registrar), or if it's published at the
DLV.

Parent Zone Verification

The parent domain for the zone should have a DS
record for michaelwlucas.com with key ID
31650. Let's verify this. The dig command
knows that the DS record for a domain appears in the parent domain,
so I can just ask for the record without specifying a
nameserver.

$ dig michaelwlucas.com
ds

…

michaelwlucas.com. 86400 IN DS
12088 5 2 BF258…

michaelwlucas.com. 86400 IN DS
12088 5 1 CB264…

The DS records in
.com for michaelwlucas.com are for a key signing key with ID
12088.

The key ID in the parent
zone, 12088, is not equal to 31650, the KSK used on the zone
itself. This breaks the Chain of Trust. The zone will not validate.
If this is your zone, either put KSK 12088 back in the zone or give
your registrar the DS records for key 31650.

Verifying DLV Keys

Checking the DLV is easier than finding the root
server. Rather than a DS record, the DLV uses a DLV record.
Remember, domains in the DLV are subdomains of dlv.isc.org. Find the current authoritative servers for
dlv.isc.org and query them for the current
DLV record. (Don't ask a caching server, as they might have older
data.)

$ dig
michaelwlucas.com.dlv.isc.org dlv
@dlv.sfba.sns-pb.isc.org

…

michaelwlucas.com.dlv.isc.org. 2644
IN DLV 12088 7 2 229C4…

michaelwlucas.com.dlv.isc.org. 2644
IN DLV 12088 7 1 E2BB2…

These DLV records are for key
ID 12088. Again, this key isn't what's configured in the zone
itself, so it won't validate.

Other problems can
occasionally cause an insecure zone. Deviating from the DNS
standards can cause weirdness, and weirdness can cause DNSSEC
failures. Not including NS records for your subdomains causes
validation failures. In short, cutting corners causes problems.

Bogus Zone

If a zone is bogus, the Chain of Trust is intact
but the signatures on the zone do not validate. The most common
culprit is incorrect system time, or the presence of a DS in the
parent zone but no signature on the actual zone, but you might have
an invalid signature.

One common mistake in initial
DNSSEC deployments is having a DS record available in the parent
zone before the zone is signed. If your parent domain has a DS
record for your zone, but you haven't signed the zone yet,
validating resolvers will declare the zone bogus. That's why I had
you sign your zone before publishing the DS record.

Other problems are more
subtle.

Date and Time Verification

Take another look at our RRSIG entry.

www.michaelwlucas.com. 6918 IN RRSIG
A 7 3 7200 20130306202645
20130204193721 18764 michaelwlucas.com.
b1EidXqS3M7Z2YRTC…

The first bolded item is the
date and time that this signature expires. The second is the date
that this signature becomes valid. These dates are in the
format:

	
four-digit year

	
two-digit month

	
two-digit hour, in
24-hour notation

	
two-digit minutes

	
two-digit seconds

All times are in UTC. This
signature expires on 6 March 2013, at 08:26:45 PM UTC. It becomes
valid on 4 February 2013, at 7:37:21 PM UTC. Now you can see why
system time is so important; a resolver's clock that's off by a few
hours can make valid signatures appear invalid. The more your clock
is off, the more signatures you will falsely reject – or, if you're
the authoritative server, the more clients will reject your data.
Run network time protocol, and monitor it to be sure it keeps
running.

If the failure isn't a timing
issue, you might actually have invalid signatures on your zones.
This is probably because the signatures on the zone don't match the
actual data in the zone. You might have been compromised. Get out
your calculator, because we're going to compute the proper
signatures for 4096-bit keys.

Logging

Realistically, manually calculating and
comparing signatures is a silly stunt. Let BIND tell you why it's
declared data bogus with logging. BIND includes its own
logging features. Configure a DNSSEC-specific log in named.conf.

…

logging {

channel dnssec_log {

file "working/dnssec_log" size
20m; 

print-time yes;

print-category yes;

print-severity yes;

severity debug 1; 

};

category dnssec { 

dnssec_log;

};

};

The first stanza creates a
log called dnssec_log. It includes a
 log file and limits its size to 20MB.
named must be able to write to this file.
When named writes to this log file, it will
print the time, the category, and the message severity. BIND
defines its own logging  severity levels.
When the log reaches the maximum size, named will throw away the oldest data to make space for
the new.

The second stanza tells
named to send messages from the
 dnssec category to the log defined
above. BIND logs by categories, or predefined
subsystems.

When a problem resists
dig-based debugging, look at the error log.
You can run tail –f
/etc/namedb/working/dnssec_log while performing the query,
or grep the log for the domain you tried to previously validate,
and you'll see a message stating why validation failed. DNSSEC can
fail in too many ways for me to enumerate all the error messages,
but a search engine will lead you to any number of discussions
about log entries for errors. Generally speaking, they all come
down to descriptions of why the signatures don't match the zone
keys and/or the data. For example, here's the log entry if I look
up dnssec-failed.org.

18-Mar-2013 18:24:47.930 dnssec: info:
validating @0x804296800: dnssec-failed.org DNSKEY: no valid
signature found (DS)

If you need more detail,
increase the severity debug level in
named.conf. Debug level 2 gives me
everything I could hope for, and level 3 gives me more information
than I can cope with, but it's there if necessary.

Compile Your Zone

Sometimes, nothing else will do but to look at
the zone file and see just what the heck you're serving the world.
BIND's auto-dnssec uses dynamic zones,
meaning that the live zone named uses is a
binary data file. You cannot view the contents of the zone file.
You could use dig to do a zone transfer,
but that takes extra configuration. Besides, if you're debugging
something truly weird, you'll want to see the zone before it
travels through named.

Use named-compilezone(8) to make a text zone file from the
binary zone data files. Use the –j command
to include the journal file. The –f raw
argument tells named-compilezone that it's
reading a data file. Specify an output file with –o. Then give the name of the zone, and the signed zone
file. With auto-dnssec, the signed zone file ends in .signed. All together, it looks like this.

$ named-compilezone –j –f raw –o
outputfile zonename filename.signed

Suppose I want to compile the
zone for michaelwlucas.com. My zone file is
michaelwlucas.com.signed, and I want to
dump it to the file /tmp/mwl.com. I would
run:

$ named-compilezone -j –f raw
-o /tmp/mwl.com michaelwlucas.com
michaelwlucas.com.signed

zone michaelwlucas.com/IN: loaded
serial 2013020408 (DNSSEC signed)

dump zone to /tmp/mwl.com...done

OK

The file /tmp/mwl.com contains the entire zone, including all
RRSIG and NSEC records. Trawl through it and figure out what's
wrong.

Now that you understand how
to debug your DNSSEC services, let's see how to really
mess them up with key rotation.

Chapter 10: Key Rollover

By now you have one or more zones secured with
DNSSEC. You can ignore traditional zones forever, but DNSSEC takes
a small amount of maintenance. The longer a key is used, the longer
intruders have to break it. As computers become more powerful, key
algorithms need updating. And there's always the risk that someone
will steal your private keys. All of these problems have the same
solution: replace your keys. This is called key rollover.
You can rollover both KSKs and ZSKs, using slightly different
processes.

Rollover Risks

As we saw in Chapter 9, either breaking the
Chain of Trust or incorrect signing causes zone data to become
insecure or bogus. Thoughtlessly changing a KSK or ZSK certainly
risks breaking the Chain of Trust, rendering your data insecure.
Having your zone become insecure isn't the worst thing that can
happen – it's no worse than where you were without DNSSEC. But it's
really easy to make your zone bogus during a key rollover. Proper
planning and following the appropriate process greatly reduces your
risks.

The goal in key rollovers
maintaining a valid Chain of Trust. An RRset might have several
signatures. If a nameserver can verify any one of those signatures
through the Chain of Trust, the zone is secure. Extra signatures do
not harm DNS or DNSSEC, they're irrelevant. Maintaining the Chain
of Trust is complicated by DNS' caching nature. You must time
everything so that resolvers don't try to use a key that has been
removed or rolled from their cache.

Why not entirely avoid this
risk? Just create the strongest keys possible, sign the zone, and
never change the keys. That's possible. Some people do that. The
longer your keys are in use, the greater the chance that someone
can crack them. But most modern secure protocols change their
cryptographic keys every so often. Commercial SSL certificates
expire every year in part to reduce the risk of someone breaking
your certificate's private key. (Yes, the other part is so that the
certificate authority can extract more money from you. And Chapter
12 teaches you how to maintain DNSSEC-secured SSL certificates,
usable by anyone at no expense.)

Some similar applications
never change their keys. An average Secure Shell (SSH) server
generates a keypair when it's installed, and you never change that
key. That's common practice. But you should consistently update and
patch your SSH server to eliminate security flaws. And every so
often, one of those updates will add a new algorithm and deprecate
an old one. Plus, a SSH server on the naked Internet gets replaced,
upgraded, or penetrated and the hard drive reduced to bare metal
every few years. (With virtualization, I expect that we'll see more
operating system instances surviving longer, and changing SSH keys
every few years will become an established part of system
maintenance.) I manage zone files that have been in continuous use
since 1995. Depending on the cryptographic algorithm, a cellphone
in 2013 can break a high-end keypair created in 1995.

Okay, fine, but do people
really break key pairs? I mean, in the real world? The
answer is: yes.

In 2012, a researcher made
the news when he cracked Google's low-quality email security keys
and used them to forge email from Google's founders. Keys of equal
strength were in use at companies like eBay, Yahoo, Twitter, and
Amazon. The keys had been created several years before, deployed,
and forgotten.

You're better than that. The
DNSSEC key rollover process is intended to avoid exactly this sort
of threat.

Rollover Methods

The two standard methods for rolling over keys
without interrupting security are double signature and
pre-publishing. People have invented more rollover methods. Some of
them are very useful for specific circumstances, while others are
arguably superior, but these two fit almost everyone, are best
understood, and BIND 9.9 supports them transparently.

Double Signature

In the double signature method, the zone is
simultaneously signed with both the old and new keys. Recursive
clients get both signatures. Both signatures are maintained in the
zone until all caches have had enough time to expire the old public
key from the zone and get a copy of the new key. Once that time
passes, the old key and its signatures are removed.

This method is unquestionably
safe. There's no risk of breaking the Chain of Trust. But it almost
doubles the size of your zone. If you have a large zone, or you
serve a lot of queries, that might cause you problems.

Pre-publish

When using pre-publish, you make the new DNSKEY
record available before signing any RRsets. Once the key has had
time to propagate to all client caches, named removes the old signatures and creates new ones
with the new key.

The pre-publish method is
more elegant than double signing. It doesn't double the size of
your zone. It replaces signatures as they expire, rather than
signing everything twice. But it's more complicated, and requires
more intervention and scheduling. BIND 9.9 handles most of the
scheduling automatically.

Rollover Method Recommendations

Best practice is to use pre-publish for ZSK
rollovers and double-signing for KSK rollovers. The greater the
number of bits in your key, the longer you can wait between
rollovers.

Changing the KSK requires
publishing your new DS records with your registrar, RIR, or the
DLV. If you screw up, your corrections might take several days to
percolate across the Internet. The safest thing to do is publish
both keys, make sure the changes work, and only then remove the old
key from the zone. As the KSK is only used to sign the DNSKEY
RRset, double signing doesn't double the zone's size, it only adds
an extra signature for the DNSKEY RRset.

You can realistically use a
2048-bit KSK for up to two years, although if you run a high-risk
site you might want to rollover the key every year or so. I hope
that sites that are the targets of persistent attacks, such as
financial firms and government institutions, rollover their KSK at
least every year.

Changing the ZSK is a purely
internal matter, and requires no outside interaction. Best practice
recommends using the pre-publish method in this case. BIND 9.9
actually completely automates ZSK rollovers if you pre-create the
keys. You can safely use a 1024-bit ZSK for three months or so. If
you're under constant attack, I'd suggest rolling the key every
couple of months.

The key's lifespan is not the
only important timing factor. The times in your zone file also play
a part.

Key Lifecycle

Deploying rollovers means that each key has a
lifecycle. At some point, the key is created. At another point,
it's removed from use. For completeness, a key file notes the date
it's created on. This isn't terribly relevant for DNSSEC, but it
might be important for you later. ("Just when did I create that
key, anyway?") For DNSSEC purposes, a key has four important dates:
publish, activate, inactivate, and delete.

The publish date is
the date the key can be made available to the world. The day a
key's DNSKEY record appears in the zone is the publish date. If you
don't specify a publish date, the key is published when you load it
into named. In general, the publication
date equals the creation date.

The activate date is
the date that the key can first be used to sign RRsets. It doesn't
mean that the key will be used immediately, mind you. If you're
doing pre-publication rollovers, and no signatures are due for
renewal, named won't use the key to sign
until a signature needs renewal. But it's available for signing on
the activate date. This is the first day of your key's lifespan. If
you don't specify an activation date, named
will use the key when you load it into the zone. The length of time
between the publish date and the activation date varies depending
on your key rollover method and the times in your zone.

The inactivate date
is the date the key will no longer be used to create new
signatures. Signatures using that key might still be drifting
around in client caches, but that's okay. The key remains in the
zone, and those signatures will validate. For a 2048-bit KSK, the
inactivate date should be no more than three years after the
activate date. For a 1024-bit ZSK, the inactivate date should not
exceed three months after the activate date.

On the delete date,
the key is removed from the zone. The delete date depends on how
quickly your zone expires from the caches of unrelated nameservers,
as we'll see in the next section.

If you're using auto-dnssec, named handles all
the key changes for you. It sees that a key is due for inactivation
and the activation date for another key has arrived, so it shifts
how it signs the zones. If you're rolling keys and signing zones
manually, you need to add and remove the keys by hand. This manual
work is a big reason why I recommend BIND 9.9, as it handles key
rollovers for you. You still must create key files yourself. I'll
cover automatically creating zone files.

Zone Times

Remember that zone data doesn't immediately
change across the Internet. DNS clients cache answers according to
the time-to-live (TTL) in the zone. We've all had to change the IP
address of an important server and wait while the change
propagated. You've probably had to log in late one night or on a
weekend to make a DNS change, so that the whole world would have
new data before the start of the next business day. Or you've had
to explain to the boss that DNS caching means that a small part of
the world would lose access to your site during a change.

Key rollovers aren't as bad
as that. A validating resolver will validate any signature in the
zone, as long as the associated keys are contained in the DNSKEY
RRset and the signature on the RRset is valid. A zone can include
multiple ZSKs or KSKs, and the resolver will accept a signature
from any of them. So long as the resolver can build any Chain of
Trust, the data is valid. This gives you more flexibility than
changing the A record for your web server. But understanding the
times in your zone is absolutely vital to a transparent
rollover.

Your Zone's Time-To-Live

Before even considering key rollover, check the
time-to-live on your zones. The time-to-live is the number of
seconds that recursive DNS servers will cache data from your zone.
Once the TTL expires, the nameserver discards the data and contacts
an authoritative server to fetch new data. A zone gets time-to-live
data from three places: either a leading $TTL, the SOA record, or a
per-entry TTL. Consider the following zone file.

$TTL 
7200

@ IN SOA ns1.michaelwlucas.com.
dns.michaelwlucas.com. (

2013021001 3600 900 2419200
 900)

IN NS ns1.michaelwlucas.com

IN NS
ns2.michaelwlucas.com.

www  3600
IN A 192.0.2.88

The  default time-to-live for the zone is optional.
You'll see it on newer zone files, say, those less than ten years
old or so. If there's no default TTL, the zone uses the
 negative caching time from the Start Of
Authority record. Individual resource records can have their
 own TTL. In this zone, the default TTL
is 7200, or 2 hours. The negative caching time is 900 seconds, or
15 minutes. The A record has a TTL of 3600 seconds, or 1 hour.

For key rollover purposes,
the important TTL is the longest one in the zone. Our example
zone's longest TTL is 2 hours. Whenever you need the TTL in
rollover timing calculations, use the longest one.

Slave Expiration

The refresh, retry, and expire times in a zone
control how often slaves attempt to update their copy of a zone.
I'm certain that you remember exactly how these work, but for the
few readers who set these times once, per the manual, and forgot
about them, let's look at my SOA record again. I use the
+multi dig option
to show it in a more easily understood form.

$ dig michaelwlucas.com soa
+multi

michaelwlucas.com. 7200 IN SOA
blackhelicopters.org. root.blackhelicopters.org. (

2013031605 ; serial

 3600 ; refresh (1 hour)

 900 ; retry (15 minutes)

 2419200 ; expire (4
weeks)

7200 ; minimum (2 hours)

)

The  refresh time is how often a slave will attempt to
update its copy of the zone. This SOA instructs the slaves to check
for a new version of the zone every 3600 seconds, or one hour. The
 retry time tells the slave how often to
retry, if the first check fails. 900 seconds is 15 minutes. If the
slave cannot reach the master nameserver for the initial check, it
retries every fifteen minutes thereafter. Finally, the  expire time tells the slave when to discard its zone
data and stop serving authoritative results for the zone. 2419200
seconds is 4 weeks. If my slave nameserver cannot contact the
master within four weeks, it stops pretending that everything is
okay.

The SOA times don't
necessarily rule slaves, however. Modern nameservers use the NOTIFY
protocol to tell their slaves that a zone has been updated and they
should update their copy. The protocol doesn't know if a NOTIFY
fails, though, so the slave always checks the master. The system
log will show notify requests received from a master server.
Changes theoretically propagate from masters to slaves within
seconds. If the NOTIFY fails, then the nameserver falls back on the
times in the SOA record.

I recommend that you verify
that NOTIFY works, and that slaves quickly copy the changes. If you
control both the masters and the slaves that's fairly easy. If you
swap DNS service with a third party that might be more difficult,
but I recommend only swapping critical backup services with people
knowledgeable enough to troubleshoot with you.

Worst case; I can force a
zone transfer for my domain by running rndc
retransfer michaelwlucas.com. That's not ideal, of course.
It means I have to do a bunch of stuff that resembles work, and
it's work that the machine should do. But it might buy you time to
investigate why your slaves aren't updating properly.

The most common reason I see
for a slave server failing to copy a zone in a timely manner isn't
a BIND, operating system, or hardware failure. It's that the master
server has become non-authoritative for the zone. An error such as
having a PRT record instead of PTR, or a AAA record instead of
AAAA, will make the master server reject the zone. Always verify
that a master server really is authoritative before suspecting your
slaves. If your zone is broken, nothing you do to the slaves will
help you.

The DNSSEC rollover timing
standards tell us to consider the expire time in rollovers. Most of
us consider a slave that doesn't update within the refresh time a
serious problem, however. I wouldn't wait four weeks to debug slave
zone transfers – I have the expire time that long just in case I'm
traveling when something breaks.

For DNSSEC purposes, you care
about the length of time your slaves need to update. If your slaves
consistently and quickly update their zones, and you have the
ability to force an update in case of unexpected error, then you
can assume that your time to update your slaves is only minutes.
Otherwise, you must use the refresh time from the SOA. For my zone,
this would be two hours. If you want to be especially cautious,
double that.

Parent Zone Propagation Time

If you need to rollover your KSK, then the time
your parent zone takes to propagate changes through its network
becomes important.

Most domain registrars, RIRs,
and the DLV claim that changes will be active within 24 hours.
Additionally, you must factor in the time those changes will need
to propagate across the root servers. For example, when I want to
rollover the KSK for michaelwlucas.com, I
must look at the SOA for the parent domain, or .com.

$ dig com soa

…

;; ANSWER SECTION:

com. 705 IN SOA a.gtld-servers.net.
nstld.verisign-grs.com. 1361038877 1800 900 604800 86400

…

The com zone has a refresh
time of 1800 seconds (30 minutes), a retry time of 900 seconds (15
minutes), and an expire time of 604800 seconds (1 week).

Personally, I expect that
NOTIFY works between these servers, and that zone transfers will
complete in far less than one week. I'm a trusting soul, however.
More meticulous and cautious people could plan for one week to
distribute updates to the .com zone, but if
the .com zone didn't update for a week,
everyone who registered a new domain in that time would riot. Once
your domain is active on one .com
nameserver, changes should be visible on all the others within 30
minutes.

Check the time for your
parent zone. Don't assume that just because .com has an refresh time of thirty minutes, that all
parent zones have the same expire time. Actually, don't even trust
that the .com zone will have a thirty
minute refresh time when you get around to performing a key
rollover. Verify the current refresh time for yourself.

Recommended Zone Times

DNSSEC rollovers don't impose restrictions on
the TTL in your zone, but rollovers go more smoothly if your times
in your zone fall within certain limits.

The TTL on RRSIGs should be a
few times longer than the TTL on resource records. If both the
signatures and the resource records expire from caches
simultaneously, this can cause additional load on the authoritative
servers.

The inactivate date on a key
should be at least the zone's maximum TTL before the key's delete
date. Zone data can remain in a recursive nameserver's cache up to
the maximum TTL. If you destroy the key before the data expires
from the recursive nameserver's cache, the nameserver won't be able
to validate the signature. The Chain of Trust will break.

RFC 4641 recommends making
the zone expiration timer in the SOA record roughly one-third or
one-fourth of the RRSIG TTL. Signatures are usually good for one
month, so you might set the expire time to one week or 604,800
seconds. (Strangely enough, that's exactly what the .com zone uses.) When a zone is freshly signed, the
slave servers need time to fetch the updated zone. If your slaves
respond to NOTIFY messages, this should only take a few minutes. If
you're stuck with using the refresh/retry/expire cycle, you might
get in a state where the slave cannot update the zone, the
signatures on the slave's copy of the zone expire, but the zone
itself is still valid. DNSSEC-aware resolvers will declare results
with expired signatures as bogus.

If the times recommended in
RFC 4641 don't work for your environment, change them to suit you.
Just remember how time affects signature renewals and key
rollovers.

Dating Keys

The life cycle dates are stored in the key file.
Let's look again at an existing key file.

; This is a zone-signing key, keyid
18764, for michaelwlucas.com.

; Created: 20130204203556 (Mon Feb 4
15:35:56 2013)

; Publish: 20130204203556 (Mon Feb 4
15:35:56 2013)

; Activate: 20130204203556 (Mon Feb 4
15:35:56 2013)

michaelwlucas.com. IN DNSKEY 256 3 7
AwEAAdq5cgF…

This key was created on
February 4, 2013, according to the file. The publish and activate
dates are identical to the creation timestamp, so named could use the key immediately upon creation.
There are no inactivation or deletion dates, so this key is never
automatically removed from the zone. Once you assign key
inactivation and deletion dates, the file will contain those dates
in the same format.

The dnssec-keygen(8) program has options to assign dates
the key enters the lifecycle stages at key creation, while
dnssec-settime(8) assigns and changes dates
on existing keys. Both programs use identical options to set
dates.

Time Formats

BIND's DNSSEC commands accepts dates and times
in two different formats, either as a specific calendar day or as
an offset from the moment you run the command.

Give dates and times with a
four-digit year, two-digit month, and two-digit day. For example, 1
February 2013 would be 20130201. You can also specify a two-digit
hour, minute, and second. If you want your key to expire on 14
March 2013, at 1:59:25 AM, use the date 20130314015925. (Which only
goes to show that you can't really include pi in your
date.)

If you don't care about the
exact date a key rolls over, you can use offsets instead of dates.
The DNSSEC commands let you specify a time like "3 months from now"
or "2 weeks ago." To specify an offset, put a + or – in front of
the desired offset. +3000 means "3000 seconds from now," while -5
means "5 seconds ago." To use a unit other than seconds, put an
abbreviation for the time unit after the number. Use y for years, mo for months,
w for weeks, d for
days, h for hours, and mi for minutes. To give a time like "1 week and 1 day
from now," use as +1w1d. The offsets use a
30-day month and a 365-day year without any leap years, leap days,
leap seconds, or flying leaps.

Remember that DNSSEC uses
Coordinated Universal Time (UTC), regardless of your local time
zone. If you set the key to change from published to active at 1
April 2013, named will start to use the key
at UTC midnight on that day. As I'm in Eastern Time, five hours
before UTC, that key goes live for me at 7PM March 31.

Now that you know how to
specify a time, let's attach those times to actions.

Setting Key Dates

The four key critical dates in a key's lifecycle
are the publish date, the activation date, inactivation date, and
deletion date.

Use –P to specify a key's publication date. The key becomes
visible in the zone at this date.

Use –A to specify an activation date. After this date,
named uses the key to renew signatures.

Use –I to specify an inactivation date. named stops renewing signatures with this key on this
date.

Use –D to specify a key's deletion date. The key is removed
from the zone on this date.

Combine these options to set
all the dates for a zone. If you use -A +1mo –I
4mo –D 5mo, the key will get an activation date 30 days in
the future, an inactivation date 120 days from now, and a deletion
date 150 days from now. Remember, a "month" is always 30 days. As
you don't specify a publication date, named
can publish the key in the zone immediately.

Now let's actually change and
set some dates in keys.

Changing Dates on Existing Keys

Use dnssec-settime to change the date on an
existing key. If you create a key as advised in Chapter 7, the key
has no inactivation or deletion date. Before you can rotate a key,
you must assign those dates to the key. Suppose I want to stop
signing with the key in 60 days, and delete it 30 days later. Here
I change the times on the key 18764 for michaelwlucas.com.

$ dnssec-settime -I +2mo -D
+3mo Kmichaelwlucas.com.+007+18764

./Kmichaelwlucas.com.+007+18764.key

./Kmichaelwlucas.com.+007+18764.private

dnssec-settime prints the name of the affected key
files. If you look at the .key file, you'll
see the new inactive and delete dates.

Now that this key has an
inactivation date, you'd should learn how to do a rollover before
that date arrives.

Rolling Over a ZSK

Rolling over a zone signing key is a purely
internal operation and requires no interaction with the outside
world. That makes it somewhat simpler than a KSK rollover. Start
your ZSK rollover by creating keys for future use.

If your zone file uses the
recommendations earlier in this chapter, with the times in your SOA
being neither too short nor too long, you can safely rollover your
keys every three months. Publish the key one month before you start
signing with it, and delete the key one month after you stop
signing with it. This gives plenty of time for caches around the
world to get up-to-date data. I'll use this timing in the following
examples. If you don't follow the recommendations for timing on
your SOA, you'll need to verify that you rollover your ZSK slowly
enough that cached data won't break the Chain of Trust.

To rollover a ZSK, you must
create the new keys and tell named about
them.

Creating Rollover ZSKs

Earlier (in "Changing Dates on Existing Keys") I
assigned key 18764 for michaelwlucas.com an
inactivation and a deletion date. I need to create a successor to
key 18764. I could use dnssec-keygen's date functions to assign
publication and activation dates, but dnssec-keygen provides
-S specifically for creating a successor
key. Using the –S argument with an existing
key file tells dnssec-keygen to make a key
with an activation date equal to the previous key's inactivation
date, and a publish date preceding that by 30 days. A successor key
uses the same algorithm and bits as the key it replaces.

Let's look at the timing
here. In the previous section, I gave key 18764 2 months until
inactivation. The new key will be used for 3 months, so it goes
inactive 5 months from now. Similarly, key 18764 is deleted in 3
months. The new key needs deletion 3 months later than that, or 6
months from now. Here I explicitly create a successor to 18764 that
goes inactive in 5 months and gets deleted in 6 months.

$ dnssec-keygen -S
Kmichaelwlucas.com.+007+18764.key -I +5mo -D +6mo

Generating key
pair....................+++

Kmichaelwlucas.com.+008+34397

I've created key 34397 for this zone. As it's a
successor key, it has the same algorithm and number of bits as
18764. When key 18764 becomes inactive, named automatically starts signing RRsets with 34397.
You could stop here, but I recommend creating a couple years of
keys at a time.

$ dnssec-keygen -S
 Kmichaelwlucas.com.+008+34397
-I  +8mo -D
 +9mo

Generating key pair............

Kmichaelwlucas.com.+007+35054

This is almost exactly the
same command, but I'm creating a successor to key  34397 rather than 18764. I increment both the
 inactive and 
deletion dates by three months, and thereby create key 35054.

Repeat this, always
incrementing the inactive and delete date by 3 months and creating
a successor to the previous key. Eventually, you'll get a couple
years ahead.

$ dnssec-keygen -S
Kmichaelwlucas.com.+008+09425 -I +26mo -D +27mo

Generating key pair............+++
.+++

Kmichaelwlucas.com.+007+58007

I've created keys to rollover
my zone for the next 26 months. Surely that's far enough?

Key creation is ripe for
automation. Many people have written scripts to automatically
create new ZSKs. Supposedly BIND 9.10 will automatically create
keys for you, and it should escape ISC within the next couple of
years. If you create keys by hand, I recommend that you create your
last key without an inactivation date.

$ dnssec-keygen -S
Kmichaelwlucas.com.+008+58007

Generating key
pair...................++++++

Kmichaelwlucas.com.+007+56228

If rollover is so important,
why would you create a final key without an inactivation date? If
you're creating keys by hand, you have to prepare for the
possibility that things will go wrong. This book is three weeks
behind schedule because halfway through writing it, I spent a week
in the hospital for an emergency appendectomy, another week at home
recovering, and another week undoing what I'd done the previous
week when I thought my mind was clear but I was actually fuzzy from
lingering anesthesia. Had my keys required updating during this
window, my domains would have either vanished or become completely
bogus. Have your calendaring software alarm you or your DNS team a
few months before you run out of keys, so you can investigate
upgrading to newer software that will create keys for you.

Loading Keys Into named

Once you have keys for the future, you need to
tell named about them. Use rndc loadkeys and the name of the zone.

$ rndc loadkeys
michaelwlucas.com

Check the system log for any
error messages. Alternately, you can restart the nameserver. Also,
if you're using NSEC3, this is a good time to change your salt.

That's it! Your nameserver
now automatically performs key rollovers and updates signatures
with the correct key.

Checking Rollovers

Everyone with more than a week's experience in
information technology knows that trusting the software is a good
way to get woken up at stupid-o-clock. (Stupid-o-clock is not a
defined standard. But it should be.) How do you verify that the
nameserver has actually performed the rolloved?

The key currently used in our
running example is key 18764. The next key slated for use is key
34397. Look at the key file for 34397 to see the dates the key
changes from one use to another.

; This is a zone-signing key, keyid
34397, for michaelwlucas.com.

; Created: 20130217164204 (Sun Feb 17
11:42:04 2013)

; Publish: 20130319164055 (Tue Mar 19
12:40:55 2013)

; Activate: 20130418164055 (Thu Apr
18 12:40:55 2013)

; Inactive: 20130717164204 (Wed Jul
17 12:42:04 2013)

; Delete: 20130816164204 (Fri Aug 16
12:42:04 2013)

michaelwlucas.com. IN DNSKEY 256 3 7
AwEAAci2mnVM+K…

We will use these dates to
check rollovers.

Checking Publication

On 19 March 2013, a little after noon UTC, my
nameserver should publish key 34397 in the zone michaelwlucas.com. It's not supposed to sign anything
with that key until 18 April 2013. Between those dates, ask the
master nameserver for the keys in the zone.

$ dig michaelwlucas.com
@localhost DNSKEY +multi

…

;; ANSWER SECTION:

michaelwlucas.com. 7200 IN DNSKEY 256
3 7 (

AwEAAdq5cgFrK8lQVmbVXL/d6IF6RZ…

…

) ; ZSK; alg = NSEC3RSASHA1;
key id = 18764

michaelwlucas.com. 7200 IN DNSKEY 257
3 7 (

AwEAAaI+UG4TzleOPpoN57cklShn…

…

) ; KSK; alg = NSEC3RSASHA1;
key id = 31650

michaelwlucas.com. 7200 IN DNSKEY 256
3 7 (

AwEAAci2mnVM+KDMQVXAqrnfGQATP

…

) ; ZSK; alg = NSEC3RSASHA1; key id =
34397

The zone shows has three
keys. Key 31650 is the key signing key, but keys 18764 (the old
ZSK) and 34397 (the new ZSK) are published zone signing keys. BIND
picked up the new key and rolled it into the zone. Is it used to
sign anything, though? Let's check.

$ dig michaelwlucas.com
@localhost rrsig | less

Review the output. If RRSIG
records include the string 34397, named
activated this key. If you find key 31650 still being used, the key
didn't rotate properly. Check your dates. You can verify that
signatures exist with the current key by searching for 18764
instead.

Checking Activation

On 18 April 2013, at 12:40PM UTC, the key should
activate. I check the zone shortly after that time. Both DNSKEY
records will appear in the zone, but as time passes, I should see
more and more RRSIG records signed with key 34397.

$ dig michaelwlucas.com
@localhost rrsig | grep 34397

michaelwlucas.com. 7200 IN RRSIG A 7
2 7200 20130518200020 20130418194505 34397
michaelwlucas.com. emCxEi…

This is the first of several
records signed with key 34397, so named
apparently activated the key correctly. But we should also still
have RRSIG records signed with key 18764, as named should only renew signatures with the new key as
they expire.

$ dig michaelwlucas.com
@localhost rrsig | grep 18764

michaelwlucas.com. 7200 IN RRSIG
DNSKEY 7 2 7200 20130419191427 20130320181427
18764 michaelwlucas.com. QVbpunv08rdyDh…

I'm checking this signature
on 18 April. This signature expires on 19 April. Everything seems
okay.

Checking Inactivation and Deletion

Verifying that a key is not used for signatures
is similar to verifying that it's used for signatures. Look for
RRSIG records in the zone and see if named
signed them with the key in question. Inspect the creation and
expiration dates. Any new signatures should include only the new
key.

To determine if named deleted a key from the zone, check the DNSKEY
records for the zone. It's exactly like checking to see if a key
was added.

Testing Rollovers

Your first key rollover can be worrisome. Will
BIND actually do the right thing, or will your organization
disappear from the Internet? Will there be outages? Annoyed users?
Or, worse still… meetings? Test what BIND does by
duplicating your nameserver on a virtual machine. Shut off the
nameserver, adjust the system clock to a future date when BIND
should have done something, and restart named. See what happens.

KSK Rollovers

A key signing key rollover is a little different
than a zone signing key rollover. The biggest issue is that for a
KSK rollover, you must update your parent zone with the new key.
This means interacting with a domain registrar, DLV, or RIR. You
cannot control when the parent domain will publish the key, and you
have absolutely no control over how the key will propagate across
the Internet. Top-level domains like .com
and .org usually propagate quickly, but
every time I count on that happening, they have a problem. I
recommend caution when performing KSK rollovers.

KSKs can use the double
signing rollover method. KSKs are only used to sign the RRset.
Rather than doubling the size of the zone, as double signing does
with ZSKs, double signing the ZSK itself only adds one extra RRSIG
record.

To perform a KSK rollover you
must generate a new KSK, sign your zone with it, register the new
KSK with your parent zone, verify that the new key is available
globally, and remove the old key from the parent domain. I'm
rolling over the key for my zone absolutebsd.com.

Create the New KSK

Creating a new KSK is exactly like creating any
other KSK, as Chapter 7 discusses.

$ dnssec-keygen –a 8 -f KSK -b 2048
absolutebsd.com

Generating key pair.......++
...++

Kabsolutebsd.com.+008+07833

Key 07833 is the new KSK for
my domain. Now load the new key into the zone with rndc loadkeys zonename or
restart your nameserver.

$ rndc loadkeys absolutebsd.com

This key should now appear in
the zone. Verify the key's presence with dig before proceeding.

Notify Parent Domain

Extract the DS record from your new key.

$ dnssec-dsfromkey
Kabsolutebsd.com.+008+07833

michaelwlucas.com. IN DS 7833 9 1
F3616D…

michaelwlucas.com. IN DS 7833 8 2
09CDA6…

Feed the new DS records to
your parent domain. Go to your registrar, RIR, or DLV account.
Follow the exact same procedure you used to enter your key the
first time. Once the parent domain accepts the new DS record, wait
for the record to become visible in the parent zone.

Remove Old DS Record From Parent

Once the new key starts appearing in the parent
zone or the DLV, go to your parent domain account and remove the
old DS record from the zone.

Do not remove the old key
from your zone. Remember that DNS data takes time to propagate, and
caches need time to expire old data.

When To Remove Old KSK?

Remove your KSK when you are confident that all
of the cached records for both your parent zone and your zone are
no longer available.

Add the expire time for your
parent zone to the parent zone's time-to-live. Do the same for your
domain. The longer of the two results is the length of time someone
might conceivably try to use the old KSK to validate your zone. I
recommend adding a little extra time, just in case. Use
dig on unrelated DNSSEC-aware nameservers
to verify that others see and use the new KSK.

If you're brave, you might
use dig to see if the parent zone has
populated early. It generally does. But keep in mind that many
parent zone nameservers have multiple physical servers behind their
hostnames, and use anycast routing to send users to the nearest
available server. The f.gtld-servers.net that you check for your DS
records will not be the same server as the f.gtld-servers.net that
a user in another part of the country or world will check. If your
closest instance of that parent zone server has the correct data,
but another elsewhere does not, you'll get intermittent DNSSEC
outages of your domain depending on which parent zone server a user
happens to use. Patience prevents intermittent outages.

If your parent zone has an
expire time of one week and a time-to-live of two days, I would
probably inactivate the key in two weeks and delete it in one
month.

$ dnssec-settime -I +2w -D
+1mo Kmichaelwlucas.com.+007+27600

Again, this is just like
setting an expiration on a ZSK, except you don't have to worry
about a successor key. You've already created and deployed it.

Emergency Key Rollovers

Key rollovers aren't that hard once you've done
a few. Annoying, perhaps, but not hard. But what happens if an
intruder compromises the private key of your KSK or ZSK? They can
create DNS entries that validate with DNSSEC, but aren't
legitimately yours. The intruder can pretend to be you for as long
as the validating clients can build a Chain of Trust with the
compromised key.

In this event you must make a
choice. You can break the Chain of Trust, rendering your zone
insecure. Or you can live with the risk while performing a key
rollover as quickly as possible. In either case, replace all keys
as soon as possible.

If you suffer a compromise on
any system (not just your DNS server), notify your organization's
computer security team. Your security team can help you secure the
system against further intrusions. You don't want to do an
emergency key rollover only to find that the intruder has your new
keys as soon as you create them!

Once you have a secure
working environment, generate new keys for your zones. If you know
that an intruder stole one private key from your system, assume the
intruder has every private key on that machine. Create new KSKs and
ZSKs for every zone. Edit your zones to reduce the TTLs on all your
data. You want client nameservers to start flushing your data from
their caches as soon as possible and as quickly as possible.

Proceed with a normal ZSK and
KSK rollover, but be aggressive in how quickly you expire your
compromised keys. If you don't have control of your secondary
nameservers, contact their administrators and ask them to run
rndc retransfer zonename. Watch
your parent domain to see when they distribute your new DS records,
and aggressively inactivate your keys.

Key Management

When you have many domains, you might well find
yourself overwhelmed by the number of key files drifting around
your system. Even the strictest directory hierarchy proves
insufficient for organization. In this kind of environment, you
might find an electronic key logbook useful. On a wiki,
spreadsheet, or whatever format you prefer, record the zone name,
the date of creation, the key ID, algorithm, key size, the purpose
of the key, the various DNSSEC lifecycle dates, and the creator's
name. After a few rollovers, checking the logbook will take less
time than examining key files.

You now have everything
necessary to secure a basic DNS setup. But the people who can get
complicated stuff done are always asked to do more. In the next
chapter, we'll cover delegating DNSSEC.

Chapter 11: Delegations and Islands of
Trust

If you run a large zone, you probably have
subdomains. You might even delegate some of those subdomains to
other networks. This is especially common in Internet Service
Providers, who receive address space to delegate in turn to their
customers. Companies delegate subdomains and internal address space
to branch offices. If you're the lucky one managing DNS at the head
office or ISP, you must be able to delegate zones to your
clients.

Sometimes organizations want
completely private zones. Many companies use RFC1918 space
(10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16) on their private
networks, or use internal top-level domains. You'll want DNSSEC
securing your private zones as well as your public zones. You
cannot insert these to either the parent domain or DLV trust
anchors, so you must create your own trust anchors. Those trust
anchors require delegations, so we'll start there.

Subdomains

A subdomain is a child domain of another zone.
My domain michaelwlucas.com is a subdomain
of .com. I could set up my own subdomains
like office.michaelwlucas.com and
home.michaelwlucas.com, give them their own
nameservers, and have machine names like comfychair.home.michaelwlucas.com. But that would be
too much like work for my home.

Subdomains all need NS
records pointing to their nameservers. It's okay to have the same
nameservers serve the child and parent zones, but the child zone
needs nameserver records. If you have a zone like michaelwlucas.com, and you want to have separate
records within home.michaelwlucas.com and
office.michaelwlucas.com, you must include
NS records for those subdomains in the parent domain. You can get
away with this when you're not using DNSSEC, because DNS is
forgiving. DNSSEC breaks spectacularly without NS records for
subdomains, and can become really weird if the NS records in the
subdomain don't match those in the parent domain.

Delegating Subdomains

One of the most common uses for subdomains is
delegating reverse DNS for address space. A global company might
use 10.0.0.0/8 for internal addresses, and assign various /16 or
/24 blocks to different divisions or locations. (They might assign
blocks of other sizes using RFC2317 techniques, but doing so here
would unnecessarily complicate the examples.) Such an organization
has an internal authority server responsible for maintaining NS
records for each block of addresses. If you were stuck running this
root server, how would you perform this delegation?

You need a zone file for
10.in-addr.arpa. This zone file doesn't
need to contain any A records, but does need NS records for the
various delegations. Here's a zone file with two delegations.

$TTL 7200

@ IN SOA ns1.michaelwlucas.com.
dns.michaelwlucas.com. (

2013021805 3600 900 3600000 900
)

IN NS
ns1.michaelwlucas.com.

IN NS
ns2.michaelwlucas.com.

0.0.10.in-addr.arpa. NS
ns10.michaelwlucas.com.

0.0.10.in-addr.arpa. NS
ns11.michaelwlucas.com.

0.0.10.in-addr.arpa. NS
ns12.michaelwlucas.com.

1.10.in-addr.arpa. NS
ns20.michaelwlucas.com.

1.10.in-addr.arpa. NS
ns21.michaelwlucas.com.

1.10.in-addr.arpa. NS
ns22.michaelwlucas.com.

The zone 0.0.10.in-addr.arpa, or 10.0.0/24, is served by
ns10, ns11, and
ns12. The zone 10.1/16 is served by
ns20, ns21, and
ns22. Recursive clients will proceed to the
next nameserver in line.

If the master nameserver for
10.0.0.0/8 is also authoritative for some delegations, it must have
a similar entry. My machines ns1 and ns2 are authoritative for
10.0.0.0/8, but also for 10.0.1.0/24. My zone for 10.in-addr.arpa needs NS entries like below.

1.0.10.in-addr.arpa. NS
ns1.michaelwlucas.com.

1.0.10.in-addr.arpa. NS
ns2.michaelwlucas.com.

Your server also needs a zone
for 1.0.10.in-addr.arpa, of course.

Once all of your subdomains
have proper delegations in the nameserver, you can look at adding
DNSSec to your subdomains.

Adding DNSSec to Delegations

Before you try to configure DNSSEC for
subdomains, make sure it works on your top level domain. Verify
that unrelated resolvers can build the Chain of Trust for records.
If I want to secure subdomains of michaelwlucas.com, I must first secure michaelwlucas.com. The Chain of Trust only works if all
the parent domains above a domain work.

If you're delegating private
address space or a private domain, as in the previous example,
don't worry about the Chain of Trust yet. Create a KSK and ZSK for
your top-level zone, such as 10.in-addr.arpa, and add them to the zone. We'll create
a Chain of Trust for this in "Islands of Trust" later this
chapter.

Now create a KSK and ZSK for
your subdomain. Here I create keys for my delegation of
10.0.1.0/24.

$ dnssec-keygen –f KSK –a
8 –b 2048 1.0.10.in-addr.arpa.

$ dnssec-keygen –b 1024 –a 8
1.0.10.in-addr.arpa.

Add the keys to your
delegated zone, then create a DS record from your subdomain's KSK.
Here I create a DS record for my zone from key 57121.

$ dnssec-dsfromkey
K0.0.10.in-addr.arpa.+008+57121

Keep the generated DS records
handy.

Now the fun bit. Previously,
you needed to get your parent domain to include the DS records for
your domain. Now, you are the parent domain. You get to experience
both sides of the job. Lucky you! Go to the parent zone, and copy
the DS records created by dnssec-dsfromkey
verbatim into the zone, as well as the nameservers for the
zone.

0.0.10.in-addr.arpa. NS
ns1.michaelwlucas.com.

0.0.10.in-addr.arpa. NS
ns2.michaelwlucas.com.

0.0.10.in-addr.arpa. IN DS 57121 8 1
B72C…

0.0.10.in-addr.arpa. IN DS 57121 8 2
BFD32…

The IN designator marking a
record as Internet-class data is the default these days, but
dnssec-dsfromkey includes it by default.
You can remove it if you like, but the IN won't hurt anything. Once
you add these records to the parent zone, reload it.

To verify the DS records are
present in 10.in-addr.arpa, either compile
the zone or use dig.

$ dig 10.in-addr.arpa.
@localhost axfr | less

…

0.0.10.in-addr.arpa. 7200 IN NS
ns1.michaelwlucas.com.

0.0.10.in-addr.arpa. 7200 IN NS
ns2.michaelwlucas.com.

0.0.10.in-addr.arpa. 7200 IN DS 57121
8 1 B72C89…

0.0.10.in-addr.arpa. 7200 IN DS 57121
8 2 BFD32E…

…

The zone 10.in-addr.arpa includes the nameserver for the
delegation of 0.0.10.in-addr.arpa and DS
records for key 57121. You'll also see RRSIG records for the NS and
DS records. A client who has a trust anchor for 10/8 will trust
these records and validate the child zone.

If you have problems, fall
back to the troubleshooting in Chapter 9. The most common error I
see is a key ID mismatch between the parent zone and the child zone
– the exact same error you're most likely to make when dealing with
your own parent domain. Whether you admit you screwed up to the
child domain's DNS administrator is your decision.

Islands of Trust

Delegating and securing a child domain with a
valid Chain of Trust is straightforward. But what if you have a
domain that's not part of the global DNS? If you have private
address space or an internal domain that isn't part of the global
Internet, you must create your own trust anchor to establish
DNSSEC.

A trust anchor key is the
public key of a KSK. Format the KSK correctly and tell your client
nameservers to trust the key, and you'll have your own Chain of
Trust disconnected from the outside world. This is often called an
island of trust.

Before you start, remember
that querying an authoritative server for a zone never returns
authenticated data. If you want to get DNSSEC validation on
10.in-addr.arpa, you can't query the
authoritative nameserver for this zone. You must configure a
nameserver that isn't authoritative. If your nameservers are both
authoritative and recursive, you cannot deploy an island of trust.
Separate your client-facing nameservers from your authoritative
ones, and refer the appropriate queries from the recursive servers
to the authoritative servers.

Choosing Private Domains

Some reverse zones are reserved for private use,
such as the RFC 1918 private address ranges. But there is no
reserved name for forward zones. Some organizations use
.local, but that's actually reserved for
mDNS. I suspect that organizations using .local must enjoy having problems, but that's their
call.

Some organizations make up a
private top-level domain. ICANN creates new TLDs all the time,
however, and eventually they will use your made-up domain. And if
you create a new domain under, say, .com,
what will happen when someone registers that domain in the outside
world? Worse, what happens if it's a competitor to your
company?

If you want a private domain
for internal use, register a public one to avoid conflicts. Spare
your slightly older self the headache.

Prepare a Trust Anchor

The easiest way to get the public key of a
zone's KSK is to ask the nameserver. The following dig command pulls all the keys for a zone, with very
little context.

$ dig zonename dnskey
@localhost +multi +nocomments +nostats

Here I get all the keys for
my private address space and direct them to the file
trustedkey.conf.

$ dig 10.in-addr.arpa dnskey
@localhost +nocomments +nostats > trustedkey.conf

Remove all blank lines from
this file and all lines beginning with a semicolon. Remove the key
of type 256, as that's the zone's ZSK. You'll be left with a text
string like the below.

10.in-addr.arpa. 7200 IN DNSKEY 257 3
5 AwEAAdKykgOTpkkMl…

Remove TTL (7200), IN, and
DNSKEY from the key. What remains is the trust anchor key.

The named program maintains trust anchors for the DLV and
the root zone automatically. For an island of trust, you must
configure the trusted key manually with a named.conf entry.

trusted-keys {

"zonename" 257 3 5 "key
here";

};

To convert your edited DNSKEY
record to a trusted keys format, add quotes around the zone name
and the public key. My trusted-keys entry for the zone 10.in-addr.arpa looks like this.

trusted-keys {

"10.in-addr.arpa." 257 3 5

"AwEAAdKykgOTpk

…

g17OOCdU7L2otJkV";

};

I now have a trusted key for
this zone, formatted appropriately for named.

Add a Trust Anchor to Client-Facing
Servers

Copy this key to the client-facing nameservers.
You can either add it directly to named.conf, or use an include file. I recommend using
an include file. When you must rollover your private KSK (and one
day you'll have to), copying a new file to a server is less trouble
than editing a configuration file. You also need to tell the
recursive nameserver about your private domain, either through
forwarders or a stub zone. Which you choose depends on your
organization's security policy. Here's a forwarder example.

include
"/etc/namedb/trustedkeys.conf";

zone "10.in-addr.arpa." {

type forward;

forward only;

forwarders { 192.0.2.18;
198.0.2.134; };

};

A stub is preferable because
it tells named to cache the nameservers for
this zone and query them directly, rather than arbitrarily
forwarding every single query to the forwarders.

include
"/etc/namedb/trustedkeys.conf";

zone "10.in-addr.arpa." {

type stub;

masters { 192.0.2.18;
198.0.2.134; };

};

Reload your nameserver. This
recursive nameserver now uses the public key in /etc/namedb/trustedkeys.conf, and uses the listed
servers for all queries for 10.0.0.0/8.

Testing the Island of Trust

To verify that the island of trust works, use
dig on the recursive nameserver.

$ dig -x 10.0.0.1 @localhost
+ad

…

;; flags: qr rd ra
ad; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:
5

…

1.0.0.10.in-addr.arpa. 6245 IN PTR
desktop.michaelwlucas.com.

This query returns a PTR
record, and the ad flag is set. You've
achieved an Island of Trust.

Now that you have a secure
distributed database for hosts and IP addresses, let's finish by
cramming other stuff into it.

Chapter 12: DNSSEC for Data
Distribution

One of the big problems of security
infrastructure is the distribution of authentic information. We use
Certificate Authorities to assess our identities and provide SSL
certificates signed by a trusted authority, rather than having
organizations vouch for themselves. Applications such as Secure
Shell (SSH) require users to manually verify the public keys
associated with a server. When an organization deploys a VPN
device, they must somehow securely distribute the server's
public key to the users. DNSSEC offers a solution to this entire
category of problems. An organization using DNSSEC has a
cryptographically verified distribution method for non-confidential
information, including cryptographic public keys.

Some application vendors are
already requiring the use of DNS records for their devices. More
than one VPN client device looks for an IPSECKEY record for the VPN
concentrator, and will not connect without it. Without DNSSEC, an
intruder can alter that record and redirect those clients any way
they like. Vendors of such devices provide instructions for their
products, so I'm going to look at two more generally useful cases
for DNSSEC-based data distribution: distributing SSH host keys, and
verifying self-signed certificates for HTTPS web sites.

SSH Host Key Fingerprints

The Secure Shell (SSH) protocol uses public key
cryptography to verify that the server you're connecting to is
actually the server you think it is, and to secure the data flowing
between client and server. Unfortunately, correct use of SSH
requires that when a user logs into a SSH server for the first
time, he must examine the offered public key and compare it to an
out-of-band copy of the server's public key. This is tedious and
annoying, and most SSH users don't bother. Worse, most SSH users
quickly learn to ignore SSH's warnings about public key problems.
We work hard to teach users about security problems. Teaching them
to ignore security issues is not good.

You can distribute SSH host
keys via DNS by using SSH Fingerprint (SSHFP) records. As they're
security-critical, it's important that the key be immune to
tampering. Do not use SSHFP records until you have working
DNSSEC.

To distribute host keys over
DNSSEC you must create SSHFP records, insert them in the zone, and
configure your SSH client. We'll cover the OpenSSH client and
server. If you're not familiar with OpenSSH, permit me to direct
you to my book SSH Mastery (Tilted Windmill Press,
2012).

Create SSHFP Records

Use the –r argument to
ssh-keygen(1) to create SSHFP records. It
reads the public key files in /etc/ssh,
parses them, and creates DNS records with the hostname you specify.
Use the hostname as you want it to appear in the SSHFP record.

$ ssh-keygen –r
hostname

Here I create SSHFP records
for the web server www.

$ ssh-keygen -r
www

www IN SSHFP 1 1 f44d08efc159…

www IN SSHFP 1 2 86c744ce05ba…

www IN SSHFP 2 1 9af675d68969…

www IN SSHFP 2 2
7914036e9053e14db552…

www IN SSHFP 3 1
0f7c928e3954c54f0b32…

www IN SSHFP 3 2 5c5192e78de10…

This displays SSHFP records
for all host keys on the local machine. This entry is specific to
the machine's domain. I could run the exact same command on the
machine www.isc.org and would get a
completely different record. Be sure to associate the SSHFP records
with the correct host! If a host has multiple name and you might
use any of those names to contact the host, then each host name
needs a SSHFP record.

Insert the SSHFP record into
the zone just like any other resource record.

Configure The Client

The two biggest SSH clients are OpenSSH and
PuTTY. PuTTY does not yet support SSHFP records. Enable SSHFP
checks on the OpenSSH client by setting the configuration option
VerifyHostKeyDNS to yes in ssh_config or
$HOME/.ssh/config.

When the client logs into a
new SSH server that has a SSHFP record, the user is informed that a
SSHFP record exists.

$ ssh www

The authenticity of host 'www
[192.0.2.63]' can't be established.

ECDSA key fingerprint is
c3:a2:83:22:da:1e:95:23:f9:59:e6:c7:96:98:13:cf.

Matching host key fingerprint
found in DNS.

Are you sure you want to continue
connecting (yes/no)? yes

The user is told that the key
matches the DNS entry, and the user can choose to accept it or not.
If the key presented by the host does not match the SSHFP record,
the client gets a big scary "host key changed" message. Depending
on how your operating system packages OpenSSH, it might log you in
without further user intervention. This eliminates the client-side
known_hosts file and greatly simplifies
managing SSH keys.

Distributing SSHFP records
over DNS makes users more likely to verify host keys. Implement it
if you can.

SSL Certificate Verification: TLSA

Secure Sockets Layers (SSL) is a popular way to
secure data as it crosses the Internet. One of the major goals of
SSL protection is verifying the server owner. A SSL certificate
supposedly attests to the identity of the server operator,
permitting secure communications between the client and the
server.

Web browsers have several
Certificate Authorities (CAs) hard-coded into them, and
automatically recognize certificates signed by those CAs. If you
want a SSL certificate for your site you must contact a CA, have
them validate your identity, and pay for the privilege. You can
create self-signed certificates at no cost, but web browsers don't
recognize them. Users get all kinds of scary warnings when they
access web sites with self-signed certificates. These warning are
only scary because browser developers have no way to make them
utterly terrifying.

DNSSEC offers a way to
validate certificates: the DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security Protocol (TLS). The zone
administrator places a hash of the server certificate in DNS as a
TLSA record. TLSA is not an acronym, it's just the name of the DNS
resource record used for the protocol. (Presumably, the IETF left
space for resource records TLSB, TLSC, etc, once the world exposes
all the abuses and flaws they didn't think of.) When a web browser
contacts the web site, it checks for a DNSSEC-secured TLSA record
for the host and port. The browser compares the TLSA record to the
certificate, and if everything matches, the browser treats the
certificate as approved. The user sees no scary warning, even for
self-signed certificates.

This is a slightly different
trust model than that based on certificate authority. DANE TLS
assumes that the organization that controls the DNS for a zone also
controls the server. The CA model assumes that the CA does a good
job of verifying certificate applicants. Both have weaknesses, but
different ones. Interestingly, DANE TLS can also be used for
CA-based certificates, and a TLSA record can specifically prohibit
use of a self-signed certificate, so you can combine the two models
to achieve both the best and worst of both. (Which is best and
which is worst is up to you.)

Client support for TLSA only
exists on web browsers, and requires a browser plug-in as of March
2013. DANE TLS was approved mid-2012, and programmers are busily
writing client libraries. Browsers will certainly incorporate TLSA
support before long, and other software will follow. While I use
the word browser to represent a client, it's only because
that's the example I have to work with. TLSA support will spread
into anything that uses SSL.

Note that for the last few
years, many people have implemented methods of stapling SSL
certificates to DNSSEC. Perhaps the best known is the
ImperialViolet code actually deployed in Google Chrome. With DANE
and TLSA, these earlier methods are obsolete. You'll stumble across
references to various ways to staple SSL certificates to DNSSEC,
but don't use them.

I'll cover creating TLSA
records for your sites, and then configuring a browser to support
TLSA.

TLSA Records

The key to DANE TLS is the TLSA record, which
exports either a hash of the certificate's public key or the actual
public key. The TLSA record looks like this.

_port._protocol.hostname TLSA (usage
selector match key)

_443._tcp.dnssec.michaelwlucas.com
TLSA (3 0 2 891C….C8DB)

The port is the TCP,
UDP, or SCTP port this record represents. (SCTP, the Stream Control
Transmission Protocol, is a modern transport protocol for streaming
data. You've never heard of it? You will.) A host can have
different certificates on different ports, so your email team can
maintain their certificate without access to your web site
certificate.

The protocol is the
TCP/IP protocol. TLSA records support TCP, UDP, and SCTP.

The hostname is the
host using the certificate, and TLSA is the resource
record type.

The usage field
gives constraints for the type of certificate that can be used on
this host and port. I'll cover those in "CA Use Policies,"
below.

The selector shows
how to compare the information in the TLSA record to the site
certificate. For now, this should always be 0.

The match field says
what kind of data the record contains. A 0 indicates a full public
key, a 1 is a SHA-256 hash, and a 2 is a SHA-512 hash. While I'll
refer to this field as containing a hash, you should know that you
can put a full public key in if you want.

CA Use Policies

The usage field lets you define how this TLSA
record interacts with a Certificate Authority.

A 0 means that the record
contains the hash of a CA signing certificate. This means that a
specific CA must have signed the certificate used on this service.
You could have a TLSA record that says "The certificate on this
port must have been signed by Mitigation Limited," and the sysadmin
responsible for the service could renew his certificate from the
approved vendor without bothering the DNS team.

A 1 means that the record
contains the hash of a CA-signed certificate. The service this
record represents must have an official CA-approved certificate,
and information specific to that certificate is stored in the
record. When the sysadmin renews his certificate, even from the
same CA, this record must be updated.

A 2 means that the record
contains the hash of a private certificate authority. Any
certificate offered by the service must be signed by an entity
whose public key matches the hash in the record. This is for
organizations that have their own Certificate Authority, and want
their services to use only certificates signed by that
authority.

A 3 means that the record
contains the hash of a certificate. Any kind of certificate. The
certificate does not to be signed by a CA, so you can use
self-signed certificates.

Self-Signed Certificate TLSA

My test site
https://dnssec.michaelwlucas.com uses a self-signed certificate,
supported by the following TLSA record.

_443._tcp.dnssec TLSA (3 0 2
891CD…9C8DB)

You need your own hostname
and SHA-512 hash, but if you're using a self-signed certificate
your usage, selector, and match fields should be identical to mine.
And probably your port number and protocol as well.

Generating a Certificate Hash

TLSA records can either use the full public key
on a certificate or a hash of the public key. Most of us want to
use a hash. You can use either SHA-256 or SHA-512, but I generally
use SHA-512.

Use OpenSSL to get the hash
of your certificate. If your certificate is site.crt, run:

$ openssl x509 -noout
-fingerprint -sha512 < site.crt

SHA512
Fingerprint=89:1C:DF:6A:96:…:73:49:79:C8:DB

For a SHA-256 hash, use –sha256
rather than –sha512.

Remove all the colons from
the hash, and copy it into the last field in your TLSA record.
Increment your zone's serial number and reload. You're done!
TLSA-aware clients can now verify your site certificate.

Now all you need is a
TLSA-aware client.

TLSA Browser Plugins

TLSA support in browsers is evolving rapidly. I
recommend that you do a few web searches for better solutions
before choosing one for your organization. Always test to see if a
plugin works for your environment.

DNSSEC Validator

For a few years now, the best DNSSEC plugin has
been DNSSEC Validator from cz.nic. If a web site's DNS is secured
via DNSSEC, a green key icon appears in the address bar, regardless
of the presence of TLSA or SSL. This is a useful reassurance to
end-users. The gray box that appears when a site lacks DNSSEC is
not overly scary. But DNSSEC Validator does not yet support TLSA
records. The plugin authors assure me that TLSA is on their roadmap
and should appear before long. I recommend you check for TLSA
support in DNSSEC Validator, and use this plugin if that support
exists.

Extended DNSSEC Validator

If DNSSEC Validator doesn't yet support TLSA,
you can test TLSA by the Extended DNSSEC Validator in Firefox. The
version of the add-on on the home page (http://os3sec.org) is
usually out of date, so I recommend building the newest version of
the add-on from the source repository at
https://github.com/os3sec/Extended-DNSSEC-Validator/. The add-on
comes with warnings that it's a proof-of-concept, and you shouldn't
rely on it for authentication. I've found it rather clunky, and it
slows down my web browser, but I usually use an unspeakable number
of tabs, so your experience might differ.

Extended DNSSEC Validator
uses the libunbound DNS library, from http://www.unbound.net. Every
system that uses this plugin needs to have Unbound installed. Most
Unix-like operating systems have a package for libunbound and/or
the Unbound DNS server. There's even a port of Unbound available
for Microsoft operating systems, although you must reboot your
Microsoft system after installing. Before building or installing
the Extended DNSSEC Validator add-on, install either libunbound or
the whole server.

The standard add-on build
process uses the bash shell. If you're building on and for
Microsoft systems, the easiest way to get this is installing Cygwin
(http://www.cygwin.com). You'll also need the zip package.

Download the Zip file
containing the source code from
https://github.com/os3sec/Extended-DNSSEC-Validator/. Extract it.
Go into the add-on directory and run ./build.sh. This creates the file extval.xpi. This is your add-on.

Start Firefox. Hit CTRL-O to
open the "Open" dialog. Browse to extval.xpi in the plugin source directory and tell
Firefox to open it. The browser will ask if you want to install the
add-on. Say yes. Restart Firefox after installing.

Testing TLSA

Now browse to
http://www.internetsociety.org/deploy360/resources/dane-test-sites/
for a list of web sites with various DANE TLS configurations. Or
you can use my TLSA web site, https://dnssec.michaelwlucas.com, but
as a reward you'll see a bunch of random crap about this book and
other stuff I do. Choose one and click the lock icon in the address
bar to see exactly how the site is secured.

Now you can choose which
services need a CA-signed SSL certificate, and which don't. When
you have reliable TLSA support in your organization's web browser,
you can use TLSA-backed self-signed certificates for your internal
hosts. Public-facing applications will need to use CA-based
certificates for some time yet, but when the TLSA support on the
Internet hits critical mass you'll be ready for the switch.

Afterword

After decades of abuse, DNS finally has a
security infrastructure. People have tested and honed DNS Security
Extensions for over a decade, and the software has finally caught
up with the real-world capacities of the average DNS administrator.
While DNSSEC might initially seem complex, DNS probably seemed
complex when you first encountered it. And deploying DNSSEC will
enhance your trust in your own network resources even as it
improves your trust in other people's DNS. Your users can rest
assured that the goofy cat video they're watching is actually the
goofy cat video their mother sent.

If you're interested in
learning more about DNSSEC, look at resources such as the NIST's
Secure Domain Name System (DNS) Deployment Guide, the
BIND 9 Administrator Reference Manual, and the web site
http://www.dnssec.net.

Previously, DNS seemed like
the slightly daft ancestor at your holiday dinner: well-meaning,
unquestionably welcome at the party, but a little old-fashioned and
fuddy-duddy. DNSSEC transforms DNS into a trustworthy method for
distributing public information. By deploying DNSSEC now, you're on
the leading edge of the Internet's next revolution. Secure DNS can
power and enhance a new generation of Internet services.

Your DNSSEC deployment makes
you one of the first people standing in the future.
Congratulations!

tmp_6e56a25eeb7d6e9594b90f0b9ae1da7e_Yaqnbt_html_m535bd0aa.png
DNSKEY
alg=8, id=19036

DNSKEY
alg=8, id=40323

DS
digest algs=1.2

(2013-02-08 18:21:19 UTC)

DNSKEY
alg=7, id=21366

DNSKEY DNSKEY
alg=7.id=0795 ! '(alg=7,id=41790

DNSKEY
alg=7, id=11993

DS
digest algs=1.2

'
org '

(2013-02:08 1821125 UTC)

i T

DNSKEY
alg=5, id=29521

DNSKEY
alg=5, id=6060

dnssec-failed.org/S0A

dnssec-failed.org
(2013-02-08 18:52:59 UTC)

tmp_6e56a25eeb7d6e9594b90f0b9ae1da7e_Yaqnbt_html_6ff9f1f8.jpg
BY
MICHAEL W. LUCAS

CRITICALLY-ACCLAIMED AUTHOR OF
ABSOLUTE OPENBSD,
SSH MASTERY,
AND NETWORK FLOW ANALYSIS;

tmp_6e56a25eeb7d6e9594b90f0b9ae1da7e_Yaqnbt_html_m67956e94.png
DNSKEY
alg=8, id=19036

DNSKEY
alg=8, id=40323

DS
digest algs=1.2

(2013-02-08 2p:14:41 UTC)

DNSKEY
alg=5, id=19207

DNSKEY
alg=5, id=64263

DLV
digest algs=1.2

divisc.org
(2013-02-08 21:43:42 UTC)

DNSKEY
alg=7, id=21366

DNSKEY
alg=7, id=11993

digest algs=1.2

(2013/02-08 20:15:11 UTC)

DNSKEY .
alg=7, i

DNSKEY
alg=5, id=12802

DNS|
alg=s, i

Y

)

wrgion) (scorgasss) (o

==
isc.org

(2013-02-08 22:43:32 UTC)

cover.jpg
‘ pa

